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ABSTRACT

Event cameras offer microsecond latency and exceptional dynamic range, mak-
ing them a natural fit for road segmentation in autonomous driving. Yet their im-
pact has been limited by the scarce annotations and the high cost of labeling event
streams. Current solutions rely on transferring knowledge from RGB domains,
but this dependence erases the very advantages that make event sensing unique.

This work break the dependence on RGB with an event-native self-supervised
transformer architecture that learns rich event-specific semantics directly from
raw unlabeled event streams (no frames) through a polarity-guided self-supervised
pretext task. To further exploit the spatiotemporal richness of event data, we pro-
pose a probabilistic attention mechanism that outperforms standard dot-product
attention on this modality.

On DSEC-Semantic and DDD17, our approach achieves state-of-the-art road seg-
mentation with orders of magnitude fewer labels. These results establish self-
supervision as a scalable and label-efficient paradigm shift for event-driven vision
in autonomous driving.

.

1 INTRODUCTION

Autonomous driving depends critically on reliable road segmentation (1), yet frame-based pipelines
remain mismatched to real-time operation due to dense, synchronous image streams that inflate
latency and compute budgets (2) (3) (5). Event cameras (6) provide sparse, asynchronous measure-
ments with microsecond latency by firing only on brightness changes, making them naturally suited
to efficient, low-latency perception under tight compute and power constraints.

Despite this promise, event-based segmentation lags because labels are scarce and many methods
attempt to retrofit events into frame-like grids and transferring supervision from RGB, thereby sac-
rificing sparsity and entangling learning with frame-domain annotations that scale poorly. The bot-
tleneck is acute: labeling events requires sub-millisecond, fine-grained annotation that is far more
labor-intensive than pixel-level image labeling, impeding the creation of large supervised corpora.

We address this challenge with PolFormer, a Polarity-driven Self-Supervised Transformer, that
learns rich event-specific representations directly from raw event streams. By leveraging polarity as
an intrinsic supervisory signal, PolFormer enables scalable pretraining without frame labels. Com-
plementing this, we design a probabilistic attention module that explicitly models spatial locality
between events, yielding stronger representations than dot-product attention. Unlike conventional
dot-product attention, our approach integrates spatial distance to model the probability of interaction
between events.

1.1 CONTRIBUTIONS

Our main contributions are:

1
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1. 1. Event-only self-supervision: A self-supervised, event-only pretraining framework that
leverages polarity to learn semantically meaningful features without any frame-domain
labels, targeting the core data-scarcity barrier in event segmentation.

2. 2. Probabilistic attention A novel attention mechanism that combines query–key similar-
ity with a spatial-distance likelihood, improving representation quality under sparse super-
vision.

3. 3. Label efficiency and Transferability: Demonstration on DSEC-Semantic and DDD17
that PolFormer achieves state-of-the-art road segmentation with drastically fewer labels,
while transferring effectively across datasets.

2 RELATED WORK

This section provides an in-depth survey of two related domains of road segmentation: semantic
segmentation and self-supervised learning using an event camera.

2.1 SEMANTIC SEGMENTATION IN EVENT DOMAIN

The first event-based semantic segmentation baseline, Ev-SegNet (7), introduced a 6-channel event
representation with an Xception-based CNN (9) and extended the DDD17 dataset (8) for segmen-
tation. Later works expanded training data via synthetic events (10), or transferred supervision
through knowledge distillation (13). Multi-modal frameworks such as ISSAFE (14) and ESS (15)
combined events with RGB, while transformer-based designs with posterior attention (25) advanced
architectural choices. Other efforts targeted latency with multi-latent memories (40) or multimodal
fusion (e.g., OpenESS (39)), but these still inherit annotation costs and domain biases from RGB.

2.2 SELF SUPERVISED LEARNING IN EVENT DOMAIN

The absence of labelled event data in a number of vision tasks such as optical flow (20), intensity
reconstruction (21), object classification (22) etc., has been addressed by SSL (17) (18) (19). These
works either rely on massive amounts of RGB data or synchronous, pixel-aligned RGB and event
data recording. (23) (15) (13) transfer knowledge from the RGB domain to the event domain with
unpaired labelled frames and unlabeled events. These methods rely on data acquired under similar
conditions from both frame-based and event-based cameras, which is often not feasible. Masked
Event Modeling (MEM), an SSL framework dependant only on event data, was proposed (16). It
employs partially removed event data reconstruction as a pre-task. EV-LayerSegNet (41) proposed
introduced a self-supervised CNN for event-based motion segmentation.

2.3 OUR UNIQUE POSITIONING

To summarize, existing approaches either (i) aggregate events into frame-like structures, sacrificing
sparsity and asynchrony, or (ii) rely on RGB supervision, binding event-based progress to frame-
domain labels. More recent event-only SSL frameworks such as Masked Event Modeling (MEM)
attempt to bypass this by reconstructing masked event streams. However, MEM primarily encour-
ages recovery of low-level firing statistics and does not guarantee that learned features align with
semantics required for downstream tasks like road segmentation.

PolFormer departs from both trends. By leveraging polarity entropy as an intrinsic supervisory sig-
nal, PolFormer learns task-aligned, semantically meaningful representations that directly capture
object boundaries and motion cues. In addition, our probabilistic attention mechanism explicitly
models spatial locality in event streams, further strengthening representation quality. Together,
these advances establish PolFormer as the novel event-only self-supervised transformer designed
specifically for segmentation, achieving strong label efficiency and cross-dataset transfer while fully
preserving the native benefits of event sensing.
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(a) Self-Supervised PolFormer (b) Base Network of PolFormer

Figure 1: (a): Framework of PolFormer for self-supervised learning of pre-trained weights. Self-
supervised labels are generated from the polarity of raw events. A base network and a classification
layer are trained to minimize the cross-entropy loss between true and predicted self-supervised la-
bels. Once training converges, the classification layer is replaced with a small feed-forward neural
network with a dense layer of 128 neurons and a classification layer. The network is fine-tuned
with a few labelled samples of the downstream road segmentation task. (b) Base network of Pol-
Former. Transformer architecture with four feature extraction blocks. Each block comprises layer
normalization, residual connection, multi-head attention with the proposed attention mechanism and
a feed-forward neural network.

3 PROPOSED SOLUTION

The central challenge in event-based road segmentation is to learn semantically meaningful repre-
sentations directly from raw event streams, without relying on frame conversions or RGB super-
vision. To address this, we design PolFormer, an event-native transformer tailored to the sparse,
asynchronous structure of events. Our solution builds on two key ideas:

1. Polarity-driven self-supervision: Event polarity encodes whether brightness increases or de-
creases, providing a natural supervisory signal that reflects object boundaries and motion patterns.
By framing a self-supervised pretext task around polarity entropy, we enable scalable pretraining
from unlabeled event streams. This yields features aligned with downstream segmentation tasks,
even under label scarcity.

2. Probabilistic attention: Conventional dot-product attention ignores spatial structure, treating
all event interactions uniformly. In contrast, we introduce a probabilistic attention mechanism that
combines query–key similarity with a spatial-distance likelihood. This explicitly favors local, se-
mantically relevant event interactions, improving both efficiency and representation quality.

The resulting architecture (Fig. 1) consists of a self-supervised transformer backbone pretrained
on raw events, followed by task-specific layers fine-tuned with limited labeled data. This design
ensures that PolFormer remains event-native throughout: it does not project events into frames, does
not depend on RGB annotations, and preserves the computational and latency advantages of event
sensing.

3.1 EVENT TRANSFORMER ARCHITECTURE

The proposed architecture starts with an input tensor E = {e1, e2 . . . eN} of dimension N × 4,
where N represents the number of events and ei = (xi, yi, ti, pi), where p ∈ [+1,−1] represents
increase or decrease in brightness respectively. A fully connected layer projects the input tensor
onto vectors of dimension 12. Positional embeddings have been added via the standard positional
embedding layer. Subsequently, the architecture incorporates four feature extraction blocks, each of
which consists of a multi-head attention and a feed-forward neural network. Multi-head attention
employs 4 heads with the proposed probabilistic attention mechanism. The output of multiple heads
is combined later. The feed-forward neural network includes two dense layers with 24 and 12
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nodes with GeLU activation. To ensure stability and accelerate convergence, layer normalization
and residual connections are integrated. The feature extraction is followed by a feed-forward neural
network with 2048 and 1024 neurons with GeLU activation. This base architecture is appended with
task-specific layers.

3.2 SELF SUPERVISED LEARNING FRAMEWORK

Transformer networks are typically trained using data paired with their corresponding supervisory
labels. In the conventional vision, state-of-the-art transformer networks are learnt from a huge cor-
pus of supervisory images. Unfortunately, being an emerging field, the event camera domain suffers
from a lack of sufficient labelled data pertaining to specific tasks. Hence, to obtain better perfor-
mance with limited supervisory signals, the proposed approach investigates the utility of the infor-
mation embedded in the polarity of the event sequence as a supervisory signal.

3.2.1 INTUITION

Polarity indicates whether a pixel’s brightness increases (+1) or decreases (–1). The distribution of
polarities in a sequence reflects scene dynamics: moving objects, edges, and motion cues all create
characteristic polarity patterns. By designing a pretext task around polarity entropy, we train the
model to distinguish structured, dynamic regions from random noise. This allows PolFormer to
learn semantically aligned representations without a single frame-domain label.

3.2.2 FRAMEWORK

Given an unlabeled training dataset E = {ei}Ni=1 of N events, the distribution of polarity is modelled
as binomial distribution, and the probability of occurrence of positive events is estimated as

p+ =
∑
i=1

NI(pi == 1) (1)

The entropy of the event sequence E is estimated as follows,

H = −p+logp+ − (1− p+)log(1− p+) (2)

The supervisory signal ysi for each event sequence Ei is formed as follows,

ysi =

{
1, if H > a

0, otherwise
(3)

High entropy indicates diverse motion dynamics, while low entropy corresponds to uniform or static
regions. This entropy is converted into a binary supervisory label. The network is trained to min-
imize the cross entropy loss between predicted ŷsi (softmax of the network output) and true label
ysi . The objective is simple cross-entropy loss, but the effect is powerful: the network is forced to
capture meaningful spatial–temporal structure in events to solve the task.

Once pretrained, the classification head is replaced with a lightweight segmentation head, and the
backbone is fine-tuned on a small set of labeled road segmentation samples. Because pretraining
already encodes motion boundaries and polarity dynamics, the model fine-tunes effectively with
very few labels.

3.3 PROBABILISTIC ATTENTION

The general attention mechanism followed in Transformer architecture (28). The given input se-
quence E = [e1, e2 . . . eN ] ∈ RN×de is projected into query

(
Q ∈ RN×d

)
, key

(
K ∈ RN×d

)
and

value
(
V ∈ RN×d

)
matrices through the following transformation,

Q = EWT
q ;K = EWT

k ;V = EWT
v (4)
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Where, Wq,Wk and Wv ∈ Rd×de are the weight matrices, Q = [q1, q2 . . . qN ], K = [k1, k2 . . . kN ]
and V = [v1, v2 . . . vN ] and qi, ki and vi are query, key and value vectors respectively.

The ith output is estimated as the weighted average of the value vectors, oi =
∑N

j=1 wijvj , where
the attention scores wij are generally estimated as scaled dot product attention as follows,

softmax

(
qTi kj√

d

)
(5)

Standard transformer attention computes similarity using a scaled dot product between query and
key vectors. While effective in frame-based vision, this formulation ignores the spatial sparsity and
locality that define event data: events occur at discrete pixels and are strongly correlated with nearby
events in both space and time. Treating all pairwise interactions uniformly dilutes these structural
cues.

To address this, we propose a probabilistic attention mechanism that augments query–key similarity
with a spatial likelihood term. Intuitively: i) The first term measures how likely a key vector is
to correspond to a given query, following a probabilistic similarity model. ii) The second term
encodes the probability of observing another event at a certain spatial distance from the current one,
capturing locality.

The final attention score combines these two probabilities, ensuring that interactions between spa-
tially relevant events are emphasized, while far-apart or weakly related events are downweighted.
Formally, given queries qi and keys kj , we define the attention weight as:

wij = P(kj |qi) + P(∆j |qi) (6)

Where ∆j = |xi−xj |+|yi−yj | is the spatial distance between event i and j,P(kj |qi) is the posterior
probability of getting key vector kj given the query qi and P(∆j |qi) is the posterior probability of
event j occuring at a spatial distance of ∆j from the current event i, given the query qi.

3.3.1 FIRST TERM OF EQ. 6

We start with Bayes’ theorem to express P(kj |qi):

P(kj |qi) =
P(qi|kj)P(kj)

P(qi)
(7)

Following distributions are assumed for P(qi|kj), P(kj) and P(qi),

* P(qi|kj) ∼ N (qi|kj , σ2
j I), where I is identity matrix

* P(kj) = πj

* P(qi) =
∑N

k=1P(qi|kk,∆k)P(kk,∆k), a Gaussian mixture model with P(kk,∆k) = γk
and P(qi|kk,∆k)∼N (qi|kk, σ2

qk
I)

Substituting the above into Eq. 7,

P(kj |qi) =
πj

σj
exp

[
− (qi−kj)

T (qi−kj)

2σ2
j

]
∑N

k=1
γk

σqk
exp

[
− (qi−kk)T (qi−kk)

2σ2
qk

] (8)

Simplifying, we get,

πj

σj
exp

[
− (∥qi2∥+∥kj

2∥)
2σ2

j

]
exp

(
qTi kj

σ2
j

)
∑N

k=1
γk

σqk
exp

[
− (∥qi2∥+∥kk

2∥)
2σ2

qk

]
exp

(
qTi kk

σ2
qk

) (9)
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Assuming qi and kj are normalized, P(kj |qi) turns out to be:

πj

σj
exp

[
− 1

σ2
j

]
exp

(
qTi kj

σ2
j

)
∑N

k=1
γk

σqk
exp

[
− 1

σ2
qk

]
exp

(
qTi kk

σ2
qk

) (10)

3.3.2 SECOND TERM OF EQ. 6

Using Bayes’ theorem again:

P(∆j |qi) =
P(qi|∆j)P(∆j)

P(qi)
(11)

We model P(qi|∆j) and P(∆j) as follows,

* P(qi|∆j) ∼ N (qi|∆jqi, σ
2
∆j

I). This makes sure that it utilizes the information obtained
from events that occur spatially far from the current event ei.

* P(∆j) = βj

Substituting the above into Eq. 11, we get,

P(∆j |qi) =

βj

σ∆j
exp

[
− (qi−∆jqi)

T (qi−∆jqi)

2σ2
∆j

]
∑N

k=1
γk

σqk
exp

[
− (qi−kk)T (qi−kk)

2σ2
qk

] (12)

Reducing the terms (qi−∆jqi)
T (qi−∆jqi) and (qi−kk)

T (qi−kk) and incorporating the assumption
that qi is normalized, P(∆j |qi) becomes,

βj

σ∆j
exp

[
− (1+∆2

j)
2σ2

∆j

]
exp

(
∆j

σ2
∆j

)
∑N

k=1
γk

σqk
exp

[
− 1

σ2
qk

]
exp

(
qTi kk

σ2
qk

) (13)

3.3.3 COMBINING FIRST AND SECOND TERM

Substituting Eq. 10 and 13 into Eq. 6, we get,

wij =

πj

σj
exp

[
− (1−qTi kj)

σ2
j

]
+

βj

σ∆j
exp

[
−(1−2∆j+∆2

j)
2σ2

∆j

]
∑N

k=1
γk

σqk
exp

[
− 1

σ2
qk

]
exp

(
qTi kk

σ2
qk

) (14)

4 EXPERIMENTS AND RESULTS

We evaluate whether polarity-driven self-supervised pretraining yields label-efficient representations
for road segmentation, and whether the proposed probabilistic attention provides measurable gains
over standard dot-product attention. Experiments address three core questions:

1. Label efficiency: Can PolFormer achieve competitive road segmentation with only a frac-
tion of labeled data?

2. Generalization: Do event-only self-supervised representations transfer across datasets?

3. Ablation: How much does each component, self-supervision and probabilistic attention,
contribute to performance?
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Method Accuracy mIOU Method Accuracy mIOU
VID2E 0.94 0.81 DeepLabV3+ 0.94 0.88

EvSegNet 0.95 0.79 FCN 0.89 0.77
EvSegFormer 0.95 0.85 MobileNetV3 0.89 0.79
LFD Roadseg 0.81 0.79 PSPnet 0.87 0.78

SegFormer 0.94 0.87 DeepLabV3 0.87 0.77
Proposeda 0.90 0.73 Proposedb 0.93 0.81

Table 1: Comparison of PolFormer with state-of-the-art segmentation methods on DSEC-Semantic
dataset. Other segmentation methods are fine-tuned for binary road segmentation tasks with all
the labelled training samples (approximately million samples). PolFormer was initialized with
self-supervised pre-trained weights and subsequently fine-tuned with 5.12k (Proposeda) and 256k
(Proposedb) samples.

4.1 DATASETS

We benchmark on two standard driving datasets: DSEC-Semantic (24) and DDD17 (8). DSEC-
Semantic: Proposed by (24). This is an extension of the DSEC semantic segmentation dataset made
up of 53 driving sequences collected by a high standard frame-based camera and a high-resolution
(640 × 480) monochrome Prophesse Gen3.1 event camera. DDD17: The driving dataset DDD17
was recorded by the DAVIS346 event camera.

In this work, we have amalgamated non-road labels into a single class to transform the general se-
mantic segmentation labels into road segmentation task. To simulate label scarcity, we vary labeled
subsets from 5.12k to 256k samples, while leveraging large amounts of unlabeled events for pre-
training. Based on empirical syudy, N = 50 was found to be optimum for the proposed PolFormer.

4.2 COMPARISON RESULTS ON DSEC-SEMANTIC

This section focuses on comparing the efficacy of self-supervised learning of PolFormer with against
supervised baselines that aggregate events into frames for a window of every 50ms and apply con-
ventional segmentation networks. These networks were trained on all labeled samples for each
dataset on binary road segmentation task.

Table 1 summarizes the following results:

1. Low-label regime: With only 5.12k labeled samples, PolFormer achieves 0.90 accuracy
and 0.73 mIoU, outperforming several fully supervised baselines trained on millions of
labels.

2. Moderate labels: At 256k labels, PolFormer reaches 0.93 accuracy and 0.81 mIoU, match-
ing or exceeding frame-based state-of-the-art.

These results highlight that polarity-driven pretraining allows PolFormer to scale down label re-
quirements by orders of magnitude without sacrificing performance.

4.3 TRANSFER ACROSS DATASETS (DSEC TO DDD17)

In this section, we delve into evaluating transfer learning performance on the DDD17 dataset in
fine-tuning mode. PolFormer base architecture was trained in self-supervised mode with the DSEC-
Semantic dataset. Following this pre-training, a dense layer comprising 128 nodes and ReLU ac-
tivation and a classification layer with 2 nodes are appended to the base architecture. During the
fine-tuning stage, PolFormer was trained end-to-end using 256 labelled samples for 10 epochs. Op-
timization was carried out using AdamW optimizer with a learning rate set at 0.001.

The results (Table. 2) demonstrate that self-supervised PolFormer performs superior compared to
existing supervised semantic segmentation architectures. Note that the proposed PolFormer was able
to achieve state-of-the-art accuracy with limited labelled data of the DDD17 dataset. Competing
baselines require full supervision to approach similar accuracy.

7
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Method Accuracy mIOU
VID2E (10) 0.96 0.80

EvSegNet (7) 0.96 0.81
EvSegFormer (25) 0.97 0.82
Mask2Former (29) 0.92 0.87

Proposed 0.95 0.92

Table 2: Comparison of PolFormer with state-of-the-art segmentation methods on DDD17 dataset.
PolFormer was initialized with self-supervised pre-trained weights (of the DVSEC dataset) and sub-
sequently fine-tuned with 256k samples. Other segmentation methods were re-trained for the binary
road segmentation task with all the labeled samples of the training data.

# Labeled
Samples (k) Test-I Test-II Test-III

5.12 0.76 0.78 0.72
128 0.89 0.93 0.78
5.12 0.91 0.93 0.84
128 0.9 0.93 0.83

Table 3: Analysis of PolFormer in terms of accuracy while initialized with pre-trained and random
weights. Row 1 and 2: Random weights; Row 3 and 4: Pre-trained weights. There is notable differ-
ence between pre-trained and random weight initialisation, particularly when the labeled samples is
scarce (5.12k)

This demonstrates that PolFormer learns generalizable event-native features rather than overfitting
to dataset-specific distributions.

4.4 ABLATION STUDY

4.4.1 SELF-SUPERVISION VS. RANDOM INITIALIZATION

This section evaluates the performance of PolFormer by comparing the use of self-supervised pre-
trained model initialization against random weight initialization. Pre-trained weights are generated
by training the base network on the self-supervised task with randomly selected 102.4k unlabeled
events. The base network is followed by a dense layer with ReLU activation and a classification
layer. PolFormer is end-to-end fine-tuned and trained from scratch with 5.12k and 12.8k labeled
samples. Comparison in terms of accuracy and mIOU is provided in tables 3 and 4. The results
indicate a notable performance boost when employing pre-trained weights, particularly when the
number of labeled samples is limited.

4.4.2 PROBABILISTIC VS. CONVENTIONAL ATTENTION

To assess the effectiveness of our proposed probabilistic attention, we compared it against the con-
ventional scaled dot-product attention used in Transformer architectures. The probabilistic attention
consistently outperformed the baseline in terms of accuracy (Table 5). This improvement can be
attributed to its ability to integrate spatial distance, allowing the model to better exploit the inher-

# Labeled
Samples (k) Test-I Test-II Test-III

5.12 0.71 0.65 0.53
128 0.78 0.79 0.56
5.12 0.81 0.76 0.63
128 0.84 0.8 0.64

Table 4: Analysis of PolFormer in terms of mIOU while initialized with pre-trained and random
weights. Row 1 and 2: Random weights; Row 3 and 4: Pre-trained weights. mIOU of PolFormer
with pre-trained weights is greater than its random initialization version.
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Attention Accuracy
Proposed 0.93

Dot Product 0.92

Table 5: Comparison of probabilistic attention mechanism of PolFormer with conventional dot-
product attention. Note the improved accuracy obtained with probabilistic attention mechanism

Figure 2: Visualization of input (col 1 and 2) and output (col 3 and 4) of PolFormer. Plots in col
1 and 3 show the 3D events, colored based on true and predicted label (red: road, blue: non-road).
Plots in col 2 and 4 show the event frame created by populating each pixel with its recent event (Red:
road, Green: non-road)

ent structure of event data. In contrast, standard dot-product attention treats all event interactions
uniformly, which dilutes event-specific cues and leads to less robust representations. Notably, proba-
bilistic attention demonstrates its suitability for large-scale event-based learning under label-limited
conditions.

4.5 QUALITATIVE RESULTS

Figure. 2 shows the visual input and output of the propsoed method while fine tuned with a limited
subset of 5.12k labeled samples. The visualization evidently illustrates the network’s ability to
predict road vs non-road segments even when trained on notably small set of labeled samples.

4.6 LIMITATIONS

The current study focuses on binary road vs. non-road segmentation without latency or throughput
benchmarks, and relies on fixed event accumulation parameters (N = 50 based on empirical study)
whose sensitivity is not extensively explored. Future work will extend to multi-class segmentation
and dynamic accumulation strategies.

5 CONCLUSION

We introduced PolFormer, an event-native transformer that combines polarity-driven self-
supervision with a probabilistic attention mechanism to tackle the label scarcity challenge in event-
based road segmentation. PolFormer learns transferable representations directly from raw events,
thereby preserving the sparsity and asynchrony that make event cameras unique. Experiments on
DSEC-Semantic and DDD17 show that PolFormer achieves state-of-the-art segmentation with up
to 200x fewer labels, while transferring effectively across datasets. Beyond road segmentation, this
framework opens opportunities for applying event-native self-supervised learning to broader percep-
tion tasks such as multi-class segmentation, motion understanding, and 3D scene perception. Future
work will extend PolFormer to multi-class and large-scale scenarios, explore adaptive event accumu-
lation strategies. In summary, PolFormer demonstrates that high-level scene understanding is pos-
sible without sacrificing the unique efficiency of event sensing, paving the way for next-generation
event-based learning systems.
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