
Deep Learning for Protein-Ligand Docking:
Are We There Yet?

Alex Morehead 1 Nabin Giri 1 Jian Liu 1 Jianlin Cheng 1

Abstract

The effects of ligand binding on protein structures
and their in vivo functions carry numerous im-
plications for modern biomedical research and
biotechnology development efforts such as drug
discovery. Although several deep learning (DL)
methods and benchmarks designed for protein-
ligand docking have recently been introduced, to
date no prior works have systematically studied
the behavior of docking methods within the prac-
tical context of (1) using predicted (apo) protein
structures for docking (e.g., for broad applicabil-
ity); (2) docking multiple ligands concurrently
to a given target protein (e.g., for enzyme de-
sign); and (3) having no prior knowledge of bind-
ing pockets (e.g., for pocket generalization). To
enable a deeper understanding of docking meth-
ods’ real-world utility, we introduce POSEBENCH,
the first comprehensive benchmark for practi-
cal protein-ligand docking. POSEBENCH en-
ables researchers to rigorously and systemati-
cally evaluate DL docking methods for apo-to-
holo protein-ligand docking and protein-ligand
structure generation using both single and multi-
ligand benchmark datasets, the latter of which
we introduce for the first time to the DL com-
munity. Empirically, using POSEBENCH, we
find that all recent DL docking methods but one
fail to generalize to multi-ligand protein targets
and also that template-based docking algorithms
perform equally well or better for multi-ligand
docking as recent single-ligand DL docking meth-
ods, suggesting areas of improvement for future
work. Code, data, tutorials, and benchmark re-
sults are available at https://github.com/
BioinfoMachineLearning/PoseBench.
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1. Introduction
The field of drug discovery has long been challenged with a
critical task: determining the structure of ligand molecules
in complex with proteins and other key macromolecules
(Warren et al., 2012). As accurately identifying such com-
plex structures (in particular multi-ligand structures) can
yield advanced insights into the binding dynamics and func-
tional characteristics (and thereby, the medicinal potential)
of numerous protein complexes in vivo, in recent years,
significant resources have been spent developing new ex-
perimental and computational techniques for protein-ligand
structure determination (Du et al., 2016). Over the last
decade, machine learning (ML) methods for structure pre-
diction have become indispensable components of modern
structure determination at scale, with AlphaFold 2 for pro-
tein structure prediction being a recent hallmark example
(Jumper et al., 2021).

As the field has gradually begun to investigate whether pro-
teins in complex with other types of molecules can faithfully
be modeled with ML (and particularly deep learning (DL))
techniques (Dhakal et al., 2022; Harris et al., 2023; Kr-
ishna et al., 2024), several new works in this direction have
suggested the promising potential of such approaches to
protein-ligand structure determination (Corso et al., 2022;
Lu et al., 2024; Qiao et al., 2024; Abramson et al., 2024).
Nonetheless, to date, it remains to be shown whether such
DL methods can adequately generalize in the context of apo
(i.e., unbound) protein structures and multiple interacting
ligand molecules (e.g., which can alter the chemical func-
tions of various enzymes) as well as whether such methods
are more accurate than traditional techniques for protein-
ligand structure determination (for brevity hereafter referred
to interchangeably as structure generation or docking) such
as template-based (Pang et al., 2023) or molecular docking
software tools (Xu et al., 2023).
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Figure 1. Overview of POSEBENCH, our comprehensive benchmark for practical ML modeling of single and multi-ligand protein complex
structures in the context of apo (predicted) protein structures without known binding pockets (i.e., blind docking).

To bridge this knowledge gap, our contributions in this work
are as follows:

• We introduce the first unified benchmark for protein-
ligand structure generation that evaluates the perfor-
mance of both recent DL-based methods as well as
conventional methods for single and multi-ligand dock-
ing.

• In contrast to several recent works on protein-ligand
docking (Buttenschoen et al., 2024; Corso et al.,
2024a), the benchmark results we present in this work
are all within the context of apo (i.e., predicted) pro-
tein structures without known binding pockets, which
notably enhances the practicality and real-world utility
of this study’s findings.

• Our newly proposed benchmark, POSEBENCH, en-
ables specific insights into necessary areas of future
work for accurate and generalizable protein-ligand
structure generation, including that molecule pretrain-
ing seems to be key to generalizing to multi-ligand
docking targets.

• Our benchmark’s results also show that template-based
algorithms for protein-ligand structure generation sur-
pass the multi-ligand docking performance of several
recent DL methods for protein-ligand docking, which
suggests the importance of directly training and evalu-
ating future DL methods on multi-ligand targets.

2. Related work
Structure prediction of protein-ligand complexes. The
field of DL-driven protein-ligand structure determination
was largely sparked with the development of geometric
deep learning methods such as EquiBind (Stärk et al., 2022)

and TANKBind (Lu et al., 2022) for direct (i.e., regression-
based) prediction of bound ligand structures in protein com-
plexes. Notably, these predictive methods could estimate
localized ligand structures in complex with multiple pro-
tein chains as well as the associated complexes’ binding
affinities. However, in addition to their limited predictive
accuracy, they have more recently been found to frequently
produce steric clashes between protein and ligand atoms,
notably hindering their widespread adoption in modern drug
discovery pipelines.

Protein-ligand structure generation and docking. Shortly
following the first wave of predictive methods for protein-
ligand structure determination, DL methods such as Diff-
Dock (Corso et al., 2022) demonstrated the utility of a new
approach to this problem by reframing protein-ligand dock-
ing as a generative modeling task, whereby multiple ligand
conformations can be generated for a particular protein tar-
get and rank-ordered using a predicted confidence score.
This approach has inspired many follow-up works offering
alternative formulations of this generative approach to the
problem (Lu et al., 2024; Plainer et al., 2023; Zhu et al.,
2024), with some of such follow-up works also being capa-
ble of accurately modeling protein flexibility upon ligand
binding or predicting binding affinities to a high degree of
accuracy.

Benchmarking efforts for protein-ligand complexes. In
response to the large number of new methods that have been
developed for protein-ligand structure generation, recent
works have introduced several new datasets and metrics with
which to evaluate newly developed methods, with some of
such benchmarking efforts focusing on modeling single-
ligand protein interactions (Buttenschoen et al., 2024) and
with others specializing in the assessment of multi-ligand
protein interactions (Robin et al., 2023). One of the primary
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Table 1. POSEBENCH evaluation datasets for protein-(multi-)ligand structure generation.

Name Type Source Size (Total # Ligands)

Astex Diverse Single-Ligand (Hartshorn et al., 2007) 80
PoseBusters Benchmark Single-Ligand (Buttenschoen et al., 2024) 280
DockGen Single-Ligand (Corso et al., 2024a) 91
CASP15 Multi-Ligand 102 (across 19 complexes)

→ 6 (13) single (multi)-ligand complexes

aims of this work is to bridge this gap by systematically
assessing a selection of the latest (pocket-blind) structure
generation methods within both interaction regimes in the
context of unbound protein structures and ab initio complex
structure prediction, efforts we describe in greater detail in
the following section.

3. POSEBENCH

The overall goal of POSEBENCH, our newly proposed bench-
mark for protein-ligand structure generation, is to provide
the ML research community with a centralized resource
with which one can systematically measure, in a variety
of macromolecular contexts, the methodological advance-
ments of new DL methods proposed for this problem. In
the remaining sections, we describe POSEBENCH’s design
and composition (as illustrated in Figure 1), how we have
used POSEBENCH to evaluate several recent DL methods
(as well as conventional algorithms) for protein-ligand struc-
ture modeling, and what actionable insights we can derive
from POSEBENCH’s benchmark results with these latest DL
methods.

3.1. Preprocessed datasets

POSEBENCH provides users with four datasets with which
to evaluate existing or new protein-ligand structure gener-
ation methods, the Astex Diverse and PoseBusters Bench-
mark (DockGen) datasets previously curated by Butten-
schoen et al. (2024) ((Corso et al., 2024a)) as well as the
CASP15 protein-ligand interaction (PLI) dataset that we
have manually curated in this work.

Astex Diverse dataset. The Astex Diverse dataset
(Hartshorn et al., 2007) is a collection of 85 protein-ligand
complexes composed of various drug-like molecules known
to be of pharmaceutical or agrochemical interest, where
a single representative ligand is present in each complex.
This dataset can be considered an easy benchmarking set
for many DL-based docking methods in that several of its
proteins are known to overlap with the commonly used
PDBBind (time-split) training dataset. Nonetheless, includ-
ing this dataset for benchmarking allows one to determine
the performance ”upper bound” of each method’s docking

capabilities for single-ligand protein complexes.

To perform apo docking with this dataset, we used ESM-
Fold (Lin et al., 2023) to predict the complex structure of
each of its proteins, where 5 of these 85 complexes were ex-
cluded from the effective benchmarking set due to being too
large for structure prediction on an 80GB NVIDIA A100
GPU. For the remaining 80 complexes, we then optimally
aligned their predicted protein structures to the correspond-
ing ground-truth (holo) protein-ligand structures using the
PLI-weighted root mean square deviation (RMSD) align-
ment algorithm originally proposed by Corso et al. (2022).

PoseBusters Benchmark dataset. The PoseBusters Bench-
mark dataset (Buttenschoen et al., 2024) contains 308 recent
protein-ligand complexes released from 2021 onwards. Like
the Astex Diverse set, each complex in this dataset contains
a single ligand for prediction. In contrast to Astex Diverse,
this dataset can be considered a harder benchmark set since
its proteins do not directly overlap with the commonly used
PDBBind (time-split) training dataset composed of protein-
ligand complexes with release dates up to 2019.

Likewise to Astex Diverse, for the PoseBusters Benchmark
set, we used ESMFold to predict the apo complex structures
of each of its proteins. After filtering out 28 complexes
for which the corresponding protein structure could not be
predicted on an 80GB A100 GPU, we RMSD-aligned the
remaining 280 predicted protein structures while optimally
weighting each complex’s protein-ligand interface in the
alignment. For the DockGen dataset, we refer readers to
Appendix G.1.

CASP15 dataset. To assess the multi-ligand modeling
capabilities of recent methods for protein-ligand structure
generation, in this work, we introduce a curated version of
the CASP15 PLI dataset introduced as a first-of-its-kind pre-
diction category in the 15th Critical Assessment of Structure
Prediction (CASP) competition (Robin et al., 2023) held in
2022. The CASP15 PLI set is originally comprised of 23
protein-ligand complexes, where we subsequently filter out
4 complexes based on (1) whether the CASP organizers ulti-
mately assessed predictions for the complexes; (2) whether
they are RNA-ligand complexes with no interacting protein
chains; or (3) whether we could obtain a reasonably accurate
prediction of the complex’s multimeric protein chains using
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either ESMFold or AlphaFold-based structure prediction on
an 80GB A100 GPU (selecting for each complex the pre-
diction which yielded the lowest-RMSD protein complex
structure). Following this initial filtering step, we optimally
align each remaining complex’s predicted protein structures
to the corresponding ground-truth protein-(multi-)ligand
structures, weighting each of the complex’s protein-ligand
binding sites in the structural alignment.

The 19 remaining protein-ligand complexes, which contain
a total of 102 (fragment) ligands, consist of a variety of
ligand types including single-atom (metal) ions and large
drug-sized molecules with up to 92 atoms in each (fragment)
ligand. As such, this dataset is appropriate for assessing how
well structure generation methods can model interactions
between different (fragment) ligands in the same complex,
which can yield insights into the (protein-ligand and ligand-
ligand) steric clash rates of each method.

Sequence identity overlap. Note that for all four of the test
datasets described above and listed in Table 1, we do not per-
form an analysis of the sequence identity overlap between
these test datasets’ proteins and those of e.g., the PDBBind
(time-split) training dataset, as (1) not all DL-based docking
methods use PDBBind as their respective training datasets
and (2) leaving the test complexes unfiltered according to se-
quence identity should, in principle, reflect many real-world
use cases of these methods in which several (new) protein
targets they are presented with may or may not be similar
to what the methods have ”seen” during training. Neverthe-
less, for an investigation of the sequence identity overlap
between e.g., the PoseBusters Benchmark set and PDBBind,
we refer interested readers to Buttenschoen et al. (2024).
Furthermore, in Appendix F, we analyze the different types
and frequencies of protein-ligand interactions natively found
within the Astex Diverse, PoseBusters Benchmark, Dock-
Gen, and CASP15 datasets, respectively, to quantify the
diversity of the (predicted) interactions each dataset can be
used to evaluate.

3.2. Formulated tasks

In this work, we have developed POSEBENCH to focus our
analysis on the behavior of different DL methods for protein-
ligand docking in a variety of macromolecular contexts (e.g.,
with or without inorganic cofactors present). With this goal
in mind, below we formulate the structure generation tasks
currently available in POSEBENCH.

Single-ligand blind docking. For single-ligand blind dock-
ing, each benchmark method is provided with a (multi-
chain) protein sequence and an optional apo (predicted)
protein structure as input along with a corresponding lig-
and SMILES string for each complex. In particular, no
knowledge of the complex’s protein-ligand binding pocket
is provided to evaluate how well each method can (1) iden-

tify the correct binding pockets and (2) propose the correct
ligand conformation within each predicted pocket.

Multi-ligand blind docking. For multi-ligand blind dock-
ing, each benchmark method is provided with a (multi-
chain) protein sequence and an optional apo (predicted)
protein structure as input along with the corresponding (frag-
ment) ligand SMILES strings. As in single-ligand blind
docking, no knowledge of the protein-ligand binding pocket
is provided, which offers the opportunity to not only evalu-
ate binding pocket and conformation prediction precision
but also multimeric steric clash rates.

4. Methods and experimental setup
Overview. Our benchmark is designed to explore answers
to specific modeling questions for protein-ligand docking
such as (1) which types of methods are best able to iden-
tify the correct binding pocket(s) in target proteins and (2)
which types of methods most accurately produce multi-
ligand structures without steric clashes? In the following
sections, we describe in detail which types of methods we
evaluate in our benchmark, what the input and output for-
mats look like for each method, and how we evaluate each
method’s predictions for particular protein complex targets.

Method categories. As illustrated in Figure 1, we divide the
benchmark methods included in POSEBENCH into one of
three categories: (1) conventional algorithms, (2) predictive
(i.e., regression-based) ML algorithms, and (3) generative
(i.e., distributional) ML algorithms.

As representative algorithms for conventional protein-ligand
docking, we include AutoDock Vina (v1.2.5) (Trott & Olson,
2010) as well as a template-based modeling method for ac-
curate ligand-protein complex structure prediction (TULIP)
that we introduce in this work. To represent predictive ML
docking algorithms, we include FABind (Pei et al., 2024) as
well as the recently released version of RoseTTAFold 2 for
all-atom structural modeling (i.e., RoseTTAFold-All-Atom)
(Krishna et al., 2024). Lastly, for generative ML dock-
ing algorithms, we include DynamicBind (Lu et al., 2024),
NeuralPLexer (Qiao et al., 2024), and the latest version of
DiffDock referred to as DiffDock-L (Corso et al., 2024a)
which is designed with binding site generalization as a key
aim. Notably, AlphaFold 3 (Abramson et al., 2024) does
not support generic SMILES string inputs, so we cannot
benchmark it.

Additionally, we provide a method ensembling baseline
(Ensemble) that uses (multi-)ligand structural consensus
ranking (Con) (Roy et al., 2023) to rank its ligand structure
predictions selected from the (intrinsically method-ranked)
top-40 ligand conformations produced by each conventional,
predictive, and generative ML method. This ensembling
baseline is included to answer the question, ”Which method
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produces the most consistent conformations in interaction
with a protein complex?”.

Input and output formats.

1. Formats for conventional methods are as follows:

(a) Template-based methods such as TULIP are
provided with an apo (predicted) protein struc-
ture and (fragment) ligand SMILES strings and
are tasked with retrieving (PDB template (Bank,
1971)) ligand conformations residing in the same
coordinate system as the given (predicted) pro-
tein structure following optimal molecular and
structural alignment (Hu et al., 2018) with corre-
sponding RDKit conformers of the input (query)
ligand SMILES strings, where structural similar-
ity with the query ligands is used to rank-order
the selected (PDB template) conformations.

(b) Molecular docking tools such as AutoDock Vina,
which require specification of protein binding
sites, are provided with not only a predicted pro-
tein structure but also the centroid coordinates of
each (DiffDock-L-)predicted protein-ligand bind-
ing site residue. Such binding site residues are
classified using a 4 Å protein-ligand heavy atom
interaction threshold and using a 25 Å ligand-
ligand heavy atom interaction threshold to define
a ”group” of ligands belonging to the same bind-
ing site and therefore residing in the same 25 Å3-
sized binding site input voxel for AutoDock Vina.
For interested readers, in Appendix G.1, we ad-
ditionally report results using P2Rank (Krivák &
Hoksza, 2018) to predict AutoDock Vina’s bind-
ing site centroid inputs.

2. Formats for predictive methods are as follows:

(a) FABind is provided with a predicted protein struc-
ture as well as a ligand SMILES string, and it is
then tasked with producing a (single) ligand con-
formation in complex with the given protein.

(b) RoseTTAFold-All-Atom is provided with a
(multi-chain) protein sequence as well as (frag-
ment) ligand SMILES strings, and it is subse-
quently tasked with producing not only a (single)
bound ligand conformation but also the bound
protein conformation (as a representative ab initio
structure generation method).

3. Formats for generative methods are as follows:

(a) DiffDock-L is provided with a predicted protein
structure and (fragment) ligand SMILES strings
and is then tasked with producing (multiple rank-
ordered) ligand conformations (for each fragment)

for the given protein. Note that DiffDock-L does
not natively support multi-ligand SMILES string
inputs, so in this work, we propose a modified
inference procedure for DiffDock-L which au-
toregressively presents each (fragment) ligand
SMILES string to the model while providing the
same predicted protein structure to the model in
each inference iteration (reporting for each com-
plex the average confidence score over all itera-
tions). Notably, as an inference-time modification,
this sampling formulation permits multi-ligand
sampling yet cannot model multi-ligand interac-
tions directly and therefore often produces ligand-
ligand steric clashes.

(b) As a single-ligand generative docking method,
DynamicBind adopts the same input and output
formats as DiffDock-L with the following excep-
tions: (1) the predicted input protein structure can
be modified in response to (fragment) ligand dock-
ing; (2) the autoregressive inference procedure we
adapted from that of DiffDock-L now provides
DynamicBind with its own most recently gener-
ated protein structure in each (fragment) ligand
inference iteration, thereby providing the model
with partial multi-ligand interaction context; and
(3) iteration-averaged confidence scores and pre-
dicted affinities are reported for each complex.
Nonetheless, for both DiffDock-L and Dynam-
icBind, such modified inference procedures high-
light the importance in future work of retraining
such generative methods directly on multi-ligand
complexes to address such inference-time com-
promises.

(c) Lastly, as a natively multi-ligand structure gener-
ation model pretrained using various 3D molec-
ular and protein data sources, NeuralPLexer re-
ceives as its inputs a (multi-chain) protein se-
quence, a predicted protein (template) structure,
as well as (fragment) ligand SMILES strings. The
method is then tasked with producing (multiple
rank-ordered) protein-ligand structure conforma-
tions for each input complex, using the method’s
average predicted per-ligand heavy atom local
Distance Difference Test (lDDT) score (Mariani
et al., 2013) for rank-ordering.

Prediction and evaluation procedures. Using the predic-
tion formats above, the protein-ligand complex structures
each method produces are subsequently evaluated using
various structural accuracy and molecule validity metrics
depending on whether the targets are single or multi-ligand
complexes.

Single-ligand evaluation. For single-ligand targets, we
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Figure 2. Astex & PoseBusters dataset results for successful single-
ligand docking.

Figure 3. PoseBusters dataset results for successful single-ligand
docking with relaxation.

report each method’s percentage of (top-1) ligand conforma-
tions within 2 Å of the corresponding ground-truth ligand
structure (RMSD ≤ 2 Å) as well as the percentage of such
”correct” ligand conformations that are also considered to
be chemically and structurally valid according to the Pose-
Busters software suite (Buttenschoen et al., 2024) (RMSD
≤ 2 Å & PB-Valid).

Multi-ligand evaluation. Following CASP15’s of-
ficial scoring procedure for protein-ligand complexes
(Robin et al., 2023), for multi-ligand targets, we re-
port each method’s percentage of ”correct” (binding site-
superimposed) ligand conformations (RMSD ≤ 2 Å) as well
as violin plots of the RMSD and PLI-specific lDDT scores
of its protein-ligand conformations across all (fragment)
ligands within the benchmark’s multi-ligand complexes (see
Appendix G for these plots). Notably, this final metric,
referred to lDDT-PLI, allows one to evaluate specifically
how well each method can model protein-ligand structural
interfaces. We refer readings to Appendix D for formal defi-
nitions of these metrics. In the remainder of this work, we
will discuss our benchmark’s results and their implications
for the development of future complex structure generation
methods.

Figure 4. CASP15 dataset results for successful multi-ligand dock-
ing with relaxation.

Figure 5. CASP15 dataset results for multi-ligand PoseBusters va-
lidity rates with relaxation.

5. Results and discussions
In this section, we present POSEBENCH’s results for single
and multi-ligand protein-ligand structure generation and dis-
cuss their implications for future work. Note that across all
the experiments, for generative methods (or methods that
use generative inputs to make their predictions), we report
their performance metrics in terms of the mean and standard
deviation across three independent runs of the method to
gain insights into its inter-run stability and consistency. For
interested readers, in Appendix C, we report the average
runtime and memory usage of each baseline method to de-
termine which methods are the most practical for real-world
docking applications.

5.1. Generalization to new binding pockets implies
single-ligand docking performance

We begin our investigations by evaluating the performance
of each baseline method for single-ligand docking using the
Astex Diverse and PoseBusters Benchmark datasets. No-
tably, for results on the PoseBusters Benchmark dataset,
we perform an additional analysis where we apply post-
prediction (fixed-protein) relaxation to each method’s gen-
erated ligand conformations using molecular dynamics sim-
ulations (Eastman & Pande, 2010), as originally proposed
by Buttenschoen et al. (2024). Additionally, for inter-
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((a)) DiffDock-L (unrelaxed) ((b)) DiffDock-L (relaxed)

((c)) NeuralPLexer (unrelaxed) ((d)) NeuralPLexer (relaxed)

Figure 6. DiffDock-L and NeuralPLexer multi-ligand predictions for CASP15 target T1187.

ested readers, in Appendix G.1 we include benchmark re-
sults for flexible-protein relaxation as implemented by Lu
et al. (2024). As shown in Figures 2 and 3, DiffDock-
L achieves the best overall performance across the two
datasets both with and without applying relaxation to its
generated structures. Closely behind in performance for
the PoseBusters Benchmark dataset are DynamicBind and
RoseTTAFold-All-Atom following structural relaxation. In-
terestingly, without relaxation, AutoDock Vina combined
with DiffDock-L’s predicted binding pockets achieves the
second-best performance on the PoseBusters Benchmark
dataset, which suggests that DiffDock-L is currently the only
single-ligand deep learning method that presents a better
intrinsic understanding of biomolecular physics for docking
than conventional modeling tools. For interested readers,
in Appendix G.2, we report e.g., pocket-only PoseBusters
Benchmark experiments and RMSD violin plots for both
the Astex Diverse and PoseBusters Benchmark datasets.

5.2. Molecule pretraining implies multi-ligand docking
performance

We now turn to investigating the performance of various
deep learning and conventional methods for multi-ligand
docking. In Figure 4, we see that although DiffDock-L ini-
tially appears to achieve the best performance in this context,

after applying structural relaxation its performance quickly
diminishes. This trend holds for similar deep learning meth-
ods such as DynamicBind that were specifically trained on
single-ligand protein complexes, as achieving a low RMSD
for each (fragment) ligand does not rule out the existence of
protein-ligand and particularly ligand-ligand steric clashes.
In contrast to this trend, however, NeuralPLexer does not
lose a significant fraction of accurate (fragment) ligand pre-
dictions following structural relaxation, which suggests that
its multi-ligand conformations are already largely free of
steric clashes. Figure 6 illustrates these steric clash trends
using top-1 predictions from DiffDock-L and NeuralPLexer
for CASP15 target T1187 as a case study.

Another interesting observation is that TULIP (following
structural relaxation) outperforms the docking success rates
of single-ligand deep learning docking methods such as
DiffDock-L and DynamicBind in the context of multi-ligand
docking, which suggests room for future improvement in
the multi-ligand modeling capabilities of these recent deep
learning baselines. To further inspect each method’s under-
standing of biomolecular physics for docking, in Figure 5
we report each method’s percentage of predicted complexes
(whether correct or not) for which all ligand conformations
in the complex are jointly considered valid according to
the PoseBusters software suite (i.e., PB-Valid). In short, in
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the context of multi-ligands, we find that AutoDock Vina
followed by DiffDock-L are tied in terms of their Pose-
Busters validity rates following structural relaxation, with
our ensembling consensus baseline (i.e., Ensemble (Con))
as well as DynamicBind shortly behind. As an addendum,
we note that NeuralPLexer’s (DynamicBind’s) predictions
seem to be frequently selected by Ensemble (Con) for single
(multi)-ligand targets, which suggests that NeuralPLexer
(DynamicBind) produces the most consistent (i.e., similar)
ligand poses for a given single (multi)-ligand protein com-
plex. For interested readers, in Appendix G.3, we report
additional results e.g., in terms of lDDT-PLI and RMSD
violin plots for both the total available CASP15 targets as
well as the publicly available ones.

Conclusions
contrast In this work, we introduced POSEBENCH, the
first deep learning benchmark for practical protein-ligand
docking. Experimental results with POSEBENCH suggest
the importance of developing new multi-ligand structure
generation methods for enhanced generalization in future
work. Moreover, based on these benchmark results, we
posit that advances in protein-ligand docking will also likely
be driven by advances in modeling macromolecular struc-
tures (Abramson et al., 2024) (e.g., by training models on
full protein-nucleic acid-ligand complexes), in contrast to
current methods that are trained primarily on one type of
biomolecular complex (e.g., protein-ligand complexes). Key
limitations of this study include its reliance on the accuracy
of its predicted protein structures, its limited number of
multi-ligand prediction targets available for benchmarking,
and its inclusion of only a subset of all available protein-
ligand docking baselines to focus on the most recent deep
learning algorithms designed specifically for docking. In
future work, we aim to expand not only the number of base-
line methods but also the number of available multi-ligand
targets while maintaining a diverse composition of heteroge-
neous (ionic) complexes. As a publicly available resource,
POSEBENCH is flexible to accommodate new datasets and
methods for protein-ligand structure generation.

Availability. The POSEBENCH codebase, documentation,
and tutorial notebooks are available on GitHub under a
permissive MIT license, with further licensing discussed in
Appendix A.
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A. Availability
The POSEBENCH codebase and tutorial notebooks are available under an MIT license at https://github.com/
BioinfoMachineLearning/PoseBench. Preprocessed datasets and benchmark method predictions are available
on Zenodo (Morehead et al., 2024) under a CC-BY 4.0 license, of which the Astex Diverse and PoseBusters Benchmark
datasets (Buttenschoen et al., 2024) are associated with a CC-BY 4.0 license; of which the DockGen dataset (Corso et al.,
2024a) is available under an MIT license; and of which the CASP15 dataset (Robin et al., 2023), as a mixture of publicly
and privately available resources, is partially licensed. In particular, 15 (4 single-ligand and 11 multi-ligand targets) of
the 19 CASP15 protein-ligand complexes evaluated with POSEBENCH are publicly available, whereas the remaining 4 (2
single-ligand and 2 multi-ligand targets) are confidential and, for the purposes of future benchmarking and reproducibility,
must be requested directly from the CASP organizers. Lastly, our use of the PoseBusters software suite for molecule validity
checking is permitted under a BSD-3-Clause license.

B. Broader impacts
Our benchmark unifies protein-ligand structure generation datasets, methods, and tasks to enable enhanced insights into the
real-world utility of such methods for accelerated drug discovery and energy research. We acknowledge the risk that, in the
hands of ”bad actors”, such technologies may be used with harmful ends in mind. However, it is our hope that efforts in
elucidating the performance of recent protein-ligand structure generation methods in various macromolecular contexts will
disproportionately influence the positive societal outcomes of such research such as improved medicines and subsequent
clinical outcomes as opposed to possible negative consequences such as the development of new bioweapons.

C. Compute resources
To produce the results presented in this work, we concurrently utilized 4 80GB NVIDIA A100 GPUs for 4 weeks in total to
run inference with each baseline method three times (where applicable), where each baseline deep learning method required
approximately 3-7 days of GPU compute to complete its inference runs (except for FABind which completed its inference
runs in the span of several hours). Notably, due to RoseTTAFold-All-Atom’s significant storage requirements for running
inference with its multiple sequence alignment databases, we utilized approximately 3 TB of solid-state storage space in
total to benchmark all baseline methods. Lastly, in terms of CPU requirements, our experiments utilized approximately
192 concurrent CPU processes for AutoDock Vina inference (as an upper bound) and 128 GB of CPU RAM. Note that an
additional 1-2 weeks of compute were spent performing initial (failed) versions of each experiment during POSEBENCH’s
initial phase of development.

As a more formal investigation of the computational resources required to run each baseline method in this work, in Table 2
we list the average runtime (in seconds) and peak CPU (GPU) memory usage (in GB) consumed by each method when
running them on a 25% subset of the Astex Diverse dataset.

D. Metrics
In this work, we reference two key metrics in the field of structural bioinformatics: RMSD and lDDT. The RMSD between a
predicted ligand 3D conformation (with atomic positions x̂i for each of the ligand’s n heavy atoms) and the ground-truth
conformation (xi) is defined as:

RMSD =

√√√√ 1

n

n∑
i=1

∥x̂i − xi∥2. (1)

The lDDT score, which is commonly used to compare predicted and ground-truth protein 3D structures, is defined as:

lDDT =
1

N

N∑
i=1

1

4

4∑
k=1

 1

|Ni|
∑
j∈Ni

Θ(|d̂ij − dij | < ∆k)

 , (2)

where N is the total number of heavy atoms in the ground-truth structure; Ni is the set of neighboring atoms of atom i
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Table 2. The average runtime (in seconds) and peak memory usage (in GB) of each baseline method on a 25% subset of the Astex Diverse
dataset (using an NVIDIA 80GB A100 GPU for benchmarking). The symbol - denotes a result that could not be estimated. Where
applicable, an integer enclosed in parentheses indicates the number of samples drawn from a particular (generative) baseline method.

Method Runtime (s) CPU Memory Usage (GB) GPU Memory Usage (GB)

DiffDock-L (40) 130.53 9.67 63.07
FABind 4.01 5.00 8.44
DynamicBind (40) 187.00 5.36 79.11
NeuralPLexer (40) 223.65 11.31 42.61
RoseTTAFold-All-Atom 862.60 49.78 78.97
TULIP - - -
DiffDock-L-Vina 13.05 0.80 0.00
P2Rank-Vina 17.83 2.13 0.00
Ensemble (Con) - - -

within the inclusion radius Ro = 15 Å in the ground-truth structure, excluding atoms from the same residue; d̂ij (dij) is
the distance between atoms i and j in the predicted (ground-truth) structure; ∆k are the distance tolerance thresholds (i.e.,
0.5 Å, 1 Å, 2 Å, and 4 Å); Θ(x) is a step function that equals 1 if x is true, and 0 otherwise; and |Ni| is the number of
neighboring atoms for atom i.

As originally proposed by Robin et al. (2023), in this study, we adopt the PLI-specific variant of lDDT, which calculates
lDDT scores to compare predicted and ground-truth protein-ligand complex structures following optimal structural alignment
of the predicted and ground-truth protein-ligand binding pockets.

E. Documentation for datasets
Below, we provide detailed documentation for each dataset included in our benchmark, summarised in Table 1. Each dataset
is freely available for download from the benchmark’s accompanying Zenodo data record (Morehead et al., 2024) under
a CC-BY 4.0 license. In lieu of being able to create associated metadata for each of our macromolecular datasets using
an ML-focused library such as Croissant (Akhtar et al., 2024) (due to file type compatibility issues), instead, we report
structured metadata for our preprocessed datasets using Zenodo’s web user interface (Morehead et al., 2024). Note that, for
all datasets, we authors bear all responsibility in case of any violation of rights regarding the usage of such datasets.

E.1. Astex Diverse Set - Single-Ligand Docking (Difficulty: Easy)

A common drug discovery task is to screen several novel drug-like molecules against a target protein in rapid succession.
The Astex Diverse dataset was originally developed with this application in mind, as it features many therapeutically relevant
3D molecules for computational modeling.

• Motivation Several downstream drug discovery efforts rely on having access to high-quality molecular data for
docking.

• Collection For this dataset, which was originally compiled by Hartshorn et al. (2007), we adopt the version further
prepared by Buttenschoen et al. (2024).

• Composition The dataset consists of 85 (80) single-ligand protein complexes (for which we could obtain high-accuracy
predicted protein structures using AlphaFold/ESMFold).

• Hosting Our preprocessed version of the dataset (https://doi.org/10.5281/zenodo.11477766) can
be downloaded from the benchmark’s Zenodo data record at https://zenodo.org/records/11477766/
files/astex_diverse_set.tar.gz.

• Licensing We have released our preprocessed version of the dataset under a CC-BY 4.0 license. The original dataset is
available under a CC-BY 4.0 license on Zenodo (Buttenschoen et al., 2023).

12

https://github.com/mlcommons/croissant/issues/547
https://doi.org/10.5281/zenodo.11477766
https://zenodo.org/records/11477766/files/astex_diverse_set.tar.gz
https://zenodo.org/records/11477766/files/astex_diverse_set.tar.gz


Deep Learning for Protein-Ligand Docking: Are We There Yet?

• Maintenance We will announce any errata discovered in or changes made to the dataset using the benchmark’s GitHub
repository at https://github.com/BioinfoMachineLearning/PoseBench.

• Uses This dataset of holo (and predicted-apo) protein PDB and holo ligand SDF files can be used for single-ligand
docking or protein-ligand structure generation.

• Metric Ligand RMSD ≤ 2 Å & PoseBusters-Valid (PB-Valid).

E.2. PoseBusters Benchmark Set - Single-Ligand Docking (Difficulty: Intermediate)

Like the Astex Diverse dataset, the PoseBusters Benchmark dataset was originally developed for docking individual ligands
to target proteins. However, this dataset features a larger and more challenging collection of protein-ligand complexes for
computational modeling.

• Motivation Data sources of challenging single-ligand protein complexes for molecular docking are critical for the
development of future docking methods.

• Collection For this dataset, we adopt the version introduced by Buttenschoen et al. (2024).

• Composition The dataset consists of 308 (280) single-ligand protein complexes (for which we could obtain high-
accuracy predicted protein structures using AlphaFold/ESMFold).

• Hosting Our preprocessed version of the dataset (https://doi.org/10.5281/zenodo.11477766) can
be downloaded from the benchmark’s Zenodo data record at https://zenodo.org/records/11477766/
files/posebusters_benchmark_set.tar.gz.

• Licensing We have released our preprocessed version of the dataset under a CC-BY 4.0 license. The original dataset is
available under a CC-BY 4.0 license on Zenodo (Buttenschoen et al., 2023).

• Maintenance We will announce any errata discovered in or changes made to the dataset using the benchmark’s GitHub
repository at https://github.com/BioinfoMachineLearning/PoseBench.

• Uses This dataset of holo (and predicted-apo) protein PDB and holo ligand SDF files can be used for single-ligand
docking or protein-ligand structure generation.

• Metric Ligand RMSD ≤ 2 Å & PoseBusters-Valid (PB-Valid).

E.3. DockGen Set - Single-Ligand Docking (Difficulty: Challenging)

The DockGen dataset was originally developed for docking individual ligands to target proteins in the context of novel
protein binding pockets. As such, this dataset is useful for evaluating how well each baseline method can generalize to
distinctly different binding pockets compared to those on which it may have been trained.

• Motivation Data sources of protein-ligand complexes representing novel single-ligand binding pockets are critical for
the development of generalizable docking methods.

• Collection For this dataset, we adopt the version introduced by Corso et al. (2024a).

• Composition The dataset originally consists of 189 single-ligand protein complexes, after which we perform additional
filtering down to 91 complexes based on ESMFold structure prediction accuracy (< 5 Å Cα atom RMSD for the
primary protein interaction chain).

• Hosting Our preprocessed version of the dataset (https://doi.org/10.5281/zenodo.11477766) can
be downloaded from the benchmark’s Zenodo data record at https://zenodo.org/records/11477766/
files/dockgen_set.tar.gz.

• Licensing We have released our preprocessed version of the dataset under a CC-BY 4.0 license. The original dataset is
available under an MIT license on Zenodo (Corso et al., 2024b).
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• Maintenance We will announce any errata discovered in or changes made to the dataset using the benchmark’s GitHub
repository at https://github.com/BioinfoMachineLearning/PoseBench.

• Uses This dataset of holo (and predicted-apo) protein PDB and holo ligand PDB files can be used for single-ligand
docking or protein-ligand structure generation.

• Metric Ligand RMSD ≤ 2 Å & PoseBusters-Valid (PB-Valid).

E.4. CASP15 Set - Multi-Ligand Docking (Difficulty: Challenging)

As the most complex of our benchmark’s four test datasets, the CASP15 protein-ligand interaction dataset was created
to represent the new protein-ligand modeling category in the 15th Critical Assessment of Structure Prediction (CASP)
competition. Whereas the Astex Diverse and PoseBusters Benchmark datasets feature solely single-ligand protein complexes,
the CASP15 dataset provides users with a variety of challenging organic (e.g., drug molecules) and inorganic (e..g., ion)
cofactors for multi-ligand biomolecular modeling.

• Motivation Multi-ligand evaluation datasets for molecular docking provide the rare opportunity to assess how well
baseline methods can model intricate protein-ligand interactions while avoiding troublesome protein-ligand and ligand-
ligand steric clashes. Additionally, more accurate modeling of multi-ligand complexes in future works may lead to
improved techniques for computational enzyme design and regulation (Stärk et al., 2023).

• Collection For this dataset, we manually collect each publicly and privately available CASP15 protein-bound ligand
complex structure compatible with protein-ligand (e.g., non-RNA) benchmarking.

• Composition The dataset consists of 102 (86) fragment ligands contained within 19 (15) separate (publicly available)
protein complexes, of which 6 (2) and 13 (2) of these complexes are single and multi-ligand complexes, respectively.

• Hosting Our preprocessed version of (the publicly available version of) this dataset (https://doi.org/10.
5281/zenodo.11477766) can be downloaded from the benchmark’s Zenodo data record at https://zenodo.
org/records/11477766/files/casp15_set.tar.gz.

• Licensing We have released our preprocessed version of the (public) dataset under a CC-BY 4.0 license. The original
(public) dataset is free for download via the RCSB PDB (Bank, 1971).

• Maintenance We will announce any errata discovered in or changes made to the dataset using the benchmark’s GitHub
repository at https://github.com/BioinfoMachineLearning/PoseBench.

• Uses This dataset of holo (and predicted-apo) protein PDB and holo ligand PDB files can be used for multi-ligand
docking or protein-ligand structure generation.

• Metric (Fragment) Ligand RMSD ≤ 2 Å & (Complex) PoseBusters-Valid (PB-Valid).

F. Analysis of protein-ligand interactions
Inspired by a similar analysis presented in the PoseCheck benchmark (Harris et al., 2023), in this section, we study the
frequency of different types of protein-ligand interactions such as Van der Waals contacts and hydrophobic interactions
occurring natively within the Astex Diverse, PoseBusters Benchmark, DockGen, and CASP15 datasets, respectively. In
particular, these measures allow us to better understand the diversity of interactions each baseline method within the
POSEBENCH benchmark is tasked to model, within the context of each test dataset. Figure 7 displays the results of this
analysis.

Overall, we find that the Astex Diverse, PoseBusters Benchmark, and DockGen datasets contain similar types and frequencies
of interactions, with the PoseBusters Benchmark and DockGen datasets containing slightly more hydrogen bond acceptors
(∼3 vs 1) and Van der Waals contacts (∼13 vs 8) on average compared to the Astex Diverse dataset. However, we note
a significant difference in interaction types and frequencies between the CASP15 dataset and the three other datasets.
Specifically, we find it contains a significantly higher proportion of hydrogen bond acceptors and donors (∼40), Van der
Waals contact (∼200), and hydrophobic interactions (∼15) on average. Particularly interesting to note is the CASP15
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Figure 7. Astex, PoseBusters, DockGen, and CASP15 dataset analysis of protein-ligand interactions.
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dataset’s bimodal distribution of hydrophobic interactions, suggesting that the dataset contains two primary classes of
interacting ligands giving rise to hydrophobic interactions. One possible explanation for this phenomenon is that the CASP
targets, in contrast to the Astex Diverse, PoseBusters Benchmark, and DockGen targets, consist of a variety of both organic
(e.g., drug-like molecules) and inorganic (e.g., metal) cofactors.

G. Additional results
In this section, we provide additional results for each baseline method using the Astex Diverse, PoseBusters Benchmark,
and DockGen datasets as well as the CASP15 ligand targets. Note that for all violin plots listed in this section, we curate
them using combined results across each method’s three independent runs (where applicable), in contrast to this section’s
bar charts where we instead report mean and standard deviation values across each method’s three independent runs.

G.1. DockGen results

DockGen dataset. The DockGen dataset (Corso et al., 2024a) contains 189 diverse single-ligand protein complexes, each
representing a novel type of protein-ligand binding pocket. This dataset can be considered the most difficult single-ligand
benchmark set since its protein binding sites are distinctly different from those found in the training datasets of most deep
learning-based docking methods to date.

For this dataset, we once again used ESMFold to predict the apo complex structures of each of its proteins. We performed
additional filtering down to 91 of the dataset’s complexes, as using ESMFold not all 189 of its protein complex structures
could be accurately predicted (i.e., achieving < 5 Å Cα atom RMSD for the primary protein interaction chains). After
predicting each structure, we RMSD-aligned these apo structures while optimally weighting each complex’s protein-ligand
interface in the alignment.
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Figure 8. DockGen dataset results for successful single-ligand docking with relaxation.

Benchmark results. Figures 8 and 9 show that DiffDock-L, NeuralPLexer, and Ensemble (Con) provide the best pocket
generalization capabilities compared to all other baseline methods. In particular, Ensemble (Con) seems to provide the most
stable performance in this setting. Moreover, the results for DiffDock-L-Vina and P2Rank-Vina suggest that DiffDock-L
generalizes to new binding pockets slightly better than P2Rank for conventional docking with AutoDock-Vina. Additionally,
DiffDock-L’s results with protein-flexible relaxation applied (i.e., DiffDock-L (Relax-P)) demonstrate that fixed-protein
relaxation (albeit unideal from a theoretical e.g., protein side chain perspective (Wankowicz et al., 2022)) yields less accuracy
degradation to DiffDock-L’s original ligand conformations compared to side chain-flexible relaxation. However, we note
that none of the baseline methods generate any PB-valid ligand conformations, suggesting that such ”correct” poses are
approximately accurate yet physically implausible in certain measurable ways.
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Figure 9. DockGen dataset results for single-ligand docking RMSD.
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Figure 10. Pocket-only PoseBusters dataset results for successful single-ligand docking with relaxation.

G.2. Expanded Astex & PoseBusters results

G.2.1. POCKET-ONLY POSEBUSTERS RESULTS

Figures 10 and 11 illustrate the impact of reducing the binding pocket search space of each baseline docking method by
providing each method with alternative versions of the predicted PoseBusters Benchmark protein structures that have been
cropped to contain only ligand-interacting (< 4 Å heavy atom distance) protein residues and their (7) sequence-adjacent
neighbors. Overall, we find that performing such pocket-level docking increases the docking success rates and favorably
narrows the ligand RMSD distributions of DiffDock-L, NeuralPLexer, RoseTTAFold-All-Atom, and Ensemble (Con),
whereas for all other baselines, performance is either maintained or degraded marginally. This finding highlights that
methods such as DiffDock-L, NeuralPLexer, and RoseTTAFold-All-Atom are better at identifying the correct local structural
conformations of each ligand compared to other baseline methods such as FABind and DynamicBind.

G.2.2. ASTEX & POSEBUSTERS RMSD RESULTS

In Figures 12 and 13, we report the ligand RMSD values of each baseline method across the Astex Diverse and PoseBusters
Benchmark datasets, with relaxation being applied in the context of the PoseBusters Benchmark dataset. In short, we see
that most methods are relatively similar in terms of their ligand RMSD distributions, with RoseTTAFold-All-Atom and our
ensembling consensus baseline (i.e., Ensemble (Con)), however, offering more condensed distributions overall. Interestingly,
for Astex Diverse, TULIP also appears to produce a uniquely confined ligand RMSD distribution.
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Figure 11. Pocket-only PoseBusters dataset results for single-ligand docking RMSD.

Figure 12. Astex & PoseBusters dataset results for single-ligand docking RMSD.
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Figure 13. PoseBusters dataset results for single-ligand docking RMSD with relaxation.
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G.3. Expanded CASP15 results

G.3.1. OVERVIEW OF EXPANDED RESULTS

In this section, we begin by reporting additional CASP15 benchmarking results in terms of each baseline method’s multi-
ligand RMSD and lDDT-PLI distributions as violin plots. Subsequently, we report successful ligand docking success rates as
well as RMSD and lDDT-PLI results specifically for the single-ligand CASP15 targets. Lastly, we report all the above single
and multi-ligand results specifically using only the CASP15 targets for which the ground-truth (experimental) structures are
publicly available, to enable reproducible future benchmarking and follow-up works.

G.3.2. MULTI-LIGAND RMSD AND LDDT-PLI

To start, Figures 14 and 15 report each method’s multi-ligand RMSD and lDDT-PLI distributions with and without relaxation.
We see that NeuralPLexer and Ensemble (Con) produce the most tightly bound and accurate RMSD and lDDT-PLI
distributions overall.

G.3.3. ALL SINGLE-LIGAND RESULTS

Next, Figures 16, 17, 18, and 19 display each method’s single-ligand CASP15 docking success rates, PoseBusters validity
rates, docking RMSD, and docking lDDT-PLI distributions, respectively. In summary, we can make a few respective
observations from these plots. (1) DiffDock-L and Ensemble (Con) are the only methods capable of successfully docking
any single-ligand CASP15 complexes. (2) AutoDock Vina produces the most PB-valid single-ligand complexes overall,
with DiffDock-L shortly behind. (3) DiffDock-L, AutoDock Vina, and Ensemble (Con) appear to achieve the most tightly
bound and accurate RMSD distributions. (4) In contrast to (3), only Ensemble (Con) appears to achieve top results in terms
of lDDT-PLI compared to the other baseline methods.

G.3.4. SINGLE AND MULTI-LIGAND RESULTS FOR public TARGETS

Lastly, for completeness and reproducibility, Figures 20, 21, 22, and 23 present corresponding multi-ligand results for the
public CASP15 targets, whereas Figures 24, 25, 26, and 27 report corresponding single-ligand results for the public CASP15
targets. Overall, we observe marginal differences between the full and public CASP15 target results for multi-ligand
complexes. However, we notice more striking performance drops between the full and public single-ligand CASP15 target
results, suggesting that some of the private single-ligand complexes are easier prediction targets than most of the publicly
available single-ligand complexes.
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Figure 14. CASP15 dataset results for multi-ligand docking RMSD with relaxation.

Figure 15. CASP15 dataset results for multi-ligand docking lDDT-PLI with relaxation.
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Figure 16. CASP15 dataset results for successful single-ligand docking with relaxation.

Figure 17. CASP15 dataset results for single-ligand PoseBusters validity rates with relaxation.
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Figure 18. CASP15 dataset results for single-ligand docking RMSD with relaxation.

Figure 19. CASP15 dataset results for single-ligand docking lDDT-PLI with relaxation.
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Figure 20. CASP15 public dataset results for successful multi-ligand docking with relaxation.

Figure 21. CASP15 public dataset results for multi-ligand PoseBusters validity rates with relaxation.
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Figure 22. CASP15 public dataset results for multi-ligand docking RMSD with relaxation.

Figure 23. CASP15 public dataset results for multi-ligand docking lDDT-PLI with relaxation.
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Figure 24. CASP15 public dataset results for successful single-ligand docking with relaxation.

Figure 25. CASP15 public dataset results for single-ligand PoseBusters validity rates with relaxation.
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Figure 26. CASP15 public dataset results for single-ligand docking RMSD with relaxation.

Figure 27. CASP15 public dataset results for single-ligand docking lDDT-PLI with relaxation.
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