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Abstract

Recently, there has been significant attention
on adapting the translation capabilities of Large
Language Models. Represented by ALMA (Xu
et al., 2023), a two-stage training recipe has
been developed: first, utilizing a large amount
of monolingual data for pretraining to enhance
proficiency in non-English languages, followed
by fine-tuning with a small amount of high-
quality bilingual data. However, in the pretrain-
ing process, explicit cross-lingual alignment
information is not provided, and excessive use
of bilingual data can lead to catastrophic for-
getting issues, both of which hinder the further
advancement of the model’s translation abili-
ties. In this article, we address this issue by
introducing a new pretraining process based
on Code-Switching pretraining data. In this
stage of pretraining, we can provide rich cross-
lingual alignment information while ensuring
that the training data is semantically coherent
documents, which helps alleviate catastrophic
forgetting. Moreover, the training process re-
lies solely on monolingual data and a pair of
traditional machine translation models, making
it highly versatile. Experimental results show
that our method has improved the translation
quality, achieving state-of-the-art results in sim-
ilar works.

1 Introduction

The rapid development of large language models
(LLMs) (Brown et al., 2020b; Chowdhery et al.,
2023; Touvron et al., 2023), represented by the
GPT series (Brown et al., 2020b), has brought ex-
citing progress to the field of Natural Language
Processing (NLP). The powerful language under-
standing, abstract summarization, and conversa-
tional generation capabilities of large models are
revolutionizing numerous NLP tasks (Shao et al.,
2023; Singhal et al., 2023; Zhang et al., 2024; Min
et al., 2023), and the field of machine translation is
no exception.

Extensive work has verified that large models
can achieve zero-shot and few-shot translation
through their powerful in-context learning (Hendy
et al., 2023; Zhang et al., 2023a) capabilities, with-
out the need for specific adaptations for translation
tasks. However, since large language models are
often trained on English as the primary language,
the insufficient data in other languages has resulted
in most LLMs’ translation capabilities falling short
compared to commercial traditional models or top
commercial LLMs (Jiao et al., 2023b).

ALMA (Xu et al., 2023) has already proven that
we can enhance the translation capabilities of LLM
through continual training. They first enhance the
proficiency of LLM in these non-English languages
by adding monolingual data in those languages for
Continual Pretraining (CPT), and then stimulate the
translation capabilities of LLM by utilizing small
amount high-quality bilingual data for Supervised
Finetune (SFT). However, in the pretraining phase
they proposed, there was no explicit modeling of
cross-lingual alignment, which may hinder further
quality improvement. In contrast, Guo et al. (2024)
attempted to adding sentence-level parallel data
during the pretraining phase using an Interlinear
text format, but this method has two drawbacks: a)
Extensive sentence-level bilingual data has been
demonstrated to induce catastrophic forgetting (Xu
et al., 2023) and erase previously acquired knowl-
edge. b) The pattern of sentence-level parallel data
diverges from that of standard pretraining data, ne-
cessitating high-quality, semantically coherent doc-
ument data.

In studies of traditional machine translation
(MT) models, the code-switching strategy (Lin
et al., 2020; Yang et al., 2020) (i.e., replacing
words or phrases in the current sentence with ex-
pressions from another language) has been shown
to be effective in aligning multilingual representa-
tion spaces. Drawing inspiration from this, we at-
tempted to modify the pretraining corpus of LLMs



using a sentence-level code-switching strategy and
obtained semantically coherent document data com-
posed of sentences from two languages. Then LLM
can learn cross-lingual contextual dependencies
and alignment information embedded in the such
data through standard pretraining.

To achieve our goals, the most ideal training
data is document-level parallel corpora, but such
data only exists between high-resource languages
and in limited quantities. Nevertheless, leveraging
the strong fundamental capabilities of LLMs along
with specific markers enables us to utilize tradi-
tional MT models for generating document-level
back translation data as an alternative.

More specifically, we use monolingual data in
English and the target language, along with a pair
of traditional MT models, to generate two types of
code-switching pretraining data: from English to
the target language and from the target language to
English. Subsequently, a novel pretraining phase,
denote as Code-Switching Continual PreTraining
(standard pretraining on the code-switching data),
is integrated into the two-stage training recipe sug-
gested by ALMA. In the end, experiments show
that our improved training recipe significantly en-
hances LLM’s cross-lingual alignment capability.
The translation quality from the target language to
English and from English to the target language has
both improved. At the same time, we found that in
the new pretraining stage, the contribution of code-
switching pretraining data in the same direction is
greater than in the opposite direction, and we pre-
liminarily analyze that such data may help improve
the model’s automatic post-editing capabilities.

Our core contributions are as follows:

* The Code-Switching Continual PreTraining
stage we proposed can enhance the cross-
lingual alignment capability of LLM, address-
ing the shortcomings of previous work.

* We introduced traditional MT models into the
optimization process of LLM’s translation ca-
pabilities in the form of back translation.

* The final optimized model achieved State-of-
the-Art performance in some translation direc-
tions compared to similar works.

2 Related Work

2.1 Large Language Models

Large language models generally refer to
transformer-based (Vaswani et al., 2017) neural

models with billions of parameters. Both open-
source models like Llama (Touvron et al., 2023),
Mistral (Jiang et al., 2023) and GLM (Zeng et al.,
2022) and closed-source models like GPT-3.5/4
(Brown et al., 2020a), Claude (Anthropic) demon-
strate enhanced language comprehension and gen-
eration capabilities. Mainstream LLMs follow a
Decoder-only architecture, expanding their param-
eter size by layering Transformer decoder units.
During training, LLMs initially undergo pretrain-
ing on a diverse range of document-level monolin-
gual data (such as internet data, books, code, etc.)
to establish a foundational model. Subsequently,
they undergo training using algorithms like Super-
vised Finetune and RLHF (Ouyang et al., 2022)
to align with human preferences and ultimately
achieve a robust multi-turn Instruct/Chat model for
diverse tasks.

When adapting LLM for downstream tasks,
there are two common strategies: the Incontext-
Learning (ICL) strategy based on prompt (Zhu
et al., 2023) technology and various evolving tech-
niques represented by COT (Wei et al., 2022). An-
other strategy involves fine-tuning (Ding et al.,
2023) the model using downstream data, which
often achieves higher performance. Technologies
like Low-rank Adaptation (LoRA) (Hu et al., 2021),
which solve the training cost issue, significantly en-
hance the applicability of this strategy.

2.2 Machine Translation Task

Traditional Methods The traditional machine
translation models, represented by transformers
(Vaswani et al., 2017), utilize an Encoder-decoder
architecture to autoregressively decode the target
language. Among various optimization methods,
data augmentation (Burlot and Yvon, 2018) tech-
niques like Back Translation (BT) (Edunov et al.,
2018; Hoang et al., 2018; Pham et al., 2021) has
been proven to be more effective. BT comprises
different variations such as sampling BT, Noise
BT, Tag BT (Caswell et al., 2019), and so on. In
the training phase, BT incorporates a variety of
monolingual data in the target language to boost
the language model’s capabilities, aiding in pro-
ducing more natural and accurate outputs (Edunov
et al., 2020). Additionally, Forward Translation
(FT), which translates the source text into the tar-
get language, is frequently paired with BT data.
LLM-based Methods As we mentioned before,
when adapting the translation capability of LLMs,
there are two types of strategies. The first type
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Figure 1: Construction process of Code-Switching pretraining data. The left side displays the key flow nodes
involved in data construction, while the right side elaborates on the specifics of constructing Code-Switching data
using original monolingual and BT pseudo-corpus. L1 D and Trans are special tokens.

focuses on harnessing LL.Ms’ Incontext-learning
feature and employing prompt techniques to en-
hance the model’s translation ability. Many studies
(Hendy et al., 2023; Zhang et al., 2023a; Wang
et al., 2023; Gulcehre et al., 2017) have conducted
detailed explorations in this direction. Another type
involves fine-tuning the model with specific data
from translation tasks to achieve better translation
quality. Different studies may attempt to fine-tune
the model at different training stages. For example,
fine-tuning the model with monolingual data (Tan
et al., 2023; Yang et al., 2023; Wei et al., 2023) in
the target language or domain during the pretrain-
ing phase. Alternatively, using translation-related
instruction (Li et al., 2024; Zhang et al., 2023b)
data during the SFT phase. Xu et al. (2024) aim
to enhance translation quality by fine-tuning the
model using comparison data with varying quality
through reinforcement learning.

3 Methodology

In this chapter, we will describe the details of the
code-switching strategy we proposed, as well as
the training recipe we optimized for adapting the
translation capabilities of LLMs.

3.1 Code-Switching Pretraining Data

In the traditional MT and multilingual language
model (MLM) field, the code-switching strategy
has been proven to provide cross-lingual alignment
information (Lin et al., 2020; Yang et al., 2020).
In order to adapt to pretraining tasks for LLMs,
we use a sentence-level code-switching strategy
and obtain semantically coherent document data
composed of sentences from two languages.

In Figure 1, we illustrate the specific approach.
We refer to the target language as tgt and English
as en. Utilizing a pair of pre-trained traditional MT
models, we translate monolingual English and tar-

get language corpora to generate BT pseudo-corpus
denote as Dy;. When constructing Code-Switching
pretraining data (D.s), we randomly select origi-
nal and translated sentences with equal probability,
and with a 10% probability, we allow them to ap-
pear simultaneously. To effectively differentiate
Code-switching data and prevent language confu-
sion during inference, we incorporate some special
tokens. The design of special tokens and an ex-
ample of Code-Switching data are provided in the
Appendix A.

3.2 A New Training Recipe

We proposed a new training recipe, in which we
added a "Code-Switching Continual Pretraining"
stage to ALMA’s two-stage training recipe, aiming
to more efficiently inject cross-lingual alignment
information. Figure 2 illustrates our training recipe
and the differences between our work and typical
similar works.

Stage-1: Continual Pretraining with Monolin-
gual Data LL.Ms like LLaMA are pre-trained on
English-dominated corpora. They may encounter
issues with insufficient comprehension and gener-
ation abilities in the target language. By incorpo-
rating a large amount of monolingual data in the
target language for continual pretraining, we can
alleviate this issue. At this stage, we can train with
the full set of parameters or utilize LoRA technol-
ogy to enhance training efficiency. Training data
often comes from widely available internet sources,
such as Common Crawl (Foundation, 2023), as
well as some cleaned versions like OSCAR (Ortiz
Su’arez et al., 2019; Kreutzer et al., 2022). It is
worth noting that the outcome of this stage is to
obtain a foundational LLM with multilingual capa-
bilities, where we can conduct the training process
ourselves or obtain pre-trained models from the
open-source community.
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Figure 2: Training process for our and similar works. Overall, we use a three-stage training recipe. And by
using Code-Switching strategy, we provide rich cross-lingual alignment information to solve the problems faced in

previous works.

Stage-2: Code-Switching Continual Pretrain-
ing (CS-CPT) Since our main objective is to en-
hance the translation capabilities of LLM, cross-
lingual alignment information holds significant im-
portance. During the initial training phase, the
absence of explicit cross-lingual alignment infor-
mation necessitates the LLM to learn implicitly,
which may not be the most efficient method. We
mitigate this issue by performing Continual Pre-
training on Code-switching data (presented in 3.1).
And CS-CPT offering three key advantages:

* Code-Switching data explicitly provides cross-
lingual contextual dependencies, which can
compel the model to learn semantic-level
alignment relationships.

* Code-Switching data is essentially semanti-
cally coherent document data, which main-
tains consistency with the standard pretrain-
ing data format and can alleviate catastrophic
forgetting.

e It only requires an additional pair of tradi-
tional MT models, making resource consump-
tion and complexity controllable.

We use LoRA technology to carry out the train-
ing in this stage, but set the embed_tokens and
Im_head modules to be updatable so that the
model can learn token-level alignment information.
It is worth mentioning that, as the data pattern is
consistent with the first stage, we can even merge
them together for training. We also validated this
point in the subsequent experimental section.
Stage-3: High-Quality Data Fine-tuning In
previous research on adapting LLMs to down-
stream tasks, it has been confirmed that the quality
of data during the SFT phase is more important
than the quantity (Zhou et al., 2023; Maillard et al.,

2023; Gunasekar et al., 2023) of data. Following
the settings of previous works ALMA and Guo et al.
(2024), we use a small amount of high-quality bilin-
gual data to fine-tune the model in order to enhance
its translation capabilities. To ensure data quality,
we collect human-written datasets from WMT de-
velopment and test sets. We also employ LoRA for
training.

4 Experiments

We mainly tested our algorithm on translation tasks
in four directions in two language pairs: English-
Chinese and English-German. Our experiment de-
sign closely follows ALMA to ensure a fair com-
parison.

4.1 Datasets and Evaluation Metrics

The monolingual dataset we used is sourced from
OSCAR. Since the base model we chose (Chinese-
LLaMA-2 (Cui et al., 2023)) has already undergone
the first stage of pretraining in Chinese, we selected
only 0.5B of Chinese and English data from the
OSCAR dataset for the second stage of training.
For the English-German translation task, we opted
to pretrain with 1.5B of German and English mono-
lingual data (the average number in the ALMA’s
experiments) and similarly used 0.5B for the sec-
ond stage of training.

For our parallel training data, we collect human-
written test datasets from WMT’17 to WMT’ 20 for
EN<«<ZH and EN<DE resulting in a total of 37.6K
training examples across all languages.

Furthermore, we include the test sets from the
WMT?22 competition, which are thoughtfully cu-
rated to encompass recent content from various
domains like news, social media, e-commerce, and
conversations.



Models De=En En=-De Zh=-En En=-Zh
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
SoTA models
NLLB-54B(Team et al., 2022b) 26.89 78.94 34.50 86.45 16.56 70.70 27.38 78.91
GPT-3.5-D, zero-shot 30.90 84.79 31.80 85.61 25.00 81.60 38.30 85.76
GPT-3.5-T, zero-shot 33.10 85.50 34.40 87.00 26.60 82.90 44.90 87.00
GPT-4 33.87 85.62 35.38 87.44 27.20 82.79 43,98 87.49
Prior Similar Studies
TIM-7B(Zeng et al., 2023) 27.91 82.80 25.59 82.56 19.33 75.46 19.33 75.46
Parrot-7B(Jiao et al., 2023a) 29.80 83.00 26.10 81.60 20.20 75.90 30.30 80.30
SWIE-7B(Chen et al., 2023) 30.48 82.97 27.21 82.36 21.30 76.48 31.24 80.63
ALMA-7B(Xu et al., 2023) 29.56 83.95 30.31 85.59 23.64 79.78 36.48 85.05
Guo et al. (2024) 31.14 84.70 30.50 85.62 22.20 79.88 41.10 86.37
" Parrot-13B(Jiao et al., 2023a) 31.10  83.60 2810 8260 2170 7670 3170  81.00
BigTranslate-13B(Yang et al., 2023)  23.35 80.68 21.48 78.81 14.16 74.26 28.56 81.31
Bayling-13B(Zhang et al., 2023b) 27.34 83.02 25.62 82.69 20.12 77.72 37.92 84.62
ALMA-13B(Xu et al., 2023) 31.14 84.56 31.47 85.62 25.46 80.21 39.84 85.96
Guo et al. (2024) 32.24 85.17 32.53 86.14 23.10 80.53 42.30 86.65
Traditional Back Translation Model

NLLB-distilled-600M-Finetune 26.80 78.53 30.01 85.07 19.72 74.89 33.24 80.76
Ours Our Recipe with Backbone Model: LLaMA2(Touvron et al., 2023)

7B Stagel,3 30.05 84.07 30.21 85.55 23.96 79.62 35.31 84.74
7B Stagel,2,3 31.64 85.01 31.20 85.71 26.87 80.44 41.81 86.12

" 13B Stagel, 3 3120 8443 3130 8577 2431 8001 3734 8527

13B Stagel,2,3 32.74 85.48 32.49 86.20 27.16 81.06 42.84 86.63

Table 1: The main results. Bold numbers represent the best scores among prior similar studies. After integrating
CS-CPT, the translation quality of the model has been significantly improved. Our 7B and 13B models have
achieved top performance in most evaluation metrics compare to similar studies. Even the BLEU score for the

Zh=-En direction is on par with that of GPT-4.

For automatic evaluation, we utilize Sacre-
BLEU, which implements BLEU(Papineni et al.,
2002), and COMET(Rei et al., 2020) from
Unbabel/wmt22-comet-da. SacreBLEU calcu-
lates similarity based on n-gram matching, while
COMET leverages cross-lingual pretrained mod-
els for evaluation. We rely more on COMET than
BLEU due to its better alignment with human eval-
uations (Freitag et al., 2022).

4.2 Training Setup

Our experiments were carried out using Hugging-
Face Transformers' with open-source LLaMA
(Touvron et al., 2023) family as our foundation
model. Most of our verification experiments were
conducted on 7B model, but we will also report the
results of the 13B model to explore the impact of
model size.

Specifically, we chose to use Chinese-LLaMA?2
(Cui et al., 2023) as the base model for our training
because it handles Chinese more efficiently (using
expanded vocabulary) and has already completed
the first stage of training in Chinese. Building on
this foundation, we can proceed with the second

"https://huggingface.co/docs/transformers/en/index

and third stages of training for Chinese tasks. For
German tasks, we will execute the training of the
first and second stages together.

In the training of the first and second stages, we
use the LoRA approach to adapt the key, query,
value, and output layers of the self-attention mech-
anism, and the LoRA hyperparameters are set to
R =32 and a = 64. At the same time, the mod-
ules embed_tokens and Im_head are also set as
updatable parameters. We fine-tune the foundation
model for one epoch using a batch size of 256, a
warm-up ratio of 0.01, and sequences with a maxi-
mum of 1024 tokens in total.

During the third stage of training, we follow the
ALMA’s approach by updating only 0.1% of the
parameters using LoRA. We train the model for
2 epochs and select the best model based on the
lowest validation loss. For both stages, we adopt
deepspeed (Rasley et al., 2020) to accelerate our
training.

We employ the NLLB-600M-distil > as our tra-
ditional MT model for BT pseudo-corpus. Addi-
tionally, we leveraged training data from WMT21
to improve the translation quality for the target lan-

Zhttps://github.com/facebookresearch/fairseg/tree/nllb



guages German and Chinese, thereby ensuring the
fundamental quality of the BT pseudo-corpus.

4.3 Baselines

We compare our method against two baseline cat-
egories. Firstly, we examine previous studies that
share our objective of utilizing LLMs for transla-
tion. Secondly, we assess against the latest state-of-
the-art translation models.

Prior Similar Work We compare our model
with BigTranslate (Yang et al., 2023), which ex-
tends LLaMA-1-13B to over 100 translation di-
rections; TIM (Zeng et al., 2023), which uses cor-
rect and incorrect examples to help LLM to learn
translation; SWIE (Chen et al., 2023), which im-
proves LLM in translation via instruction augmen-
tation; ParroT(Jiao et al., 2023a), through three
types of instructions improves the translation per-
formance of LLM after SFT; and BayLing (Zhang
et al., 2023b), which uses interactive translation
instructions; and ALMA (Xu et al., 2023), a two-
stage finetuning method that initially fine-tunes on
monolingual data and subsequently on a small set
of high-quality parallel data; and Guo et al. (2024),
expand on ALMA’s approach by introducing an
additional stage for fine-tuning with parallel sen-
tences with Interlinear text format.

SoTA Models We focus on the NLLB-54B
model, the top-tier translation model in the NLLB
family (Team et al., 2022a), as well as the zero-shot
capabilities of GPT3.5-text-davinci-003 (GPT-3.5-
D) and GPT-3.5-turbo-0301 (GPT-3.5-T), along
with GPT-4°.

5 Results

Main Results Table 1 summarizes the main re-
sults of our experiments. In summary, our final
optimized model has shown consistent improve-
ment in translation quality, surpassing ALMA in
both BLEU and COMET metrics. The improve-
ment in the Chinese translation task is greater than
that in the German task, and the BLEU metric for
ZH=-EN task even on par with GPT-4. Compared
to similar works, the 13B model has achieved a
leading position in most metrics.

Effectiveness of Code-Switching Continual
Pretraining The training in the second stage in-
deed improved the model’s translation ability. Tak-
ing Chinese tasks as an example, the COMET

3GPT-3.5-D, GPT-3.5-T and GPT-4 results are sourced
from Xu et al., 2023

scores for ZH=EN and EN=ZH improved by
0.82 and 1.38, while BLEU scores improved by
2.91 and 6.5, respectively. For the German task,
the overall trend is consistent with Chinese, but the
improvement is slightly smaller relative to Chinese.
This may be because the alignment information in
the foundation models for German and English is
richer compared to Chinese (with a higher charac-
ter overlap rate).

Compared with Prior Similar Studies Com-
pared to the strong baseline ALMA, our 7B model
achieved an average BLEU improvement of 2.88
and a COMET improvement of 0.73. Our results
exceed those of Guo et al. (2024) in the tasks for
ZH=EN and DE=-EN, but are on par with theirs
in the EN=Z7H and EN=-DE directions. But it is
important to note that we did not use parallel cor-
pora in our training process. Moreover, unlike the
OSCAR data that we employed, they utilized the
WMT bilingual training data, which is more closer
to the domain of the current test set.

6 Analysis

In this chapter, we will analyze the key points of
the model. Some analysis experiments will be con-
ducted on Chinese tasks because Chinese and En-
glish have relatively greater linguistic distances.

6.1 Cross-lingual alignment analysis

To verify whether our model in the second stage
has achieved the goal of cross-lingual alignment,
we referenced relevant works (Lin et al., 2020)
and conducted quantitative analyses in two dimen-
sions. Firstly, we calculated the similarity of word
embeddings for words with the same meanings in
different languages. We selected the top 1000 most
frequent words according to the MUSE # dictionary.
We averaged the sub-word sequences of words to
obtain word embeddings and calculated the cosine
similarity between the two languages. Additionally,
we analyzed representations at the sentence level
for sentences with the same meanings. We used
the Flores (NLLB Team, 2022) test set to calculate
sentence-level embeddings using the same method
and computed the corresponding similarities. The
results of stage-1 and stage-2 pretraning models
are summarized in Figure 3. From the figure, it is
evident that, both word and sentence-level similari-
ties have significantly improved after our CS-CPT,
regardless of whether it is language pairs with rela-

*https://github.com/facebookresearch/ MUSE



B Stage-1
Stage-2 (w/ CS-CPT)

o o o o o

= = N N W

1S} o] o « <}
L

Average Cosine Similarity

o
o
@

0.00 -

en-de Word en-zh Word en-de Sentence en-zh Sentence

Language Pair and Type

Figure 3: The average cosine similarity results of mod-
els from various stages are sourced from the 7B version.
We observe an increase in similarity after the second
training stage, affirming the effectiveness of our training
approach.

tively close distances like EN-DE or distant pairs
like Chinese-English. This once again proves that
CS-CPT can indeed serve the intended purpose,
aligning the model’s cross-lingual representations
to some extent.

6.2 Using of traditional MT models

When creating Code-Switching data, we introduced
a of traditional sentence-level MT model to en-
sure the method’s versatility and overcome chal-
lenges in obtaining document-level parallel cor-
pora or document-level MT models. The results
in Table 1 indicate that they did not achieve higher
translation quality in terms of BLEU and COMET
scores compared to the first-stage model. This find-
ing dismisses the idea of LLM gaining knowledge
via distillation from pseudo-corpus affirms that the
model acquired alignment information beneficial
for translation from the Code-Switching data after
training in the second stage.

6.3 FT is more effective than BT?

Back translation is more effective than forward
translation during the optimization of traditional
machine translation models. For instance, when
optimizing the ZH=-EN model, the pseudo-corpus
in the EN=-ZH direction is typically more effec-
tive. This is because back translation introduces
a large amount of monolingual data for the target
language side, enhancing the generation capability
of the target language (Edunov et al., 2018). With
LLMs having already learned a significant amount
of monolingual data during the pre-training phase,
the target language’s generation ability is already

ZH=EN EN=ZH

Models BLEU CMT BLEU CMT
7B Stage-1,3  23.96 79.62 3531 84.74
7B Stage-1,2,3 26.87 80.44 41.81 86.12
Only DP%" 2630 80.10 38.01 85.32
Only DE"2*h 24770 79.80 39.17 85.60

Table 2: Comparative experimental results of code-
switching data between BT and FT. "Only Dzh2en"
means using only ZH=-EN Code-Switching data for
training stage-2.

strong. Does this conclusion still hold when adapt-
ing LLM to translation tasks?

To explore this, we conducted comparative ex-
periments on Chinese tasks. Specifically, in our
CS-CPT stage, we only used code-switching data
in one direction, then obtained the final translation
model through the third stage of SFT. The results
are summarized in Table 2. We were surprised
to find that the improvement brought by forward
translation is significantly better than that of back
translation. Taking ZH=-EN task as an example,
using only ZH=-EN direction code-switching data
resulted in an improvement ratio of over 70% com-
pared to using a mixture of data from both direc-
tions, while the improvement ratio for the quality
of EN=-ZH task was only around 25%. The over-
all trend for EN=-ZH task is similar, just not as
pronounced as with ZH=-EN task.

We speculate that apart from bringing benefits
in cross-lingual alignment, the forward transla-
tion data has also boosted the Automatic Post-
Editing (APE) capability of LLM. During the CS-
CPT stage, we used special tokens to mark code-
switching pseudo data, guiding the model to dif-
ferentiate between real and pseudo data. In the
final SFT stage, the humans-written parallel data
inspired the model to output sentences that lean
towards real data during translation. By comparing
these two types of data, LLM has improved its abil-
ity to rewrite machine-translation results into more
natural and fluent translations.

To validate our speculation, we conducted a sim-
ple test on the APE capabilities of the models from
the first and second stages. Specifically, we used
the traditional MT model to translate the test set
and obtained machine-translation results, then gen-
erated APE results using the 3-shot learning. Eval-
uation results are summarized in Table 3. The
APE ability of the second-stage model is stronger
than that of the first-stage model, with an aver-



ZH=EN
BLEU CMT
NLLB-distil 19.72 74.89
Stagel + APE 20.20 75.24
Stagel,2 + APE 20.41 75.78

EN=ZH
BLEU CMT
33.24 80.76
33.56 82.11
33.61 82.37

Models

Table 3: Results of APE ability tests for pre-trained
models at different stages. The results are all from the
7B version of the model, and the testing method is 3-shot
learning. "NLLB-distil" is our traditional MT model
used for translating BT pseudo-corpus.

Models ZH=EN EN=ZH
BLEU CMT BLEU CMT
7B Stagel,2,3 26.87 80.44 41.81 86.12
CPT-InterLinear 24.12 79.79 37.87 85.54
+ 5-Epoch 23.87 79.36 37.88 85.46
SFT + BT 2345 78.86 34.57 83.15
+ Full Data 23.01 78.49 34.55 82.71

Table 4: Results of ablation experiments. "CPT + Inter-
Linear" represents replacing D, with data in InterLin-
ear text format. "SFT + BT" means using BT translation
data to replace human-writing data for the stage-3 train-
ing with equal data volum. "Full Data" denote using all
the BT data.

age COMET improvement of over 0.4 for the final
translation results. Further in-depth exploration
will be left for future research.

6.4 Ablation for BT Pseudo-Corpus

If we follow the previous work and directly use
BT pseudo-corpus in the CPT or SFT stage, how
would it compare to the current Code-Switching
strategy? To verify this question, we conducted a
series of ablation experiments. Firstly, following
Guo et al. (2024), we replaced the Code-Switching
data with InnerLinear formatted data for the second-
stage pretraining and also extended the training
time to explore the issue of catastrophic forgetting.
Next, we bypassed the second stage and utilized
BT pseudo-corpus in the SFT phase, experiment-
ing with varying amounts of data. The results are
summarized in Table 4.

From the experimental results, we can draw the
following conclusions:

e It is not wise to introduce BT pseudo-corpus
in the SFT stage. The improvement in trans-
lation quality is not as good as that of human-
written data, which aligns with previous find-
ings.

* Using data in InnerLinear Text Format in the
second stage can bring limit improvement,
and there is a certain gap compared to the
Code-Switching strategy in terms of BLEU
and COMET metrics. Moreover, as the train-
ing time increases, the model indeed exhibits
the issue of catastrophic forgetting, with a sig-
nificant decline in translation quality in the
ZH=-EN direction.

7 Conclusion

In this paper, we focus on the research of adapting
the translation capabilities of large models. We at-
tempt to inject cross-lingual alignment information
into LLLM during the pretraining phase through a
Code-Switching strategy, thereby expanding the
classic two-stage training recipe. Experiments
show that our Code-Switching data constructed
based on the back translation strategy achieves de-
sirable results, enhancing the end-to-end translation
quality of LLMs. Additionally, we also find in our
new training recipe, forward translation data seems
to be more efficient, and the model’s APE capabil-
ity may also benefit from the new training stage.
Our Code-Switching strategy and the introduction
of traditional MT models in the form of back trans-
lation into the optimization work of LLM-based
translation models may inspire future research to
some extent.

8 Limitations

The code-switching data format is consistent with
the standard pre-training data format. In theory,
we can further increase the amount of monolingual
data for additional optimization. This aspect of
work needs to be further explored in the future.

Current experiments and analyses are based on
translation tasks centered around English. Extend-
ing our strategies to non-English translation tasks
is also worth further research and optimization.

A more in-depth analysis of the principles be-
hind the effectiveness of Code-Switching data and
the internal changes in the model will lead to more
meaningful discoveries.
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Chinese> (it SIEIHZIERHAITH R LHLTEHE— MBI 0G5EE) 2. E—TRIEET
RIIET IR S EHRRRIINuGH TFRRAY. <Chinese> (BREIEI(ETRFEERAM),
BREEqq: 3. ISR AIE MIRNISHREMRY. BERERREAS BURTES.
<English> (Address breeding pool (Baidu, 360, Sogou, are independent pool) 4), remember to often
check the content on your website is not there some sensitive words, involving some sensitive issues
'search engine is not included. <Chinese> <(S#{ETEith(F(13 |AVEPR BRI 5. BRTEDHRIER
7. <Translation> <English> (Parameter breeding pool (we are citing effective spiders)) 5. Analyze
website content from time to time.> <Chinese> {1ERuk FAIKEERRREERAT, 20 RIER(BIL LI
FLEOSRIAE B EERTURA. <English> Remember to check the stability of the server or space,
ind check whether there is improper code in your website program.

Figure 4: An example of Code-Switching data from
Chinese to English direction.
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A Code-Switching Data Details

The special tokens used in constructing Code-
Switching data include LID and TRANS. Among
them, LID consists of the language name enclosed
in angled brackets, with "<Chinese>", "<English>",
and "<German>" representing Chinese (LID,),
English (LID.,), and German (LIDg.) respec-
tively. TRANS is "<Translation>".

An example of Code-Switching data from Chi-

nese to English direction is shown in Figure 4.
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