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Abstract

Intensive algorithmic efforts have been made to enable the rapid improvements
of certificated robustness for complex ML models recently. However, current
robustness certification methods are only able to certify under a limited pertur-
bation radius. Given that existing pure data-driven statistical approaches have
reached a bottleneck, in this paper, we propose to integrate statistical ML mod-
els with knowledge (expressed as logical rules) as a reasoning component using
Markov logic networks (MLN), so as to further improve the overall certified ro-
bustness. This opens new research questions about certifying the robustness of
such a paradigm, especially the reasoning component (e.g., MLN). As the first step
towards understanding these questions, we first prove that the computational com-
plexity of certifying the robustness of MLN is #P-hard. Guided by this hardness
result, we then derive the first certified robustness bound for MLN by carefully
analyzing different model regimes. Finally, we conduct extensive experiments on
five datasets including both high-dimensional images and natural language texts,
and we show that the certified robustness with knowledge-based logical reasoning
indeed significantly outperforms that of the state-of-the-arts.

1 Introduction
Given extensive studies on adversarial attacks against ML models recently [3, 13, 39, 24, 64, 23, 53],
building models that are robust against such attacks is an important and emerging topic. Thus, a
plethora of empirical defenses have been proposed to improve the ML robustness [30, 59, 22, 43, 53,
52]; however, most of these are attacked again by stronger adaptive attacks [3, 1, 46]. To end such
repeated security cat-and-mouse games, there is a line of research focusing on developing certified
defenses for DNNs under certain adversarial constraints [8, 26, 25, 54, 28, 61, 27, 60, 58].
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Though promising, existing certified defenses are restricted to certifying the model robustness within
a limited ℓp norm bounded perturbation radius [56, 8]. One potential reason for such limitations
for existing robust learning approaches is inherent in the fact that most of them have been treating
machine learning as a “pure data-driven" technique that solely depends on a given training set, without
interacting with the rich exogenous information such as domain knowledge (e.g., a stop sign should
be of the octagon shape); while we know human, who has knowledge and inference abilities, is
resilient to such attacks. Indeed, a recent seminal work [17] illustrates that integrating knowledge
rules can significantly improve the empirical robustness of ML models, while leaving the certified
robustness completely unexplored.

In this paper, we follow this promising Learning+Reasoning paradigm [17] and conduct, to our
best knowledge, the first study on certified robustness for it. Actually, such a Learning+Reasoning
paradigm has enabled a diverse range of applications [38, 62, 2, 37, 32, 55, 17] including the ECCV’14
best paper [10] that encodes label relationships as a probabilistic graphical model and improves the
empirical performance of deep neural networks on ImageNet. In this work, we first provide a concrete
Sensing-reasoning pipeline following such paradigm to integrate statistical learning with logical
reasoning as illustrated in Figure 1. In particular, the Sensing Component contains a set of statistical
ML models such as deep neural networks (DNNs) that output their predictions as a set of Boolean
random variables; and the Reasoning Component takes this set of Boolean random variables as inputs
for logical inference models such as Markov logic networks (MLN) [40] or Bayesian networks
(BN) [36] to produce the final output. We then prove the hardness of certifying the robustness of such
a pipeline with MLN for reasoning. Finally, we provide an algorithm to certify the robustness of
sensing-reasoning pipeline and we evaluate it on five datasets including both image and text data.
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Figure 1: The sensing-reasoning pipeline, i.e., a sensing
component consists of DNNs and a reasoning compo-
nent is constructed as MLN. The goal of this paper is
to provide certified robustness for such a pipeline, espe-
cially the reasoning component.

However, certifying the robustness of sensing-
reasoning pipeline is challenging, especially
given the inference complexity of the reasoning
component. Our goal is to take the first step in
tackling this challenge. In particular, the robust-
ness certification of sensing-reasoning pipeline
can be expressed as the confidence interval of
the marginal probability for the final output of
reasoning component. That is to say, we can
use existing state-of-the-art methods to certify
the robustness of the sensing component that
contains DNNs or ensembles [8, 42, 57]. Thus,
to provide the end-to-end certification for the
whole pipeline, what is left is to understand how
to certify the reasoning component, which is the focus of this work.

Compared with previous efforts focusing on certified robustness of neural networks, the reasoning
component brings its own challenges and opportunities. Different from a neural network whose
inference can be executed in polynomial time, many reasoning models such as MLN can be #P-
complete for inference. However, as many reasoning models define a probability distribution in the
exponential family, we have more functional structures that could potentially make the robustness
optimization (which essentially solves a min-max problem) easier. In this paper, we provide the first
treatment to this problem characterized by these unique challenges and opportunities.

We focus on MLN as the reasoning component, and explored three technical questions, each of which
corresponds to a technical contribution of this work.

1. Is certifying robustness for the reasoning component feasible when the inference of the reasoning
component is #P-hard? (Section 3) Before any concrete algorithm can be proposed, it is important
to understand the computational complexity of the robustness certification. We first prove that the
famous problem of counting in statistical inference [49] can be reduced to the problem of checking
the certified robustness of general reasoning components and MLN. Therefore, checking certified
robustness is no easier than counting on the same family of distribution. In other words, when the
reasoning component is a graphical model such as MLN, checking certified robustness is no easier
than calculating the partition function of the underlying graphical model, which is #P-hard.

2. Can we efficiently reason about the certified robustness for the reasoning component when given an
oracle for statistical inference? (Section 4.2) Given the above hardness result, we focus on certifying
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the robustness given an inference oracle. However, even when statistical inference can be done by a
given oracle [21, 18], it is still challenging to certify the robustness of MLN. Our second technical
contribution is to develop such an algorithm for MLN as the reasoning component. We prove that
providing certified robustness for MLN is possible because of the structure inherent in the probabilistic
graphical models and distributions in the exponential family, which could lead to monotonicity and
convexity properties under certain conditions for solving the certification optimization.

3. Can a reasoning component improve the certified robustness compared with the state-of-the-art
certification methods? (Section 5) We test our algorithms on multiple sensing-reasoning pipelines,
in which the sensing components contain the state-of-the-art deep neural networks. We construct
these pipelines to cover a range of applications including image classification and natural language
processing tasks. We show that based on our certification method on the reasoning component, the
knowledge-enriched sensing-reasoning pipelines achieves significantly higher certified robustness
than the state-of-the-art certification methods for DNNs.

The rest of the paper is organized as follows. We will first introduce the design of the sensing-
reasoning pipeline in Section 2.1, followed by concrete illustrations taking the Markov Logic
Networks as an example of the reasoning component in Section 2.2. Next, to certify the robustness of
the sensing-reasoning pipeline, especially for the reasoning component, we first prove that certifying
the robustness of the reasoning component itself is #P-complete (Section 3), and therefore we propose
a certification algorithm to upper/lower bound the certification in Section 4, We provide the evaluation
of our robustness certification considering different tasks in Section 5.

2 Robust Statistical Learning with Logical Reasoning
In this section, we first provide a sensing-reasoning pipeline and then formally defined its certified
robustness, and particularly links it to certifying the robustness for the reasoning component.

2.1 Sensing-Reasoning Pipeline
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Figure 2: A sensing-reasoning pipeline with MLN as
the reasoning component.

A sensing-reasoning pipeline contains a set of n
sensors {Si}i∈[n] and a reasoning component R.
Each sensor is a binary classifier (for multi-class
classifier it corresponds to a group of sensors) —
given an input data example X , each of the sen-
sor Si outputs a probability pi(X) (i.e., if Si is a
neural network, pi(X) represents its output after
the final softmax layer). The reasoning compo-
nent takes the outputs of all sensing models as
its inputs, and outputs a new Boolean random
variable R({pi(X)}i∈[n]).
One natural choice of the reasoning component is to use a probabilistic graphical model (PGM). In
the following subsection, we will make the reasoning component R more concrete by instantiating
it as a Markov logic network (MLN). The output of a sensing-reasoning pipeline on the input data
example X is the expectation of the output of reasoning component R: E[R({pi(X)}i∈[n])].
Example. A sensing-reasoning pipeline provides a generic, principled way of integrating domain
knowledge with the output of statistical predictive models such as neural networks. One such example
is [10] the task of ImageNet classification. Here each sensing model corresponds to the classifier
for one specific class in ImageNet, e.g., Sdog(X) and Sanimal(X). The reasoning component then
encodes domain knowledge such that “If an image is classified as a dog then it must also be classified
as an animal” using a PGM. There is no prior work considering the certified robustness of such a
knowledge-enabled ML pipeline. Figure 2 illustrates a concrete sensing-reasoning pipeline, in which
the reasoning component is implemented as an MLN.

2.2 Reasoning Component as Markov Logic Networks
Given the generic definition of a sensing-reasoning pipeline, one can use different models to imple-
ment the reasoning components. In this paper, we focus on Markov logic networks (MLN), which is
a popular way to define a probabilistic graphical model using first-order logic [41]. Concretely, we
define the reasoning component implemented as an MLN, which contains a set of weighted first-order
logic rules, as illustrated in Figure 2(b). After grounding, an MLN defines a joint probabilistic
distribution among a collection of random variables, as illustrated in Figure 2(c). We adapt the
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standard MLN semantics to a sensing-reasoning pipeline and use a slightly more general variant
compared with the original MLN [41]. Each MLN program corresponds to a factor graph — Due to
the space limitation, we will not discuss the grounding part and point the readers to [41]. We focus
on defining the result after grounding, i.e., the factor graph.

Specifically, a grounded MLN is a factor graph G = (V,F), where V is a set of Boolean random
variables. Specific to a sensing-reasoning pipeline, there are two types of random variables V = X∪Y :

1. Interface Variables X = {xi}i∈[n]: Each sensing model Si corresponds to one interface
variable xi in the grounded factor graph;

2. Interior variables Y = {yi}i∈[m] are other variables introduced by the MLN model.

Each factor F ∈ F contains a weight wF and a factor function fF defined over a subset of variables
v̄F ⊆ V that returns {0, 1}. There are two sets of factors F = G ∪ H:

1. Interface Factors G: For each interface variable xi, we create one interface factor Gi with
weight wGi = log[pi(X)/(1 − pi(X))] and factor function fGi(a) = I[a = 1] defined
over v̄fGi

= {xi}.

2. Interior Factors H are other factors introduced by the MLN program.
Remarks: MLN-specific Structure. Our result applies to a more general family of factor graphs and
are not necessarily specific to those grounded by MLN. Moreover, MLN provides an intuitive way of
grounding such a factor graph with domain knowledge, and factor graphs grounded by MLN have
certain properties that we will use later, e.g., all factors only return non-negative values, and there are
no unusual weight sharing structures.

The above factor graph defines a joint probability distribution among all variables V . We define a
possible world as a function σ : V 7→ {0, 1} that corresponds to one possible assignment of values to
each random variable. Let Σ denote the set of all (exponentially many) possible worlds.

The statistical inference process of a reasoning component implemented using MLNs [41] computes
the marginal probability of a given variable v ∈ V:

E[RMLN ({pi(X)}i∈[n])] = Pr [v = 1] = Z1({pi(X)}i∈[n])/Z2({pi(X)}i∈[n])

where the partition functions Z1 and Z2 are defined as

Z1({pi(X)}i∈[n]) =
∑

σ∈Σ∧σ(v)=1

exp

∑
Gi∈G

wGiσ(xi) +
∑
H∈H

wHfH(σ(v̄H))


Z2({pi(X)}i∈[n]) =

∑
σ∈Σ

exp

∑
Gi∈G

wGiσ(xi) +
∑
H∈H

wHfH(σ(v̄H))


Why wGi = log[pi(X)/(1− pi(X))]? When the MLN does not introduce any interior variables and
interior factors, it is easy to see that setting wGi

= log[pi(X)/(1− pi(X))] ensures that the marginal
probability of each interface variable equals to the output of the original sensing model pi(X). This
means that if we do not have additional knowledge in the reasoning component, the pipeline outputs
the same distribution as the original sensing component.

Learning Weights for Interior Factors? In this paper, we view all weights for interior factors as
hyperparameters. These weights can be learned by maximizing the likelihood with weight learning
algorithms for MLNs [29].

Beyond Marginal Probability for a Single Variable. We have assumed that the output of a sensing-
reasoning pipeline is the marginal probability distribution of a given random variable in the grounded
factor graph. However, our result can be more general — given a function over possible worlds and
outputs {0, 1}, the output of a pipeline can be the marginal probability of such a function. This will
not change the algorithm that we propose later.

3 Hardness of Certifying Reasoning Robustness
Given a reasoning component R, how hard is it to reason about its robustness? In this section, we
aim at understanding this fundamental question. In order to provide the certified robustness of the
reasoning component, which is defined as the lower bound of model predictions for inputs considering
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an adversarial perturbation with bounded magnitude [8], we need to analyze the hardness of this
certification problem first. Specifically, we present the hardness results of determining the robustness
of the reasoning component defined above, before we can provide our certification algorithm in
Section 4.2. We start by defining the counting [49] and robustness problems on general distribution.
We prove that counting can be reduced to checking for reasoning robustness, and hence the latter is at
least as hard; We then prove the complexities of reasoning with MLN.

3.1 Harness of Certifying General Reasoning Model
Let X = {x1, x2, . . . , xn} be a set of variables. Let πα be a distribution over D[n] defined by a set
of parameters α ∈ P [m], where D is the domain of variables, either discrete or continuous, and P
is the domain of parameters. We call π accessible if for any σ ∈ D[n], πα(σ) ∝ w(σ;α), where
w : D[n] × P [m] → R≥0 is a polynomial-time computable function. We will restrict our attention
to accessible distributions only. We use Q : D[n] → {0, 1} to denote a Boolean query, which is a
polynomial-time computable function. We define the following two oracles:
Definition 1 (COUNTING). Given input polynomial-time computable weight function w(·) and query
function Q(·), parameters α, a real number ϵ > 0, a COUNTING oracle outputs a real number Z that

1− ϵ ≤ Z

E[σ ∼ πα]Q(σ)
≤ 1 + ϵ.

Definition 2 (ROBUSTNESS). Given input polynomial-time computable weight function w(·) and
query function Q(·), parameters α, two real numbers ϵ > 0 and δ > 0, a ROBUSTNESS oracle
decides, for any α′ ∈ P [m] such that ∥α− α′∥∞ ≤ ϵ, whether the following is true:

|E[σ ∼ πα]Q(σ)− E[σ ∼ πα′ ]Q(σ)| < δ.

We can prove that ROBUSTNESS is at least as hard as COUNTING by a reduction argument.
Theorem 1 (COUNTING ≤t ROBUSTNESS). Given polynomial-time computable weight function
w(·) and query function Q(·), parameters α and real number ϵ > 0, the instance of COUNTING,
(w,Q, α, ϵ) can be determined by up to O(1/ε2c) queries of the ROBUSTNESS oracle with input
perturbation ϵ = O(εc).
Proof-sketch. We define the partition function Zi :=

∑
σ:Q(σ)=i w(σ;α) and E[σ ∼ πα]Q(σ) =

Z1/(Z0 + Z1). We then construct a new weight function t(σ;α) := w(σ;α) exp(βQ(σ)) by intro-
ducing an additional parameter β, such that τβ(σ) ∝ t(σ;β), and E[σ ∼ τβ ]Q(σ) = eβZ1

Z0+eβZ1
.

Then we consider the perturbation β′ = β ± ϵ, with ϵ = O(εc) and query the ROBUST-
NESS oracle with input (t, Q, β, ϵ, δ) multiple times to perform a binary search in δ to esti-
mate |E[σ ∼ πβ ]Q(σ)− E[σ ∼ πβ′ ]Q(σ)|. Perform a further “outer" binary search to find the
β which maximizes the perturbation. This yields a good estimator for log Z0

Z1
which in turn gives

E[σ ∼ πα]Q(σ) with εc multiplicative error. We leave detailed proof to Appendix A.

3.2 Hardness of Certifying Markov Logic Networks
Given Theorem 1, we can now state the following result specifically for MLNs:
Theorem 2 (MLN Hardness). Given an MLN whose grounded factor graph is G = (V,F) in
which the weights for interface factors are wGi = log pi(X)/(1− pi(X)) and constant thresholds
δ, {Ci}i∈[n], deciding whether

∀{ϵi}i∈[n] (∀i. |ϵi| < Ci) =⇒
∣∣ERMLN ({pi(X)}i∈[n])− ERMLN ({pi(X) + ϵi}i∈[n])

∣∣ < δ

is as hard as estimating ERMLN ({pi(X)}i∈[n]) up to εc multiplicative error, with ϵi = O(εc).
Proof. Let α = [pi(X)], query function Q(.) = RMLN (.) and πα defined by the marginal dis-
tribution over interior variables of MLN. Theorem 1 directly implies that O(1/ε2c) queries of a
ROBUSTNESS oracle can be used to efficiently estimate ERMLN ({pi(X)}i∈[n]).
In general, statistical inference in MLNs is #P-complete, and checking robustness for general MLNs
is also #P-hard.

4 Certifying the Robustness of Sensing-Reasoning Pipeline
Given a sensing-reasoning pipeline with n sensors {Si}i∈[n] and a reasoning component R, we will
first formally define its end-to-end certified robustness and then its connection to the robustness
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of each component. In particular, based on the above hardness result for certifying the robustness
of the reasoning component in Section 3, we will provide an effective certification method to
upper/lower bound the certification, taking any oracle for the inference of the reasoning component
into account. With the certification of the reasoning component, we will finally provide the robustness
certification for the sensing-reasoning pipeline by combining the certification of sensing and reasoning
components.
Definition 3 ((CI , CE , p)-robustness). A sensing-reasoning pipeline with n sensors {Si}i∈[n] and a
reasoning component R is (CI , CE , p)-robust on the input X , if for input perturbation η, ||η||p ≤ CI∣∣E[R({pi(X)}i∈[n])]− E[R({pi(X + η)}i∈[n])]

∣∣ ≤ CE .

I.e., a perturbation ||η||p < CI on the input only changes the final pipeline output by at most CE .
Sensing Robustness and Reasoning Robustness. We decompose the end-to-end certified robustness
of the pipeline into two components. The first component, which we call the sensing robustness, has
been studied by the research community recently [20, 45, 8] — given a perturbation ||η||p < CI on
the input X , we say each sensor Si is (CI , C

(i)
S , p)-robust if

∀η, ||η||p ≤ CI =⇒ |pi(X)− pi(X + η)| ≤ C
(i)
S

The robustness of the reasoning component R is defined as: Given a perturbation |ϵi| < C
(i)
S on the

output of each sensor Si(X), we say the reasoning component R is
(
{C(i)

S }i∈[n], CE

)
-robust if

∀ϵ1, ..., ϵn, (∀i. |ϵi| ≤ C
(i)
S ) =⇒

∣∣E[R({pi(X)}i∈[n])]− E[R({pi(X) + ϵi}i∈[n])]
∣∣ ≤ CE .

It is easy to see that when the sensing component is
(
CI , {C(i)

S }i∈[n], p
)

-robust and the reasoning

component is
(
{C(i)

S }i∈[n], CE

)
-robust on X , the sensing-reasoning pipeline is (CI , CE , p)-robust.

Since the sensing robustness has been intensively studied by previous work, in this paper, we mainly
focus on the reasoning robustness and therefore analyze the robustness of the pipeline.

4.1 Certifying Sensing Robustness
There are several existing ways to certify the robustness of sensing models, such as Interval Bound
Propagation (IBP) [16], Randomized Smoothing [8], and others [63, 51]. Here we will leverage
randomized smoothing to provide an example for certifying the robustness of sensing components.

Corollary 1. Given a sensing model Si, we construct a smoothed sensing model gi(X; σ̂) =
Eξ∼N (0,σ̂2)pi(X + ξ). With input perturbation ||η||2 ≤ CI , the smoothed sensing model satisfies

Φ(Φ−1(gi(X; σ̂))− CI/σ̂) ≤ gi(X + η; σ̂) ≤ Φ(Φ−1(gi(X; σ̂)) + CI/σ̂)

where Φ is the Gaussian CDF and Φ−1 as its inverse. Algorithm 1 Algorithms for MLN robustness up-
per bound (algorithm of lower bound is similar)

input : Oracles calculating Z̃1 and Z̃2; maximal pertur-
bations {Ci}i∈[n].

output : An upper bound for input RMLN ({pi(X) +
ϵi})

1: Rmin ← 1
2: initialize λ
3: for b ∈ search budgets do
4: λ→ update({λ};λi ∈ (−∞,−1] ∪ [0,+∞))
5: for i = 1 to n do
6: if λi ≥ 0 then
7: ϵi = Ci, ϵ′i = −Ci

8: else if λi ≤ −1 then
9: ϵi = −Ci, ϵ′i = Ci

10: end if
11: R← Z̃1({ϵi}i∈[n])− Z̃2({ϵ′i}i∈[n])

12: Rmin ← min(Rmin, R)
13: end for
14: end for
15: return Rmin

Thus, the output probability of smoothed sensing
model can be bounded given input perturbations.
Note that the specific ways of certifying sensing ro-
bustness is orthogonal to certifying reasoning robust-
ness, and one can plug in different sensing certifica-
tion strategies.

4.2 Certifying Reasoning Robustness

Given the hardness results for certifying reasoning ro-
bustness in Section 3.2, in this paper, we assume that
we have access to an oracle for statistical inference,
and provide a novel algorithm to certify the reasoning
robustness. I.e., we assume that we are able to cal-
culate the two partition functions Z1({pi(X)}i∈[n])
and Z2({pi(X)}i∈[n]).

Lemma 4.1 (MLN Robustness). Given access
to partition functions Z1({pi(X)}i∈[n]) and
Z2({pi(X)}i∈[n]), and maximum perturbations
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{Ci}i∈[n], ∀ϵ1, ..., ϵn, if ∀i. |ϵi| < Ci, we have that
∀λ1, ..., λn ∈ R,

max
{|ϵi|<Ci}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≤ max
{|ϵi|<Ci}

Z̃1({ϵi}i∈[n])− min
{|ϵ′i|<Ci}

Z̃2({ϵ′i}i∈[n])

min
{|ϵi|<Ci}

lnE[RMLN ({pi(X) + ϵi}i∈[n])] ≥ min
{|ϵi|<Ci}

Z̃1({ϵi}i∈[n])− max
{|ϵ′i|<Ci}

Z̃2({ϵ′i}i∈[n])

where Z̃r({ϵi}i∈[n]) = lnZr({pi(X) + ϵi}i∈[n]) +
∑
i

λiϵi.

We leave the proof to the Appendix B. The high-level proof idea is to decouple Z1/Z2 into two
sub-problems via a collection of Lagrangian multipliers, i.e., {λi}. For any assignment of {λi}, we
obtain a valid upper/lower bound, which reduces the certification process to the process of searching
for an assignment of these multipliers that minimize the upper bound (maximize the lower bound).
To efficiently search for the optimal assignment of {λi}, it is crucial to consider the interactions
between these {λi} and the corresponding solution of Z̃r, which hinges on the structure of MLN. In
particular, we can prove the following (Detailed proofs and discussions in Appendix C):

Proposition 1 (Monotonicity). When λi ≥ 0, Z̃r({ϵi}i∈[n]) monotonically increases w.r.t. ϵi; When
λi ≤ −1, Z̃r({ϵi}i∈[n]) monotonically decreases w.r.t. ϵi.

Proposition 2 (Convexity). Z̃r({ϵ̃i}i∈[n]) is a convex function in ϵ̃i,∀i with

ϵ̃i = log

[
(1− pi(X))(pi(X) + ϵi)

pi(X)(1− pi(X)− ϵi)

]
.

Implication. Given the monotonicity region, the maximal and minimal of Z̃r are achieved at
either ϵi = −Ci or ϵi = Ci respectively. Given the convexity region, the maximal is achieved
at ϵi ∈ {−Ci, Ci}, and the minimal is achieved at ϵi ∈ {−Ci, Ci} or at the zero gradient of
Z̃r({ϵ̃i}i∈[n]). As a result, our analysis leads to the following certification algorithm.

Algorithm of Certifying Reasoning Robustness. Algorithm 1 illustrates the detailed algorithm
based on the above result to upper bound the robustness of MLN. The main step is to explore different
regimes of the {λi}. In this paper, we only explore regimes where λ ∈ (−∞,−1] ∪ [0,+∞) as
this already provides reasonable solutions in our experiments. The function update({λi}) defines
the exploration strategy — Depending on the scale of the problem, one can explore {λi} using grid
search, random sampling, or even gradient-based methods. For experiments in this paper, we use
either grid search or random sampling. It is an exciting future direction to understand other efficient
exploration and search strategies. We leave the detailed explanation of the algorithm to Appendix C.

5 Experiments

We conduct intensive experiments on five datasets to evaluate the certified robustness of the sensing-
reasoning pipeline. We focus on two tasks with different modalities: image classification task on
Road Sign dataset created based on GTSRB dataset [44] following the standard setting as [17];
and information extraction task with stocks news on text data. We also report additional results on
two other image classification tasks (Word50 [6] and PrimateNet, which is a subset of ImageNet
ILSVRC2012 [9]) with natural knowledge rules in Appendix G and Appendix F. We also report
results on standard image benchmarks (MNIST and CIFAR10) with manually constructed knowl-
edge rules in Appendix H. The code is provided at https://github.com/Sensing-Reasoning/
Sensing-Reasoning-Pipeline.

5.1 Experimental Setup

Datasets and Tasks. For the road sign classification task, we follow [17] and use the same dataset
GTSRB [44], which contains 12 types of German road signs {"Stop”, "Priority Road”, "Yield”,
"Construction Area”, "Keep Right”, "Turn Left”, "Do not Enter”, "No Vihicles”, "Speed Limit 20”,
"Speed Limit 50”, "Speed Limit 120”, "End of Previous Limitation”}. It consists of 14880 training
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samples, 972 validation samples, and 3888 testing samples. We also include 13 additional detectors
for knowledge integration, detecting attributes such as whether the border has an octagon shape (See
Appendix D for a full list).

For the information extraction task, we use the HighTech dataset which consists of both daily closing
asset price and financial news from 2006 to 2013 [12]. We choose 9 companies with the most news,
resulting in 4810 articles related to 9 stocks filtered by company name. We split the dataset into
training and testing days chronologically. We define three information extraction tasks as our
sensing models: StockPrice(Day, Company, Price), StockPriceChange(Day, Company,
Percent), StockPriceGain(Day, Company). The domain knowledge that we integrate depicts
the relationships between these relations (See Appendix E for more details).

Knowledge Rules. We integrate different types of knowledge rules for these two applications. We
provide the full list of knowledge rules in the Appendix D.

For road sign classification, we follow [17], which includes two different types of knowledge rules —
Indication rules (road sign class u indicates attribute v) and Exclusion rules (attribute classes u and v
with the same general type such as "Shape”, "Color”, "Digit” or "Content” are naturally exclusive).

For information extraction, we integrate knowledge about the relationships between the sensing mod-
els (e.g., StockPrice, StockPriceChange, StockPriceGain). For example, the stock prices
of two consecutive days, StockPrice(d1, Company, p1) and StockPrice(d2, Company, p2),
should be consistent with StockPriceChange(d2, Company, p), i.e., p = (p2 − p1)/p1.

Implementation Details. Throughout the road sign classification experiment, we implement all
sensing models using the GTSRB-CNN [13] architecture. During training, we train all sensors with
Isotropic Gaussian ϵ ∼ N (0, σ̂2Id) augmented data with 50000 training iterations until converge and
tune the training parameters on the validation set, following [8]. We use the SGD-momentum with
the initial learning rate as 0.01 and the weight decay parameter as 10−4 to train all the sensors for
50000 iterations with 200 as the batch size, following [17]. During certification, we adopt the same
smoothing parameter for training to construct the smoothed model based on Monte-Carlo sampling.

For information extraction, we use BERT as our model architecture. During training, we use the
final hidden state of the first token [CLS] from BERT as the representation of the whole input and
apply dropout with probability p = 0.5 on this final hidden state. Additionally, there is a fully
connected layer added on top of BERT for classification. To fine-tune the BERT classifiers for three
information tasks, we use the Adam optimizer with the initial learning rate as 10−5 and the weight
decay parameter as 10−4. We train all the sensors for 30 epochs, and the batch size 32.

Evaluation Metrics. We adopt the standard certified accuracy as our evaluation metric, defined
by the percentage of instances that can be certified under certain ℓp-norm bounded perturbations.
Specifically, given the input x with ground-truth label y, once we can certify the bound of the
model’s output confidence on predicting label y under the norm-bounded perturbation as [L,U ],
the certified accuracy can be defined by: 1

N

∑N
i=1 I([Li > 0.5]) where I(·) denotes the indicator

function. Since each sensing component’s certification is performed by randomized smoothing, which
yields the failure probability characterized by ζ0, we will control the failure probability ζ for the
whole sensing-reasoning pipeline pipeline with n sensing models as ζ0 = 1− (1− ζ)1/n by applying
the union bound. Throughout all the experiments, ζ is kept to 0.001 so our end-to-end certification is
guaranteed to be correct with at least 99.9% confidence.

5.2 Results of Road Sign Classification

In this section, we evaluate the certified robustness of our sensing-reasoning pipeline under the
ℓ2-norm bounded perturbation. We first report the ℓ2 certified accuracy of our sensing-reasoning
pipeline and compare it to a strong baseline as a vanilla randomized smoothing trained model (without
knowledge). Note that it is flexible to replace the sensing component with other robust training
algorithms. We conduct our evaluation under different smoothing parameters σ̂ = {0.12, 0.25, 0.50}
and various ℓ2 perturbation magnitudes on the input image CI = {0.12, 0.25, 0.50, 1.00} (Table 1).
During certification, we evaluate our certification time per sample with 25 sensors as 5.39s, which
shows that the overall certification time is generally acceptable.

As shown in Table 1, we can see that with knowledge integration, sensing-reasoning pipeline
achieves consistently higher certified accuracy compared to the baseline smoothed ML model without
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Table 1: (Road sign classification) Certified accuracy under different input perturbation magnitudes (CI ).
Models are smoothed with different Gaussian noises ϵ ∼ N (0, σ̂2Id), σ̂ ∈ {0.12, 0.25, 0.50}. Rows with ∗
denote the best certified accuracy among all the smoothing parameters for each method. The bold numbers show
the higher certified accuracy under the same (CI , σ̂) setting and the numbers with underline show the highest
certified accuracy for each CI among different smoothing parameters. (All certificates hold with p = 99.9%)

Methods σ̂ CI = 0.12 CI = 0.25 CI = 0.50 CI = 1.00
0.12 90.8 87.1 0.0 0.0

Vanilla Smoothing 0.25 89.6 88.4 71.6 0.0
(w/o knowledge) 0.50 84.0 80.2 73.2 61.7

∗ 90.8 88.4 73.2 61.7
0.12 96.0 89.0 73.2 24.2

Sensing-Reasoning Pipeline 0.25 93.4 91.0 74.0 49.2
(w/ knowledge) 0.50 89.3 85.4 75.5 62.5

∗ 96.0 91.0 75.5 62.5

knowledge under all the perturbation magnitudes CI and smoothing parameter σ̂ settings. Under
the small perturbation magnitude cases, our improvement is very significant (around 5%). More
interestingly, given large CI but small smoothing parameter σ̂, vanilla randomized smoothing-based
certification directly fails (0% certified accuracy) due to the looseness of the hypothesis testing bound,
while the sensing-reasoning pipeline could still achieve reasonable certified robustness (over 71% on
CI = 0.50, 49% on CI = 1.00) under the same (CI , σ̂) settings. This indicates a very realistic case:
we always under-estimate the attacker’s ability easily under the real-world setting – in this case, the
sensing-reasoning pipeline could remain robust even provide reasonable certified accuracy with a
conservative smoothing parameter.

5.3 Results of Information Extraction

Table 2: (Information extraction) Certified accu-
racy under different perturbation magnitudes (CS)
based on the sensing models’ output uncertainty.
(All certificates hold with 99.9% confidence)

Methods CS = 0.1 CS = 0.5 CS = 0.9
Vanilla Smoothing
(w/o knowledge) 99.7 94.7 38.4

Sensing-Reasoning Pipeline
(w/ knowledge) 100.0 100.0 58.8

In this section, we conduct the certified robustness
evaluation on the information extraction task on text
data. Since there is no good certification method on
discrete NLP data for sensing models, we directly
assume the maximal perturbation on the output of
sensors (CS). Table 2 shows the certified accuracy
on the final outputs of the reasoning component.
We see that the sensing-reasoning pipeline provides
significantly higher certified robustness, and even under a high perturbation magnitude on all sensing
models’ output confidence (CS = 0.5), which means the sensing-reasoning pipeline can still leverage
the knowledge to help enhance the robustness given strong attacker. To further illustrate intuitively
why such knowledge-based reasoning helps, Figure 3 shows the “margin” — the probability of the
ground truth class minus the probability of the wrong class — with or without knowledge integration.
We see that, with knowledge integration, we can significantly increase the number of examples with a
large “margin” under adversarial perturbations. This explains the improvement of certified robustness,
which highly relies on such prediction confident margin.

We also conduct experiments on PrimateNet, Word50, MNIST, CIFAR10 datasets for the image
classification tasks in Appendix F- Appendix H. We observe similar results that knowledge integration
significantly boosts the certified robustness.

6 Related Work

Robustness for Single ML model and ML Ensemble. Lots of efforts have been made to improve the
robustness of single ML or ensemble models. Adversarial training [15], and its variations [47, 31, 53]
have generally been more successful in practice, but usually come at the cost of accuracy and
increased training time [48, 53]. To further provide certifiable robustness guarantees for ML models,
various certifiable defenses and robustness verification approaches have been proposed [20, 45, 8, 27,
25]. Among these strategies, randomized smoothing [8] has achieved scalable performance. With
improvements in training, including pretraining and adversarial training, the certified robustness
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Figure 3: (Information extraction) Histogram of the robustness margin (the difference between the probability
of the correct class (lower bound) and the top wrong class (upper bound)) under perturbations. If such a difference
is positive, it means that the classifier makes the right prediction under perturbations.

bound can be further improved [4, 42]. In addition to the single ML model, some work proposed
to promote the diversity of classifiers and therefore develop a robust ML ensemble [34, 59, 57, 58].
Although promising, these defense approaches, either empirical or theoretical, can only improve
the robustness of a single ML or ensemble model. Certifying or improving the robustness of such
single or pure ensemble models is very challenging, given that there is no additional information
that can be utilized. In addition, the ML learning process usually favors a pipeline that is able to
incorporate different sensing components as well as domain knowledge in practice. Thus, certifying
the robustness of such pipelines is of great importance.

Robustness of End-to-end ML Systems. There have been intensive studies on joint inference
between multiple models, and the predictions based on joint inference can help to further improve
the clean accuracy of ML pipelines [55, 10, 38, 33, 7, 5], which have been applied to a range of
real-world applications [2, 37, 32]. Often, these approaches use different statistical inference models
such as factor graphs [50], Markov logic networks [41], and Bayesian networks [35] as a way to
integrate domain knowledge. In this paper, we take a different perspective on this problem — instead
of treating joint inference as a way to improve the clean accuracy, we explore the possibility of using
it as exogenous information to improve the end-to-end certified robustness of ML pipelines. A recent
work [17] explores the empirical robustness improvement via knowledge integration, while there is
no robustness guarantee provided. As we show in this paper, by integrating domain knowledge, we
are able to improve the certified robustness of the ML pipelines significantly.

7 Conclusions

We provide the first certifiably robust sensing-reasoning pipeline with knowledge-based logical rea-
soning. We theoretically prove the certified robustness of such ML pipelines, and provide complexity
analysis for certifying the reasoning component. Our extensive empirical results demonstrate the
certified robustness of sensing-reasoning pipeline, and we believe our work would shed light on
future research towards improving and certifying robustness for general ML frameworks as well as
different ways to integrate logical reasoning with statistical learning.
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Andrzej Skowron, editors, Knowledge Discovery in Databases: PKDD 2007, pages 200–211,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[30] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using
local intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[32] Emily K. Mallory, Ce Zhang, Christopher Ré, and Russ B. Altman. Large-scale extraction of
gene interactions from full-text literature using DeepDive. Bioinformatics, 32(1):106–113, 09
2015.

[33] Andrew McCallum. Joint inference for natural language processing. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009), page 1,
Boulder, Colorado, June 2009. Association for Computational Linguistics.

[34] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness
via promoting ensemble diversity. arXiv preprint arXiv:1901.08846, 2019.

[35] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, USA,
2000.

[36] Judea Pearl. Bayesian networks. 2011.
[37] Shanan E. Peters, Ce Zhang, Miron Livny, and Christopher Ré. A machine reading system for

assembling synthetic paleontological databases. PLOS ONE, 9(12):1–22, 12 2014.
[38] Hoifung Poon and Pedro Domingos. Joint inference in information extraction. In AAAI,

volume 7, pages 913–918, 2007.
[39] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, and Bo Li. Semanti-

cadv: Generating adversarial examples via attribute-conditioned image editing. In European
Conference on Computer Vision, pages 19–37. Springer, 2020.

[40] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62(1-
2):107–136, 2006.

12



[41] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-
2):107–136, 2006.

[42] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck,
and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, pages 11289–11300, 2019.

[43] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint
arXiv:1904.12843, 2019.

[44] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks,
32:323–332, 2012.

[45] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.

[46] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks
to adversarial example defenses. arXiv preprint arXiv:2002.08347, 2020.

[47] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensem-
ble adversarial training: Attacks and defenses. ICLR, 2018.

[48] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy). ICLR 2019, 2018.

[49] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[50] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

[51] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
International Conference on Machine Learning, pages 5276–5285, 2018.

[52] Chaowei Xiao, Ruizhi Deng, Bo Li, Taesung Lee, Benjamin Edwards, Jinfeng Yi, Dawn
Song, Mingyan Liu, and Ian Molloy. Advit: Adversarial frames identifier based on temporal
consistency in videos. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3968–3977, 2019.

[53] Chaowei Xiao, Ruizhi Deng, Bo Li, Fisher Yu, Mingyan Liu, and Dawn Song. Characterizing
adversarial examples based on spatial consistency information for semantic segmentation. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 217–234, 2018.

[54] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. Advances in Neural Information Processing Systems, 33, 2020.

[55] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and
Bo Wu. Joint inference of reward machines and policies for reinforcement learning. arXiv
preprint arXiv:1909.05912, 2019.

[56] Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li. Randomized
smoothing of all shapes and sizes. In International Conference on Machine Learning, pages
10693–10705. PMLR, 2020.

[57] Zhuolin Yang, Linyi Li, Xiaojun Xu, Bhavya Kailkhura, Tao Xie, and Bo Li. On the certified
robustness for ensemble models and beyond. ICLR, 2021.

[58] Zhuolin Yang, Linyi Li, Xiaojun Xu, Bhavya Kailkhura, Tao Xie, and Bo Li. On the certi-
fied robustness for ensemble models and beyond. In International Conference on Learning
Representations, 2022.

[59] Zhuolin Yang, Linyi Li, Xiaojun Xu, Shiliang Zuo, Qian Chen, Pan Zhou, Benjamin I. P.
Rubinstein, Ce Zhang, and Bo Li. Trs: Transferability reduced ensemble via promoting gradient
diversity and model smoothness. In Neural Information Processing Systems (NeurIPS 2021),
2021.

13



[60] Zhuolin Yang, Linyi Li, Xiaojun Xu, Shiliang Zuo, Qian Chen, Pan Zhou, Benjamin I P
Rubinstein, Ce Zhang, and Bo Li. Trs: Transferability reduced ensemble via promoting gradient
diversity and model smoothness. In Advances in Neural Information Processing Systems, 2021.

[61] Zhuolin Yang, Zhikuan Zhao, Boxin Wang, Jiawei Zhang, Linyi Li, Hengzhi Pei, Bojan Karlaš,
Ji Liu, Heng Guo, Ce Zhang, and Bo Li. Improving certified robustness via statistical learning
with logical reasoning. NeurIPS, 2022.

[62] Ce Zhang, Christopher Ré, Michael Cafarella, Christopher De Sa, Alex Ratner, Jaeho Shin,
Feiran Wang, and Sen Wu. Deepdive: Declarative knowledge base construction. Commun.
ACM, 60(5):93–102, April 2017.

[63] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Advances in neural
information processing systems, pages 4939–4948, 2018.

[64] Jiawei Zhang, Linyi Li, Huichen Li, Xiaolu Zhang, Shuang Yang, and Bo Li. Progressive-scale
boundary blackbox attack via projective gradient estimation. ICML, 2022.

14



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We have mentioned the future

improvement of our work in the related work part.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] This work

will not infer obvious negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The assump-
tions have been all mentioned in the main paper and appendices.

(b) Did you include complete proofs of all theoretical results? [Yes] The whole proofs are
provided in Appendix A - C.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the

main experimental results (either in the supplemental material or as a URL)?
[Yes] The code is provided at https://github.com/Sensing-Reasoning/
Sensing-Reasoning-Pipeline.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All the training details have been provided in the Appendix D - I.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The confidence of the reported certification results in the
paper is guaranteed to be at least 99.9%, as mentioned in our main paper.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] The detailed information is
mentioned in Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We only use public and commonly used data.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We only use public and commonly used data.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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