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Abstract
We compare using a PHOIBLE-based phone mapping method
and using phonological features input in transfer learning for
TTS in low-resource languages. We use diverse source lan-
guages (English, Finnish, Hindi, Japanese, and Russian) and
target languages (Bulgarian, Georgian, Kazakh, Swahili, Urdu,
and Uzbek) to test the language-independence of the methods
and enhance the findings’ applicability. We use Character Error
Rates from automatic speech recognition and predicted Mean
Opinion Scores for evaluation. Results show that both phone
mapping and features input improve the output quality and the
latter performs better, but these effects also depend on the spe-
cific language combination. We also compare the recently-
proposed Angular Similarity of Phone Frequencies (ASPF) with
a family tree-based distance measure as a criterion to select
source languages in transfer learning. ASPF proves effective
if label-based phone input is used, while the language distance
does not have expected effects.
Index Terms: neural text-to-speech synthesis, low-resource
languages, transfer learning, phone mapping, phonological fea-
tures, source language selection

1. Introduction
From the 2010s, research in text-to-speech synthesis (TTS) has
shifted towards neural TTS as it produces more intelligible
and natural output speech compared to previous paradigms [1].
However, neural TTS requires large amounts of training data,
which is hard to come by for low-resource languages (LRLs).
One workaround is cross-lingual transfer learning, in which the
acoustic model is pre-trained on a language with more ample
data (the “source language”) before being fine-tuned on the
limited data of the LRL (the “target language”). This has been
studied before by e.g., [2] and [3], but there remain questions
about its best practices. Two of such questions are how to best
deal with the input mismatch between the languages and how to
select the source language that gives the best quality.

Our previous study [4] investigated potential answers to
these questions. For the first, we proposed a novel method of
phone mapping based on the universal phonological features
from the PHOIBLE database [5]. This improved output quality
in the study’s experiment and thanks to its universality, it can
work without requiring linguistic expertise of either the source
or target language (except their pronunciation dictionaries). For
the second, we proposed a novel criterion: Angular Similar-
ity of Phone Frequencies (ASPF), a measure that compares the
similarity between the languages’ phone systems. Our exper-
iment results showed that ASPF was more effective than the
conventionally-used broad language family classification.

However, these findings came from an experiment with a

rather limited setting. For languages, it involved mostly Eu-
ropean ones: West Frisian as the target language and Dutch,
Finnish, French, Japanese, and Spanish as source languages.
Extending to more diverse languages would help validating the
applicability of the findings. For the baseline in testing ASPF, it
used a binary factor of whether the languages were in the same
“broad” language families (e.g., Indo-European, Japonic, and
Uralic), following [6]. This can be extended by using a general
measure to represent the distance between any two languages
across families and branches. [7] explored this idea earlier but
did not find sufficient evidence to support it, so we would like
to build upon it as a baseline for comparing with ASPF.

In addition, a new method to encode the input to the TTS
acoustic model has been studied recently: using vectors of
phonological or articulatory features instead of phone labels
or graphemes. Originally proposed by [8] to handle zero-shot
code-switching in TTS, this method was also useful for cross-
lingual transfer learning for LRLs. Since it uses a fixed univer-
sal set of features for all languages, it eliminates both the input
mismatch problem and the need for phone mapping while also
increasing (transfer) learning efficiency. This was thus experi-
mented in [3] for transfer learning in low-resource TTS, but they
did not find significant improvements in output quality. How-
ever, this could be because they used an autoregressive (based
on Tacotron 2 [9]) acoustic model, which may have suffered
from its less stable attention training, especially with extremely
limited data. Therefore, it would be useful to test this by using
a non-autoregressive model, and at the same time extending the
scope to more diverse languages.

Accordingly, we aim to make the following contributions:

1) We validate and compare the label-based phone mapping
method proposed in [4] and the use of phonological features
input in cross-lingual transfer learning for LRLs. We use di-
verse sets of languages: English, Finnish, Hindi, Japanese,
and Russian for source languages, and Bulgarian, Georgian,
Kazakh, Swahili, Urdu, and Uzbek for target languages. Sec-
tion 2 explains the selection of these languages.

2) We validate the idea of using ASPF as proposed in [4] to
select the source language in cross-lingual transfer learning
and compare it with a general language distance measure.

2. Languages and resources used
2.1. Selecting target languages and source languages

The phone mapping method and the ASPF measure from [4] are
intended to work without requiring linguistic expertise (except
pronunciation dictionaries) in the languages involved. There-
fore, we wanted to use target languages that we do not have
expertise in. Also, we wanted to experiment with actual low-



resource languages (LRLs) rather than simulating low-resource
scenarios, in order to ensure the applicability of the findings.
Therefore, we used three criteria to choose target languages:
• Lack of support in TTS: not supported in the “WaveNet”

category of Google’s TTS service (in September 2022).
• Access to automatic evaluation: supported in the “default”

category of Google’s Speech-to-Text (Sep 2022), to enable
evaluation given the intentional lack of linguistic expertise.

• Availability of resources: pronunciation dictionaries were a
necessity. There should also be at least roughly 10 minutes
of open-access annotated single-speaker training data.

Accordingly, we selected six target languages: Bulgarian
(bg), Georgian (ka), Kazakh (kk), Swahili (sw), Urdu (ur), and
Northern Uzbek (uz). For source languages, we wanted ones
from diverse families, with available pronunciation dictionaries
and at least roughly 10 hours of annotated single-speaker data.
Accordingly, we selected American English (en-US), Finnish
(fi), Hindi (hi), Japanese (ja), and Russian (ru).

2.2. Language resources: dictionaries & data sets

Table 1 details the pronunciation dictionaries and data sets used.
All source language data sets have roughly 10 hours of data,
while those of target languages have approximately 10 minutes
(160-200 utterances). Random sampling was used for data sets
that have more data, and we maintained a similar distribution of
utterance duration across the source languages. For Common
Voice, we only used the “validated” set.

Table 1: Language resources used

Language Dictionary Data set

English (en-US) MFA v2a [10] LJSpeech [11]
Finnish (fi) ipa-dict [12] CSS10 [13]Japanese (ja)
Hindi (hi) CV v2 [14] IndicSpeech [15]

Russian (ru) M-AILABS [16]

Bulgarian (bg)

CV v2 [14] Common Voice 10.0 [17]

Georgian (ka)
Kazakh (kk)
Urdu (ur)

Uzbek (uz)
Swahili (sw) MFA v2a [18]

3. PHOIBLE-based phone mapping
PHOIBLE [5] is a phonological database of more than 2,000
languages. Each phone is represented by a unique IPA symbol
and is connected to a unique set of 37 phonological features as-
sociated with its pronunciation (examples in Table 2). Thanks
to this, given two phones, we can use their two sets of phono-
logical features to compare their similarity and then use this in
the phone mapping method, as proposed in [4].

In cross-lingual transfer learning, there are often phones in
the target language that do not exist in the source language. For
such phones, the acoustic model cannot take advantage of the
source training data and thus has to rely on the limited target
data to “learn” their embedding weights. This may seriously
limit the output speech quality. Instead of this “nomap” sce-
nario, we can map each of these phones to its closest counter-
part in the source language. Thus, instead of initializing from
scratch, the acoustic model can use the “learned” weights of the
mapped phone for fine-tuning. We call this scenario “map”.

Following [4], we did the phone mapping as follows: we
mapped each target language’s phone that needed mapping with
the source language’s phone having the most similar set of 37
PHOIBLE features. In case of ties, we calculated the frequen-
cies of all phones that immediately preceded and followed the
target phone (from all of its occurrences in the target training
data). We then did the same for all the tied source phone candi-
dates and calculated angular similarities (Section 5.1) between
the target phone and each candidate, for both the front (ASPF-
front) and back (ASPF-back) positions. Then the candidate with
the highest averaged similarity (ASPF-averaged) was picked to
favor more frequently occurring phone sequences.

Table 2 details an example of the phone /o/ in Bulgarian
(bg). Since there were three candidates in American English
(en-US) with the same similarity score of 35 (/6/, /0/, and /U/),
their ASPF values had to be compared. For an example, the
ASPF-back value of /0/ (0.326) was calculated between a) the
frequency vector of all phones that occur after /0/ in the en-US
data, and b) that of phones occurring after /o/ in the bg data. /0/
was then picked since it had the highest ASPF-averaged.

4. Phonological Features as Input
Previous studies involving features as input used different fea-
ture sets. [8] used a set of 10 multi-valued features: 9 directly
from the IPA and 1 accounting for “symbol type”, which are
converted into 49 binary (one-hot) features. Meanwhile, [3]
used 24 binary features derived from the formalism of English
sounds in [19] and largely overlap with the convention of Pan-
Phon [20]. Recently, [21] concatenated both the features by
PanPhon and those by [8] as this resulted in the closest distance
(in the embedding space) between the feature vectors and the
embeddings of a well-trained phone-based Tacotron 2 model.

In this work, to facilitate comparisons with the PHOIBLE-
based phone mapping, we simply used PHOIBLE’s set of 37
phonological features as the feature set. Similar to [8] and [3],
we replaced the phone embedding layer of the acoustic model’s
encoder with a linear layer. This linear layer would then have
an input dimensionality of 37 instead of the phone inventory
size, and with the output dimensionality unchanged. We call
the scenarios of using these features as input “feature”.

5. Source Language Selection Criteria
5.1. Angular Similarity of Phone Frequencies (ASPF)

In our previous work [4], inspired by the use of cosine similar-
ity (SC or cos(θ)) to measure similarities between text docu-
ments, we used angular similarity (calculable from cos(θ)) be-
tween two languages’ vectors of phone frequencies to measure
the similarity between their phone systems. We followed this
method again in this work. For each language A, we extracted
its phone set and then its vector of phone frequencies PFA.
Then, for the similarity between languages A and B, Sθ be-
tween PFA and PFB was calculated as follows:

SC(PFA, PFB) := cosθ =
PFA · PFB
‖PFA‖‖PFB‖

Sθ := 1− 2 · arccos(cosθ)
π

This Sθ is called Angular Similarity of Phone Frequencies
(ASPF) and represents the degree of similarity between the two
languages from which it was calculated (0 ≤ ASPF ≤ 1).



Table 2: Mapping Bulgarian’s /o/ to one of three candidates in American English: /6/, /0/, and /U/. Different attributes marked in red.
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o 0 - + - - - + + 0 + - - - - + + - - 0 0 0 + - - - + + - - + - - - 0 - - 0 - - - -

6 0 - + - - - + + 0 + - - - - + + - - 0 0 0 + - + - + 0 - - + - - - 0 - - 0 35 0.137 0.053 0.095
0 0 - + - - - + + 0 + - - - - + + - - 0 0 0 + + - - - + - - + - - - 0 - - 0 35 0.041 0.326 0.183
U 0 - + - - - + + 0 + - - - - + + - - 0 0 0 + + - - + - - - + - - - 0 - - 0 35 0.104 0.181 0.142

5.2. Distance in language family tree

An earlier work [7] measured similarities between languages by
using the “nodes” (families, branches, etc.) in the phylogenetic
classification tree from Ethnologue [23] as encoded features.
This essentially treated the similarity as a categorical variable,
which may limit its explanatory power or interpretation in sta-
tistical analyses. Recently, [24] more straightforwardly com-
puted the length of the shortest path between the languages,
with the unit being the “step” between parent and child. They
fruitfully used this to determine nearest languages to aid zero-
shot grapheme-to-phone conversion for LRLs. Therefore, we
followed this approach and thus the distance between any lan-
guages A and B - dist(A,B) - was calculated as:

dist(A,B) = D(A) +D(B)− 2 ∗D(LCA(A,B))

where D(X) is the depth of language X (how far it is from
the “root”, D(root) = 0) and LCA(A,B) is the Lowest Com-
mon Ancestor of A and B. Figure 1 illustrates the family tree
used for calculation, which was obtained from Glottolog [22]
and only includes the source and target languages we used.

6. Experiment details
6.1. Data preparation

All utterances were trimmed of leading and trailing silence with
a threshold of -35 dFBS. All audio files were mono 16-bit PCM
WAV files at 22.5 kHz and conversion was done if needed. We
used the Montreal Forced Aligner (MFA) [25] to obtain phone-
level alignments between the annotations and audio. All data
sets were phonemized using the pronunciation dictionaries in
Table 1. These all use IPA symbols so there were no conflicts in
phone sets, but they were still manually checked and corrected
if needed to ensure consistency. Many of the languages had
no available dictionaries that include stress information, so we
decided to exclude this from all data. For out-of-vocabulary
(OOV) words, we trained and used a grapheme-to-phone (G2P)
model for each language with MFA.

6.2. Model training

We used the implementation of FastSpeech 2 [26] by [27] for
the acoustic models (∼35M parameters), with phone-level pitch
and energy prediction, and ground-truth phone duration ex-
tracted from MFA like in the original FastSpeech 2 paper. This
was used to train all the models in the scenarios of nomap and
map. For feature, we modified the encoder as described in Sec-
tion 4. For waveform synthesis, we used the universal vocoder
of HiFi-GAN V1 [28] (∼14M parameters) for all models in the
experiments without fine-tuning.

For each source language (en, fi, hi, ja, and ru), we trained
one acoustic model (“source model” for short) using phone la-
bels as input, and another one using phonological features as
input. Each source model was trained for 300K parameter up-
dates with a batch size of 16 and using the Adam optimizer [29]
(β1 = 0.9, β2 = 0.98, and ε = 10−9).

For each target language (bg, ka, kk, sw, ur, and uz), we
fine-tuned each of the source models in three different scenar-
ios: nomap, map, and feature (Sections 3 and 4). This resulted
in a total of 90 fine-tuned models (6 target languages, from 5
source languages, in 3 scenarios). Each fine-tuning was done
for 100K parameter updates with unchanged hyperparameters
except for a new batch size of 4. All training was done with
one NVIDIA A100 GPU (20GB instance), taking roughly 13.5
hours for each pre-training and 70 minutes for each fine-tuning.

6.3. Output evaluation

Intelligibility evaluation was done with Google’s Speech-to-
Text (STT) service. Each test utterance was run through the
STT (using the “default” model, i.e., not “command and search”
or “enhanced phone call”) to get the automatically transcribed
text without converting or post-processing the audio before-
hand. The transcribed text was then normalized (removing
punctuation marks and converting to lower-case) and used for
calculating the Character Error Rate (CER) against the ground-
truth text annotation from Common Voice.

For naturalness evaluation using Mean Opinion Score
(MOS), research in automatic prediction most notably started
with MOSNet [30] and has been building up to the recent Voice-
MOS Challenge 2022 [31]. Due to the intentional lack of lin-
guistic expertise in this work, we also used automatic MOS
prediction for evaluation. The Challenge had an out-of-domain
(OOD) prediction track, where systems were tested on data of a
listening test different from the one they were trained on (with
some fine-tuning). In this, the baseline system “B01” had strong
performance and ranked the fifth and second (out of 18) in terms
of Pearson and Spearman correlation, respectively. This was for
system-level prediction, which means averaging all predictions
per TTS system in order to compare between systems. This
scenario lines up well with our use case: it could be considered
OOD because we did not have any labeled MOS data and we
were mainly interested in system-level comparison. Therefore,
we followed this “B01” baseline for our prediction model.

We followed its implementation in [32], which took a large
pre-trained self-supervised learning speech model (wav2vec 2.0
Base [33]), added a linear layer to the model’s output embed-
dings, and fine-tuned it for MOS prediction using L1 loss on
the BVCC data set [34]. Another work of ours [35] experi-
mented further on this and found that fine-tuning such a model
further with MOS data from the SOMOS data set [36] led to a
statistically significant improvement in performance. We used
this model (fine-tuned on BVCC and then SOMOS) to evalu-
ate our TTS models. However, this model still had very limited
zero-shot prediction performance at the utterance level, with a
median Pearson’s r correlation of 0.21 (in our independent test
set). Its zero-shot system-level performance was, even though
not ideal, better with a median r of 0.59. Therefore, we only
measured and analyzed MOS at the system level in this study.

To verify that the source models had roughly the same base-
line quality, we synthesized and evaluated 30 random unseen
test utterances from each model. Pilot tests showed that for



Figure 1: Language family tree used for calculating distances, extracted from Glottolog [22]

different languages, Google’s STT models understandably had
different performance levels, and so did our MOS prediction
system. This means there were (unintentional) biases between
test languages, so to avoid this, we used an intra-language rel-
ative metric for comparison: the difference (in both CER and
MOS) between each pair of synthesized and ground-truth ut-
terances. Wilcoxon tests of this metric between the five source
languages showed no significant differences.

We wanted to use test sets that were as representative (re-
garding phone distributions) of the training data as possible. To
this end, for each target language, we randomly sampled its
available data 10,000 times, each time picking out a set of 100
utterances and calculated their phone frequencies. These were
then compared to those of the training data (using the ASPF
in Section 5.1), and the set with the highest ASPF was chosen.
The resulting test sets all have very high ASPFs, ranging from
0.943 to 0.978. We then synthesized the corresponding 100
test utterances for each of the 90 fine-tuned models described
in Section 6.2, and conducted the CER and MOS evaluations.
Samples of the synthesized utterances can be found online1.

7. Results & discussion
7.1. Effects of phone mapping and features input

The CER (Character Error Rate) data contains repeated mea-
sures, as each test utterance had many synthesized versions
coming from different fine-tuned models. Therefore, we used
mixed effect models [37] to test for the effects of phone map-
ping and features input on CER, including random intercepts
for the test utterances to account for the by-utterance variance.
To isolate and highlight the effects being tested, as well as to en-

1phat-do.github.io/transfer-SSW23/

able the comparison in MOS, we separated the analyses into 30
scenarios according to the source and target languages. Table 3
shows the effects of phone mapping and features input.

Compared to nomap, map significantly decreased CER in
15 scenarios while feature did so in 22 out of 30. These ef-
fects and the significance codes for their p-values are shown in
bold. For an example of interpretation, for pre-training on Hindi
(hi) and fine-tuning on Georgian (ka), the mean CER of label-
based transfer learning without mapping (nomap) was 33.89%
and using phone mapping (map) decreased it by 3.27 percent-
age points (p.p.), while using feature-based input (feature) de-
creased it by 9.10 p.p. From the significant effects, the average
decrease in CER was 3.48 p.p. for map and 4.97 p.p for feature.

To confirm that feature outperformed map, we conducted
Wilcoxon rank tests of the CER values between them in groups
of target languages, with the alternative hypotheses that the me-
dian CERs from feature were smaller than those from map. Ta-
ble 4 shows the results, together with the differences in median
CERs, confirming that feature indeed outperformed map for 5
out of the 6 target languages except Urdu (p = .60).

For the reasons mentioned in Section 6.3, we only consid-
ered the predicted MOS results at the system level: averaging
the predictions of all utterances per system and comparing using
these mean values. As a result, we could not run statistical tests
and thus could only compare the mean values between nomap,
map, and feature. As shown in Table 3, compared to nomap,
both map and feature improved MOS in most of the scenarios,
and feature performed the best in 16 out of 30 scenarios.

The analyses of CER and predicted MOS above show that
both phone mapping and using features input improved the out-
put speech quality in transfer learning, and the latter were effec-
tive in more scenarios and generally outperformed the former.
However, the results also showed that they were not always



Table 3: Effects of phone mapping and features input
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Tgt Src
CER (percentage point) Predicted MOS

nomap map feature nomap map feat.
effect p effect p

bg

en 7.79 0.27 -1.59 . 3.00 3.04 3.05
fi 7.18 6.02 *** 2.24 * 3.00 2.95 2.95
hi 6.70 0.44 -0.54 3.02 3.05 3.06
ja 11.44 1.61 -2.05 . 2.96 2.97 2.96
ru 7.34 -1.65 . -1.87 * 3.00 3.00 3.07

ka

en 35.35 -2.42 -7.47 *** 2.51 2.57 2.61
fi 39.49 -3.53 * -2.22 2.49 2.58 2.57
hi 33.89 -3.27 * -9.10 *** 2.57 2.60 2.68
ja 43.38 -6.75 *** -13.82 *** 2.40 2.51 2.55
ru 32.05 -1.69 -7.82 *** 2.43 2.55 2.60

kk

en 19.54 -1.21 -3.93 * 2.41 2.48 2.47
fi 23.11 0.11 -2.86 . 2.38 2.39 2.43
hi 18.83 3.16 . -2.00 2.37 2.39 2.45
ja 35.72 -10.09 *** -9.21 *** 2.25 2.39 2.40
ru 21.89 0.92 -2.98 . 2.33 2.38 2.40

sw

en 14.42 -1.32 -1.75 . 2.64 2.73 2.72
fi 18.41 0.14 -0.43 2.62 2.65 2.63
hi 15.94 -1.47 . -3.41 *** 2.69 2.70 2.72
ja 21.23 -2.30 . -6.26 *** 2.58 2.64 2.62
ru 17.59 -3.15 ** -4.02 *** 2.58 2.65 2.70

ur

en 63.48 0.87 -3.07 * 2.28 2.25 2.32
fi 65.17 -6.07 *** -0.22 2.24 2.25 2.23
hi 61.92 -4.43 ** -3.27 * 2.28 2.31 2.35
ja 68.42 -7.50 *** -6.54 *** 2.26 2.30 2.30
ru 69.14 -5.30 *** -7.80 *** 2.27 2.28 2.23

uz

en 34.55 1.11 -5.10 *** 2.41 2.46 2.52
fi 39.91 -3.01 . -5.14 *** 2.38 2.45 2.42
hi 26.77 -2.09 -1.24 2.40 2.42 2.44
ja 40.84 -5.37 *** -7.49 *** 2.31 2.43 2.37
ru 32.11 -4.48 ** -1.57 2.37 2.41 2.39

Table 4: Differences in median CER of “map” and “feature”

Target lang. bg ka kk sw ur uz

Mmap - Mft 1.75 ** 6.31 *** 3.54 ** 1.11 ** 0.00 1.68 .

effective. Extra tests showed that ASPF affected the relative
change in CER compared to nomap: it decreased this change
by 0.78 p.p (map) and 0.76 p.p. (feature) for every increase of
10 p.p. in ASPF. This means ASPF could explain why map and
feature were not effective for all language combinations.

7.2. Source language selection criteria: ASPF vs. dist

For an overview of the criteria’s effects on the whole data,
here we used another measure to compare across different tar-
get languages: the increase in CER compared to that from the
ground-truth audio (CER increase gt). For example, for a cer-
tain test utterance, if the CER obtained from running STT on the
ground-truth audio is 2% and that on a synthesized utterance is
5%, the corresponding CER increase gt will be 3%. We then
tested the effects of ASPF (Section 5.1) and dist (Section 5.2)
on CER increase gt in three different groups: nomap, map, and
feature. We used linear mixed effects models with random in-

tercepts for the test utterances and random slopes for the effects
being tested. Table 5 shows these effects together with the sig-
nificance code for their corresponding p-values.

Table 5: Effects of criteria on “CER increase gt” (p.p.)

Group ASPF (per 10 p.p.) dist (per 1 unit)

nomap -1.01 (***) -0.48 (***)
map -0.60 (**) -0.20 (***)

feature -0.11 -0.25 (***)

ASPF had statistically significant effects on
CER increase gt, decreasing it by 1.01 p.p. and 0.60 p.p.
respectively for nomap and map for every increase of 10 p.p.
in ASPF. This confirms its usefulness in selecting source
languages, with or without phone mapping: the higher the
ASPF (i.e., the more similarity between the target language and
the candidate source language), the better the output quality
in CER. However, its effect in feature was not statistically
significant. This may mean that if we use phonological features
as input, due to the universality of the feature set and the better
transfer learning efficiency, the importance of selecting the
“right” source language lessens. However, it may also just
mean that ASPF is not effective in this case, and thus should be
investigated further in future work.

Although dist had statistically significant effects in all
groups, their effects were opposite the expectation: the larger
the distance (i.e., the less similarity between the languages), the
better the output quality in CER. This could mean that even
though our distance measure statistically had effects, these ef-
fects could have come from another unknown factor that may
be somewhat collinear to the distance measure. This should
definitely be looked at further in future work, but as of now it
remains unsuitable as a criterion to select source languages.

8. Conclusions
We validated and compared the PHOIBLE-based phone map-
ping method proposed in [4] and the use of phonological fea-
tures input in cross-lingual transfer learning for TTS in low-
resource languages (LRLs). We used diverse sets of source lan-
guages (English, Finnish, Hindi, Japanese, and Russian) and
target languages (Bulgarian, Georgian, Kazakh, Swahili, Urdu,
and Uzbek) to enhance the applicability of the findings. We
used CER calculated from Google’s Speech-to-Text service and
MOS from an MOS prediction system for evaluation. Results
showed both phone mapping and features input improved the
output quality, with the latter performing the best. However,
they also depended on the specific language combination.

We also validated the Angular Similarity of Phone Frequen-
cies (ASPF) as proposed in [4] and compared it with a family
tree-based distance measure inspired by [24] as a criterion to se-
lect source languages in cross-lingual transfer learning. ASPF
proved effective in both scenarios of using label-based phone
input, while the language distance had effects opposite to ex-
pectation. Future research will look further into the latter.

Future work is also planned to compare transfer learning
from monolingual source models and from multilingual mod-
els, as the latter may benefit from the richer combined phone
inventory and thus have better learning efficiency.
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