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SUMMARY

Rapid phasic activity of midbrain dopamine neurons is thought to signal reward prediction errors (RPEs),
resembling temporal difference errors used in machine learning. However, recent studies describing slowly
increasing dopamine signals have instead proposed that they represent state values and arise independent
from somatic spiking activity. Here we developed experimental paradigms using virtual reality that disambig-
uate RPEs from values. We examined dopamine circuit activity at various stages, including somatic spiking,
calcium signals at somata and axons, and striatal dopamine concentrations. Our results demonstrate that
ramping dopamine signals are consistent with RPEs rather than value, and this ramping is observed at all
stages examined. Ramping dopamine signals can be driven by a dynamic stimulus that indicates a gradual
approach to a reward. We provide a unified computational understanding of rapid phasic and slowly ramping
dopamine signals: dopamine neurons perform a derivative-like computation over values on a moment-by-
moment basis.

INTRODUCTION

Dopamine has important roles in controlling learning, motivation,

and movement. Understanding what information dopamine con-

veys is critical for determining how dopamine regulates various

functions. One influential idea is that a phasic activity ofmidbrain

dopamine neurons represents temporal difference (TD) reward

prediction errors (RPEs) used in reinforcement learning algo-

rithms (Schultz et al., 1997; Niv, 2009; Eshel et al., 2015; Stark-

weather et al., 2017). Response patterns that conform TD

RPEs have been observed in a number of animal species and un-

der different task conditions (Bayer and Glimcher, 2005; Clark

et al., 2012; Watabe-Uchida et al., 2017), and the RPE hypothe-

sis has greatly affected our understanding of dopamine func-

tions. However, many of these experiments have employed rela-

tively simple behavioral paradigms using discrete stimuli and

outcomes. Whether the same principle applies in more complex

contexts remains to be examined.

Several studies using animals that canmovewithin an environ-

ment have shown that dopamine concentrations in the striatum

ramp up over a timescale of seconds (Phillips et al., 2003; Roit-

man et al., 2004; Howe et al., 2013; Hamid et al., 2016; Berke,

2018; Mohebi et al., 2019; Engelhard et al., 2019). Some authors

have argued that these slow dopamine fluctuations cannot be

readily explained by TD RPEs and have alternatively proposed

that they represent the value of the state (state value or motiva-

tional value), which increases as the animal approaches a reward

location (Berke, 2018; Hamid et al., 2016; Howe et al., 2013).

Furthermore, a recent study (Mohebi et al., 2019) concluded

that these ramping activities are absent in the spiking activity

of dopamine neurons in the ventral tegmental area (VTA) and

that ramping dopamine signals arise from local modulation of

dopamine axons in the striatum. However, more work is needed

to determine (1) what mechanisms underlie generation of ramp-

ing dopamine signals and (2) what behavioral conditions cause

ramping dopamine signals.

Theoretically, value is separable from RPE. TD RPE ðdtÞ is
defined by

dt = rt +g bV ðSt+ 1Þ � bV ðStÞ;
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Figure 1. Experiments to Dissociate Value and RPE Using Virtual Reality
(A) The virtual linear track.

(B) State value as a function of position. Red arrow, teleportation.

(C) Predictions of how state value (left) and TD RPE (right) are modulated by teleportation (red curves).

(D) Speed manipulation.

(E) Predictions.

(F) An example scene at the starting position.

(G) Top: the time courses of lick rate (gray) and the average across animals (black) (n = 16 mice). Bottom: locomotor speed (gray) and the average (black). Green,

red, and blue horizontal bars represent the time windows used for analysis in (H).

(H) Top: impulsive lick (green), anticipatory lick (red), and post-reward lick (blue) rates as a function of days of training. *p < 0.05 (n = 16 mice). Anticipatory lick

increased, impulsive lick decreased, and post-reward lick did not change over daysof training (r = 0.39, –0.36, 0.04; p = 2.73 10�7, 3.93 10�6, 0.64, respectively;

Spearman correlation). Bottom: locomotor speed.

(I) Fiber fluorometry (photometry) experiment.

(J) Recording locations in the experimental (green) and GFP control (red) animals (n = 16 and 6 mice, respectively).

(legend continued on next page)
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where rt is the reward the animal receives at time t, St is the state

the animal occupies at time t, g is the discounting factor

ð0 <g < 1Þ, and bV ðStÞ is the value of the stateSt (i.e., state value),
defined as the sum of all future rewards, where future rewards

are discounted exponentially with factor g (STAR Methods). TD

RPE contains terms that are approximately the difference be-

tween values at consecutive time points, t and t +1 (i.e.,

g bV ðSt +1Þ � bV ðStÞ, where g is close to 1). Thus, in the absence
of an immediate reward, TD RPEs are approximately the deriva-

tive of value. The idea that dopamine represents value is there-

fore incompatible with the view that dopamine represents

TD RPEs.

Under many conditions, however, it is difficult to disambiguate

RPE and value. A dopamine ramp can occur regardless of

whether dopamine represents RPEs or value (Gershman, 2014;

Lloyd and Dayan, 2015; Morita and Kato, 2014). A theoretical

study showed that the shape of the value function matters; if

the value function is a sufficiently convex function of proximity

to reward, then a TDRPE can exhibit a positive ramp (Gershman,

2014) (STARMethods; Figure S1). Therefore, the mere presence

of a dopamine ramp does not distinguish the two possibilities.

Here we sought to develop experimental paradigms that

empirically dissociate RPE from value. We focused on the core

property of RPE, that RPE is approximately the derivative of

value. Our experiments using visual virtual reality allowed us to

tease apart these two possibilities. The results demonstrate

that ramping dopamine signals are consistent with TD RPE but

inconsistent with value.

RESULTS

Using Virtual Reality to Dissociate RPEs from Values

Imagine that amousemoves along a linear track to obtain reward

(Figure 1A). One can assume that the value of the animal’s loca-

tion increases monotonically as it approaches the reward. Now

imagine that, while moving, the animal is suddenly teleported

to a location closer to the goal (Figure 1B). If dopamine repre-

sents value, then it should exhibit a step-like increase at the

time of teleportation and then continue increasing gradually,

with the maximum level reached at the goal (Figure 1C, left). In

contrast, if dopamine represents RPE, then it should exhibit a

phasic excitation at the time of teleportation, reflecting an instan-

taneous increase in value (Figure 1C, right). Next, imagine that

the speed of the mouse is manipulated (Figure 1D). If dopamine

represents RPE, then the magnitude of the ramp will be modu-

lated by the speed, with greater magnitudes for faster speeds

(Figure 1E, right). In contrast, the value will reach the same level

just prior to reward irrespective of the speed (Figure 1E, left).

Importantly, this experiment directly tests the property of ramp-

ing itself, whether the ramp is consistent with RPE or value. The

primary goal of these experiments is to distinguish whether

dopamine signals are consistent with a monotonically increasing

function that is dependent on the position or the derivative of that

function. The former would support the value hypothesis,

whereas the latter would support the RPE hypothesis.

We used virtual reality in head-fixed mice (Dombeck et al.,

2007) to perform teleportation and speed manipulations. In the

first set of experiments, the visual scene (Figure 1F) moved at

a constant speed and the mice received a drop of water (5 mL)

at the goal location (Video S1). Over several days, mice devel-

oped anticipatory licking near the goal (Figure 1G, top; n = 16

mice, p = 0.00043, Wilcoxon signed-rank test). Although the

scene moved constantly irrespective of locomotor movement

(i.e., ‘‘passive’’ condition), more than half of the animals devel-

oped running behavior (Figure 1G, bottom).

We first monitored calcium signals from dopaminergic axons

projecting to the ventral striatum (VS, or nucleus accumbens

core) (Babayan et al., 2018; Menegas et al., 2017, 2018) using fi-

ber fluorometry (photometry) (Figures 1I and 1J). After training,

axonal calcium signals ramped up progressively over a time-

scale of 3–4 s (Figures 1K and 1L; Figures S2E–S2H). We quan-

tified the ramping based on correlation coefficients (r, ‘‘ramping

R’’) between calcium signals and time (n = 16 mice, r = 0.18 ±

0.04; Pearson correlation using the average calcium trace was

0.45, 95% confidence interval [CI] = [0.43, 0.48], p < 10�20).

Across sessions, neither anticipatory licking nor running speed

was correlated with the ramping signal (p = 0.37 and 0.13 for

anticipatory licking and running speed, respectively; analysis of

covariance [ANCOVA], n = 93 sessions from 16 mice). We did

not observe a significant difference in ramping Rs between

slow- and fast-running animals (Figure S2J).

These ramping dopamine signals are unlikely to be a correlate

of licking or motion artifacts. First, mice expressing a calcium-

insensitive green fluorescent protein (GFP) did not exhibit ramp-

ing (Figures 1M and 1N). Second, we have not observed ramping

signals using similar techniques in different tasks (Babayan et al.,

2018; Menegas et al., 2017, 2018), although anticipatory licking

was similar (also see delayed-reward task below). In addition

to ramping, we observed a phasic response at the onset of scene

movement and a slight decrease just before reward (STAR

Methods).

Ramping Dopamine Signals Are Consistent with RPEs
We then performed a set of 4 experiments to determine whether

dopamine signals represent RPE or value. In experiment 1, in

addition to the standard condition, we randomly interleaved

three test conditions, which included a long teleportation, a short

teleportation, or a 5-s pause (Figure 2A; Video S2). If dopamine

represents value, then dopamine signals would show a step-

like increase, arriving at the same level after a long and short tele-

portation, and should always reach the maximum level just

before reward (Figure 2B, left). If dopamine represents RPE,

then dopamine signals would show a phasic excitation whose

magnitude scales with the length of teleportation (Figure 2B,

right). Value depending on the distance to reward will stay con-

stant when scene movement is paused, whereas RPE will

(K) Average axonal calcium signals (n = 16 mice). A gray horizontal bar depicts a temporal window used to compute Pearson correlations (ramping R).

(L) Ramping Rs. *p < 0.05.

(M and N) Signals (M) and ramping Rs (N) from GFP animals (p > 0.05, Wilcoxon signed-rank test for each day, n = 6 mice).

See also Figure S2.
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Figure 2. Dopamine Axon Activities in the VS Are Consistent with RPE
(A) Experiment 1. Long teleportation, short teleportation, and pause are depicted on the value function.

(B) Predictions. T, teleportation. P, pause.

(C) Average calcium signals aligned by teleportation or pause (n = 11 mice). Format as in (B). The trace of the standard condition (black) was aligned by

reward onset.

(D) Comparisons of normalized peak responses (left) and residuals from the state value prediction (right) (n = 11mice; Figures S4A–S4D). Horizontal barswith filled

circles represent significant differences.

(E) Experiment 2. Teleportation at three positions (T1, T2, and T3).

(F) Predictions.

(G) Average calcium signals (n = 11 mice). Four mice whose scene speed was slightly faster than the rest of animals were excluded in the time course plots but

included in other analyses (STAR Methods).

(H) Left: normalized peaks increasewith proximity to the reward (median test R = 0.45, p = 6.13 10�5, n = 15mice). Right: residuals from the state value prediction

(median test R = 0.20; p = 0.0031, n = 15 mice).

(I) Experiment 3.

(J) Predictions.

(K) Average calcium signals (n = 15 mice).

(L) Left: Comparison of average pre-reward responses at [–1 s 0 s] relative to reward. Right: comparison of regression coefficients. The median of regression

coefficients is positive only for the speed of scene movement (p = 6.1 3 10�5, 0.64, and 0.45, respectively; n = 15 mice).

(M) Experiment 4.

(N) Predictions.

(O) Average calcium signals (n = 5 mice).

(P) Comparison of calcium signals before reward.
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decrease to baseline because there is no change of value in time.

There is some ambiguity regarding how ‘‘value’’ may behave un-

der the pause condition; for example, if the animal judges that

the task is aborted at the time of pause, then the value may

also decrease to baseline. We used the results holistically to

judge which hypothesis parsimoniously accounts for the

entire data.

In teleportation trials, anticipatory licking and changes in loco-

motor speed reflected the destinations of teleportation (Fig-

ure S3B), confirming that mice used visual cues to predict reward

rather than merely relying on elapsed time. A long teleportation

evoked a large calcium transient whose peak was greater than

the peak of the ramp under the standard condition (Figures 2C

and 2D, left; ratio between the peaks, 2.25 ± 0.31; p = 0.0010,

n = 11mice; Figure S3A). The phasic excitation evoked by a short

teleportation was smaller than that evoked by a long teleporta-

tion but was still greater than the peak of the ramp under the

standard condition, violating the value hypothesis (Figures 2C

and 2D, left; ratio, 1.35 ± 0.14; p = 0.024, n = 11 mice). In pause

trials, the calcium signal decreased to the baseline level, fol-

lowed by a phasic excitation when scene movement resumed

(Figures 2C and 2D, left), consistent with RPEs.

To quantify these results, we generated predicted responses

based on the value hypothesis (Figures S4A–S4D; STAR

Methods). If dopamine represents value, then deviation from

these predictions should be small and unsystematic. In most of

the animals (9 of 11), the deviations of the observed signals fol-

lowed a systematic pattern, supporting the RPE hypothesis (Fig-

ure 2D, right;median test R, r = – 0.64, n = 11mice, p = 0.002; see

STAR Methods for the definition of test R).

Because value is unobservable, it is generally difficult to

assess the shape of value function. In experiment 2, we sought

to infer the shape of value function (Figures 2E–2H; Figures

S3C and S3D). In test trials, mice were teleported forward from

one of three locations by the same distance (Figure 2E). If the un-

derlying value function has a convex shape, then the magnitude

of response should be larger, with teleportation occurring at lo-

cations closer to the goal. Indeed, the phasic calcium signals fol-

lowed this pattern (Figure 2H), consistent with a convex value

function.

To test whether the ramping itself represents RPEs, wemoved

the scene either fast (32 speed) or slow (30.5 speed) in test trials

(experiment 3; Figures 2I–2L; Figures S3E and S3F; Video S3).

Observed calcium signals were consistent with the RPE predic-

tions (Figures 2K and 2L, left; p = 6.13 10�5 and 6.1 3 10�4, n =

15 mice). A regression analysis indicated that the magnitude of

ramping can be predicted by the speed of the scene but not

by locomotion speed (Figure 2L, right). GFP control mice did

not show systematic modulation (Figure S4F).

We note, however, that there was a sudden increase in the

signal soon after onset of fast scene movement. This may be

because the speed of scenemovement became a cue predictive

of an early reward. Although this is still consistent with RPE, we

designed an additional experiment that minimized this potential

confound (experiment 4; Figures 2M–2P; Figures S3G–S3I). The

speedof scenemovement wasmodulated dynamically over time

(Figure S3I). This allowed us to change the speed without altering

the time to reward between conditions. We found that dopamine

responses before reward changed according to the instanta-

neous speed (Figure 2O). The calcium signals immediately pre-

ceding the goal diverged greatly (Figure 2P; p = 0.002, df = 2,

n = 5 mice, F = 14.3, one-way repeated-measures ANOVA),

violating the value account, which predicts that dopamine sig-

nals should reach the same level at the goal regardless of

the speed.

We next used a model fit analysis to test whether the data can

be explained better by RPE or value. The state value was first

defined as a function of space (Figure 3A). Based on this value

function, we predicted calcium signals under each condition.

We then obtained a set of parameters thatminimized the residual

sum of squares (Figures 3A and 3B). The goodness of fit was

quantified using the Akaike information criterion (AIC) to penalize

the number of parameters in a model. We first used a value func-

tion whose value is discounted by a fixed rate (t) as a function of

the distance to the target (exponential value function; the

requirement of a particular shape for the value function will be

relaxed later). The RPE model explained the data far better

than the value model under all experimental conditions (Fig-

ure 3D; p < 0.004 for all four fits with manipulated experiments;

H0, individual median DAIC is zero; n = 11, 15, 15, 15 for exper-

iments 1, 2, 3, and all). In contrast, the difference was not signif-

icant under the standard condition (Figure 3D, standard; p =

0.07, n = 16 mice), indicating that our analysis is unbiased.

We further fitted the data with value functions ofmore arbitrary

shapes (e.g., fifth-order polynomial) (Figure 3E, bX; Figure S4H),

allowing us to derive a value function in a more data-driven

manner. We also included a value model in which the state value

was computed based on time to reward given the current speed

(Dt to reward). The RPE model with a polynomial value function

best explained the data. However, even the simple exponential

Fig ure 3. RPE Models Explain the Data BetterThan Value Models
(A) Model fitting procedure. Blue curves, GCaMP filters.

(B) Fit examples. Top: the data. Center: best fit with the RPE model. Thick lines, model prediction. Thin lines, data. Bottom: best fit with the value model.

(C) Comparisons of AICs based on the exponential value function. Filled symbols, p < 0.05 (permutation test). A smaller AIC value indicates a better fit.

(D) Difference between the two models in (C).

(E) Left: AIC relative to the exponential RPE model. The combined dataset for experiments 1–3 was used. tðx0�xÞ, exponential discounting; bX =
P
ðbkxkÞ, fifth-

order polynomial ; bX; f 0ðxÞ> 0, fifth-order polynomial with the constraint of monotonical increase; Dt to reward, value based on time to reward given the current
speed. Filled dots indicate significance. Right: hybrid models. Mixture, ð1 � aÞVðxÞ+adðxÞ; FD, fractional derivative model. Significance is not shown for the FD.
(F) The shape of value function (left), RPE (right, dark green), and the predicted calcium signal (right, green) obtained by the RPE model using bX; f 0ðxÞ> 0. The
peak of the transient RPE at trial start is not shown.

(G) The optimal a in the mixture model.

(H) The best-fit order of derivative ðaÞ in the FD model.
See also Figures S3 and S4.
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Figure 4. Ramping and Teleportation Responses Cannot Be Explained by a Sensory Surprise

(A) The scenes on tracks 1 and 2.

(B) Experiment 5a. Arrows, teleportation between tracks.

(C) Average calcium signals (n = 6 mice).

(D) Baseline-subtracted calcium responses.

(E) Experiment 5b. Red, forward teleportation; cyan, between-track teleportation.

(F) Average calcium signals (n = 6 mice).

(G) Baseline-subtracted calcium responses.

(legend continued on next page)
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RPE model outperformed all of the value models (Figure 3E; p <

0.0003; H0, individual median DAIC is zero; n = 15 mice). These

results indicate that the calcium signals in experiments 1–3 are

better explained by RPE than by state value. Note that the fitted

models also captured the initial transient response and the dip

right before reward (see STAR Methods for a note regarding

the shape of the fitted value function).

These analyses demonstrate that RPE models are better than

value models when tested one against another. However, it is

possible that the responses lie somewhere between these two

possibilities. To address this, we first considered a linear combi-

nation of RPE and value, with the weight a ð0%a%1Þ represent-
ing the fraction of RPE signals (amixture model). The fit using this

mixture model only barely improved compared with the RPE

model (Figure 3E, right; the mean R2 increased by 2%). The

weight for the RPE term ðaÞ was close to 1 (Figure 3G; experi-
ments 1–3, 0.92 ± 0.12; experiment 4, 0.99 ± 1.2 3 10�4, mean

± SD). Second, we considered the possibility that the responses

are between value andRPE in termsof the order of the derivative.

Specifically, the RPE approximates the first-order derivative of

the value function ðdV =dtÞ, whereas the value function itself is
its own zeroth-order derivative. The method of ‘‘fractional deriv-

atives’’ allows one to define a non-integer order of derivative

ðda =dtaVÞ (Podlubny, 1998) by which one can obtain a gradual
transition between value and RPE by varying a from 0 to 1 (Fig-

ure 3H, left). We found that the best-fit order of derivative ob-

tained from the data using an exponential value function was

close to 1 (Figure 3H, right; experiments 1–3, 1.1 ± 0.12; exper-

iment 4, 1.28 ± 0.08, mean ± SD).

These results demonstrate that the RPE model, which com-

putes the first-order derivative of the value function, is a superior

model to explain the dopaminergic axonal activity in the VS, with

little contribution of value.

Dopamine Axons in the VS Do Not Respond to Sensory
Surprise
Some recent studies have suggested that dopamine neurons are

activated by sensory surprise, sensory (identity) prediction error,

or arousal (Schultz, 2019; Stalnaker et al., 2019; Takahashi et al.,

2017). We next tested whether the above responses were due to

sensory surprise using teleportation between two tracks (Fig-

ure 4A). In test trials, mice were teleported between the tracks

without changing the distance to the goal so that a teleportation

event caused a sensory prediction error without causing a

change in value (Figures 4B–4D; Video S4). We did not observe

a transient excitation at the time of between-track teleportation

(Figure 4D; Figure S4I; p = 0.31 and 0.84, n = 6 mice), although

forward teleportation caused a large transient activation (Figures

4E–4G; Figure S4J). The lack of response during between-track

teleportation is not due to failure to distinguish the two tracks or

failure to recognize teleportation. When different amounts of

reward were assigned to the two tracks (Figures 4H–4J; Fig-

ure S4K), we observed different levels of anticipatory licking

and the calcium signal between the two tracks (Figure 4J, left

and center; p = 0.019 and 0.001 for licking and calcium signal,

respectively; n = 4 mice, paired t test). Furthermore, between-

track teleportation caused a transient change in the calcium

signal consistent with the change in the state values (Figure 4J,

p = 0.012, n = 4 mice, paired t test). Finally, we also performed

backward teleportation with the same magnitude as forward

teleportation. Although the amount of sensory surprise wasplau-

sibly similar between these conditions, backward teleportation

caused a decrease rather than an increase in the calcium signal

(Figures 4K–4M; Figure S4L). These results indicate that a pure

sensory surprise does not excite dopamine neurons but that a

change in value is important.

We next examined whether the magnitudes of ramping and

teleportation responses are sensitive to reward magnitudes.

The amount of reward in track 1 was altered across blocks of tri-

als (Figures 4N–4P). In large-reward blocks, mice showed

greater anticipatory licking compared with small-reward blocks

(p = 0.008, n = 10 mice). The magnitudes of ramping as well as

phasic response were greater in large-reward blocks (Figures

4O, left, and 4P, left; p = 0.049, n = 10 mice; Figures 4O, right,

and 4P, right; p = 0.0020, n = 10 mice, respectively). Thus, ramp-

ing and transient responses to teleportation are sensitive to

outcome values.

The responses observed in our experiments cannot be ex-

plained by sensory surprise but canbe explained parsimoniously

by TD RPE—tracking changes of value.

The Spiking Activity of Dopamine Neurons Exhibits
Ramping Consistent with RPE
The above results indicate that the activity of dopamine axons in

the VS is consistent with TD RPEs. However, it remained unclear

whether these results held at the single-neuron level. For

instance, different populations of dopamine neurons may sepa-

rately underlie ramping, transient responses, and speed-depen-

dent modulations. Furthermore, a recent study concluded that

the spiking activity of VTA dopamine neurons does not ramp

(H) Experiment 5c. Arrows, between-track teleportation. A large reward was given in track 2.

(I) Average calcium signals (n = 4 mice).

(J) Left: comparison of anticipatory licking (3 of 4 mice showed a significant difference; Wilcoxon rank-sum test using trial data). Center: comparison of calcium

responses (3 of 4 mice showed a significant difference; unpaired t test using trial data). Right: transient changes of calcium responses at teleportation (p = 0.006

and 0.021, large to small and small to large, respectively; n = 4 mice, paired t test).

(K) Experiment 6. Arrows, forward (red) and backward (orange) teleportation.

(L) Average calcium signals (n = 6 mice).

(M) Comparisons of calcium responses. Responses to the forward teleportation were significantly larger than responses to backward teleportation (p = 0.03, n =

6, Wilcoxon signed-rank test).

(N) Experiment 7. The reward size was altered across blocks of trials.

(O) Average calcium signals (n = 10 mice).

(P) Comparison of calcium responses, quantified using the time windows depicted in (O) (gray bars). Left: ramp magnitudes. Right: teleportation responses.

See also Figure S4.
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Figure 5. Spiking Activity of VTA Dopamine Neurons Accounts for the Ramping Calcium Signals

(A) Experiments.

(B) Average firing rates of VTA dopamine neurons (n = 102) under the standard condition. Gray bar, a time window used to quantify ramping in (C).

(C) Distribution of ramping Rs. The median (triangle) is positive (p = 0.0001, n = 102 neurons).

(D) Ramping slope as a function of ML locations (n = 122). Gray bars, subgroups of neurons used in (E) and (F) (black, n = 16 neurons from 3mice; dark gray, n = 66

neurons from 4 mice; gray, n = 20 neurons from 3 mice). The median slope was greater than zero in the two medial groups (p = 0.004, 0.009, and 0.39,

respectively). Dashed line, type 2 regression fit.

(E) Average firing of groups of neurons indicated in (D).

(F) Calcium signals predicted from spikes. Darkness indicates the groups in (D).

(legend continued on next page)
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