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Abstract

Recently, there has been significant attention001
on adapting the translation capabilities of Large002
Language Models. Represented by ALMA (Xu003
et al., 2023), a two-stage training recipe has004
been developed: first, utilizing a large amount005
of monolingual data for pretraining to enhance006
proficiency in non-English languages, followed007
by fine-tuning with a small amount of high-008
quality bilingual data. However, in the pretrain-009
ing process, explicit cross-lingual alignment010
information is not provided, and excessive use011
of bilingual data can lead to catastrophic for-012
getting issues, both of which hinder the further013
advancement of the model’s translation abili-014
ties. In this article, we address this issue by015
introducing a new pretraining process based016
on Code-Switching pretraining data. In this017
stage of pretraining, we can provide rich cross-018
lingual alignment information while ensuring019
that the training data is semantically coherent020
documents, which helps alleviate catastrophic021
forgetting. Moreover, the training process re-022
lies solely on monolingual data and a pair of023
traditional machine translation models, making024
it highly versatile. Experimental results show025
that our method has improved the translation026
quality, achieving state-of-the-art results in sim-027
ilar works.028

1 Introduction029

The rapid development of large language models030

(LLMs) (Brown et al., 2020b; Chowdhery et al.,031

2023; Touvron et al., 2023), represented by the032

GPT series (Brown et al., 2020b), has brought ex-033

citing progress to the field of Natural Language034

Processing (NLP). The powerful language under-035

standing, abstract summarization, and conversa-036

tional generation capabilities of large models are037

revolutionizing numerous NLP tasks (Shao et al.,038

2023; Singhal et al., 2023; Zhang et al., 2024; Min039

et al., 2023), and the field of machine translation is040

no exception.041

Extensive work has verified that large models 042

can achieve zero-shot and few-shot translation 043

through their powerful in-context learning (Hendy 044

et al., 2023; Zhang et al., 2023a) capabilities, with- 045

out the need for specific adaptations for translation 046

tasks. However, since large language models are 047

often trained on English as the primary language, 048

the insufficient data in other languages has resulted 049

in most LLMs’ translation capabilities falling short 050

compared to commercial traditional models or top 051

commercial LLMs (Jiao et al., 2023b). 052

ALMA (Xu et al., 2023) has already proven that 053

we can enhance the translation capabilities of LLM 054

through continual training. They first enhance the 055

proficiency of LLM in these non-English languages 056

by adding monolingual data in those languages for 057

Continual Pretraining (CPT), and then stimulate the 058

translation capabilities of LLM by utilizing small 059

amount high-quality bilingual data for Supervised 060

Finetune (SFT). However, in the pretraining phase 061

they proposed, there was no explicit modeling of 062

cross-lingual alignment, which may hinder further 063

quality improvement. In contrast, Guo et al. (2024) 064

attempted to adding sentence-level parallel data 065

during the pretraining phase using an Interlinear 066

text format, but this method has two drawbacks: a) 067

Extensive sentence-level bilingual data has been 068

demonstrated to induce catastrophic forgetting (Xu 069

et al., 2023) and erase previously acquired knowl- 070

edge. b) The pattern of sentence-level parallel data 071

diverges from that of standard pretraining data, ne- 072

cessitating high-quality, semantically coherent doc- 073

ument data. 074

In studies of traditional machine translation 075

(MT) models, the code-switching strategy (Lin 076

et al., 2020; Yang et al., 2020) (i.e., replacing 077

words or phrases in the current sentence with ex- 078

pressions from another language) has been shown 079

to be effective in aligning multilingual representa- 080

tion spaces. Drawing inspiration from this, we at- 081

tempted to modify the pretraining corpus of LLMs 082
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using a sentence-level code-switching strategy and083

obtained semantically coherent document data com-084

posed of sentences from two languages. Then LLM085

can learn cross-lingual contextual dependencies086

and alignment information embedded in the such087

data through standard pretraining.088

To achieve our goals, the most ideal training089

data is document-level parallel corpora, but such090

data only exists between high-resource languages091

and in limited quantities. Nevertheless, leveraging092

the strong fundamental capabilities of LLMs along093

with specific markers enables us to utilize tradi-094

tional MT models for generating document-level095

back translation data as an alternative.096

More specifically, we use monolingual data in097

English and the target language, along with a pair098

of traditional MT models, to generate two types of099

code-switching pretraining data: from English to100

the target language and from the target language to101

English. Subsequently, a novel pretraining phase,102

denote as Code-Switching Continual PreTraining103

(standard pretraining on the code-switching data),104

is integrated into the two-stage training recipe sug-105

gested by ALMA. In the end, experiments show106

that our improved training recipe significantly en-107

hances LLM’s cross-lingual alignment capability.108

The translation quality from the target language to109

English and from English to the target language has110

both improved. At the same time, we found that in111

the new pretraining stage, the contribution of code-112

switching pretraining data in the same direction is113

greater than in the opposite direction, and we pre-114

liminarily analyze that such data may help improve115

the model’s automatic post-editing capabilities.116

Our core contributions are as follows:117

• The Code-Switching Continual PreTraining118

stage we proposed can enhance the cross-119

lingual alignment capability of LLM, address-120

ing the shortcomings of previous work.121

• We introduced traditional MT models into the122

optimization process of LLM’s translation ca-123

pabilities in the form of back translation.124

• The final optimized model achieved State-of-125

the-Art performance in some translation direc-126

tions compared to similar works.127

2 Related Work128

2.1 Large Language Models129

Large language models generally refer to130

transformer-based (Vaswani et al., 2017) neural131

models with billions of parameters. Both open- 132

source models like Llama (Touvron et al., 2023), 133

Mistral (Jiang et al., 2023) and GLM (Zeng et al., 134

2022) and closed-source models like GPT-3.5/4 135

(Brown et al., 2020a), Claude (Anthropic) demon- 136

strate enhanced language comprehension and gen- 137

eration capabilities. Mainstream LLMs follow a 138

Decoder-only architecture, expanding their param- 139

eter size by layering Transformer decoder units. 140

During training, LLMs initially undergo pretrain- 141

ing on a diverse range of document-level monolin- 142

gual data (such as internet data, books, code, etc.) 143

to establish a foundational model. Subsequently, 144

they undergo training using algorithms like Super- 145

vised Finetune and RLHF (Ouyang et al., 2022) 146

to align with human preferences and ultimately 147

achieve a robust multi-turn Instruct/Chat model for 148

diverse tasks. 149

When adapting LLM for downstream tasks, 150

there are two common strategies: the Incontext- 151

Learning (ICL) strategy based on prompt (Zhu 152

et al., 2023) technology and various evolving tech- 153

niques represented by COT (Wei et al., 2022). An- 154

other strategy involves fine-tuning (Ding et al., 155

2023) the model using downstream data, which 156

often achieves higher performance. Technologies 157

like Low-rank Adaptation (LoRA) (Hu et al., 2021), 158

which solve the training cost issue, significantly en- 159

hance the applicability of this strategy. 160

2.2 Machine Translation Task 161

Traditional Methods The traditional machine 162

translation models, represented by transformers 163

(Vaswani et al., 2017), utilize an Encoder-decoder 164

architecture to autoregressively decode the target 165

language. Among various optimization methods, 166

data augmentation (Burlot and Yvon, 2018) tech- 167

niques like Back Translation (BT) (Edunov et al., 168

2018; Hoang et al., 2018; Pham et al., 2021) has 169

been proven to be more effective. BT comprises 170

different variations such as sampling BT, Noise 171

BT, Tag BT (Caswell et al., 2019), and so on. In 172

the training phase, BT incorporates a variety of 173

monolingual data in the target language to boost 174

the language model’s capabilities, aiding in pro- 175

ducing more natural and accurate outputs (Edunov 176

et al., 2020). Additionally, Forward Translation 177

(FT), which translates the source text into the tar- 178

get language, is frequently paired with BT data. 179

LLM-based Methods As we mentioned before, 180

when adapting the translation capability of LLMs, 181

there are two types of strategies. The first type 182
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Figure 1: Construction process of Code-Switching pretraining data. The left side displays the key flow nodes
involved in data construction, while the right side elaborates on the specifics of constructing Code-Switching data
using original monolingual and BT pseudo-corpus. LID and Trans are special tokens.

focuses on harnessing LLMs’ Incontext-learning183

feature and employing prompt techniques to en-184

hance the model’s translation ability. Many studies185

(Hendy et al., 2023; Zhang et al., 2023a; Wang186

et al., 2023; Gulcehre et al., 2017) have conducted187

detailed explorations in this direction. Another type188

involves fine-tuning the model with specific data189

from translation tasks to achieve better translation190

quality. Different studies may attempt to fine-tune191

the model at different training stages. For example,192

fine-tuning the model with monolingual data (Tan193

et al., 2023; Yang et al., 2023; Wei et al., 2023) in194

the target language or domain during the pretrain-195

ing phase. Alternatively, using translation-related196

instruction (Li et al., 2024; Zhang et al., 2023b)197

data during the SFT phase. Xu et al. (2024) aim198

to enhance translation quality by fine-tuning the199

model using comparison data with varying quality200

through reinforcement learning.201

3 Methodology202

In this chapter, we will describe the details of the203

code-switching strategy we proposed, as well as204

the training recipe we optimized for adapting the205

translation capabilities of LLMs.206

3.1 Code-Switching Pretraining Data207

In the traditional MT and multilingual language208

model (MLM) field, the code-switching strategy209

has been proven to provide cross-lingual alignment210

information (Lin et al., 2020; Yang et al., 2020).211

In order to adapt to pretraining tasks for LLMs,212

we use a sentence-level code-switching strategy213

and obtain semantically coherent document data214

composed of sentences from two languages.215

In Figure 1, we illustrate the specific approach.216

We refer to the target language as tgt and English217

as en. Utilizing a pair of pre-trained traditional MT218

models, we translate monolingual English and tar-219

get language corpora to generate BT pseudo-corpus 220

denote as Dbt. When constructing Code-Switching 221

pretraining data (Dcs), we randomly select origi- 222

nal and translated sentences with equal probability, 223

and with a 10% probability, we allow them to ap- 224

pear simultaneously. To effectively differentiate 225

Code-switching data and prevent language confu- 226

sion during inference, we incorporate some special 227

tokens. The design of special tokens and an ex- 228

ample of Code-Switching data are provided in the 229

Appendix A. 230

3.2 A New Training Recipe 231

We proposed a new training recipe, in which we 232

added a "Code-Switching Continual Pretraining" 233

stage to ALMA’s two-stage training recipe, aiming 234

to more efficiently inject cross-lingual alignment 235

information. Figure 2 illustrates our training recipe 236

and the differences between our work and typical 237

similar works. 238

Stage-1: Continual Pretraining with Monolin- 239

gual Data LLMs like LLaMA are pre-trained on 240

English-dominated corpora. They may encounter 241

issues with insufficient comprehension and gener- 242

ation abilities in the target language. By incorpo- 243

rating a large amount of monolingual data in the 244

target language for continual pretraining, we can 245

alleviate this issue. At this stage, we can train with 246

the full set of parameters or utilize LoRA technol- 247

ogy to enhance training efficiency. Training data 248

often comes from widely available internet sources, 249

such as Common Crawl (Foundation, 2023), as 250

well as some cleaned versions like OSCAR (Ortiz 251

Su’arez et al., 2019; Kreutzer et al., 2022). It is 252

worth noting that the outcome of this stage is to 253

obtain a foundational LLM with multilingual capa- 254

bilities, where we can conduct the training process 255

ourselves or obtain pre-trained models from the 256

open-source community. 257
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Figure 2: Training process for our and similar works. Overall, we use a three-stage training recipe. And by
using Code-Switching strategy, we provide rich cross-lingual alignment information to solve the problems faced in
previous works.

Stage-2: Code-Switching Continual Pretrain-258

ing (CS-CPT) Since our main objective is to en-259

hance the translation capabilities of LLM, cross-260

lingual alignment information holds significant im-261

portance. During the initial training phase, the262

absence of explicit cross-lingual alignment infor-263

mation necessitates the LLM to learn implicitly,264

which may not be the most efficient method. We265

mitigate this issue by performing Continual Pre-266

training on Code-switching data (presented in 3.1).267

And CS-CPT offering three key advantages:268

• Code-Switching data explicitly provides cross-269

lingual contextual dependencies, which can270

compel the model to learn semantic-level271

alignment relationships.272

• Code-Switching data is essentially semanti-273

cally coherent document data, which main-274

tains consistency with the standard pretrain-275

ing data format and can alleviate catastrophic276

forgetting.277

• It only requires an additional pair of tradi-278

tional MT models, making resource consump-279

tion and complexity controllable.280

We use LoRA technology to carry out the train-281

ing in this stage, but set the embed_tokens and282

lm_head modules to be updatable so that the283

model can learn token-level alignment information.284

It is worth mentioning that, as the data pattern is285

consistent with the first stage, we can even merge286

them together for training. We also validated this287

point in the subsequent experimental section.288

Stage-3: High-Quality Data Fine-tuning In289

previous research on adapting LLMs to down-290

stream tasks, it has been confirmed that the quality291

of data during the SFT phase is more important292

than the quantity (Zhou et al., 2023; Maillard et al.,293

2023; Gunasekar et al., 2023) of data. Following 294

the settings of previous works ALMA and Guo et al. 295

(2024), we use a small amount of high-quality bilin- 296

gual data to fine-tune the model in order to enhance 297

its translation capabilities. To ensure data quality, 298

we collect human-written datasets from WMT de- 299

velopment and test sets. We also employ LoRA for 300

training. 301

4 Experiments 302

We mainly tested our algorithm on translation tasks 303

in four directions in two language pairs: English- 304

Chinese and English-German. Our experiment de- 305

sign closely follows ALMA to ensure a fair com- 306

parison. 307

4.1 Datasets and Evaluation Metrics 308

The monolingual dataset we used is sourced from 309

OSCAR. Since the base model we chose (Chinese- 310

LLaMA-2 (Cui et al., 2023)) has already undergone 311

the first stage of pretraining in Chinese, we selected 312

only 0.5B of Chinese and English data from the 313

OSCAR dataset for the second stage of training. 314

For the English-German translation task, we opted 315

to pretrain with 1.5B of German and English mono- 316

lingual data (the average number in the ALMA’s 317

experiments) and similarly used 0.5B for the sec- 318

ond stage of training. 319

For our parallel training data, we collect human- 320

written test datasets from WMT’17 to WMT’20 for 321

EN⇔ZH and EN⇔DE resulting in a total of 37.6K 322

training examples across all languages. 323

Furthermore, we include the test sets from the 324

WMT22 competition, which are thoughtfully cu- 325

rated to encompass recent content from various 326

domains like news, social media, e-commerce, and 327

conversations. 328
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Models De⇒En En⇒De Zh⇒En En⇒Zh
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

SoTA models
NLLB-54B(Team et al., 2022b) 26.89 78.94 34.50 86.45 16.56 70.70 27.38 78.91
GPT-3.5-D, zero-shot 30.90 84.79 31.80 85.61 25.00 81.60 38.30 85.76
GPT-3.5-T, zero-shot 33.10 85.50 34.40 87.00 26.60 82.90 44.90 87.00
GPT-4 33.87 85.62 35.38 87.44 27.20 82.79 43.98 87.49

Prior Similar Studies
TIM-7B(Zeng et al., 2023) 27.91 82.80 25.59 82.56 19.33 75.46 19.33 75.46
Parrot-7B(Jiao et al., 2023a) 29.80 83.00 26.10 81.60 20.20 75.90 30.30 80.30
SWIE-7B(Chen et al., 2023) 30.48 82.97 27.21 82.36 21.30 76.48 31.24 80.63
ALMA-7B(Xu et al., 2023) 29.56 83.95 30.31 85.59 23.64 79.78 36.48 85.05
Guo et al. (2024) 31.14 84.70 30.50 85.62 22.20 79.88 41.10 86.37
Parrot-13B(Jiao et al., 2023a) 31.10 83.60 28.10 82.60 21.70 76.70 31.70 81.00
BigTranslate-13B(Yang et al., 2023) 23.35 80.68 21.48 78.81 14.16 74.26 28.56 81.31
Bayling-13B(Zhang et al., 2023b) 27.34 83.02 25.62 82.69 20.12 77.72 37.92 84.62
ALMA-13B(Xu et al., 2023) 31.14 84.56 31.47 85.62 25.46 80.21 39.84 85.96
Guo et al. (2024) 32.24 85.17 32.53 86.14 23.10 80.53 42.30 86.65

Traditional Back Translation Model
NLLB-distilled-600M-Finetune 26.80 78.53 30.01 85.07 19.72 74.89 33.24 80.76
Ours Our Recipe with Backbone Model: LLaMA2(Touvron et al., 2023)
7B Stage1,3 30.05 84.07 30.21 85.55 23.96 79.62 35.31 84.74
7B Stage1,2,3 31.64 85.01 31.20 85.71 26.87 80.44 41.81 86.12
13B Stage1,3 31.20 84.43 31.30 85.77 24.31 80.01 37.34 85.27
13B Stage1,2,3 32.74 85.48 32.49 86.20 27.16 81.06 42.84 86.63

Table 1: The main results. Bold numbers represent the best scores among prior similar studies. After integrating
CS-CPT, the translation quality of the model has been significantly improved. Our 7B and 13B models have
achieved top performance in most evaluation metrics compare to similar studies. Even the BLEU score for the
Zh⇒En direction is on par with that of GPT-4.

For automatic evaluation, we utilize Sacre-329

BLEU, which implements BLEU(Papineni et al.,330

2002), and COMET(Rei et al., 2020) from331

Unbabel/wmt22-comet-da. SacreBLEU calcu-332

lates similarity based on n-gram matching, while333

COMET leverages cross-lingual pretrained mod-334

els for evaluation. We rely more on COMET than335

BLEU due to its better alignment with human eval-336

uations (Freitag et al., 2022).337

4.2 Training Setup338

Our experiments were carried out using Hugging-339

Face Transformers1 with open-source LLaMA340

(Touvron et al., 2023) family as our foundation341

model. Most of our verification experiments were342

conducted on 7B model, but we will also report the343

results of the 13B model to explore the impact of344

model size.345

Specifically, we chose to use Chinese-LLaMA2346

(Cui et al., 2023) as the base model for our training347

because it handles Chinese more efficiently (using348

expanded vocabulary) and has already completed349

the first stage of training in Chinese. Building on350

this foundation, we can proceed with the second351

1https://huggingface.co/docs/transformers/en/index

and third stages of training for Chinese tasks. For 352

German tasks, we will execute the training of the 353

first and second stages together. 354

In the training of the first and second stages, we 355

use the LoRA approach to adapt the key, query, 356

value, and output layers of the self-attention mech- 357

anism, and the LoRA hyperparameters are set to 358

R = 32 and a = 64. At the same time, the mod- 359

ules embed_tokens and lm_head are also set as 360

updatable parameters. We fine-tune the foundation 361

model for one epoch using a batch size of 256, a 362

warm-up ratio of 0.01, and sequences with a maxi- 363

mum of 1024 tokens in total. 364

During the third stage of training, we follow the 365

ALMA’s approach by updating only 0.1% of the 366

parameters using LoRA. We train the model for 367

2 epochs and select the best model based on the 368

lowest validation loss. For both stages, we adopt 369

deepspeed (Rasley et al., 2020) to accelerate our 370

training. 371

We employ the NLLB-600M-distil 2 as our tra- 372

ditional MT model for BT pseudo-corpus. Addi- 373

tionally, we leveraged training data from WMT21 374

to improve the translation quality for the target lan- 375

2https://github.com/facebookresearch/fairseq/tree/nllb
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guages German and Chinese, thereby ensuring the376

fundamental quality of the BT pseudo-corpus.377

4.3 Baselines378

We compare our method against two baseline cat-379

egories. Firstly, we examine previous studies that380

share our objective of utilizing LLMs for transla-381

tion. Secondly, we assess against the latest state-of-382

the-art translation models.383

Prior Similar Work We compare our model384

with BigTranslate (Yang et al., 2023), which ex-385

tends LLaMA-1-13B to over 100 translation di-386

rections; TIM (Zeng et al., 2023), which uses cor-387

rect and incorrect examples to help LLM to learn388

translation; SWIE (Chen et al., 2023), which im-389

proves LLM in translation via instruction augmen-390

tation; ParroT(Jiao et al., 2023a), through three391

types of instructions improves the translation per-392

formance of LLM after SFT; and BayLing (Zhang393

et al., 2023b), which uses interactive translation394

instructions; and ALMA (Xu et al., 2023), a two-395

stage finetuning method that initially fine-tunes on396

monolingual data and subsequently on a small set397

of high-quality parallel data; and Guo et al. (2024),398

expand on ALMA’s approach by introducing an399

additional stage for fine-tuning with parallel sen-400

tences with Interlinear text format.401

SoTA Models We focus on the NLLB-54B402

model, the top-tier translation model in the NLLB403

family (Team et al., 2022a), as well as the zero-shot404

capabilities of GPT3.5-text-davinci-003 (GPT-3.5-405

D) and GPT-3.5-turbo-0301 (GPT-3.5-T), along406

with GPT-43.407

5 Results408

Main Results Table 1 summarizes the main re-409

sults of our experiments. In summary, our final410

optimized model has shown consistent improve-411

ment in translation quality, surpassing ALMA in412

both BLEU and COMET metrics. The improve-413

ment in the Chinese translation task is greater than414

that in the German task, and the BLEU metric for415

ZH⇒EN task even on par with GPT-4. Compared416

to similar works, the 13B model has achieved a417

leading position in most metrics.418

Effectiveness of Code-Switching Continual419

Pretraining The training in the second stage in-420

deed improved the model’s translation ability. Tak-421

ing Chinese tasks as an example, the COMET422

3GPT-3.5-D, GPT-3.5-T and GPT-4 results are sourced
from Xu et al., 2023

scores for ZH⇒EN and EN⇒ZH improved by 423

0.82 and 1.38, while BLEU scores improved by 424

2.91 and 6.5, respectively. For the German task, 425

the overall trend is consistent with Chinese, but the 426

improvement is slightly smaller relative to Chinese. 427

This may be because the alignment information in 428

the foundation models for German and English is 429

richer compared to Chinese (with a higher charac- 430

ter overlap rate). 431

Compared with Prior Similar Studies Com- 432

pared to the strong baseline ALMA, our 7B model 433

achieved an average BLEU improvement of 2.88 434

and a COMET improvement of 0.73. Our results 435

exceed those of Guo et al. (2024) in the tasks for 436

ZH⇒EN and DE⇒EN, but are on par with theirs 437

in the EN⇒ZH and EN⇒DE directions. But it is 438

important to note that we did not use parallel cor- 439

pora in our training process. Moreover, unlike the 440

OSCAR data that we employed, they utilized the 441

WMT bilingual training data, which is more closer 442

to the domain of the current test set. 443

6 Analysis 444

In this chapter, we will analyze the key points of 445

the model. Some analysis experiments will be con- 446

ducted on Chinese tasks because Chinese and En- 447

glish have relatively greater linguistic distances. 448

6.1 Cross-lingual alignment analysis 449

To verify whether our model in the second stage 450

has achieved the goal of cross-lingual alignment, 451

we referenced relevant works (Lin et al., 2020) 452

and conducted quantitative analyses in two dimen- 453

sions. Firstly, we calculated the similarity of word 454

embeddings for words with the same meanings in 455

different languages. We selected the top 1000 most 456

frequent words according to the MUSE 4 dictionary. 457

We averaged the sub-word sequences of words to 458

obtain word embeddings and calculated the cosine 459

similarity between the two languages. Additionally, 460

we analyzed representations at the sentence level 461

for sentences with the same meanings. We used 462

the Flores (NLLB Team, 2022) test set to calculate 463

sentence-level embeddings using the same method 464

and computed the corresponding similarities. The 465

results of stage-1 and stage-2 pretraning models 466

are summarized in Figure 3. From the figure, it is 467

evident that, both word and sentence-level similari- 468

ties have significantly improved after our CS-CPT, 469

regardless of whether it is language pairs with rela- 470

4https://github.com/facebookresearch/MUSE
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Figure 3: The average cosine similarity results of mod-
els from various stages are sourced from the 7B version.
We observe an increase in similarity after the second
training stage, affirming the effectiveness of our training
approach.

tively close distances like EN-DE or distant pairs471

like Chinese-English. This once again proves that472

CS-CPT can indeed serve the intended purpose,473

aligning the model’s cross-lingual representations474

to some extent.475

6.2 Using of traditional MT models476

When creating Code-Switching data, we introduced477

a of traditional sentence-level MT model to en-478

sure the method’s versatility and overcome chal-479

lenges in obtaining document-level parallel cor-480

pora or document-level MT models. The results481

in Table 1 indicate that they did not achieve higher482

translation quality in terms of BLEU and COMET483

scores compared to the first-stage model. This find-484

ing dismisses the idea of LLM gaining knowledge485

via distillation from pseudo-corpus affirms that the486

model acquired alignment information beneficial487

for translation from the Code-Switching data after488

training in the second stage.489

6.3 FT is more effective than BT?490

Back translation is more effective than forward491

translation during the optimization of traditional492

machine translation models. For instance, when493

optimizing the ZH⇒EN model, the pseudo-corpus494

in the EN⇒ZH direction is typically more effec-495

tive. This is because back translation introduces496

a large amount of monolingual data for the target497

language side, enhancing the generation capability498

of the target language (Edunov et al., 2018). With499

LLMs having already learned a significant amount500

of monolingual data during the pre-training phase,501

the target language’s generation ability is already502

Models ZH⇒EN EN⇒ZH
BLEU CMT BLEU CMT

7B Stage-1,3 23.96 79.62 35.31 84.74
7B Stage-1,2,3 26.87 80.44 41.81 86.12
Only Dzh2en

cs 26.30 80.10 38.01 85.32
Only Den2zh

cs 24.70 79.80 39.17 85.60

Table 2: Comparative experimental results of code-
switching data between BT and FT. "Only Dzh2en

cs "
means using only ZH⇒EN Code-Switching data for
training stage-2.

strong. Does this conclusion still hold when adapt- 503

ing LLM to translation tasks? 504

To explore this, we conducted comparative ex- 505

periments on Chinese tasks. Specifically, in our 506

CS-CPT stage, we only used code-switching data 507

in one direction, then obtained the final translation 508

model through the third stage of SFT. The results 509

are summarized in Table 2. We were surprised 510

to find that the improvement brought by forward 511

translation is significantly better than that of back 512

translation. Taking ZH⇒EN task as an example, 513

using only ZH⇒EN direction code-switching data 514

resulted in an improvement ratio of over 70% com- 515

pared to using a mixture of data from both direc- 516

tions, while the improvement ratio for the quality 517

of EN⇒ZH task was only around 25%. The over- 518

all trend for EN⇒ZH task is similar, just not as 519

pronounced as with ZH⇒EN task. 520

We speculate that apart from bringing benefits 521

in cross-lingual alignment, the forward transla- 522

tion data has also boosted the Automatic Post- 523

Editing (APE) capability of LLM. During the CS- 524

CPT stage, we used special tokens to mark code- 525

switching pseudo data, guiding the model to dif- 526

ferentiate between real and pseudo data. In the 527

final SFT stage, the humans-written parallel data 528

inspired the model to output sentences that lean 529

towards real data during translation. By comparing 530

these two types of data, LLM has improved its abil- 531

ity to rewrite machine-translation results into more 532

natural and fluent translations. 533

To validate our speculation, we conducted a sim- 534

ple test on the APE capabilities of the models from 535

the first and second stages. Specifically, we used 536

the traditional MT model to translate the test set 537

and obtained machine-translation results, then gen- 538

erated APE results using the 3-shot learning. Eval- 539

uation results are summarized in Table 3. The 540

APE ability of the second-stage model is stronger 541

than that of the first-stage model, with an aver- 542
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Models ZH⇒EN EN⇒ZH
BLEU CMT BLEU CMT

NLLB-distil 19.72 74.89 33.24 80.76
Stage1 + APE 20.20 75.24 33.56 82.11
Stage1,2 + APE 20.41 75.78 33.61 82.37

Table 3: Results of APE ability tests for pre-trained
models at different stages. The results are all from the
7B version of the model, and the testing method is 3-shot
learning. "NLLB-distil" is our traditional MT model
used for translating BT pseudo-corpus.

Models ZH⇒EN EN⇒ZH
BLEU CMT BLEU CMT

7B Stage1,2,3 26.87 80.44 41.81 86.12
CPT-InterLinear 24.12 79.79 37.87 85.54

+ 5-Epoch 23.87 79.36 37.88 85.46
SFT + BT 23.45 78.86 34.57 83.15

+ Full Data 23.01 78.49 34.55 82.71

Table 4: Results of ablation experiments. "CPT + Inter-
Linear" represents replacing Dcs with data in InterLin-
ear text format. "SFT + BT" means using BT translation
data to replace human-writing data for the stage-3 train-
ing with equal data volum. "Full Data" denote using all
the BT data.

age COMET improvement of over 0.4 for the final543

translation results. Further in-depth exploration544

will be left for future research.545

6.4 Ablation for BT Pseudo-Corpus546

If we follow the previous work and directly use547

BT pseudo-corpus in the CPT or SFT stage, how548

would it compare to the current Code-Switching549

strategy? To verify this question, we conducted a550

series of ablation experiments. Firstly, following551

Guo et al. (2024), we replaced the Code-Switching552

data with InnerLinear formatted data for the second-553

stage pretraining and also extended the training554

time to explore the issue of catastrophic forgetting.555

Next, we bypassed the second stage and utilized556

BT pseudo-corpus in the SFT phase, experiment-557

ing with varying amounts of data. The results are558

summarized in Table 4.559

From the experimental results, we can draw the560

following conclusions:561

• It is not wise to introduce BT pseudo-corpus562

in the SFT stage. The improvement in trans-563

lation quality is not as good as that of human-564

written data, which aligns with previous find-565

ings.566

• Using data in InnerLinear Text Format in the 567

second stage can bring limit improvement, 568

and there is a certain gap compared to the 569

Code-Switching strategy in terms of BLEU 570

and COMET metrics. Moreover, as the train- 571

ing time increases, the model indeed exhibits 572

the issue of catastrophic forgetting, with a sig- 573

nificant decline in translation quality in the 574

ZH⇒EN direction. 575

7 Conclusion 576

In this paper, we focus on the research of adapting 577

the translation capabilities of large models. We at- 578

tempt to inject cross-lingual alignment information 579

into LLM during the pretraining phase through a 580

Code-Switching strategy, thereby expanding the 581

classic two-stage training recipe. Experiments 582

show that our Code-Switching data constructed 583

based on the back translation strategy achieves de- 584

sirable results, enhancing the end-to-end translation 585

quality of LLMs. Additionally, we also find in our 586

new training recipe, forward translation data seems 587

to be more efficient, and the model’s APE capabil- 588

ity may also benefit from the new training stage. 589

Our Code-Switching strategy and the introduction 590

of traditional MT models in the form of back trans- 591

lation into the optimization work of LLM-based 592

translation models may inspire future research to 593

some extent. 594

8 Limitations 595

The code-switching data format is consistent with 596

the standard pre-training data format. In theory, 597

we can further increase the amount of monolingual 598

data for additional optimization. This aspect of 599

work needs to be further explored in the future. 600

Current experiments and analyses are based on 601

translation tasks centered around English. Extend- 602

ing our strategies to non-English translation tasks 603

is also worth further research and optimization. 604

A more in-depth analysis of the principles be- 605

hind the effectiveness of Code-Switching data and 606

the internal changes in the model will lead to more 607

meaningful discoveries. 608
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<Chinese> (千站云繁殖池是蜘蛛池的升级版,轮链繁殖池(每一个池可以放10万链接) 2、查一下网站是不
是优化过度了,如果网站优化,过度蜘蛛是会对网站进行屏蔽的。<Chinese> (目录繁殖池(可日租周租月租),
联系官方qq: 3、网站设计的结构不合理,如果网站的页面独立、互相没有关联也会引致收录不理想的。
<English> (Address breeding pool (Baidu, 360, Sogou, are independent pool) 4), remember to often
check the content on your website is not there some sensitive words, involving some sensitive issues
search engine is not included. <Chinese> <(参数繁殖池(我们引的都是有效蜘蛛) 5、要时常分析网站内
容。 <Translation> <English> (Parameter breeding pool (we are citing effective spiders)) 5. Analyze
website content from time to time.> <Chinese> 如果网站上的内容都是采集来的,或者是在其他网站上摘
抄的类似内容,蜘蛛往往是不收录的。<English> Remember to check the stability of the server or space,
and check whether there is improper code in your website program.

Figure 4: An example of Code-Switching data from
Chinese to English direction.
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A Code-Switching Data Details977

The special tokens used in constructing Code-978

Switching data include LID and TRANS. Among979

them, LID consists of the language name enclosed980

in angled brackets, with "<Chinese>", "<English>",981

and "<German>" representing Chinese (LIDzh),982

English (LIDen), and German (LIDde) respec-983

tively. TRANS is "<Translation>".984

An example of Code-Switching data from Chi-985

nese to English direction is shown in Figure 4.986
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