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Abstract

A growing ecosystem of large, open-source foun-
dation models has reduced the labeled data and
technical expertise necessary to apply machine
learning to many new problems. Yet founda-
tion models pose a clear dual-use risk, indiscrimi-
nately reducing the costs of building both harm-
ful and beneficial machine learning systems. To
mitigate this risk, we propose the task blocking
paradigm, in which foundation models are trained
with an additional mechanism to impede adapta-
tion to harmful tasks while retaining good per-
formance on desired tasks. We call the resulting
models self-destructing models, inspired by mech-
anisms that prevent adversaries from using tools
for harmful purposes. We present an algorithm
for training self-destructing models leveraging
techniques from meta-learning and adversarial
learning, showing that it can largely prevent a
BERT-based model from learning to perform gen-
der identification without harming the model’s
ability to perform profession classification. We
conclude with a discussion of future directions.

1. Introduction
A defining capability of large pretrained models (hereafter
foundation models; FMs) is few-shot adaptation to many
downstream tasks—potentially improving performance and
efficiency in domains with little training data (Bommasani
et al., 2021). Further, some argue that open-source availabil-
ity should be considered an essential feature of FM creation.
As Black et al. (2022) write, “open access to [FMs] is critical
to advancing research in a wide range of areas—particularly
in AI safety, mechanistic interpretability, and the study of
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how [FM] capabilities scale.” Yet while more widely avail-
able FMs certainly enable greater accessibility, auditability,
and understanding of these powerful models, making FMs
widely available for downstream adaptation without restric-
tion comes at some cost to safety. Today, an actor can
download a FM and adapt it to any harmful use-case they
desire. An oppressive government can take a powerful pre-
trained language model and adapt it to identify dissidents.
A rogue actor can adapt a pretrained object recognition sys-
tem such that commercially available drones act as targeted
loitering munitions. A pretrained drug discovery system
can be used for creating chemical or biological weapons,
like neurotoxins (Urbina et al., 2022). Unfortunately, due
to their general-purpose nature, preventing such dual use of
FMs is difficult.

One set of approaches to mitigating these dual uses fo-
cuses on access restrictions. Some emphasize the flow
of talent, data, compute, and other resources required for
training models (Brundage et al., 2020; Flynn, 2020). Oth-
ers have placed models under restrictive APIs or licensing
schemes (Solaiman et al., 2019). Some have suggested a
review board for selecting the release mechanism (Liang
et al., 2022). In this work we suggest a new, complemen-
tary, path forward: self-destructing models. Self-destructing
models are trained via a task blocking method that impedes
the adaptation of the model to a harmful task without impair-
ing the model’s ability to be used for its original intended
purpose. Where existing access restrictions must navigate
the tension between openness and safety, we seek to provide
a new research pathway for reducing (and in some cases
obviating) this tension. By increasing the compute, data,
and talent required to adapt public models to harmful tasks,
self-destructing models have the potential to increase the ef-
fectiveness of access controls and other safety mechanisms.

In this work, we: (1) define the task blocking problem and
evaluation metrics as well as self-destructing models; (2)
describe an initial algorithm, Meta-Learned Adversarial
Censoring (MLAC), for training self-destructing models,
evaluating its ability to impede fine-tuning a language model
to perform demographic information extraction; (3) identify
key directions for future research in the development of
self-destructing models.
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2. Related Work
A number of works have sought to address dual use risks
by restricting points of control (Flynn, 2020; Brundage
et al., 2018; Solaiman et al., 2019; Bommasani et al., 2021;
Shevlane, 2022; Zwetsloot et al., 2019), despite there also
being substantial benefits to open access (Zhang et al., 2022;
Black et al., 2022). We aim to provide an alternative that
allows for open access while still hindering bad actors.

Some work on AI safety has sought mechanisms to pre-
vent agents from learning degenerate behaviors. Orseau &
Armstrong (2016), for example, seek to prevent a particular
scenario where an agent learns to disable its off-switch so
that it continues to collect reward. We on the other hand
focus on preventing a different, broader, set of harmful be-
haviors: adaptation of pretrained models to harmful tasks.

Closely related to our work are methods for de-biasing,
editing, or removing harmful content from models. Like
domain invariance approaches (Ganin & Lempitsky, 2015;
Li et al., 2018; Zhou et al., 2020; Yao et al., 2022), Edwards
& Storkey (2015) use an adversarial approach to remove in-
formation from representations. Ravfogel et al. (2022a) and
Ravfogel et al. (2022b) take a similar approach and find a
projection on the final output layer of a pretrained model that
removes gender-based biases from the model (and prevent
recovery of those biases after that projection layer). Others
have created model editing techniques to remove outdated
or harmful content from pretrained models (Sinitsin et al.,
2020; Mitchell et al., 2022a;b). While these other methods
generally optimize for the information to be removed from
the original model, we optimize for poor performance after
adaptation of the original model to a harmful task. This can
be accomplished via a meta-learning approach.

In the context of meta-learning, MAML (Finn et al., 2017)
and related algorithms (Li et al., 2017; Lee & Choi, 2018;
Park & Oliva, 2019; Zintgraf et al., 2019; Flennerhag et al.,
2020) have shown that the desired post-fine tuning behavior
of a neural network can be effectively encoded in its pre-fine
tuning network initialization. While existing works have
leveraged this ability in order to enable more rapid learning
of new tasks, our work encodes a blocking mechanism into
a network’s initialization that prevents effective adaptation
on harmful tasks.

3. Task Blocking & Self-Destructing Models
The goal of task blocking is to create models that increase
the costs of fine-tuning on downstream harmful tasks such
that an adversary would rather start from scratch than use
the pretrained model (see Fig. 1). The resulting models
are “self-destructing models” which impede adaptation on
harmful dual-uses by increasing the costs of the harmful
use. In this section, we more precisely define our problem

Figure 1: An ideal self-destructing model would boost perfor-
mance and reduce adaptation costs relative to training from scratch
only for desired tasks, while impeding learning of harmful tasks.

setting and describe an initial algorithm for it.

3.1. The Task Blocking Problem

We assume that an adversary aims to adapt a pretrained
model πθ to a harmful task, searching for the best adaptation
procedure f among a set of adaptation procedures F in order
to find the one that maximizes harmful task performance.
Adaptation procedures in F may include simple fine-tuning,
a hyper-parameter search over fine-tuning procedures, as
well as other more advanced adaptation mechanisms that
we leave to future work. The goal of a task blocking is
to produce a set of model parameters θ̃ (a self-destructing
model) such that it is more costly to successfully adapt
the model to harmful tasks than it is to adapt a non-self-
destructing model—but performance on a desired set of
tasks should remain unaffected.1

We define two regimes to increase costs: (1) increase data
costs by decreasing sample efficiency; (2) increase compute
costs by slowing convergence of the training process.

Data Costs. In the first regime, we assume that the ad-
versary has little data to adapt an FM to their harmful task
and that the cost of gathering more data is high. A tradi-
tional FM would help the adversary reduce their data costs.
A self-destructing FM, on the other hand, would provide
the adversary with little benefit over a randomly initialized
model. We define an FM’s relative data efficiency as:

En
data(θ) = M(min

f∈F
f(θ,Dn))−M(min

f∈F
f(θr, Dn)), (1)

where M is the desired performance metric, n is the number
of data points available, Dn is an adaptation dataset of n
examples from the task of interest, and θr is a randomly-
initialized model. Note that the min in Equation 1 en-
capsulates hyperparameter optimization, and the size of
F loosely corresponds to the adversary’s resource budget

1While the goal of a self-destructing model is to reduce per-
formance on harmful tasks after fine-tuning, it should enable high
quality predictions or fine-tunability for desired tasks. Our ex-
periments explore the former goal, and we leave exploration of
preserving fine-tunability for future work.
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Algorithm 1 MLAC Training Procedure
1: Input: pretrained model m = wd ◦ πθ , desired task dataset

Dd, harmful task dataset Dh, adaptation methods F̃ , adapta-
tion steps K, learning rates η, ηh, ηd

2: Initialize: Adversarial harmful task head wh and learning
rate αh, with ϕ = {wh, αh}; initial blocked params θ̃ ← θ

3: for n steps do
4: Sample adaptation procedure f̃k ∼ F̃
5: Sample data batches bd ∼ Dd, {bkh} ∼ Dh, bh ∼ Dh

6: {θk}, {wk
h} ← f̃k(wh ◦ πθ̃, {b

k
h}, αh) // do inner loop

7: ℓhk = Lh(w
k
h ◦ πθk , bh), ∀k // outer loop harmful NLLs

8: ℓd = Ld(wd ◦ πθ, bd) // desired NLLs

9: θ̃ ← θ̃ − η∇θ

(
ℓd − 1

K

∑K
k ℓhk

)
// update blocked model

10: ϕ← ϕ− ηh
1
K

∑K
k=1∇ϕℓ

h
k // update adversarial params

11: wd ← wd − ηd∇wdℓ
d // update desired task head

for adaptation. Edata = 1
N

∑N
n En

data is the average sample-
wise regret between the FM parameters θ and a random
re-initialization θr after each follows the same adaptation
procedure f(·) on a fixed-sized dataset Dn. An ideal self-
destructing model has Edata ≤ 0, meaning the model is no
more data efficient than a randomly-initialized model for
the (presumably harmful) task of interest.

Compute Costs. If data is cheap or plentiful, it may be
difficult to prevent an adversary from learning the task since
perhaps even a random model can learn the task with the
amount of data available. In this data regime (large amount
of cheap data), the benefit of an FM is improved compute
efficiency, rather than increased accuracy. Here, we would
define the FM’s relative compute reduction as the amount of
compute saved by using the FM over a randomly initialized
model, where compute could be defined as the number of
train steps, hyperparameters searched, wall clock time, etc.
The goal of task blocking here would be to prevent any
compute reduction when adapting the self-destructing model
to a harmful task, while retaining compute reduction for
desired tasks.

For the purposes of this work, we focus on data costs, trying
to reduce the sample efficiency of the model on tasks that
we wish to impede.

Cataloging and Defining Harmful Dual Uses. A large
body of work has pointed to inherently harmful uses that
FM creators may wish to block: from creating neurotox-
ins (Urbina et al., 2022) to race detection (Olson, 2022). In
our work we assume that a harmful dual use is known and de-
fined. That is, the self-destruct mechanism will have data to
approximate the dual use and actively encode a mechanism
to block it. This requirement inherently requires a norma-
tive definition of harmful dual uses. We avoid providing
a normative framework for which dual uses are inherently
harmful, but suggest that future work can focus on this nor-
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Figure 2: Harmful task (gender identification) performance after
fine-tuning. MLAC shows fine-tuning performance similar to
a randomly-initialized model, while adversarial censoring (AC)
(Edwards & Storkey, 2015) does not prevent effective fine-tuning.
Shading indicates 95% confidence intervals across 6 random seeds.

mative definition problem. Creating self-destructing models
makes sure that they cannot be used for harmful purposes
counter to the model creator’s values, but it is up to the
model creator to determine what those are. We note that
while defining harmful tasks a priori may be difficult, this
work reflects a “red teaming” approach to harm prevention,
common in security contexts. That is, model creators play
the role of an adversary to identify and prevent harms. This
can function as a complement to other access control meth-
ods, providing more confidence that certain known harmful
tasks are blocked.

3.2. Meta-Learned Adversarial Censoring

To prevent successful adaptation of pretrained models to
harmful tasks, we describe MLAC: Meta-Learned Adver-
sarial Censoring, a meta-training procedure that aims to
eliminate any useful information about the harmful task
even after fine-tuning on that task. Given a desired task
dataset Dd and harmful task dataset Dh, MLAC learns a
feature extractor πθ̃ that is effective for the desired task
but cannot be effectively used or efficiently fine-tuned to
perform the harmful task.

In the inner loop of each meta-training step, the feature
extractor is adapted to the harmful task with several steps
of gradient-based adaptation, using an adversarially learned
prediction head wh and learning rate αh. The adaptation pro-
cedure f̃ used at each meta-training step is sampled from F̃ ,
a proxy for the true adversary’s adaptation class F . In this
case, we narrow F̃ to be different fine-tuning approaches
with close-to-optimal hyperparameters (e.g., Adam for K
steps and learning rate αh). In the outer loop, the adversar-
ial parameters ϕ = {wh, αh} are trained to minimize the
harmful task negative log likelihoods of the adapted models,
while the blocked parameter initialization θ̃ are trained to
maximize the harmful task negative log likelihoods of the
adapted models. We also must counteract the self-destruct
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Figure 3: Evaluation of various inner loop depths during MLAC
training. Just 16 steps enables near-random performance, even
though the adversary performs up to 1000 steps during fine-tuning.

mechanism with something that will prevent unlearning of
the entire network. In this work, we simply optimize for a
given desirable task as the counter-balance by minimizing
ℓd, which updates both the desired task head wd and the
representation parameters θ̃. See Algorithm 1 for the com-
plete training procedure. Note that in practice, we use Adam
rather than SGD in the outer loop to optimize θ̃, adversarial
parameters ϕ, and desired task output head wd. We use
higher (Grefenstette et al., 2019) for implementing the
bi-level meta-learning process.

Calibration. We also add another mechanism to
strengthen the inner-loop adversary. In binary classifica-
tion tasks, maximizing the loss of the harmful task may lead
to a degenerate optimum where labels are flipped, which
leaks information about the harmful task. To prevent this
outcome, we also optimally calibrate the logits via a simple
linear projection (w) solved via differentiable convex opti-
mization (Diamond & Boyd, 2016; Agrawal et al., 2019).
Thus at step k of the inner loop we solve the maximum
likelihood problem:

wk
c = argmax

W

|bh|∑
i

[
logsoftmax

[(
W ◦mk

)
(xi)

]⊤
yi

]
(2)

s.t. − 1 ≤ W ≤ 1, (3)

where mk = wk
h ◦ πk

θ is the blocked model after k steps
of adaptation using the adversarial harmful task head and
learning rate. Thus this projection updates line 7 of Alg. 1
to ℓhk = Lh(w

k
c ◦ wk

h ◦ πθk , bh).

4. Experiments
The goal of our experiments is to develop an initial sense
for whether MLAC is a viable initial task blocking method
and whether it improves over simple baselines.2

2Code is available at https://github.com/
Breakend/SelfDestructingModels.

Dataset. In a demonstrative experiment, we utilize an ex-
isting dual-use dataset in the de-biasing literature, “Bias in
Bios” (De-Arteaga et al., 2019). The dataset consists of
professional biographies. Each biography has a label that is
the gender identity of the biography’s subject as well as the
profession being discussed. We split the data into a train, val-
idation, and evaluation set. We consider the “desirable task”
for which we want to maintain good performance as the
profession detection task. We wish to block the gender iden-
tification task. On the original dataset, we find that a random
model can learn gender classification to over 90% accuracy
with only 10 examples, leaving only marginal ability for an
FM to improve in data efficiency. Thus, to make the FM
more beneficial, we replace all pronouns with “they/their,”
similar to the censored dataset in the original data. While
this task pair has traditionally been used for de-biasing, and
while we mainly use this as an initial demonstration, there
may be valid reasons for preventing an adversary from de-
tecting demographic information from text. In countries
where anti-minority action is common, automated systems
that identify demographics may cause serious harm. For
example, a country may wish to identify people of a cer-
tain religion, sexual orientation, or other identity group in
automated and ultimately harmful ways. Or the state may
wish to identify another feature that is highly correlated with
identity which will lead to the same harms.3

Protocol. For all experiments, we run 50k steps of MLAC
meta-training on the training set. At test time, we take the re-
sulting self-destructing model and run it through a rigorous
hyperparameter search to maximize fine-tuning performance
on the harmful task. We allow hyperparameter searches with
50 fine-tuning trials, using the tree-structured Parzen Esti-
mator (Bergstra et al., 2011) in the hyperopt software
package (Bergstra et al., 2013). We search over learning
rate, batch size, maximum number of steps, and freezing
of intermediate representation layers. For this process, we
subsample the validation set to simulate an adversary with
a dataset of size N . This subsampled validation set is used
as the training set for the adversary. We then use the en-
tire evaluation set to evaluate the adversary’s performance
on held-out data and for hyperparameter tuning. We make
the conservative assumption that the adversary can perform
hyperparameter tuning using the population, even if the
amount of data for fine-tuning itself is limited. This choice
weighs heavily in the adversary’s favor, disadvantaging the
self-destruct method. We repeat the hyperparameter search
process 6 times with different random seeds and data subsets.
This yields confidence intervals over different adversaries
training on different subsets of the data.

3Technology Experts Letter to DHS Opposing the Extreme
Vetting Initiative, 2017.

https://github.com/Breakend/SelfDestructingModels
https://github.com/Breakend/SelfDestructingModels
https://www.brennancenter.org/sites/default/files/Technology%20Experts%20Letter%20to%20DHS%20Opposing%20the%20Extreme%20Vetting%20Initiative%20-%2011.15.17.pdf
https://www.brennancenter.org/sites/default/files/Technology%20Experts%20Letter%20to%20DHS%20Opposing%20the%20Extreme%20Vetting%20Initiative%20-%2011.15.17.pdf


Self-Destructing Models

Figure 4: Desired task performance on even the most well-blocked
model achieves supra-BERT performance with low variance.

Comparisons. We compare MLAC to the adversarial cen-
soring (AC in Fig. 2) method from Edwards & Storkey
(2015) as well as simple fine-tuning on the desired task
(BERT (fine-tuned) in Fig. 2). For AC, an adversarial layer
is learned on top of representation layers to predict the
undesirable task. The gradient is then flipped to destroy
undesirable information in the representation layer. Notably,
MLAC with K = 0 and with no calibration is equivalent
to adversarial censoring. We use a BERT-tiny model as
our FM to save on compute costs (Devlin et al., 2018; Turc
et al., 2020). Note that, as mentioned earlier, we focus on
making sure that the professions task is unimpeded. So we
directly train on cross-entropy loss as Lg. For all models,
the final achieved performance is retained for the desired
professions task (see below, Figure 4). Since the retention
of performance for the desired task is near universal, our
figures focus on exclusively the harmful task performance.

Results. Fig. 2 shows that MLAC returns nearly identical-
to-random harmful task performance at all data regimes.
Conversely, adversarial censoring (the equivalent of MLAC
without calibration and K = 0) does not appear to have
any effect on post-fine-tuning harmful task performance.
Fig. 3 shows the vital role played by the depth of the inner
training loop of MLAC, suggesting that a meta-learning pro-
cess is genuinely necessary to impede harmful task perfor-
mance. We find that head re-calibration may mildly improve
blocking on average when pooled across all inner-loop step
configurations ( Fig. 5).

To ensure that desired task performance is retained, we
evaluate the blocked model on the desired task of profes-
sion classification, comparing with fine-tuning a pretrained
BERT-tiny model and a random model. Fig. 4 shows the
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Figure 5: Ablating optimal adversary prediction calibration during
MLAC training. Using optimally calibrated adversary predictions
(modifying line 7 of Alg. 1) modestly improves blocking.

result; MLAC is clearly able to solve the task effectively,
surpassing the few-shot performance of BERT-tiny. 4

5. Conclusion
Our work is only a first step in raising the cost for harm-
ful dual uses of pretrained models. Future work might
expand on our study in at least four directions: scaling
the self-destructing model framework to larger FMs; study-
ing the generalization of the learned blocking behavior to
new (but related) datasets other than the one used during
MLAC meta-training; training/evaluating with stronger ad-
versaries that incorporate adaptation methods such as prefix
tuning (Li & Liang, 2021), adapter layers (Houlsby et al.,
2019), or others; and evaluating the preservation of desired
task fine-tunability, not just zero-shot performance. Future
work might also seek to introduce concealed architectural
changes that hide self-destruct triggers in the network but
are more robust to adversarial mechanisms. We hope that
self-destructing models can become one tool that enables
model developers to openly share their artifacts while mini-
mizing dual use risks.
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rithms for hyper-parameter optimization. Advances in
neural information processing systems, 24, 2011.

Bergstra, J., Yamins, D., Cox, D. D., et al. Hyperopt: A
python library for optimizing the hyperparameters of ma-
chine learning algorithms. In Proceedings of the 12th
Python in science conference, volume 13, pp. 20. Cite-
seer, 2013.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P.,
Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar,
B., et al. The malicious use of artificial intelligence:
Forecasting, prevention, and mitigation. arXiv preprint
arXiv:1802.07228, 2018.

Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G.,
Hadfield, G., Khlaaf, H., Yang, J., Toner, H., Fong, R.,
Maharaj, T., Koh, P. W., Hooker, S., Leung, J., Trask,
A., Bluemke, E., Lebensold, J., O’Keefe, C., Koren, M.,
Ryffel, T., Rubinovitz, J., Besiroglu, T., Carugati, F.,
Clark, J., Eckersley, P., de Haas, S., Johnson, M., Laurie,
B., Ingerman, A., Krawczuk, I., Askell, A., Cammarota,
R., Lohn, A., Krueger, D., Stix, C., Henderson, P., Gra-
ham, L., Prunkl, C., Martin, B., Seger, E., Zilberman,
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