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Abstract

We aim to develop meta-learning techniques that achieve higher zero-shot perfor-
mance than the state of the art on unseen tasks. To do so, we take inspiration from
recent advances in generative modeling and language-conditioned image synthesis
to propose meta-learning techniques that use natural language guidance for zero-
shot task adaptation. We first train an unconditional generative hypernetwork model
to produce neural network weights; then we train a second “guidance” model that,
given a natural language task description, traverses the hypernetwork latent space
to find high-performance task-adapted weights in a zero-shot manner. We explore
two alternative approaches for latent space guidance: “HyperCLIP”-based classifier
guidance and a conditional Hypernetwork Latent Diffusion Model (“HyperLDM”),
which we show to benefit from the classifier-free guidance technique common in
image generation. Finally, we demonstrate that our approaches outperform existing
meta-learning methods with zero-shot learning experiments on our Meta-VQA
dataset.

1 Introduction

State-of-the-art machine learning algorithms often lack the ability to quickly generalize in a sample
efficient manner to new unseen tasks. In contrast, humans show remarkable capabilities in leveraging
previous knowledge for learning a new task from just a few examples. Often, not even a single
example is needed, as all relevant task information can be conveyed in the form of natural language
instructions.

Inspired by recent advances in conditional image generation (Ramesh et al., 2022; Rombach et al.,
2022), we reframe meta-learning as a multi-modal generative modeling problem such that, given a
task, its adapted neural network weights and its natural language description are considered equivalent
multi-modal task representations. We show that popular techniques for the image domain, such as
CLIP-based guidance (Gal et al., 2021; Patashnik et al., 2021), denoising diffusion models (Ho et al.,
2020), and classifier-free guidance (Dhariwal and Nichol, 2021; Ho and Salimans, 2021; Nichol et al.,
2022) can be repurposed for the meta-learning setting to generate adapted neural network weights
instead of images. We point to Appendix A.1 for other related work.
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Figure 1: Schematic of the three main
components of our proposed meta-
learning approach. A. An unconditional
variational autoencoder (VAE) models the
latent space of adapted network weights
W . Its generator hypernetwork h (high-
lighted in gray) can be re-used in the
conditional setting with our guidance
techniques. B. Our HyperCLIP encoder
CLIPH is contrastively trained to map net-
work weights W to the space of CLIP
embeddings ei. Then, given a new task
with descriptor ti, we can use CLIP guid-
ance to find a VAE latent vector zi with
embedding e

(H)
i that has a high cosine

similarity to a given task embedding e(T )
i .

C. Alternatively, our Hypernetwork La-
tent Diffusion Model (HyperLDM) learns,
conditional on the task embedding ei, to
iteratively denoise a VAE latent vector
zTi , . . . , z

0
i over T iterations.

Specifically, we approach the generation of neural network weights in two separate phases. In the
unconditional pre-training phase, we train a generative hypernetwork (Ha et al., 2016) to map from
its latent space to the weight space of a base model (Figure 1.A). In the guidance phase, we learn
language-conditioned models that can be used to traverse the hypernetwork latent space and find
zero-shot adapted weights with high performance on our task (Figure 1.B and 1.C).

2 Meta-Learning with Multi-Modal Task Embeddings

The setting we investigate is similar to the classic meta-learning framework, where we operate within
a distribution of tasks Ti ∼ p(T ), each associated with a loss function LTi . Using a set of training
tasks drawn from this distribution, our goal is to train a model f(x,Wi) = y such that it generally
performs well on new unseen tasks drawn from p(T ). In this work, we assume to have access to a
natural language description ti for each task Ti, which can be encoded into a task embedding ei using
a pre-trained language model.

The fundamental building block of our unconditional generative model is the hypernetwork (Ha et al.,
2016) h(z, θ) =W , which can be trained either with classic MAML or with a VAE setup, paired to
an encoder d(W,ω) = (µz,Σz). For more details, we point to Appendix A.3.

3 HyperCLIP: Training a CLIP Encoder for the “Meta-Learning Modality”

Our first approach builds on top of Contrastive Language-Image Pre-training (CLIP) (Radford et al.,
2021). In the original CLIP formulation, separate text and image encoders are trained such that, given
a bi-modal sample (xi, ti) of an image and its corresponding language caption, their representations
(CLIPI(xi) = e

(I)
i and CLIPT (ti) = e

(T )
i ) are aligned across modalities. In our work, we consider

multi-modal representations of meta-learning tasks Ti, which may be presented in the form of
language as task descriptions ti, but potentially also in the form of images, videos, and audio. We
fine-tune a base machine learning model f(x,Wi) = y for task Ti and consider the base model as
part of an alternative meta-learning modality for task Ti. The meta-learning modality can then be
paired in contrastive learning with the other multi-modal descriptions of Ti. We can thus define our
new HyperCLIP encoder as a “reverse hypernetwork” CLIPH(Wi) = e

(H)
i .

We then introduce HyperCLIP guidance, the first algorithm for classifier guidance in the meta-
learning setting (Figure 1.B). Given a previously unseen validation task Ti and an uncondi-
tional generative hypernetwork model h(z, θ) = W , we can use a trained HyperCLIP encoder
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Figure 2: Our HyperCLIP encoder CLIPH is contrastively trained to map neural network weights
W to the latent space of a pre-trained language encoder CLIPT , which we use to embed the natural
language questions associated to the tasks (see A). To perform task inference given an already fine-
tuned network, we encode all candidate task questions using the language CLIP encoder (see B), then
encode the fine-tuned network weights with HyperCLIP (see C), and finally infer the correct task with
a softmax operation over cosine similarities between HyperCLIP and language CLIP embeddings.

CLIPH(W ) = e(H) to guide the exploration of the hypernetwork’s latent space and find a set of base
weights Wi with high zero-shot performance for Ti. Specifically, as long as we are given a starting
hypernetwork latent vector z0 and a textual description ti of the task, we can update z0 with gradient
descent over the guidance loss

Lguidance(z) = − CLIPH (h(z, θ))
⊤ CLIPT (ti)

∥CLIPH (h(z, θ)) ∥∥CLIPT (ti)∥
+ λ∥z − z0∥, (1)

and then run the optimized latent vectors ẑi through the generative hypernetwork to find adapted
zero-shot base network weights h(ẑi, θ) = Ŵi that perform well for the task.

4 HyperLDM: Task-conditional Diffusion of Hypernetwork Latents

Recent advances in image generation involve the use of classifier guidance and classifier-free guidance
during the sampling process of a Diffusion Model (Dhariwal and Nichol, 2021; Ho and Salimans,
2021; Kim et al., 2022; Crowson, 2022; Nichol et al., 2022; Rombach et al., 2022). To paint a more
complete picture, we also investigate this setting in the meta-learning domain.

In our meta-learning setting, we aim to train a diffusion model which generates adapted zero-shot base
network weights Ŵi that perform well for task Ti. Thus, our diffusion model has to be conditional on
a task embedding ei. Moreover, in order to speed up training and leverage our previously trained
generative hypernetwork h(z, ψ), we define the diffusion process on latent vectors instead of doing so
in weight space, emulating the Latent Diffusion technique from Rombach et al. (2022). We propose
Hypernetwork Latent Diffusion Models (HyperLDM), which learn to sample from the conditional
distribution of fine-tuned latent vectors p(z0|ei) given a language CLIP embedding corresponding to
the task. The HyperLDM neural network models the noise function ϵψ(zt, t, ei), and is learned by
optimizing the reweighted variational lower bound, which in this setting is

LLDM(ψ) = ETi,henc(Wi),ϵ∼N (0,1),t

[
∥ϵ− ϵψ(z

t, t, ei)∥22
]

. (2)

The classifier guidance technique presented in Section 3 can be also adopted together with diffusion
models. Even in the case of conditional diffusion models, the gradient of an auxiliary classifier (or
CLIP encoder) can be added during sampling to induce an effect similar to GAN truncation (Brock
et al., 2018), producing samples that are less diverse but of higher quality. The classifier-free guidance
technique (Ho and Salimans, 2021; Nichol et al., 2022) allows us to leverage a conditional diffusion
model to perform the same tempered sampling as above, without the auxiliary classifier. To do so,
we train the conditional network ϵψ(zt, t, ei) to also model the unconditional case ϵψ(zt, t). One
way of doing this is with conditioning dropout, simply dropping the conditional input ei for a certain
percentage of training samples, inputting zeros instead. We can then sample at each diffusion iteration
with

ϵ̃ψ(z
t, t, ei) = (1− γ) ϵψ(z

t, t, 0) + γϵψ(z
t, t, ei). (3)
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For γ = 0, this recovers the unconditional diffusion model, while for γ = 1 it recovers the standard
task-conditional model. For γ > 1, we instead obtain the classifier-free guidance effect, which we
show results in the sampling of latent vectors ẑi corresponding to higher-performing task-conditional
network weights h(ẑi, ψ) = Ŵi. We point to a more in-depth discussion on classifier-free guidance
and its connection to score matching in Appendix A.6.

5 Experimental Setup and Results

In this section, we demonstrate the soundness of our two approaches with zero-shot and few-shot
image classification experiments against a series of traditional meta-learning baseline techniques.
Throughout our experiments, we fix the choice of base network model (see Appendix A.7), only
varying the meta-learning techniques employed to obtain adapted base model weights.
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Figure 3: a) Performance of HyperLDM over different classifier-free guidance parameters γ. b)
Performance of HyperLDM against baselines in the setting where only a fraction of natural language
task labels are given.

In Table 1 from Appendix A.9 we show how well our methods fare on the Meta-VQA dataset (see
Appendix A.8 for discussion on the dataset). We test HyperCLIP Guidance and HyperLDM when
trained on top of either a hypernetwork or a VAE generator (see Appendix A.7 and A.11 for more
details). HyperCLIP Guidance allows for faster sampling than HyperLDM but is generally less
performant (53.98% acc.), still, it improves upon all other zero-shot baselines except for conditional
multi-task learning (Cond. Multitask, 54.12%). The best performing model for the zero-shot setting
is HVAE + HyperLDM, with an accuracy of 54.57%, and specifically for classifier-free guidance
with γ = 1.5. As illustrated in Figure 3.a, to further show the effectiveness of the classifier-free
guidance technique, we sweep over several candidate γ parameters to find that the optimum occurs
for γ > 1. In another experiment, as shown in Figure 3.b, we train our model while only keeping 50%
or 10% of task descriptors, and show that while this strongly impacts traditional Cond. Multitask
learning, it does not affect HyperLDM as strongly due to its two-phased training regime based on an
uncondtional VAE. In fact, even when dropping half of task descriptors, HyperLDM still performs
better than the Uncond. Multitask baseline.

6 Conclusion

In this work we introduced a framework that re-interprets meta-learning as a multi-modal generative
modeling problem. Our HyperCLIP guidance and HyperLDM methods leverage this insight to gener-
ate task-adapted neural network weights in a zero-shot manner given natural language instructions,
and constitute the first application of the CLIP guidance and classifier-free guidance techniques from
image generation to the meta-learning domain. Our experiments show that our methods successfully
make use of external task descriptors to produce high-performance adapted networks in the zero-shot
setting.
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A Appendix

A.1 Related Work

Hypernetworks By introducing multiplicative interactions within neural networks (Jayakumar
et al., 2019), hypernetworks (Ha et al., 2016) have been shown to allow the modeling of diverse
target network weights in, e.g., continual learning, even in the compressive regime (von Oswald et al.,
2021a, 2020) without loss of performance. For a given supervised problem, hypernetworks have been
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used to model the complex Bayesian posterior of the weights in conjunction with variational inference
(Henning et al., 2018; Krueger et al., 2018). Similar approaches have been used for continual
learning, whereby task-specific weight posteriors are generated by a task-specific hypernetwork, itself
generated by hyper-hypernetwork conditioned on a learned task embedding (Henning et al., 2021).
Another vein of work consists in using hypernetworks to distill ensembles of diverse networks (Wang
et al., 2018; Ratzlaff and Fuxin, 2020; von Oswald et al., 2021a).

Meta learning In the context of meta-learning, hypernetworks have been successfully used in
combination with popular gradient-based meta-learning methods (Finn et al., 2017), especially
benefiting in few-shot classification and regression problems (Zintgraf et al., 2019; Zhao et al., 2020;
Flennerhag et al., 2020). More generally, related works have shown the usefulness of learning a low
dimensional manifold in which to perform task-specific gradient-based adaptation at meta test time
(Rusu et al., 2018; von Oswald et al., 2021b; Lee and Choi, 2018), instead of directly adapting in
weight space. Recent works bypasses the formal bi-level formulation of meta-learning by, e.g., using
transformers to directly output the weights of the target network using both the few-shot labeled data
and transductive data as input (Zhmoginov et al., 2022).

Generative Modeling and Classifier(-free) guidance A plethora of techniques have been proposed
for the generation of samples from high-dimensional domains such as images, such as Generative Ad-
versarial Networks (Goodfellow et al., 2014; Brock et al., 2018, GANs) and Variational Autoencoders
(Kingma and Welling, 2014, VAEs). Denoising Diffusion Probabilistic Models (Sohl-Dickstein
et al., 2015; Ho et al., 2020, DDPM) overcome common issues in generative modeling using a
simple likelihood-based reconstruction loss for iterative denoising, and have been shown to achieve
state-of-the-art results in high resolution image generation (Dhariwal and Nichol, 2021; Rombach
et al., 2022). Several techniques have been proposed for effective conditional sampling in generative
and diffusion models, such as classifier/CLIP guidance (Dhariwal and Nichol, 2021; Gal et al., 2021;
Patashnik et al., 2021) and classifier-free guidance (Ho and Salimans, 2021; Crowson, 2022; Nichol
et al., 2022). Diffusion models with classifier-free guidance have also been successfully applied in
non-visual domains, such as audio generation (Kim et al., 2022) and robotic planning (Janner et al.,
2022).

A.2 Model-Agnostic Meta-Learning

We present here a slightly altered formulation of MAML (Finn et al., 2017) introduced in (Zintgraf
et al., 2019), whereby the parameters of the model g are partitioned into two parts: context parameters
ϕ that are adapted on individual tasks, and shared parameters θ that are meta-trained and shared across
tasks. MAML and its variants focus on the few shot setting, which aims to learn an initialization
for these parameters such that the model g(·, θ, ϕ) generalizes well on new tasks after fine-tuning
ϕ on a few data points from that task. To train such a model, the data from each task Ti is split
during training into a support set Ds

i and a query set Dq
i . The MAML objective aims to optimize the

validation score evaluated on the query set when fine-tuning ϕ on the support set, e.g., consider the
following optimization problem:

min
θ,ϕ

ETi∼p(T )

 1

|Dq
i |

∑
(x,y)∈Dq

i

LTi
(g(x, θ,ATi

(Ds
i, θ, ϕ)), y)

 , (4)

where ATi
is some differentiable algorithm, typically implementing a variant of few-step gradient

descent on the loss computed on the support set, e.g., in the case of one-step gradient descent:

ATi(D
s
i, θ, ϕ) = ϕ− η

1

|Ds
i|

∑
(x′,y′)∈Ds

i

∇ϕLTi(g(x
′, θ, ϕ), y′) (5)

with some learning rate η. The objective from Eq. 4 is itself solved with gradient descent, by
iteratively optimizing the parameters ϕ in the inner loop on the support set of a sampled task, and
updating θ and the initialization of ϕ with their gradient with respect to the entire inner loop training
process, averaged over batches of tasks. Note that the original formulation of MAML considers
θ = ∅.

If we consider hypernetworks, We can rewrite the MAML objective with respect to the hypernetwork
weight θ as
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min
θ

ETi∼p(T )

 1

|Dq
i |

∑
(x,y)∈Dq

i

LTi
(f(x, h(ATi

(Ds
i, ei, θ), θ))), y)

 , (6)

when ATi(D
s
i, ei, θ) = ei, we recover the classic multi-task objective of a hypernetwork optimizing

for zero-shot performance. When ATi is instead the gradient descent algorithm on ei, the objective
aligns with the few-shot performance of h when adapting the embedding initialized at ei.

A.3 Hypernetworks as Generative Models of Network Weights

We hereby define our two alternative choices for hypernetworks as unconditional generative models
of base neural network weights: 1) We define a Hypernetwork VAE as in Figure 1.A, which, given
samples of fine-tuned base network weights Wi, learns a low-dimensional normally distributed
latent representation z. The encoder d(W,ω) = (µz,Σz) maps base network weights to means and
variances used to sample a latent vector z, while the decoder (or generator) is a classic hypernetwork
h(z, θ) = W which reconstructs the network weights from the latent vector. 2) Using MAML,
we learn both an embedding z and hypernetwork weights θ such that, when fine-tuning only the
embedding z on each task Ti, we obtain high-performing base networks with weights Wi = h(zi, θ).
Concretely, we optimize θ and the initialization of z following the objective in Eq. 4 where z takes
the role of the task-specific parameter ϕ.

A.4 The HyperCLIP Training Algorithm

Here we report the detailed learning procedure for training the HyperCLIP encoder.

Algorithm 1 HyperCLIP Training
sample a batch of tasks Ti=1,...,N with loss functions LTi

, training data Dtrain
i and text ti

define two N -sized arrays of d-dimensional embeddings T ∈ RN×d and H ∈ RN×d

for i = 1, . . . , N do
T [i] = CLIPT (ti) / ∥CLIPT (ti)∥
Fine-tune Wi with objective: minW

∑
(x′,y′)∈Dtrain

i
LTi(f(x

′,W ), y′)

H[i] = CLIPH(Wi) / ∥CLIPH(Wi)∥
end for
loss =

(
Lcross-entropy(TH

⊤) + Lcross-entropy(HT
⊤)

)
/ 2

Update weights of CLIPH(.) using ∇loss

A.5 Diffusion Models

Denoising Diffusion Probabilistic Models (Sohl-Dickstein et al., 2015; Ho et al., 2020, DDPM) are a
powerful class of generative models designed to learn a data distribution p(x). They do so by learning
the inverse of a forward diffusion process in which samples x0 of our data distribution are slowly
corrupted with additive Gaussian noise over T steps with a variance schedule β1, . . . , βT , resulting
in the Markov Chain

q(xt|xt−1) = N (xt;
√
1− βtx

t−1, βtI) q(x1:T |x0) =
T∏
t=1

q(xt|xt−1). (7)

A property of such a process is that we can directly sample each intermediate step from x0 as
xt =

√
ᾱtx

0 + (
√
1− ᾱt)ϵ given ϵ ∼ N (0, I), αt = 1− βt and ᾱt =

∏t
s=1 αt. Then, to learn the

reverse process pψ(xt−1|xt), we parametrize the timestep-dependent noise function ϵψ(xt, t) with a
neural network and learn it by optimizing a simplified version of the variational lower bound on p(x)

LDM(ψ) = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵψ(x

t, t)∥22
]

. (8)

Sampling from the reverse process can then be done with

xt−1 =
1

√
αt

(
xt − βt√

1− ᾱt
ϵθ(x

t, t)

)
+ σtξ, (9)
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with ξ ∼ N (0, I) and σt chosen between βt and βt/
√
1− ᾱt. Sampling from the learned diffusion

model can be seen as analogue to Langevin Dynamics, a connection explicitly made in works
exploring the diffusion technique from the “score matching” perspective (Song and Ermon, 2019;
Song et al., 2020).

A.6 Classifier-Free Guidance

We hereby provide a rationale for the use of classifier guidance and classifier-free guidance during
diffusion model sampling. As per the “score matching” interpretation of diffusion models, we
assume that our trained noise network approximates the score function of the true conditional latent
distribution p(z|ei) as ϵψ(zt, t, ei) ≈ −σt∇zt log p(z

t|ei). For classifier guidance, we can perturb
our diffusion sampling by adding the gradient of the log likelihood of our CLIP encoder pψ(ei|zt) to
the diffusion score as follows
ϵ̃ψ(z

t, t, ei) = ϵψ(z
t, t, ei)− ησt∇zt log pψ(ei|zt) ≈ −σt∇zt

[
log p(zt|ei) + η log pψ(ei|zt)

]
.

(10)

We can rewrite this as classifier guidance on the unconditional score ∇zt log p(z
t) with

−σt∇zt
[
log p(zt) + γ log p(ei|zt)

]
with γ = 1 + η (11)

using Bayes’ rule, as log p(zt|ei) = log p(ei|zt)+ log p(zt)− log p(ei), and thus ∇zt log p(z
t|ei) =

∇zt log p(ei|zt) +∇zt log p(z
t).

For classifier-free guidance, we aim to perform the above sampling without access to a classifier, as
long we possess a conditional diffusion model ϵψ(zt, t, ei) that doubles as an unconditional model
ϵψ(z

t, t, 0), as illustrated in Section 4.

Using Bayes’ rule again, we can see that ∇zt log p(ei|zt) = ∇zt log p(z
t|ei)−∇zt log p(z

t). If we
substitute this into Eq. 11 we obtain

− σt∇zt
[
log p(zt) + γ

(
log p(zt|ei)− log p(zt)

)]
, (12)

− σt∇zt
[
(1− γ) log p(zt) + γ log p(zt|ei)

]
, (13)

which can be implemented with our conditional network as
ϵ̃ψ(z

t, t, ei) = (1− γ) ϵψ(z
t, t, 0) + γϵψ(z

t, t, ei). (14)

A.7 Network architectures

Base Network (f ) Our choice for a base model is a CLIP-Adapter (Gao et al., 2021), which
consists of a frozen CLIP image encoder with added learned fully-connected layers refining the
output embedding. Specifically, we use the ViT-L/14@336px CLIP encoder type with embedding size
of 768. The advantages of this model choice lie in its combination of high base performance (due
to pre-trained knowledge contained in the CLIP component) and relatively small parameter count,
enabling agile medium-small scale experiments. This base CLIP-Adapter network purely works as
a base model and is not to be confused with HyperCLIP, which is employed at the meta-level. In
Section 5, when benchmarking the base model in the zero-shot setting, we drop the Adapter and use
pre-trained zero-shot CLIP (Radford et al., 2021).

Hypernetwork (h) For the hypernetworks used in our baseline as well as as the generative model,
we use a MLP with one hidden layer of 256 units, which are followed by a rectified linear activation.
For the unconditioned hypernetwork, the embedding to the hypernetwork is a vector of dimension
64, while for the conditioned counterpart, the task embedding is used. In order to ensure that the
generated weights are properly normalized at initialization, we use the Kaiming initialization (He
et al., 2015) for the hypernetwork weights, initialize the embedding as a sample from a multivariate
standard gaussian distribution (for unconditioned models), and use the NTK parametrization (Jacot
et al., 2020) for the target network.

Variational Autoencoder For the variational autoencoder used as our unconditioned generative
model, we use an MLP of 2 hidden layers of size 512 and 256, each followed by the rectified linear
non-linearity. We chose 32 as the latent code dimension. We use the same architecture for the decoder,
except for the dimensionality of the 2 hidden layers being swapped. We use the Kaiming initialization
(He et al., 2015) to initialize the weight of both the encoder and decoder.
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HyperCLIP We parametrize our HyperCLIP model as a fully-connected MLP with a single hidden
layer of dimension 256, taking as input the flattened weight of the base network and outputting the
corresponding CLIP encoding. We chose the tangent hyperbolic function as the activation function in
the hidden layer.

HyperLDM While the original LDM makes use of a time-conditional UNet (Ronneberger et al.,
2015) to parametrize the noise network, we are unfortunately unable to make use of spatial information
and convolutions due to the non-spatial nature of our latent space. We parametrize our HyperLDM as
a fully-connected network with residual connections and squeeze-and-excitation layers (Hu et al.,
2018). The time index t is embedded into a vector with a 150-dimensional sinusoidal positional
embedding, and is concatenated together with the task-conditional embedding ei at the input layer
and at intermediate activations. Hidden layer dimensions are 8192, 16384, 8192.

A.8 The Meta-VQA Dataset

To evaluate the performance of our methods, we utilize a dataset that reflects the setting of meta-
learning with multi-modal task descriptors. Existing meta-learning benchmarks such as MiniImagenet
(Ravi and Larochelle, 2016) or CIFAR-FS (Bertinetto et al., 2018) are unsuitable, as they are built for
the traditional few-shot learning setting, in which the task Ti is not associated with task descriptors but
is meant to be inferred through exposure to the support setDs

i. We thus introduce our own Meta-VQA
dataset, a modification of the VQA v2.0 dataset (Goyal et al., 2017) for Visual-Question-Answering.
The dataset is composed of training and test tasks Ti, each associated with a natural language question
ti and a mini image classification dataset (xij , y

i
j) ∈ Di.

Figure 4: Example classification task from Meta-VQA, adapted from VQA v2 (Goyal et al., 2017). A
single question ti is associated to multiple image-answer tuples (xij , y

i
j).

The original VQA problem is about choosing a suitable natural language answer ak when prompted
with both a natural language question qk and an image Ik. Our observation is that the VQA problem
can then easily be reformulated as a meta-learning image classification problem with natural language
task descriptions: given question-image-answer triples (qk, Ik, ak) ∈ D, we can group the data by
unique questions qi (which will serve as task descriptor ti), each of which can then be associated with
supervised image classification tuples (Iij , a

i
j) ∈ Di. To make sure the designed tasks are meaningful,

we filter out question-answer pairs with questions in choosing form, e.g., “A or B?” or yes/no answers.
From the remaining questions we keep the ones which appear at least 20 times throughout the dataset,
such that each task contains enough samples. In the end our Meta-VQA dataset is composed of
1234 unique tasks (questions), split into 870 training tasks and 373 test tasks, for a total of 104112
image-answer pairs.

A.9 Experimental Results

We point to Table 1 for a recount of zero-shot and few-shot classification accuracy obtained on
Meta-VQA test tasks with both the baselines and our techniques.

For each training task Ti, the algorithms are given access to the full image/answer support and query
sets Ds

i, D
q
i , together with the question (task descriptor) ti. At test time, in the zero-shot setting, only

the task descriptors ti for each test task Ti are given, and the algorithms are tasked with predicting
the correct labels of images in the query set Dq

i . In the few-shot setting, beyond the task descriptors
ti, the support sets Ds

i of test tasks with accompanying answers (labels) are also given.
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Table 1: Zero-Shot and Few-Shot learning accuracy averaged over Meta-VQA test tasks. (* ours)

Method Zero-Shot Few-Shot
Base CLIP(-Adapter) 44.99 54.93 (± 0.11)

Uncond. Multitask 53.75 (± 0.36) 55.53 (± 0.40)
Uncond. MNet-MAML 53.04 (± 0.69) 60.24 (± 0.84)
Uncond. MNet-FOMAML 53.04 (± 0.42) 60.03 (± 0.48)
Uncond. HNet-MAML 53.37 (± 0.29) 58.70 (± 0.10)

Cond. Multitask 54.12 (± 0.80) 59.46 (± 0.31)
Cond. HNet-MAML 53.02 (± 0.20) 59.48 (± 0.03)

* HNet + HyperCLIP Guidance 53.98 (± 0.54) 58.82 (± 0.27)
* HVAE + HyperCLIP Guidance 53.62 (± 0.37) 58.75 (± 0.29)
* HNet + HyperLDM γ = 1 54.06 (± 0.21) 58.70 (± 0.11)
* HNet + HyperLDM γ = 1.5 54.30 (± 0.27) 58.60 (± 0.09)
* HVAE + HyperLDM γ = 1 54.29 (± 0.19) 58.97 (± 0.09)
* HVAE + HyperLDM γ = 1.5 54.57 (± 0.14) 58.89 (± 0.07)

A.10 Baseline methods

Classic zero-shot CLIP and its CLIP-Adapter extension for few-shot learning (our base network)
provide a floor for performance on Meta-VQA. We then benchmark several unconditional and
conditional methods, with only conditional methods having access to language task descriptors. We
apply MAML and its first-order variant FOMAML (Nichol et al., 2018) directly to the base network
(MNet-MAML, MNet-FOMAML), and to both an unconditional hypernetwork (Uncond. HNet-
MAML, as in Appendix A.3) and a conditional one (Cond. HNet-MAML). We also benchmark
against standard multitask learning (Uncond. Multitask, Cond. Multitask). It is apparent that the
multitask approach, at least in this setting, leads to better zero-shot models than MAML, which
instead optimizes for few-shot performance. We refer to Appendix A.7 for more details on each
model.

We detail an overview of the baseline methods we benchmark in table 2.

Training: The number of epochs each model is trained on, the learning rate lr of the optimization,
as well as the learning rate and number of steps of the adaptation algorithm used for each method can
be found in table 3. For all methods using an adaptation ATi , the dataset from the task is randomly
split into a support set and a query set during training, every time a task is sampled. The support set
is then used to perform the adaptation (see Section A.2), while the query set is used to compute the
loss on which the meta-parameters are updated. When no adaptation is used, all the data is used for
this update. Unconditional methods do not have access to the task embedding ei, while conditioned
methods do. When the percentage of available task descriptor is reduced, conditioned methods are
trained only on the tasks which descriptor is available.

Evaluation: Evaluation is performed on a fixed query set on the predefined query set of the held-
out test tasks of the Meta-VQA dataset. Zero-shot performance is evaluated before applying the
adaptation procedure ATi . For the few shot performance, all adaptation is performed on the support
set of the test tasks. For MAML baselines, we keep the same adaptaiton-time learning rate as during
trainng, while we always adapt for 50 steps. For each multitask baselines, we use the same adaptation
scheme (steps, learning rate, adapting parameters) as their MAML counterpart.

A.11 Guidance Models Hyperparameters

A.11.1 Generative hypernetwork

To enable our guidance methods, we need to first train a generative hypernetwork h as in Section ??,
either in the form of an Unconditional Hypernetwork, or of a Hypernetwork VAE:
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Table 2: Overview of the different methods trained on MetaVQA. The parameters are optimized
via the task loss evaluated on the output of the function, averaged over minibatches of tasks. The
adaptation ATi implements a few step gradient descent algorithm applied on the argument parameter,
w.r.t the task loss evaluated on the support set.

Method Function Parameters
Unconditional MNet Multitask f(·,W ) W
Unconditional MNet (FO)MAML f(·,ATi

(W 0)) W 0

Unconditional Hypernetwork MAML f(·, h(ATi(z
0), θ)) θ, z0

Conditional Multitask f(·, h(ei, θ)) θ
Conditional Hypernetwork MAML f(·, h(ATi

(ei), θ)) θ

Table 3: Hyperparameters used for the baseline methods. All methods are trained with the Adam
(Kingma and Ba, 2017) optimizer, with meta-batch size of 32 tasks. We use gradient norm clipping
for all optimization, with the maximum norm set to 10. Note that when the adaptation algorithm has a
range of possible steps, the number of step is sampled uniformly from the range for every adaptation.

Method epochs lr A-lr A-steps

Unconditional MNet Multitask 300 0.0001 - -
Unconditional MNet (FO)MAML 500 0.00003 0.01 0-10
Unconditional Hypernetwork MAML 100 0.00003 0.1 0-10

Conditional Multitask 60 0.0001 - -
Conditional Hypernetwork MAML 200 0.00001 0.1 0-10

• For HNet + HyperCLIP guidance and HNet + HyperLDM, we meta-learnt an uncondi-
tioned hypernetwork with the exact same hyperparameters as the baseline Uncond. HNet-
MAML, and used it as the generative hypernetwork.

• For HVAE + HyperCLIP guidance and HVAE + HyperLDM, we trained an unconditioned
VAE on samples of fine tuned network weights Wi using the architecture specified in A.7. In
order to be able to quickly sample new adapted weights, and to reduce the complexity of the
manifold from which such weights are sampled, we use adaptations from our unconditional
MAML baselines as Wi. Specifically, we used adaptations from Uncond. HNet-MAML,
using 50-step adaptation ATi

with learning rate 0.1, on support set stochastically sampled
for every adaptation phase. We trained the VAE on 2000 epochs where each epoch is a
single pass through all the tasks, with the Adam (Kingma and Ba, 2017) optimizer and
0.0001 learning rate and batch size 32. We used gradient norm clipping independently for
both the encoder and decoder, with the maximum norm capped at 1000.

A.11.2 HyperCLIP

Training In order to train the HyperCLIP model, we need samples of fine tuned network weights
Wi. Similarly to HVAE, we used adaptations from Uncond. HNet-MAML, using 50-step adaptation
ATi

with learning rate 0.1, on a support set stochastically sampled at every adaptation phase, as this
would allow us to use the same HyperCLIP model for doing guidance on both HNet and HVAE. We
trained our HyperCLIP model for 600 epochs, with the Adam (Kingma and Ba, 2017) optimizer,
0.0003 learning rate and batch size 64, for all our experiments.

Guidance We use 10 steps guidance with λ = 0.01 and learning rate 0.1, for both when performed
on HNet and HVAE.

Evaluation Evaluation is performed on a fixed query set on the predefined query set of the held-
out test tasks of the Meta-VQA dataset. Zero-shot performance is evaluated on the output of the
generative hypernetwork h after applying latent space guidance. For the few shot performance, all
adaptation is performed on the support set of the test tasks, on the latent space initialized at the output
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of the guidance procedure. Similarly to our baselines, we use 50-steps gradient descent adaptation
with learning rate 0.1.

A.11.3 HyperLDM

Training Similarly to HyperCLIP, to train HyperLDM we need samples of fine tuned network
weights Wi, for which we use adaptations from Uncond. HNet-MAML, using 50-step adaptation
ATi

with learning rate 0.1, on a support set stochastically sampled at every adaptation phase. We
parametrize the diffusion process with a linear noise schedule, β starting at 0.0001 and ending at 0.06,
and 350 diffusion timesteps. We train the HyperLDM for 1000 epochs with the Adam optimizer,
0.00025 learning rate and 128 epochs, for all our experiments.

Evaluation Evaluation is performed as for HyperCLIP guidance, except for the fact that adaptation
is performed natively through sampling from the learned reversed diffusion process, with parameters
derived from the chosen β schedule. The guidance parameter γ > 0 can be tuned during inference to
accentuate the effect of classifier-free guidance.
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