
CodeDPO: Aligning Code Models with Self Generated and Verified Source
Code

Anonymous ACL submission

Abstract

Code generation models have shown signifi-001
cant potential for programming tasks. How-002
ever, existing training methods like supervised003
fine-tuning face key limitations: they do not ef-004
fectively teach models to prioritize correct over005
incorrect solutions in ambiguous situations, nor006
do they effectively optimize the runtime effi-007
ciency of the generated code. To address these008
challenges, we propose CodeDPO, a frame-009
work that integrates preference learning into010
code generation to improve two key code pref-011
erence factors: code correctness and efficiency.012
CodeDPO employs a novel dataset construc-013
tion method, utilizing a self-generation-and-014
validation mechanism that simultaneously gen-015
erates and evaluates code and test cases. The016
underlying assumption is that test cases exe-017
cutable by multiple code snippets provide more018
reliable validation, and code that passes more019
tests is more likely to be correct. Through this020
self-validation process, our PageRank-inspired021
algorithm iteratively updates the ranking score022
of each code snippet, ultimately creating a code023
preference optimization dataset based on cor-024
rectness and efficiency. CodeDPO is flexible025
and scalable, generating diverse preference op-026
timization data without depending on power-027
ful models such as GPT-4. Through compre-028
hensive evaluations of five widely used bench-029
marks, CodeDPO demonstrates significant im-030
provements in correctness and efficiency com-031
pared to existing methods. Our experiments032
prove that CodeDPO enhances the capabilities033
of LLMs in code generation and provides a ro-034
bust foundation for conducting code preference035
optimization in more complex and challenging036
real-world scenarios. 1037

1 Introduction038

In recent years, code generation models have039

gained significant attention for their potential to040

1Code and additional details are available: https://
anonymous.4open.science/r/CodeDPO/

automate software development. Models such as 041

GPT-4 (GPT-4, 2023), Claude, and open-source 042

alternatives like Phi (Gunasekar et al., 2023; Abdin 043

et al., 2024), DeepSeekCoder (Guo et al., 2024), 044

and StarCoder (Li et al., 2023; Lozhkov et al., 045

2024) have demonstrated the capability of LLMs 046

to handle complex code generation tasks. However, 047

one of the ongoing challenges lies in boosting the 048

correctness and efficiency of the generated code. 049

To improve code generation models, a common 050

approach is supervised fine-tuning (SFT) (Zhang 051

et al., 2023b), where models are trained on pairs 052

of instructions and correct code snippets. While 053

SFT improves the overall quality of the generated 054

code, it falls short in teaching models to consis- 055

tently prefer correct solutions over incorrect ones 056

(Hong et al., 2024). Figure 1 illustrates the likeli- 057

hood of generating code with varying correctness 058

and efficiency during SFT training. When we adopt 059

SFT training on those correct solutions, as the like- 060

lihood of preferred outputs increases, the proba- 061

bility of generating undesirable outputs also rises, 062

leading to performance saturation. 063

To address these limitations, recent research has 064

turned to direct preference optimization (DPO) 065

(Rafailov et al., 2024), a method designed for align- 066

ment based on pairwise preference data. DPO al- 067

lows models to rank different outputs and choose 068

preferable solutions (e.g., more factual or help- 069

ful). While DPO has shown success in reason- 070

ing tasks like mathematics (Lai et al., 2024; Wu 071

et al., 2024), its application in code generation re- 072

mains under-explored. Unlike natural language 073

tasks, code generation requires objective metrics, 074

such as executability, which poses challenges for 075

directly applying DPO. In this paper, we first 076

define code preference based on two key fac- 077

tors—Correctness and efficiency. Correctness 078

refers to whether the code solves the problem ac- 079

curately, while efficiency measures how quickly 080

the code runs. Existing methods (Gee et al., 2024; 081

1

https://anonymous.4open.science/r/CodeDPO/
https://anonymous.4open.science/r/CodeDPO/

Figure 1: Log probabilities for code with varying cor-
rectness and efficiency during Phi-2-2.7B model train-
ing on our constructed dataset. The traditional SFT
strategy struggles to teach models to prefer correct so-
lutions over incorrect or slow ones. In contrast, our
CodeDPO approach effectively optimizes for both cor-
rectness and efficiency.

Zhang et al., 2024) rely heavily on high-quality082

test cases to assess correctness. However, these ap-083

proaches struggle to fully address correctness and084

efficiency, facing limitations such as restricted data085

diversity, an imbalance between positive and nega-086

tive samples, and insufficient focus on optimizing087

code efficiency.088

In this paper, we introduce CodeDPO, a novel089

framework that integrates preference learning into090

code model training to optimize both correctness091

and efficiency. CodeDPO constructs the dataset092

from real-world code repositories using a self-093

generation-and-validation mechanism, where code094

and test cases are simultaneously generated and095

evaluated. We assume that tests executable by096

more code snippets are more reliable, and code097

that passes more tests is more likely to be cor-098

rect. To implement this, CodeDPO uses a mutual099

verification process: each receives an initial self-100

validation score, which is iteratively updated us-101

ing a PageRank-inspired (Page, 1999) algorithm.102

This algorithm adjusts the credibility of each code103

snippet and tests by considering their relations in104

cross-verification, prioritizing solutions based on105

correctness and efficiency. The final preference-106

optimized dataset is then used to train various code107

models using the DPO learning algorithm. A108

key advantage of CodeDPO is its flexibility. Un-109

like existing methods that rely on high-quality test 110

cases or powerful models to generate them, Cod- 111

eDPO does not depend on these resources. Its 112

self-generation and validation mechanism supports 113

the scalable creation of diverse and robust prefer- 114

ence optimization data. This allows our framework 115

to optimize code models for real-world scenarios 116

where high-quality test data may be sparse. 117

CodeDPO can serve as a crucial step in the post- 118

training phase of code models. We conduct ex- 119

periments on five popular benchmarks such as Hu- 120

manEval (Chen et al., 2021), HumanEval+ (Liu 121

et al., 2024a), MBPP (Austin et al., 2021), MBPP+, 122

and DS-1000 (Lai et al., 2023) with CodeDPO, 123

demonstrating its superiority over existing meth- 124

ods. Notably, we develop a top-performing 6.7B 125

model by building on an existing SFT strategy (Guo 126

et al., 2024; Wei et al., 2023) and further enhancing 127

it with our CodeDPO approach, achieving an im- 128

pressive 83.5% pass rate on HumanEval. We also 129

conduct ablation studies to investigate the impact 130

of our self-generation-and-validation mechanism 131

and other preference optimization settings. Our 132

findings confirm that CodeDPO enhances the code 133

generation capabilities of LLMs while providing 134

a solid foundation for further research into opti- 135

mizing code generation for both correctness and 136

efficiency. 137

2 Related Work 138

2.1 Large Language Models for Code 139

Code generation, which automates writing source 140

code from natural language (NL) descriptions, is 141

gaining significant attention. LLMs have shown 142

strong capabilities in this area due to their large- 143

scale training on diverse datasets, such as Ope- 144

nAI’s GPT-4 (GPT-4, 2023), StarCoder (Li et al., 145

2023; Lozhkov et al., 2024), Code Llama (Roz- 146

ière et al., 2023), and DeepSeekCoder (Guo et al., 147

2024). These models are often fine-tuned further, 148

such as through instruction-supervised fine-tuning 149

(SFT), to maximize their coding potential. Since 150

gathering high-quality data is difficult, researchers 151

use self-instruct methods to generate synthetic in- 152

struction data from powerful models like GPT-4 153

(Wang et al., 2022; Taori et al., 2023; Chaudhary, 154

2023). Evol-Instruct (Luo et al., 2023) uses more 155

complex prompts for better data generation. OSS- 156

instruct (Wei et al., 2023) allows LLMs to get in- 157

spired from real-world code snippets for better qual- 158

ity in coding tasks. While these SFT methods boost 159

2

code quality, it does not fully train models to prefer160

correct solutions over incorrect ones (Hong et al.,161

2024). Updating training strategies is critical for162

improving these code models to handle various163

coding tasks.164

2.2 Preference Optimization for Code Models165

Preference optimization techniques have recently166

been used to help LLMs prefer better outputs167

over weaker ones in various natural language tasks168

(Rafailov et al., 2024). The Direct Preference Op-169

timization (Rafailov et al., 2024) has been widely170

applied to LLM alignment due to its convenience171

and effectiveness. Its objective is defined as:172

LDPO = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

−β log
πθ(yl | x)
πref(yl | x)

)]173

Compared with the SFT loss, the DPO loss intro-174

duces a preference-based mechanism. Instead of175

merely maximizing the likelihood of ground truth176

data, as in SFT, DPO optimizes the model to align177

with human preferences by leveraging both pre-178

ferred responses (yw, winning) and dispreferred179

responses (yl, losing). While DPO has proven ef-180

fective in reasoning tasks like mathematics (Lai181

et al., 2024), its use in code generation is still under-182

explored. Code generation requires objective mea-183

sures of correctness and efficiency, unlike natural184

language tasks where preferences are often more185

subjective. Some works have simply explored PO.186

Code-Optimize (Gee et al., 2024) builds its dataset187

from the MBPP-train subset, which includes just188

384 problems. PLUM uses GPT-4 to generate tests,189

which are then used to validate and rank code so-190

lutions. PLUM currently achieves state-of-the-art191

performance in preference optimization for code192

models. However, PLUM (Zhang et al., 2024) faces193

some limitations. It uses a limited number of tests194

to validate the code, and the resulting dataset is im-195

balanced due to its validation method, which means196

it can only use KTO (Ethayarajh et al., 2024) for197

training. Additionally, PLUM does not consider the198

code efficiency. This paper introduces CodeDPO,199

which does not rely on external test cases or pow-200

erful models for dataset generation. Our approach201

uses a self-generation and validation mechanism202

to create balanced preference pairs, aiming to opti-203

mize both correctness and efficiency.204

3 CodeDPO: Self-Verified Performance 205

Optimization Code Generation 206

Framework 207

CodeDPO is designed to integrate preference learn- 208

ing into code generation models, improving both 209

the correctness and efficiency of the generated code. 210

As shown in Figure 4, our method involves four 211

key steps: ❶ Data Seed Construction with real- 212

world source code: We first collect a data seed 213

from open-source code repositories and generate 214

programming task prompts. ❷ Correctness Op- 215

timization with self-validation score: We gen- 216

erate code and tests simultaneously, using a self- 217

generation-and-validation loop to build a dataset 218

for correctness optimization. The self-validation 219

score is iteratively updated based on whether the 220

generated code passes the tests. We assume that 221

tests executable by multiple code snippets are more 222

reliable, and code that passes more tests is more 223

likely to be correct. As illustrated in the figure, 224

after two iterations, the score of code-1 changes 225

from 1 to 1.75 to 2.6875 (∼2.7 in the figure), as 226

it passes more reliable tests and receives higher 227

scores with each update, indicating a greater likeli- 228

hood of correctness. ❸ Efficiency Optimization 229

with execution time: We measure execution time 230

on selected credible test sets to build the dataset 231

for efficiency optimization. In the figure, we select 232

test-1 and test-2 as the credible test set to measure 233

the execution time of each code snippet. ❹ Model 234

Optimization Training: We collect the dataset 235

from the previous two stages and use Direct Pref- 236

erence Optimization (DPO) to train various code 237

models. 238

3.1 Data Seed Construction 239

The data seed construction for CodeDPO is the 240

first step for initiating the preference learning pro- 241

cess to generate programming task prompts. We 242

adopt a method inspired by OSS-instruct (Wei 243

et al., 2023, 2024)2, which extracts key program- 244

ming concepts from open-source code repositories. 245

These concepts serve as the foundation for gen- 246

erating various programming task prompts. For 247

example, a code snippet that performs sorting op- 248

erations might highlight concepts such as sorting 249

algorithms, data structure traversal, and time com- 250

2We follow the implementation provided at
https://github.com/bigcode-project/
starcoder2-self-align/tree/
fd0af77e2773b14696c7cea02a472f9e99d9c4e3.

3

https://github.com/bigcode-project/starcoder2-self-align/tree/fd0af77e2773b14696c7cea02a472f9e99d9c4e3
https://github.com/bigcode-project/starcoder2-self-align/tree/fd0af77e2773b14696c7cea02a472f9e99d9c4e3
https://github.com/bigcode-project/starcoder2-self-align/tree/fd0af77e2773b14696c7cea02a472f9e99d9c4e3

Figure 2: Our CodeDPO involves four steps: ❶ Data Seed Construction with real-world source code; ❷ Correctness
Optimization with self-validation score (in this figure we set T to 2 and d to 0.5. For simplicity, the final score in
the figure is rounded to one decimal place. Details are shown in Appendix J.3.1); ❸ Efficiency Optimization with
execution time on credible tests; ❹ Model Optimization Training.

plexity. From these concepts, we generate code251

generation prompts. The data seed thus allows the252

model to explore a wide range of scenarios.253

3.2 Correctness Optimization with254

Self-Generation and Validation255

Central to CodeDPO is the self-generation-and-256

validation loop, which enables the model to itera-257

tively update the code correctness rank through258

mutual validation of code and test cases (Chen259

et al., 2022, 2023; Zhang et al., 2023a). The pro-260

cess begins by generating multiple candidate code261

snippets based on a prompt. Simultaneously, corre-262

sponding test cases are generated to evaluate these263

snippets. The validation loop follows these steps:264

1. Code Generation: Given an instruction, the265

model generates a set of candidate code snippets266

C = {c1, c2, ..., cn}. 2. Test Case Generation:267

Test cases T = {t1, t2, ..., tm} are generated in268

parallel to validate the candidate snippets. 3. Val-269

idation Process: Each code snippet is executed270

against the generated test cases. The validation out-271

comes are used to update the self-validation scores272

for both the code snippets and the test cases.273

Ranking Code Snippets and Test Cases Using274

Self-Validation Scores To rank both code snip-275

pets and tests, we employ a PageRank-inspired276

(Page, 1999) iterative algorithm. Initially, each277

code and test is assigned a self-validation score of278

1. Over a fixed number of iterations T = 10, these279

scores are updated based on the performance of the280

snippets and test cases during validation.281

The self-validation score for code snippets and282

test cases is updated using the following formulas:283

Scoret(ci) = (1− d)× Scoret−1(ci)

+ d×
∑
tj

Scoret−1(tj)× Link(tj , ci)

Scoret(tj) = (1− d)× Scoret−1(tj)

+ d×
∑
ci

Scoret−1(ci)× Link(ci, tj)

(1) 284

Where d is the damping factor, and Link(tj , ci) 285

indicates whether a code snippet ci passes the test 286

case tj . This iterative process is repeated until 287

convergence. After T iterations, the final rankings 288

reflect the quality of the code snippets and test 289

cases based on the correctness. 290

3.3 Execution Efficiency Optimization 291

In addition to ensuring correctness, CodeDPO in- 292

tegrates execution efficiency optimization to en- 293

sure that our approach generates functionally cor- 294

rect and efficient code. During the self-validation 295

loop, the execution time for each code snippet is 296

recorded. However, not all test cases accurately re- 297

flect the efficiency of the code. To address this, we 298

use the top-performing code from the correctness 299

optimization phase as a reference, assuming the 300

test cases it passes are credible. The total execution 301

time for each code snippet is then measured based 302

on the subset of these credible tests. Code snippets 303

that pass these credible test cases with lower exe- 304

cution times are assigned higher efficiency scores. 305

Finally, we collect both fast and slow code snip- 306

pets as part of the training dataset for execution 307

efficiency optimization, which is used for further 308

training, encouraging the model to prioritize so- 309

lutions that are accurate and optimized for speed 310

4

during code generation.311

3.4 Final Dataset and Model Optimization312

The final dataset is built from the previous two313

optimization dataset construction stages, account-314

ing for correctness and execution time. We filter315

out samples whose ranking scores are identical or316

too close. The final dataset consists of 93k cor-317

rectness optimization samples and 21k efficiency318

optimization samples. Each sample includes a319

unique code problem prompt with a preferred and320

a rejected solution. In the subsequent training, we321

combine both correctness and efficiency data to322

optimize the model in both aspects simultaneously.323

In our experiments, we apply Direct Preference324

Optimization (DPO) (Rafailov et al., 2024) across325

various code models to facilitate optimization learn-326

ing. To enhance the stability and robustness of327

the training process, we employ RPO (Pang et al.,328

2024; Liu et al., 2024b) format loss, which essen-329

tially consists of a weighted SFT loss on the chosen330

preferences together with the original DPO loss.331

We utilize both base models and SFT models as332

the backbone for further training. Our goal is to333

demonstrate that CodeDPO has the potential to334

enhance code models at different stages of their335

training, even for models that have undergone ex-336

tensive training or fine-tuning. The setup details337

are provided in Section 4.2.338

4 Experiment Setup339

In this study, we aim to investigate the following340

research questions:341

RQ1: Does CodeDPO improve the correct-342

ness of generated code compared to baseline343

models on standard benchmarks? We evaluate344

on HumanEval (Chen et al., 2021), HumanEval+345

(Liu et al., 2024a), MBPP (Austin et al., 2021),346

MBPP+, DS-1000 (Lai et al., 2023) and Live-347

CodeBench (Jain et al., 2024).348

RQ2: Does CodeDPO enhance the execution349

efficiency of generated code? We measure the ex-350

ecution efficiency of code generated by CodeDPO351

compared to baseline models.352

RQ3: What is the impact of the self-353

generation-and-validation algorithm on Cod-354

eDPO’s performance? We perform ablation stud-355

ies by removing or modifying the self-generation-356

and-validation mechanism to assess its contribution357

to the overall performance.358

RQ4: How does the choice of preference op-359

timization strategy affect CodeDPO’s effective- 360

ness? We evaluate different preference optimiza- 361

tion strategies, including Direct Preference Opti- 362

mization (DPO), Kahneman-Tversky Optimization 363

(KTO) (Ethayarajh et al., 2024), and Supervised 364

Fine-Tuning (SFT), to understand their impact on 365

the model’s performance. 366

RQ5: How does data scaling influence the 367

performance of CodeDPO? We investigate data 368

scaling by varying the amount of training data to 369

show how data size affects its ability. 370

4.1 Backbone LLMs 371

We evaluate several widely used LLMs in the code 372

generation domain for our experiments, covering 373

both base models and SFT models at different 374

training stages. For base models, we apply Cod- 375

eDPO to Phi-2 (2.7B) (Gunasekar et al., 2023), 376

DeepSeekCoder-base (1.3B, 6.7B) (Guo et al., 377

2024), and StarCoder2-base (7B) (Lozhkov et al., 378

2024). Additionally, we evaluate our method on 379

several fine-tuned SFT models (Wei et al., 2023), 380

including Magicoder-CL-7B, Magicoder-S-CL- 381

7B, Magicoder-DS-6.7B, and Magicoder-S-DS- 382

6.7B, which are fine-tuned based on CodeLlama- 383

7B and DeepSeekCoder-base-6.7B using state-of- 384

the-art SFT techniques. 385

While applying the PO phase after SFT is gen- 386

erally recommended (Rafailov et al., 2024), we 387

extend our evaluation to base models as they can 388

generate more diverse code snippets and offer more 389

significant potential for improvement (Wang et al., 390

2024). We choose all these popular models as the 391

backbone of our experiments to optimize correct- 392

ness and execution efficiency. 393

4.2 Training and Inference Settings 394

For dataset construction, we use DeepSeekCoder- 395

v2 as the data generation model. For each problem 396

prompt, we sample 15 code solutions and test cases 397

from this model with temperature = 1.5. To con- 398

struct the preference optimization dataset, we set 399

T to 10 and d to 0.85 for the self-validation score. 400

Our practice shows that this parameter configura- 401

tion quickly yields a stable ranking score. In this 402

paper, we focus on constructing a Python dataset. 403

The total cost of our dataset construction process is 404

nearly 80$. For training, we train each code model 405

for 10 epochs and select the best-performing model 406

based on the lowest validation loss. We utilize a 407

learning rate of 5e-6 with a linear scheduler and 408

warm-up. For inference, we use greedy search de- 409

5

coding for code generation. We use 16 A100 GPUs410

for all experiments.411

5 Results and Analyses412

5.1 Code Correctness (RQ1)413

We evaluate the model performance on five widely-414

used code generation benchmarks: HumanEval,415

HumanEval+, MBPP, MBPP+, and DS-1000.416

Following the standard training process (base417

model → SFT → DPO), we first record the per-418

formance of the base model, SFT model, and DPO-419

aligned model on DeepSeekCoder-6.7B, as shown420

in Table 1. With the enhancement of our Cod-421

eDPO, the final model achieves an 83.5% pass rate422

on HumanEval. Notably, even after high-quality423

SFT training, CodeDPO still achieves additional424

performance improvements. CodeDPO plays a cru-425

cial role in the post-training phase of code models,426

significantly boosting overall performance.427

We further evaluate the performance of Cod-428

eDPO alongside baselines3 on a wide range of429

base models and SFT models. As shown in Ta-430

ble 2, CodeDPO achieves the best performance431

on both HumanEval(+) and MBPP(+). Compared432

to the baseline models in the first row of each433

block, we observe that CodeDPO delivers signif-434

icant improvements across all models, regardless435

of their initial performance. Notably, we achieve436

a 36.1% relative improvement on StarCoder2-7B.437

Additionally, CodeDPO shows remarkable gains438

on the more challenging HumanEval+, demonstrat-439

ing its robustness under stricter evaluation. Thanks440

to CodeDPO’s data construction strategy, we can441

build a reliable preference dataset that helps the442

model favour high-quality outputs, leading to more443

robust and reliable code generation.444

For DS-1000, as shown in Table 3 and 7, we fur-445

ther evaluate CodeDPO across different libraries.446

We did not incorporate prior knowledge of specific447

Python libraries in our data construction. While448

we observe slight performance drops in the Torch449

and TensorFlow settings, this may be due to the450

relatively low percentage of these libraries in our451

dataset construction. However, CodeDPO demon-452

strates overall performance improvements over453

their respective baselines. DS-1000 differs from454

benchmarks like HumanEval and MBPP in data455

3The baselines have not yet published their datasets. We
reproduced the Code-Optimize experiment based on the re-
ported settings. For PLUM, we report results from their paper
using models identical to ours, which is why some models do
not include PLUM results.

format and the coding skills it assesses, and it en- 456

sures that it is excluded from nearly all models’ 457

training sets. It proves that CodeDPO can enhance 458

the model’s coding capabilities in more complex 459

and diverse scenarios. Details are in Appendix A. 460

We conducted additional experiments on Live- 461

CodeBench (Jain et al., 2024) in Table 4, one of 462

the most challenging benchmarks for real-world 463

competitive coding tasks. The results indicate that 464

CodeDPO demonstrates significant performance 465

improvements for both the base model and the su- 466

pervised fine-tuning (SFT) model across all diffi- 467

culty levels. The gains are particularly notable in 468

the "medium" and "hard" subsets, which represent 469

some of the most challenging problems in competi- 470

tive programming tasks. These findings highlight 471

the effectiveness of the proposed framework for 472

real-world, complex coding tasks. 473

5.2 Code Efficiency (RQ2) 474

To address RQ2, we follow existing methods (Shy- 475

pula et al., 2024) by measuring the execution time 476

of the generated code and calculating the speed-up 477

ratio. We also evaluate the percentage of opti- 478

mized code before and after applying CodeDPO, 479

where a program is considered optimized if it is at 480

least 10% faster than its baseline. These metrics 481

are based on the intersection of solved problems 482

before and after applying CodeDPO. We select 483

HumanEval+ and MBPP+ for evaluation because 484

they significantly expand the diversity of test cases, 485

making them more reliable for measuring the ex- 486

ecution efficiency of the generated code under a 487

variety of edge cases. Since runtime environments 488

can affect measurements, we repeat each evaluation 489

five times and show the distribution in Figure 3. It 490

is clear that CodeDPO consistently improves code 491

performance. The speed-up ratio shows that our 492

method speeds up the code by 1.25 to 1.45 times. 493

Additionally, the percentage of optimized code in- 494

dicates that after applying CodeDPO, around 20%- 495

45% of generated code solutions have been im- 496

proved, confirming its effectiveness in enhancing 497

code efficiency. 498

5.3 Ablation Studies 499

5.3.1 Self Generation and Validation 500

Algorithm (RQ3) 501

Correlation between self-validation scores and 502

actual code accuracy using HumanEval ground 503

truth tests To evaluate the effectiveness of our 504

6

Model HumanEval HumanEval+ MBPP MBPP+

DeepSeekCoder-6.7B-base 47.60 39.60 70.20 56.60
+ SFT (with MagiCoder-OSS-instruct) 73.17 68.29 76.72 66.67
+ SFT + Our CodeDPO 83.54 76.22 80.70 70.93

Table 1: Pass rates (%) of code models at different stages on HumanEval(+) and MBPP(+). We track the performance
of the base model, SFT model, and DPO-aligned model on DeepSeekCoder-6.7B. Our CodeDPO shows additional
improvements, even after high-quality SFT training.

Model HumanEval (/+) MBPP (/+)

SFT Model

MagiCoder-CL-7B 51.21 / 48.78 65.60 / 55.82
Our CodeDPO 60.36 / 54.87 70.93 / 59.15
Code-Optimise 48.78 / 46.95 67.17 / 57.14

MagiCoder-S-CL-7B 67.07 / 61.59 69.58 / 60.58
Our CodeDPO 74.39 / 71.95 71.43 / 61.40
Code-Optimise 64.63 / 54.88 69.42 / 60.15
PLUM 73.80 / 69.50 71.40 / 60.80

MagiCoder-DS-6.7B 57.93 / 53.66 75.93 / 64.02
Our CodeDPO 67.07 / 62.80 81.70 / 68.92
Code-Optimise 57.93 / 51.83 76.19 / 64.91
PLUM 71.30 / 65.90 79.60 / 66.70

MagiCoder-S-DS-6.7B 73.17 / 68.29 76.72 / 66.67
Our CodeDPO 83.54 / 76.22 80.70 / 70.93
Code-Optimise 68.90 / 64.63 78.20 / 67.92
PLUM 80.50 / 73.80 80.40 / 69.30

Base Model

Phi-2-2.7B 48.78 / 46.34 65.34 / 54.49
Our CodeDPO 57.32 / 51.83 69.05 / 56.88
Code-Optimise 49.39 / 47.56 67.42 / 55.80

DeepSeekCoder-1.3B 31.53 / 28.65 57.40 / 48.67
Our CodeDPO 42.07 / 38.04 61.37 / 53.43
Code-Optimise 34.15 / 30.49 59.15 / 49.87

DeepSeekCoder-6.7B 47.60 / 39.60 70.20 / 56.60
Our CodeDPO 59.75 / 51.83 72.18 / 60.01
Code-Optimise 47.56 / 37.20 72.18 / 57.64
PLUM 56.70 / 48.80 72.90 / 58.90

StarCoder2-7B 35.40 / 29.90 54.40 / 45.60
Our CodeDPO 48.17 / 34.15 58.40 / 49.37
Code-Optimise 32.32 / 28.05 58.90 / 47.89
PLUM 46.30 / 39.60 60.40 / 49.10

Table 2: Pass rate (%) of CodeDPO compared to base-
line models on HumanEval and MBPP.

Model plot np pd torch scipy sk tf Avg

Magic-CL-7B 54.8 16.4 16.5 17.6 23.6 29.6 33.3 25.5
Our CodeDPO 57.4 37.3 22.7 22.1 35.8 31.3 31.1 34.0

Magic-DS-6.7B 55.5 37.7 28.2 25.0 34.0 45.2 33.3 37.1
Our CodeDPO 59.4 40.5 29.2 23.5 39.6 42.6 31.1 38.7

Phi-2-2.7B 42.6 33.6 15.5 16.2 17.0 11.3 17.8 23.5
Our CodeDPO 49.0 33.6 16.5 14.7 20.8 14.8 13.3 25.3

StarCoder2-7B 54.2 37.7 18.6 25.0 31.1 23.5 35.6 31.4
Our CodeDPO 56.8 38.2 18.9 20.6 39.6 25.2 31.1 32.6

Table 3: Pass rate (%) of CodeDPO on DS-1000 across
seven libraries using greedy decoding.

Model Easy Medium Hard

Base Model
DeepSeek-Coder-6.7B 39.9 7.4 0.4
Our CodeDPO 51.9 12.2 0.7

SFT Model
MagiCoder-S-DS-6.7B 48.1 10.7 0.1
Our CodeDPO 53.1 16.3 0.7

Table 4: Performance comparison on LiveCodeBench
across difficulty levels.

self-generation-and-validation algorithm, we exam- 505

ine the correlation between self-validation scores 506

and actual code accuracy. We use HumanEval for 507

this preliminary experiment. For each problem in 508

HumanEval, we sample 15 code solutions and tests 509

following the setting in Section 4, and then use 510

different strategies to rank these generated codes. 511

To evaluate the rank quality, we execute with the 512

ground truth for each code to get the actual code ac- 513

curacy. We consider three experimental strategies: 514

❶ Self-validation score, which refers to our origi- 515

nal method. ❷ Filter with all tests, which assumes 516

all generated test cases are correct and uses them 517

to judge code correctness. This approach creates 518

passed/non-passed pairs, similar to the baseline 519

PLUM (though PLUM uses GPT-4 for test gener- 520

ation, while we use a more cost-effective model). 521

❸ Sort by number of passed tests, which counts 522

the number of passed tests for each code among 523

all generated tests, using the code with the most 524

and least passed tests as the comparison pair. It is 525

commonly employed in post-processing methods, 526

such as CodeT (Chen et al., 2022). 527

Table 5 presents the Spearman, Kendall’s Tau, 528

and Normalized Discounted Cumulative Gain 529

(NDCG) metrics for the different ranking strate- 530

gies. Our experiments show that the self-validation 531

score is highly correlated with actual code accuracy. 532

In contrast, filtering by all tests heavily depends 533

on the quality of the test generation model. Sort- 534

ing by the number of passed tests treats all tests 535

equally important. However, due to the inherent 536

uncertainty in generated tests, these methods can 537

7

(a) HumanEval+

(b) MBPP+

Figure 3: Runtime Speedup and Percentage of Opti-
mized Code on HumanEval+ and MBPP+.

be vulnerable to low-quality tests. Our proposed538

self-validation method employs a mutual reinforce-539

ment mechanism to update the credibility of both540

code and tests, effectively mitigating these issues.541

Method Spearman Kendall’s Tau NDCG

Self-validation score 0.8598 0.8047 0.9653

Filter with all tests 0.6114 0.6114 0.8753
Sort by # of passed tests 0.7724 0.7250 0.9162

Table 5: Correlation between self-validation score and
actual code accuracy on HumanEval.

Impact of self-validation score on model per-542

formance We apply these strategies to construct543

datasets and evaluate the final model performance544

in code generation. Table 6 presents the model545

performance across various dataset construction546

strategies. We introduce a new strategy—random547

selection—which randomly selects two code solu-548

tions from the generated code as the preference pair.549

The experiment results demonstrate that the self-550

generation-and-validation algorithm plays an essen-551

tial role in ensuring the correctness and reliability552

of the preference dataset construction. Details are553

shown in Appendix B.554

Model HumanEval (/+) MBPP (/+)

DeepSeekCoder-1.3B 31.53 / 28.65 57.40 / 48.60

Data Construction Strategies
Filter with all tests 34.75 / 29.89 57.40 / 48.80
Sort by # of passed tests 37.19 / 31.09 58.39 / 50.37
Random selection 21.34 / 18.29 48.94 / 38.35
Our CodeDPO 42.07 / 38.04 61.37 / 53.43

Training Strategies
SFT 39.02 / 35.36 59.45 / 50.26
Our CodeKTO 40.85 / 35.98 59.65 / 50.13
Our CodeDPO 42.07 / 38.04 61.37 / 53.43

Table 6: Ablation study of performance based on
DeepSeekCoder-1.3B.

5.3.2 Impact of PO Training Strategy (RQ4) 555

We explore the impact of different preference op- 556

timization strategies (DPO, KTO, and SFT) on 557

model performance. For training, the SFT strategy 558

uses the best code solution from our constructed 559

dataset. In our KTO strategy, we replace DPO with 560

KTO in our framework. As shown in Figure 1, 561

the traditional SFT strategy struggles to guide the 562

model in preferring correct solutions over incorrect 563

or slower ones during training. The results in Ta- 564

ble 6 demonstrate that DPO performs best among 565

these strategies. Benefiting from our dataset con- 566

struction method, we can obtain well-balanced pref- 567

erence pairs, enhancing the contrastive mechanism 568

in DPO. Details are shown in Appendix C. 569

5.4 Data Scaling Law for CodeDPO (RQ5) 570

To address RQ5, we explore how scaling the train- 571

ing data affects CodeDPO’s performance. As 572

shown in Table 10, increasing the data consistently 573

improves model performance, but these improve- 574

ments gradually plateau as the dataset size grows. 575

In our experiments, we balance performance gains 576

and training costs, ensuring optimal results with 577

CodeDPO. Details are shown in Appendix D. 578

6 Conclusion 579

We propose CodeDPO, a preference optimization 580

framework for code models that focuses on both 581

correctness and efficiency. CodeDPO iteratively 582

updates the self-validation score, prioritizing so- 583

lutions based on correctness and efficiency. Our 584

work technically validates the reliability of self- 585

validation to synthesize preference optimization 586

data, eliminating the need for complex resources 587

such as pre-existing tests or powerful generation 588

models. We hope this work opens new avenues 589

for synthesizing data and implementing large-scale 590

preference optimization for code models. 591

8

Limitation592

There are several limitations to our work that we593

aim to address:594

Comparison with Advanced RL Techniques595

such as DeepSeek-R1 Although our study show-596

cases the effectiveness of CodeDPO, it does not597

thoroughly compare this method with other ad-598

vanced reinforcement learning (RL) alignment tech-599

niques like DeepSeek-R1 (Guo et al., 2025). Tech-600

niques such as GRPO in DeepSeek-R1 are typically601

designed for online RL alignment, requiring sub-602

stantial training resources, high-quality datasets,603

and complex reward environments, which can be604

prohibitively resource-intensive. In contrast, Cod-605

eDPO focuses on offline alignment methods, us-606

ing approximations and necessary simplifications607

to achieve optimization objectives. This allows608

CodeDPO to deliver results comparable to or even609

matching those of advanced online RL methods,610

but with notably reduced resource demands. Our611

self-validation scores also indicate that our ranking612

methods are robust even with lower-quality source613

code and tests, demonstrating consistent perfor-614

mance even with less advanced generation models.615

Given its low resource requirements and consistent616

performance, CodeDPO is well-suited to a broad617

range of code generation scenarios. However, a618

comprehensive evaluation of how CodeDPO stacks619

up against these sophisticated RL techniques in620

terms of performance and efficiency is a potential621

avenue for future research.622

Limitations of Current Correctness Evaluation623

Firstly, constrained by current mainstream correct-624

ness evaluation methods, the test-case-driven func-625

tional correctness DPO is still not enough for code626

model. Current methods for evaluating correctness627

heavily rely on high-quality test cases or powerful628

models (e.g., GPT-4) to generate reliable outputs.629

To address these limitations, our paper introduces a630

self-validation data generation method that reduces631

dependency on such resources while maintaining632

robustness.633

Because our method does not require high-634

quality test cases or strong external models, it is635

well-suited for scaling to larger datasets and can636

be applied to a wide range of code models. This637

scalability provides a foundation for improving cor-638

rectness and efficiency across diverse code tasks.639

Incorporating Readability and Security Next, 640

beyond correctness and efficiency, incorporating 641

readability and security metrics into our extended 642

CodeDPO framework is a natural extension: Met- 643

rics such as comment-to-code ratio, consistent vari- 644

able naming, and adherence to coding style guides 645

could be integrated into the preference learning 646

process. For instance, LLMs could act as judges 647

to evaluate readability alongside correctness. Tech- 648

niques like static code analysis and detection of 649

code smell and common vulnerabilities could help 650

identify and penalize insecure patterns during data 651

construction, contributing to safer code generation. 652

We plan to explore these deeper alignment objec- 653

tives in future work. 654

References 655

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, 656
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, 657
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki- 658
rat Behl, et al. 2024. Phi-3 technical report: A highly 659
capable language model locally on your phone. arXiv 660
preprint arXiv:2404.14219. 661

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 662
Bosma, Henryk Michalewski, David Dohan, Ellen 663
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 664
Program synthesis with large language models. arXiv 665
preprint arXiv:2108.07732. 666

Sahil Chaudhary. 2023. Code alpaca: An 667
instruction-following llama model for code genera- 668
tion. https://github.com/sahil280114/ 669
codealpaca. 670

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, 671
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022. 672
Codet: Code generation with generated tests. In 673
The Eleventh International Conference on Learning 674
Representations. 675

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 676
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 677
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 678
Greg Brockman, et al. 2021. Evaluating large 679
language models trained on code. arXiv preprint 680
arXiv:2107.03374. 681

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 682
Denny Zhou. 2023. Teaching large language models 683
to self-debug. arXiv preprint arXiv:2304.05128. 684

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, 685
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model 686
alignment as prospect theoretic optimization. arXiv 687
preprint arXiv:2402.01306. 688

Leonidas Gee, Milan Gritta, Gerasimos Lampouras, 689
and Ignacio Iacobacci. 2024. Code-optimise: Self- 690
generated preference data for correctness and effi- 691
ciency. CoRR, abs/2406.12502. 692

9

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502

GPT-4. 2023. https://platform.693
openai.com/docs/models/694
gpt-4-and-gpt-4-turbo. OpenAI.695

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio696
César Teodoro Mendes, Allie Del Giorno, Sivakanth697
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo698
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all699
you need. arXiv preprint arXiv:2306.11644.700

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,701
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,702
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-703
centivizing reasoning capability in llms via reinforce-704
ment learning. arXiv preprint arXiv:2501.12948.705

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,706
Kai Dong, Wentao Zhang, Guanting Chen, Xiao707
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:708
When the large language model meets programming–709
the rise of code intelligence. arXiv preprint710
arXiv:2401.14196.711

Jiwoo Hong, Noah Lee, and James Thorne. 2024.712
Orpo: Monolithic preference optimization without713
reference model. arXiv preprint arXiv:2403.07691,714
2(4):5.715

Dong Huang, Yuhao Qing, Weiyi Shang, Heming Cui,716
and Jie M Zhang. 2024. Effibench: Benchmarking717
the efficiency of automatically generated code. arXiv718
preprint arXiv:2402.02037.719

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia720
Yan, Tianjun Zhang, Sida Wang, Armando Solar-721
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-722
codebench: Holistic and contamination free eval-723
uation of large language models for code. arXiv724
preprint arXiv:2403.07974.725

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-726
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise727
preference optimization for long-chain reasoning of728
llms. arXiv preprint arXiv:2406.18629.729

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,730
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel731
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A732
natural and reliable benchmark for data science code733
generation. In International Conference on Machine734
Learning, pages 18319–18345. PMLR.735

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas736
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc737
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.738
2023. Starcoder: may the source be with you! arXiv739
preprint arXiv:2305.06161.740

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and741
Lingming Zhang. 2024a. Is your code generated by742
chatgpt really correct? rigorous evaluation of large743
language models for code generation. Advances in744
Neural Information Processing Systems, 36.745

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi 746
Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran 747
Wang. 2024b. Provably mitigating overoptimization 748
in rlhf: Your sft loss is implicitly an adversarial regu- 749
larizer. arXiv preprint arXiv:2405.16436. 750

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 751
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 752
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 753
et al. 2024. Starcoder 2 and the stack v2: The next 754
generation. arXiv preprint arXiv:2402.19173. 755

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 756
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 757
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 758
Empowering code large language models with evol- 759
instruct. arXiv preprint arXiv:2306.08568. 760

Lawrence Page. 1999. The pagerank citation ranking: 761
Bringing order to the web. Technical report, Techni- 762
cal Report. 763

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, 764
He He, Sainbayar Sukhbaatar, and Jason Weston. 765
2024. Iterative reasoning preference optimization. 766
arXiv preprint arXiv:2404.19733. 767

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 768
pher D Manning, Stefano Ermon, and Chelsea Finn. 769
2024. Direct preference optimization: Your language 770
model is secretly a reward model. Advances in Neu- 771
ral Information Processing Systems, 36. 772

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 773
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 774
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 775
Code llama: Open foundation models for code. arXiv 776
preprint arXiv:2308.12950. 777

Alexander G Shypula, Aman Madaan, Yimeng Zeng, 778
Uri Alon, Jacob R Gardner, Yiming Yang, Mi- 779
lad Hashemi, Graham Neubig, Parthasarathy Ran- 780
ganathan, Osbert Bastani, et al. 2024. Learning 781
performance-improving code edits. In The Twelfth 782
International Conference on Learning Representa- 783
tions. 784

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 785
Dubois, Xuechen Li, Carlos Guestrin, Percy 786
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 787
ford alpaca: An instruction-following llama 788
model. https://github.com/tatsu-lab/ 789
stanford_alpaca. 790

Evan Wang, Federico Cassano, Catherine Wu, Yun- 791
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean 792
Hendryx, Summer Yue, and Hugh Zhang. 2024. Plan- 793
ning in natural language improves llm search for code 794
generation. arXiv preprint arXiv:2409.03733. 795

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al- 796
isa Liu, Noah A Smith, Daniel Khashabi, and Han- 797
naneh Hajishirzi. 2022. Self-instruct: Aligning lan- 798
guage models with self-generated instructions. arXiv 799
preprint arXiv:2212.10560. 800

10

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng801
Ding, Naman Jain, Zachary Mueller, Harm de Vries,802
Leandro Von Werra, Arjun Guha, and Lingming803
Zhang. 2024. Selfcodealign: Self-alignment for code804
generation. arXiv preprint arXiv:2410.24198.805

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and806
Lingming Zhang. 2023. Magicoder: Source code is807
all you need. arXiv preprint arXiv:2312.02120.808

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-809
ing Yang, and Quanquan Gu. 2024. Self-play pref-810
erence optimization for language model alignment.811
arXiv preprint arXiv:2405.00675.812

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao813
Peng. 2024. PLUM: preference learning plus test814
cases yields better code language models. CoRR,815
abs/2406.06887.816

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023a.817
Self-edit: Fault-aware code editor for code genera-818
tion. In The 61st Annual Meeting Of The Association819
For Computational Linguistics.820

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,821
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-822
wei Zhang, Fei Wu, et al. 2023b. Instruction tuning823
for large language models: A survey. arXiv preprint824
arXiv:2308.10792.825

11

https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887

A Code Correctness on DS-1000 (RQ1)826

For DS-1000, as shown in Table 7, we further eval-827

uate CodeDPO across different libraries on various828

backbone models.829

B Self Generation and Validation830

Algorithm (RQ3)831

We apply different strategies to construct datasets832

and evaluate the final model performance in code833

generation. We conduct experiments on various834

models and the detailed results are shown in Table835

8.836

C Impact of PO Training Strategy (RQ4)837

We explore the impact of different preference op-838

timization strategies (DPO, KTO, and SFT) on839

model performance. For training, the SFT strategy840

uses the best code solution from our constructed841

dataset. In our KTO strategy, we replace DPO842

with KTO in our framework. We conduct experi-843

ments on various models and the detailed results844

are shown in Table 9.845

D Data Scaling Law for CodeDPO (RQ5)846

We show the experiment results for RQ5, which847

can help us explore how scaling the training data af-848

fects CodeDPO’s performance. We train the model849

with varying amounts of data—25%, 50%, and850

75%—and evaluate its impact on the model perfor-851

mance. For example, HumanEval scores rise from852

32.92 (25%) to 41.46 (75%), with similar trends853

observed on MBPP. In our experiments, we care-854

fully balance performance gains and training costs,855

ensuring optimal results with CodeDPO. In further856

research, we plan to expand the current training857

scale to explore the extreme limits of CodeDPO’s858

performance.859

E CodeDPO Dataset Construction860

algorithm description861

In order to make it clear, we give a formal algorithm862

description of the CodeDPO construction pipeline863

in Algorithm 1.864

F LLM Prompts for CodeDPO dataset865

construction866

We use the following prompts for dataset seed con-867

struction and self-validation. During dataset con-868

struction, we first use code snippets from a ran-869

domly selected subset of the Stack v1 dataset as870

input and prompt the LLM to generate the concept 871

(LLM Prompt 1). Based on the concept, we then 872

prompt the LLM to generate the task description 873

(LLM Prompt 2). 874

For the validation process, we directly prompt 875

the LLM with the task description to generate code 876

solutions. Additionally, we prompt the LLM to gen- 877

erate only assertion statements as test cases (LLM 878

Prompt 3). Since our chosen generation LLM is 879

efficient and cost-effective, the entire process of 880

data generation and construction takes around 40 881

hours on a server with 32 CPUs. 882

LLM Prompt 1 for Concept Generation

Extract key programming concepts from a
given code snippet collected from the open
source repositories. Present the concepts as
a comma separated list.

{Few-shot Examples}

Example 2
Snippet

{Input Code}

Concepts
{need to generate}

883

LLM Prompt 2 for Task Prompt Generation

Create a set of independent code instruc-
tions that are original, different, diverse,
and high-quality, where the properties con-
trol an instruction’s category, language, con-
cepts, and difficulty.

{Few-shot Examples}

Example 2
Property

{Input Concept}

Instruction
{need to generate}

884

12

Model plot (155) np (220) pd (291) torch (68) scipy (106) sk (115) tf (45) Average

SFT Model

Magic-CL-7B 54.8 16.4 16.5 17.6 23.6 29.6 33.3 25.5
Our CodeDPO 57.4 37.3 22.7 22.1 35.8 31.3 31.1 34.0

Magic-S-CL-7B 52.3 43.2 30.6 47.1 34.9 46.1 44.4 40.7
Our CodeDPO 58.7 44.5 31.3 38.2 40.6 42.6 33.3 41.3

Magic-DS-6.7B 55.5 37.7 28.2 25.0 34.0 45.2 33.3 37.1
Our CodeDPO 59.4 40.5 29.2 23.5 39.6 42.6 31.1 38.7

Magic-S-DS-6.7B 53.5 49.5 30.6 47.1 35.8 53.0 40.0 42.9
Our CodeDPO 59.4 50.5 31.9 39.7 41.5 47.8 33.3 43.7

Base Model

Phi-2-2.7B 42.6 33.6 15.5 16.2 17.0 11.3 17.8 23.5
Our CodeDPO 49.0 33.6 16.5 14.7 20.8 14.8 13.3 25.3

DSC-1.3B 36.8 19.5 10.0 14.7 10.4 17.4 11.1 17.5
Our CodeDPO 34.8 23.6 10.7 14.7 20.8 13.9 8.9 18.9

DSC-6.7B 52.3 35.5 20.6 19.1 24.5 37.4 22.2 31.1
Our CodeDPO 56.8 36.4 21.6 17.6 34.0 34.8 20.0 32.8

StarCoder2-7B 54.2 37.7 18.6 25.0 31.1 23.5 35.6 31.4
Our CodeDPO 56.8 38.2 18.9 20.6 39.6 25.2 31.1 32.6

Table 7: More results on Pass rate (%) of CodeDPO on DS-1000 across seven libraries using greedy decoding.

Model HumanEval HumanEval+ MBPP MBPP+

Phi-2-2.7B 48.78 46.34 65.34 54.49
Our CodeDPO 57.32 51.83 69.05 56.88
Filter with all tests 49.39 48.17 69.17 55.13
Sort by # of passed tests 50.60 49.39 67.16 54.88
Random selection 22.56 18.90 45.11 36.59

DeepSeekCoder-1.3B 31.53 28.65 57.40 48.60
Our CodeDPO 42.07 38.04 61.37 53.43
Filter with all tests 34.75 29.89 57.40 48.80
Sort by # of passed tests 37.19 31.09 58.39 50.37
Random selection 21.34 18.29 48.94 38.35

Table 8: More results on ablations of our self validation score on the trained model performance.

LLM Prompt 3 for Test Case Generation

Generate only assertion statements based
on the following description. Do not gener-
ate any other code:

{Instruction}

Generated Assertions:
assert {need to generate}

885

G Experiments on Challenging Code 886

Efficiency Tasks 887

To evaluate code efficiency comprehensively, ad- 888

ditional experiments are conducted on EffiBench 889

(Huang et al., 2024). Since the absolute values of 890

the results may vary depending on the specific ex- 891

ecution environment, the analysis focuses on the 892

13

Model HumanEval HumanEval+ MBPP MBPP+

Phi-2-2.7B 48.78 46.34 65.34 54.49
SFT 55.49 49.22 66.87 55.76
Our CodeDPO 57.32 51.83 69.05 56.88
Our CodeKTO 54.88 51.22 64.91 53.63

DeepSeekCoder-1.3B-base 31.53 28.65 57.40 48.67
SFT 39.02 35.36 59.45 50.26
Our CodeDPO 42.07 38.04 61.37 53.43
Our CodeKTO 40.85 35.98 59.65 50.13

DeepSeekCoder-6.7B-base 47.60 39.60 70.20 56.60
SFT 56.09 46.95 70.18 56.88
Our CodeDPO 59.75 51.83 72.18 60.01
Our CodeKTO 54.88 49.39 71.93 58.65

Table 9: More results on the comparison of preference optimization strategies (DPO vs. KTO vs. SFT).

Model HumanEval HumanEval+ MBPP MBPP+

DeepSeekCoder-1.3B-base 31.53 28.65 57.40 48.67

25% 32.92 29.87 55.13 47.87
50% 36.59 31.70 58.14 49.87
75% 41.46 37.80 60.65 52.63

Our CodeDPO 42.07 38.04 61.37 53.43

Table 10: Model Performances with different data scaling in our CodeDPO.

relative improvements achieved by CodeDPO. The893

results are summarized in the table below and will894

be included in the revised paper alongside evalua-895

tions on additional models.896

The results indicate that CodeDPO significantly897

reduces execution time and memory usage, both898

in absolute terms and after normalization, while899

maintaining comparable maximum memory usage.900

These improvements highlight the effectiveness of901

CodeDPO in optimizing code for both computa-902

tional efficiency and resource usage, ensuring ap-903

plicability to environments where performance and904

memory constraints are critical.905

H Execution Time for Code Efficiency906

Experiments907

We present the average execution time (in seconds)908

for experiments conducted with the Phi-2-2.7B909

model. It is important to note that execution times910

may vary due to differences in computational re-911

sources and runtime conditions. To ensure the reli-912

ability of our measurements, repeated experiments913

are conducted in a stable environment, and the av-914

eraged statistics are reported below:915

These results demonstrate the consistent im- 916

provements in execution efficiency achieved 917

through CodeDPO, highlighting its practical bene- 918

fits in reducing runtime. 919

I Ablation on Sample Number for code 920

and test generation 921

The choice of the sample number and temperature, 922

as described in Section 4.2, is guided by practical 923

considerations to balance the diversity of sampled 924

code solutions and test cases. These parameters 925

are selected based on empirical observations and 926

insights from prior work on data generation. To 927

further investigate this, we conduct a series of ab- 928

lation studies to evaluate the impact of varying 929

sample numbers. Specifically, we tested sample 930

numbers of 5, 15, and 50, with the experimental 931

setup aligned with the design in Section 5.3.1. Ta- 932

ble 13 presents the Spearman correlation between 933

the self-validation score and the actual code accu- 934

racy on the HumanEval dataset, and then shows 935

the performance of the Phi-2-2.7B model for vary- 936

ing sample numbers, evaluated on both the Hu- 937

manEval and HumanEval+ benchmarks. Similar 938

14

Algorithm 1 CodeDPO Dataset Construction Pipeline
1: procedure CODEDPO(model, instruction, max_iterations)
2: Seed Construction:
3: Extract key programming concepts from source code repositories
4: Generate code generation prompts and corresponding test cases
5: Generate initial dataset (instruction, solutions, testcases)
6: Initialization:
7: Generate initial code snippets C = {c1, c2, ..., cn} from the instruction
8: Generate test cases T = {t1, t2, ..., tm} corresponding to the instruction
9: Initialize self-validation scores for code snippets and test cases: Score(ci)← 1, Score(tj)← 1

10: Set damping factor d← 0.85
11: i← 0
12: Self-Validation Loop:
13: while i < max_iterations do
14: for each ci ∈ C do
15: Execute ci on test cases T
16: for each tj ∈ T do
17: if ci passes tj then
18: Update Score(ci) using Equation (1)
19: Update Score(tj) using Equation (2)
20: Execution Time Optimization:
21: Record execution time for ci
22: if ci fails tj then
23: Set execution time to max penalty to penalize ci
24: end if
25: end if
26: end for
27: end for
28: i← i+ 1
29: end while
30: Final Dataset Collection:
31: Correctness Optimization:
32: Select top-ranked code ctop and low-ranked code clow for each instruction
33: Store as dataset entries (instruction, ctop, clow)
34: Execution Time Optimization:
35: Select fastest code cfast and slowest code cslow for each instruction
36: Store as dataset entries (instruction, cfast, cslow)
37: return final dataset entries
38: end procedure

Model Total Execution Time Normalized Execution Time

MagiCoder-S-DS-6.7B 0.29 2.37
After CodeDPO 0.21 1.58

Model Total Max Memory Usage Normalized Max Memory Usage

MagiCoder-S-DS-6.7B 24.71 1
After CodeDPO 23.48 1

Model Total Memory Usage Normalized Memory Usage

MagiCoder-S-DS-6.7B 4.57 2.36
After CodeDPO 3.90 1.93

Table 11: Performance comparison on EffiBench for execution time and memory usage.

trends are observed for other models. The results939

suggest that using sample_num=15 achieves a940

favorable trade-off between diversity and compu-941

tational feasibility. While larger sample numbers942

provide marginal gains, they come with increased 943

computational costs. 944

15

Benchmark Before CodeDPO (s) After CodeDPO (s) Average Speedup
HumanEval+ 0.250 0.172 1.45x

MBPP+ 0.189 0.137 1.38x

Table 12: Average execution time and speedup with CodeDPO.

Sample Number (n) Spearman Correlation HumanEval (%) HumanEval+ (%)
5 0.7425 54.88 49.39
15 0.8598 57.32 51.83
50 0.8613 57.90 51.83

Table 13: Spearman correlation and performance of Phi-2-2.7B for different sample numbers.

J Discussion945

J.1 Comparison of Dataset Statistics946

Since some baselines have not released their947

datasets, we rely on statistics reported in their re-948

spective papers for comparison. Below is a sum-949

mary of dataset sizes and the number of unique950

questions, as both metrics are important—greater951

diversity in unique questions generally leads to952

higher dataset quality.953

For SFT datasets, OSS-Instruct often combines954

multiple data sources. For example, models like955

MagiCoder-S-DS-6.7B and MagiCoder-S-CL-7B956

are trained using:957

Based on comparisons with other related works,958

the dataset sizes of CodeDPO appear to be of the959

same order of magnitude. CodeDPO provides a sig-960

nificantly higher diversity in unique questions com-961

pared to baselines like PLUM and Code-Optimise,962

which heavily reuse prompts and have limited di-963

versity despite similar sample sizes. This diver-964

sity ensures a more robust preference optimization965

process, which is a key advantage over existing966

approaches.967

J.2 Overlap Avoidance with Existing968

Benchmarks969

The seed dataset for CodeDPO was randomly se-970

lected from the open-source pretraining dataset The971

Stack, consisting of approximately 100k functions.972

This design explicitly considers data decontami-973

nation, since the seed dataset has already gone974

through rigorous data decontamination. It suggests975

that our dataset is unlikely to introduce additional976

data leakage beyond the seeds. To ensure quality,977

we applied a simple filtering process using tools978

like Tree-sitter and Pyright for static analysis and979

code formatting.980

We intentionally avoided introducing any prior981

knowledge that might lead to significant overlap 982

with evaluation benchmarks. We also implemented 983

post-sampling data decontamination, similar to 984

MagiCoder and StarCoder. However, given the 985

already low overlap, this process only removed 986

fewer than 30 samples. Thus, we can ensure that 987

there is no risk of the dataset containing examples 988

highly similar to the test sets. 989

To assess potential overlap for the final dataset 990

with exisiting benchmarks, we followed the 991

methodology used in MagiCoder. Specifically, 992

we calculated the cosine similarity between Hu- 993

manEval and the synthetic data generated by dif- 994

ferent methods. Below are the average similarity 995

scores: 996

These results demonstrate that CodeDPO has a 997

comparable or even lower overlap with HumanEval 998

than most other widely used datasets, ensuring the 999

validity and reliability of our evaluation. 1000

J.3 Implementation of the Self-Validation 1001

Scores 1002

J.3.1 Python Implementation of the 1003

Self-Validation Scores 1004

To enhance the understanding of the proposed al- 1005

gorithm, we provide a Python implementation il- 1006

lustrating the calculation process for the case in 1007

Figure 4 (specifically, Step 2 in the figure). The 1008

code demonstrates the iterative calculation of self- 1009

validation scores using a simplified example. 1010

J.3.2 Handling Weak Test Cases 1011

Our designed algorithm is robust. The self- 1012

validation scores can reflect the confidence of each 1013

code solutions and test cases through the iterative 1014

process. Notably, even in the presence of weak test 1015

cases (such as assert True), our method han- 1016

dles them robustly. We have carefully considered 1017

the impact of weak test cases in our design. We 1018

16

Method Total Samples Unique Questions

CodeDPO 114k 114k
PLUM Up to 120k Up to 1,500
Code-Optimise ∼100k (extended in our reproduction) Up to 384

Table 14: Comparison of dataset sizes and unique questions across methods.

SFT Dataset Samples

Magicoder-OSS-Instruct ∼75k
Magicoder-Evol-Instruct ∼110k
Combined Up to 185k

Table 15: Supervised fine-tuning dataset statistics.

Dataset Avg Similarity Score

Self-Instruct 0.169
Evol-Instruct 0.131
OSS-Instruct 0.105
CodeDPO 0.109

Table 16: Average similarity scores between datasets
and HumanEval.

address this issue from two perspectives: ❶ Natu-1019

ral Suppression of Weak Test Cases in Ranking:1020

Weak test cases are those that almost all code so-1021

lutions pass. While they contribute to the overall1022

scores of all code solutions, they do not affect the1023

relative differences between code solutions in the1024

ranking process. Since the ranking is based on1025

score differences, weak test cases naturally have1026

minimal impact on the ranking outcomes. ❷ Fil-1027

tering Identical or Close Scores: Weak test cases1028

can lead to highly similar scores for multiple code1029

solutions after repeated score updates, diminish-1030

ing the ability to differentiate between them. To1031

address this, as described in Section 3.4, we imple-1032

ment a filtering mechanism that excludes samples1033

with identical or near-identical ranking scores. This1034

ensures that the influence of weak test cases is mit-1035

igated in the final dataset.1036

For example, assume we have 15 code solutions1037

and 15 test cases generated by the model. ❶ If a1038

weak test case, such as assert True, is passed by all1039

15 code samples, its score during each update step1040

(as computed by Equation 1) will contribute equally1041

to the scores of all code solutions. As a result, it1042

does not alter the relative ranking of the code solu-1043

tions. ❷ If all 15 test cases are similarly weak, the1044

scores of the code solutions will converge to iden- 1045

tical or near-identical values after several updates. 1046

To mitigate this, we apply a post-processing step 1047

(Section 3.4) to filter out such cases, ensuring the 1048

integrity of the final rankings. By addressing weak 1049

test cases through these mechanisms, our algorithm 1050

achieves robustness and maintains the reliability of 1051

its outputs, even in challenging scenarios. 1052

17

Figure 4: Python Implementation of the Self-Validation Scores in Figure 4.

18

	Introduction
	Related Work
	Large Language Models for Code
	Preference Optimization for Code Models

	CodeDPO: Self-Verified Performance Optimization Code Generation Framework
	Data Seed Construction
	Correctness Optimization with Self-Generation and Validation
	Execution Efficiency Optimization
	Final Dataset and Model Optimization

	Experiment Setup
	Backbone LLMs
	Training and Inference Settings

	Results and Analyses
	Code Correctness (RQ1)
	Code Efficiency (RQ2)
	Ablation Studies
	Self Generation and Validation Algorithm (RQ3)
	Impact of PO Training Strategy (RQ4)

	Data Scaling Law for CodeDPO (RQ5)

	Conclusion
	Code Correctness on DS-1000 (RQ1)
	Self Generation and Validation Algorithm (RQ3)
	Impact of PO Training Strategy (RQ4)
	Data Scaling Law for CodeDPO (RQ5)
	CodeDPO Dataset Construction algorithm description
	LLM Prompts for CodeDPO dataset construction
	Experiments on Challenging Code Efficiency Tasks
	Execution Time for Code Efficiency Experiments
	Ablation on Sample Number for code and test generation
	Discussion
	Comparison of Dataset Statistics
	Overlap Avoidance with Existing Benchmarks
	Implementation of the Self-Validation Scores
	Python Implementation of the Self-Validation Scores
	Handling Weak Test Cases

