
MatFormer: Nested Transformer for Elastic Inference

Devvrit∗∆⋄ Sneha Kudugunta∗†⋄ Aditya Kusupati∗†⋄+

Tim Dettmers† Kaifeng Chen⋄ Inderjit Dhillon⋄∆ Yulia Tsvetkov† Hannaneh Hajishirzi†

Sham Kakade‡ Ali Farhadi† Prateek Jain⋄+

⋄Google DeepMind ∆University of Texas at Austin †University of Washington ‡Harvard University

Abstract

Foundation models are applied in a broad spectrum of settings with different infer-
ence constraints, from massive multi-accelerator clusters to resource-constrained
standalone mobile devices. However, the substantial costs associated with training
these models often limit the number of unique model sizes that can be offered. Con-
sequently, practitioners are compelled to select a model that may not be optimally
aligned with their specific latency and cost requirements. We present MatFormer2,
a novel Transformer architecture designed to provide elastic inference across di-
verse deployment constraints. MatFormer achieves this by incorporating a nested
Feed Forward Network (FFN) block structure within a standard Transformer model.
During training, we optimize the parameters of multiple nested FFN blocks with
varying sizes, enabling the extraction of hundreds of accurate smaller models with-
out incurring additional computational costs. We empirically validate the efficacy
of MatFormer across different model classes (decoders and encoders) and modali-
ties (language and vision), demonstrating its potential for real-world deployment.
We show that a 850M decoder-only MatFormer language model (MatLM) allows
us to extract multiple smaller models spanning from 582M to 850M parameters,
each exhibiting better validation loss and one-shot downstream evaluations than
independently trained counterparts. Furthermore, we observe that smaller encoders
extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the
metric-space structure for adaptive large-scale retrieval. Finally, we showcase that
speculative decoding with the accurate and consistent submodels extracted from
MatFormer can lead to significant reduction in inference latency. Project website.

1 Introduction

Large Foundation models [49, 45, 17] are deployed in a variety of settings with different compute and
accuracy demands like real-time response on mobile phones or on multi-cluster GPUs for web-scale
batch serving. However, typical model families provide only a few independently trained models
of different sizes. For example, the Llama-2 family provides models with 7B, 13B, 34B, and 70B
parameters [59]. So practitioners are forced to choose a smaller (and typically less accurate) model
than their latency/cost budget. Alternatively, one can use compression/pruning to fit a bigger model
in a given compute budget [19, 36, 53], but that requires additional training.

We introduce MatFormer, a natively elastic Transformer [61] architecture that overcomes this chal-
lenge. MatFormer allows for training one universal model which can be used to extract hundreds
of smaller submodels without any additional training cost (Figure 1). MatFormer is a general

∗Equal technical contribution. +Aditya Kusupati and Prateek Jain led the project.
Correspondence: devvrit@cs.utexas.edu,{snehakudugunta,kusupati,prajain}@google.com

2MatFormer stands for Matryoshka Transformer, reflecting the model’s inherent nested structure.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://devvrit.github.io/matformer/


Tr
ai

ni
ng

Add & Norm

𝞼 ( )

Add & Norm

Attention

FFN

In
fe

re
nc

e

MatFormer Block

MatLM-S MatLM-M MatLM-L MatLM-XL

Mix`n`Match

Figure 1: MatFormer introduces nested structure into the Transformer’s FFN block & trains all the
submodels, enabling free extraction of hundreds of accurate submodels for elastic inference.

architecture that can be applied to encoders and decoders, is domain agnostic, and is compatible with
standard foundation model training pipelines.

MatFormer follows the principle of matryoshka representation learning [34], to introduce nested
substructure inside the standard Transformer block. Formally, MatFormer defines Transformer blocks
Ti, such that, T1 ⊂ T2 ⊂ · · · ⊂ Tg, where g is the number of nested transformer blocks, and
Ti ⊂ Ti+1 relation indicates that the parameters of Ti are contained in those of Ti+1. MatFormer
can induce such sub-structure in both the attention and the feedforward network (FFN) blocks of
the Transformer (see Figure 1). Consider, say, a FFN block that has dff neurons in the hidden layer.
Then, MatFormer induces matryoshka structure on these neurons, where Ti contains the first mi

neurons and 1 ≤ m1 < m2 · · · < mg = dff represent the number of neurons for each granularity or
sub-model. Intuitively, this implies that the first m1 neurons are “most significant” neurons as they
belong to all the blocks followed by the next m2 −m1, and so on.

In a departure from related work (Section 2), despite optimizing for only g granularities, we are
able to extract exponentially more submodels post-training. Using the trained MatFormer blocks
T1, . . . , Tg at each layer, one can form new models by Mix’n’Match (Section 3.3), i.e., by taking an
arbitrary combination of these blocks across layers. For example, in the first layer, one can select Tg ,
the largest block, choose T2 in the second layer, and so on, forming gl different models (where l is
the number of layers). Surprisingly, in multiple settings, and for various model sizes, we observe that
the extracted models indeed are accurate, with accuracy scaling with the size of the extracted model.

We train Matformer-based decoder-only Language Models (MatLM) up to 850M parameters and
observe that: (a) MatLMs explicitly trained with g exponentially spaced granularities outperform
validation loss and one-shot downstream evals of respective g baseline models trained independently
from scratch, (b) our extracted models using Mix’n’Match lie on the accuracy-vs-parameters trade-off
curve generated by the g explicitly trained models, (c) through scaling experiments we observe that
the loss vs compute law for different MatFormer models remains similar to vanilla Transformer
models across different granularities and (d) the submodels extracted from MatLM have highly
consistent behavior that is highly desirable for inference optimizations and deployment across scales.

We further study MatFormer-based ViT models (MatViT) and make similar observations. For
example, MatViT-L/16 improves the accuracy of the standard ViT-L/16 model on ImageNet-1K, and
the extracted sub-models all match or even perform better than the independently trained baselines.
Furthermore, we demonstrate that, due to high consistency, MatViT models can be used as “elastic
encoders” for adaptive image retrieval. That is, the metric-space of an image encoded by the universal
(i.e. largest) MatViT model is roughly preserved by the nested submodels. Hence, based on query
complexity, system load, and various other considerations, we can use one of the extracted MatViT
encoders at inference time for retrieval on a fixed corpus encoded by the universal model – providing
over 40% less compute overhead with < 0.5% drop in accuracy.

We make these key contributions:

2



1. We introduce MatFormer, which incorporates a nested sub-structure within the standard Trans-
former and optimizes all the g granularities to produce a single, universal elastic model.

2. We introduce Mix’n’Match, a simple heuristic with no computation overhead that finds optimal
submodels within a given parameter budget, outperforming more complex NAS methods. This
yields hundreds of accurate and consistent submodels without any training cost (Section 3).

3. MatFormer generalizes effectively to both decoder-only language models (MatLM) and vision
encoders (MatViT), scaling as reliably and accurately as the standard Transformer, while enabling
significantly faster autoregressive generation and large-scale adaptive dense retrieval (Section 4).

2 Related Work

Transformers [61] have become the unifying model architecture for foundation models [7] across
modalities like language [8], vision [17] and audio [47]. While powerful, the standard Transformer
block is not natively elastic in a way that enables large-scale adaptive and flexible deployment across
various resource constraints. To cater to the plethora of deployment requirements, existing solutions
include training a family of models of varying sizes [49, 2], post-hoc efficiency techniques like
quantization [19], pruning [36], and distillation [53]. However, these solutions often are specific to
the single constraint at hand, and require additional training for each new downstream usecase. This
makes them far from being a truly elastic solution for adaptive deployment. Lastly, Transformer
based LLMs are often sped-up during inference with techniques like speculative decoding [39, 12] –
that benefits from the smaller draft & the larger verifier models having similar behavior – or early
exiting [54] to enable real-time deployment.

Obtaining multiple smaller models from a single model has been explored in the past [66, 65, 9, 23, 10]
with most work focusing on CNN encoders. In this work, we focus on Transformers in decoder-only
language models and pretrained vision models. Specifically, OFA [9] trains a teacher CNN model,
and uses distillation to finetune randomly sampled submodels (not nested) in the universal student
CNN model. Moreover, OFA focuses on small scale models to be deployed on end devices. In
contrast, MatFormer doesn’t require distillation, thereby using substantially less memory, and uses
nested models. Using nested models allows us to host multiple models together without significantly
increasing the model’s memory footprint, which is advantageous for scenarios where we want
to route queries through different sub-networks. Slimmable networks [66] jointly optimizes and
provide limited preset widths. Universal Slimmable network [65] extends this to sample from a
continuous search space of submodels and optimizes them jointly. In contrast, MatFormer samples
and only optimizes one of the preset granularities. HAT [63] trains a universal network only to
learn relative performance for different architectures. For deployment, the authors use NAS to find
the optimal architecture and train it from scratch before serving. In contrast, MatFormer requires
no additional training and accurate subnetworks can be obtained using Mix’n’Match (Section 3.3)
yielding results as good as NAS without the additional complexity. DynaBERT [27] jointly trains
a fixed set of submodels, doesn’t introduce any search strategy and discusses only using explicitly
trained granularities as submodels. As a result of joint optimization of all granularities, DynaBERT
yields fewer gradient updates and hence suboptimal performance compared to MatFormer while
using same compute and memory (Section 4).

Moreover, we emphasize that while most work in this area optimizes for an exponential number
of models, we optimize a small number of subnetworks (g = 4) to obtain an exponential number
of models at inference time which leads to significantly better accuracy for large datasets. More

Table 1: Comparison of MatFormer with comparable techniques across training and inference. We
emphasize that in contrast with earlier work, MatFormer requires optimizing fewer models to obtain
an exponential number of models at inference time without the need for post-training or NAS.
Moreover, MatFormer subnetworks are nested, allowing for adaptive retrieval & colocation of models
during inference. Here, l is the number of layers in the model and exp(l) refers to exponential in l.

N(Models Optimized) N(Models Obtained) Nested? Model Selection Post-training Needed? Architecture Decoder Model?

MatFormer O(1) exp(l) ✓ Mix’n’Match × Transformer ✓

OFA [9] exp(l) exp(l) × NAS × CNN ×
Slimmable Networks [66] O(1) O(1) ✓ - × CNN ×
HAT [63] exp(l) exp(l) × NAS ✓ CNN enc-dec
Sorted Network [60] exp(l) exp(l) ✓ - × Both ×
DynaBERT [27] O(1) O(1) ✓ - × Transformer ×

3



recently, some of this work has been extended to Transformer encoders [11, 52] for extracting sub-
models in both static or dynamic settings. But they either fail at extending further to decoder-only
language models ([52]) or perform suboptimal to MatFormer (Section 4) owing to differences in
their training methodology. While not in the weight space, matryoshka representation learning [34]
& FlexiViT [5] showcase elasticity in output & input spaces respectively by smoothly spanning
deployment constraints with minimal overhead. MatFormer, in contrast, builds upon these works
by creating nested structure within the weight space instead to enable truly elastic and adaptive
Transformer-based (decoder & encoder) models that span all the accuracy-vs-compute tradeoff
(statically or dynamically) with minimal changes and training overhead (Figure 1). SortedNet [60]
is a concurrent work with similar goals which optimizes many sampled submodels (akin to prior
work) unlike MatFormer’s optimization of a few (typically 4) nested submodels. We also note
FLEXTRON [64], a recent work that builds upon MatFormer by extending the nested elasticity in both
MLP and Attention Heads simultaneously, tail patches the Matformer style training, and includes a
router to automatically route each token within the different granularities in each layer.

In Table 1, we summarize the differences between MatFormer and the related work discussed. Among
these works, we identified two central ideas commonly employed: jointly training multiple submodels
and sampling random submodels. We consider DynaBERT [27] and Once-for-All (OFA) [9] as the
respective most relevant prior works and compare them to MatFormer in Section 4.

3 MatFormer

In this section, we define MatFormer’s nested substructure (Section 3.1) and discuss its training
procedure for a chosen g model granularities (Section 3.2). We then discuss elastic inference using
Mix’n’Match models (Section 3.3) from MatFormer along with its deployment considerations.

3.1 MatFormer Structure

MatFormer defines g Transformer blocks Ti, such that, T1 ⊂ T2 ⊂ · · · ⊂ Tg where Ti ⊂ Ti+1

indicates that the parameters of Ti are contained in those of Ti+1. While it is possible to impose
such a structure on any part of the Transformer, we select the FFN block to define our method and
present a majority of our experiments, as the model size and computational cost of a Transformer is
dominated (around 60% for LLMs and ViTs) by the FFN block (see Appendix C, and Appendix F.2
for experiments applying MatFormer to the attention block of the Transformer). So, in this work, we
focus on inducing the MatFormer’s nested sub-structure in the FFN block. We then stack individual
blocks (for l layers) to form g nested models (M1...g) with shared parameters i.e.,Mi ⊂Mi+1.

The Transformer FFN block has a single hidden layer with dff neurons and both input and outputs
in Rdmodel , and fixed FFN ratio := dff/dmodel (typically ≥ 4). MatFormer introduces the matryoshka
nested structure with g granularities on the hidden representation of the FFN block. Concretely, a
nested sub-block of the Transformer, Ti contains the first mi neurons of the FFN and 1 ≤ m1 <
· · · < mg = dff represent the number of neurons for each granularity or sub-model. So, depending
on the chosen granularity the FFN operation of Ti i.e., T FFN

i on an input x ∈ Rdmodel is:

T FFN
i (x) = σ(x ·W1[0 : mi]

⊤) ·W2[0 : mi], (1)

where the weight matrices of FFN are W1,W2 ∈ Rdff×dmodel and bias terms are omitted for simplicity.
W1[0 : k] denotes the submatrix with the first k rows of W1. Finally, σ is a non-linearity often set to
GELU [24] or squared ReLU [56]. In this work, we chose the g = 4 exponentially spaced granularities
with FFN ratios of {0.5, 1, 2, 4} i.e., the nested hidden neurons are of the sizes {dff

8 ,
dff

4 ,
dff

2 , dff}.
We get g nested submodels M1 ⊂ M2 . . . ,⊂ Mg where Mi ← [Ti]

×l, i.e., Mi is formed by
stacking Ti for l layers. The input and output embedding matrices are shared across the models.

We note that we can form a similar sub-structure on the attention heads, with the heads being
organized from “most” to “least” significant, where the more significant heads are shared by more
sub-models. That is, we use the first mi attention heads for the ith granularity. We can also introduce
this sub-structure in the token embedding (dmodel) supplied to each Transformer block.

4



3.2 Training

For a Transformer modelM, the forward pass on an input x is denoted byM(x) and let L denote
the loss function between the output and the target y: L(M(x), y).

MatFormer relies on a simple training strategy of randomly sampling the g nested submodels across
training. To this end, for each step we randomly sample a Matformer granularity i = 1, 2..., g and
train for it using the standard stochastic gradient-based optimizers [55]:

LSAMPLING(x, y) = L(Mi(x), y), (2)

where Mi is the parameter set of i-th granular submodel, with Mi chosen from a probability
distribution {p1, p2...pg}. For most experiments in this paper, we uniformly sample each submodel -
in Appendix F.3, we find that tuning this probability distribution can result in stronger submodels.

MatFormer training results in g accurate nested submodelsM1...g inside the universal MatFormer
model (Mg), and also enables the extraction of hundreds of smaller submodels along the accuracy-
vs-compute curve traced by the g explicitly optimized submodels (Section 3.3). These models emerge
for free using Mix’n’Match during inference and drastically reduce the amortized training cost per
model obtained through MatFormer. This method results in smaller submodels that have highly
consistent behavior (Section 3.4) with the universal model.

3.3 Mix’n’Match

At inference time, it is trivial to extract one of the g submodelsM1 ⊂M2 . . . ,⊂Mg by stacking
the corresponding Transformer block Ti across layers. However, by selecting different granularities
for each MatFormer layer, it is possible to generate a combinatorially large number of accurate
smaller models for free. We call this simple procedure Mix’n’Match and observe that these additional
model granularities – which were never explicitly optimized – are highly performant.

For a given compute or parameter budget, there are multiple possible submodels. A common strategy
to select an optimal submodel is Neural Architecture Search (NAS) [48, 68]. This, however, is
computationally expensive (Appendix D.2). With, Mix’n’Match, we propose gradually increasing
the sub-block size with the "least slope". More concretely, we recommend selecting sub-blocks with
minimal granularity changes across layers, ensuring that the size of the jth layer is at least that of
the ith layer for j > i. To give a concrete example, we find that a submodel that uses granularity g2
for half the layers then g3 for the rest will likely be better than a submodel that uses g1 and g4 for a
similar model size. Our heuristic is underpinned by the training methodology, where each sampled
subnetwork maintains consistent layer granularity across the model. Consequently, the model adapts
best to configurations where layer granularities are either uniform or display minimal variation. This
intution is also backed by NAS, which predicts balanced configurations over skewed (Appendix D.1).
Among these "balanced" configurations, we empirically found the increasing with minimum slope
configuration to perform the best. In Section 4.1.1 and Appendix D.1, we show that Mix’n’Match
works at least as well as using evolutionary search based NAS methods [48] as used by OFA [9].

To summarize, we find that using Mix’n’Match is a simple, cheap and effective hueristic to select
a highly performant submodel for a given compute budget (Sections 4.1.1 & 4.2). We provide further
details and intuition in Appendix D.1.

3.4 Deployment

The design of MatFormer is beneficial for both static and dynamic workloads:

Static Workloads To expand upon the example of Llama-2 models in Section 1, a deployment
setup might, say, have the latency budget to support 40B parameter Llama model, but can only host a
34B variant because the next bigger model (70B) has significantly higher latency. Training a 40B
parameter from scratch would require 4.8 ∗ 1023 FLOPs, when training a 34B model and 70B model
already cost 4.08 ∗ 1023 and 8.4 ∗ 1023 FLOPs respectively. So, one would need to settle for a less
accurate model despite the larger latency budget. With Matformer, one could obtain a highly accurate
40B model for 0 additional training FLOPS. More precisely, for static workloads, where compute
resources are known beforehand and the inputs remain relatively similar in difficulty, one can choose
the most accurate static submodel for the constraints using Mix’n’Match.

5



Dynamic Workloads For dynamic workloads, where the compute resources or the input hardness
change on the fly, we can use the universal MatFormer model to dynamically extract the optimal
submodel for each token or query. This works especially well for MatFormer because all the
extracted submodels have high behavioral consistency with universal MatFormer model (Section 4.1)
– minimizing the drift across predictions from various submodels. We measure the consistency
between two generative models as the percentage of matching tokens generated by them for the same
prefix or using the KL divergence of the smaller model outputs with the larger model outputs – this
accounts for potential sampling strategies in decoding. This high consistency results in superior
inference time speedups for techniques like speculative decoding [39] (Section 4.1.1) and can assist
in reducing prediction drift between cross platform deployments. We also show that higher model
consistency also aids metric-space structure preservation in encoder models (Section 4.2.2). Moreover,
given the nested architecture of MatFormer, model colocation can be more memory efficient.

4 Experiments

In this section, we empirically evaluate MatFormer across modalities (language in Section 4.1
and vision in Section 4.2) and model classes (decoder and encoder). We demonstrate the elastic
deployment of MatFormer-based models (Sections 4.1.1 & 4.2) for tasks spanning from one-shot
generative evals to adaptive image retrieval. Additionally, we also investigate the reliable scaling
behavior [29] of MatFormer models (Section 4.1.2).

4.1 MatLM: MatFormer Language Models

Experiment Setting: We build MatFormer-based decoder-only Language Models – MatLMs – and
contrast them to their vanilla Transformer counterparts (LMs) [41]. For each MatLM model with fixed
dmodel, we optimize for g = 4 nested granularities represented by FFN ratios of {0.5, 1, 2, 4} – i.e.,
only the hidden representation size of the FFN block changes. We denote these submodels as MatLM
– {S, M, L, XL} in increasing order of model size and refer to MatLM-XL as the universal MatLM.
For baselines, we train vanilla Transformer models with comparable architectures. That is, for each
MatLM, we train 4 separate baseline models with FFN ratios of {0.5, 1, 2, 4} denoted as Baseline –
{S, M, L, XL}. In addition, we adapt OFA [9] and DynaBERT [27] to our language modeling setup,
and compare those to MatFormer at the same model size. We evaluate these models on validation
loss and average accuracy on 25 English tasks [8, 22, 3]. We note that no additional memory and
compute is used during training these methods compared to independently trained Baselines. Please
see Appendix B for further details on training, baselines, evaluation, and the datasets.

2.0 2.5 3.0 3.5 4.0 4.5
N(Non-Embedd. Parameters) 1e8

2.85

2.90

2.95

3.00

Lo
ss

Baseline
DynaBERT
OFA
MatFormer
MatFormer - MnM

(a) Validation loss

2.0 2.5 3.0 3.5 4.0 4.5
N(Non-Embedd. Parameters) 1e8

40

41

42

43

44

45

Ac
cu

ra
cy

 (%
)

Baseline
DynaBERT
OFA
MatFormer
MatFormer - MnM

(b) 1-shot Evalulation

2.0 2.5 3.0 3.5 4.0
N(Non-Embedd. Parameters) 1e8

75

80

85

90

95

Co
ns

ist
en

cy
 (%

)

MatFormer
Mix'n'Match
Baseline

(c) Consistency w/ XL model
Figure 2: Validation loss & one-shot downstream evaluation scores for the 850M MatLM & baseline
models. Mix’n’Match helps generate accurate and more consistent models from MatLM that lie on
the performance-vs-compute curve spanned by the explicitly optimized submodels.

Results compared to baselines: To showcase efficacy of MatFormer over baselines, we evaluate
850M MatLM model with the corresponding baseline counterparts in Figure 2.

Overall, in Figures 2a and 2b we observe all granularity submodels of MatLM outperform their
baseline counterparts. Specifically, we find that DynaBERT exhibits a significant 0.01 log perplexity
gap compared to MatFormer on the 850M model. The underlying reason is DynaBERT employs
joint optimization of all granularities, which yields to fewer gradient updates and hence suboptimal
performance compared to MatFormer. DynaBERT would require more than 15% extra compute
to perform as well as MatLM. OFA, similar to MatFormer, maintains a single universal model but

6



employs random subnetwork sampling during its training. This leads to sampling fewer models
close to S and XL granularity, resulting in inferior performance in this regime. The performance
gap manifests as a bell-shaped loss curve (Figure 2a), highlighting OFA shortcomings in handling
the trade-off between maintaining universal (XL) model quality and model elasticity. Additionally,
OFA’s training necessitates complicated NAS strategy for optimal submodel selection. However,
using NAS at scale is costly and erroneous, which we further discuss in Appendix D.2. We refer
the reader to Appendix B.4 for a more detailed discussion of MatFormer performance compared to
baselines, and advantages and downsides of each method.

4.1.1 Elastic Inference with MatLM

Accurate MatLM submodels for every constraint for free with Mix’n’Match. Mix’n’Match
enables the MatLM to deliver accurate models for any compute constraint between S and XL, beyond
the fixed granularities {S, M, L, XL}. We assess the efficacy of Mix’n’Match on the 850M parameter
MatLM, comparing validation loss and downstream performance against independently trained
baseline models {S, M, L, XL}. Figure 2a demonstrates that Mix’n’Match achieves optimal loss-vs-
compute trade-offs at no additional cost. Additionally, downstream evaluations in Figure 2b reinforce
this trend. In deployment scenarios with only 55% of the compute resources for a MatLM-XL
model, a Mix’n’Match submodel approximates the XL’s performance with only about a 1% accuracy
drop, compared to a 2% drop when using the MatLM-M model. This highlights the efficiency of
Mix’n’Match in creating numerous optimal models, as exemplified by selected instances along the
performance curves.

We experimented with several heuristics to select the best subnetwork, but consistently observed that
gradually using larger granularities in deeper layers worked the best (Section 3.3). We find that this
heuristic better than the evolutionary search based techniques [48], used in OFA [9] in Figures 2a
& 2b. We also find that applying NAS to MatFormer provides no benefit over Mix’n’Match in Figure
6. We discuss additional details on Mix’n’Match in Appendix D.1.

MatLM submodels speed up speculative decoding. Speculative decoding leverages an accurate
lightweight LM as a draft model to autoregressively generate a few tokens, followed by verifying
these drafts with a larger model through parallel decoding on the generated tokens. When the draft
is inaccurate, the draft model is rolled back and reset to the larger model’s output. This results in
considerable inference speed-up for the same accuracy as the large model. We point the reader to the
original paper for a more detailed explanation [39].

Slow down of this algorithm stems from cases where the smaller model’s predictions disagree with
the larger model. A draft model that is significantly more consistent with the larger verifier model
would lead to less rollbacks of the draft predictions and therefore lower latency. As seen in Figure 2c,
MatLM submodels can be up to 11.5% more consistent than the baselines to their corresponding XL
model. The significant gap persists even in the KL divergence variant of consistency with the XL
model’s outputs (see Figure 7 in Appendix). This improved consistency along with the need for only
a single universal model positions MatLM favorably to improve techniques that require draft and
verifier models such as speculative decoding.

Table 2: Inference time speed-ups over a standard 850M
model through speculative decoding using a 393M (S)
draft and 850M (XL) verifier model.

Speculative Decoding LAMBADA TriviaQA

Baseline 1.10× 1.08×
MatLM 1.14× 1.11×
+ shared attention cache 1.16× 1.14×

Table 2 shows the inference time speed-ups from
speculative decoding using the S and XL sub-
models of the 850M language model for drafting
and verification respectively. Speculative decod-
ing with independently trained baseline LMs
results in a speed-up of up to 10% over the stan-
dard autoregressive decoding of the 850M-XL
model. But MatLM-based speculative decoding
is up to 6% faster than traditional speculative
decoding. This additional speed-up can be pri-
marily attributed to the more consistent nature
of MatLM-based drafter and verifier models and is further boosted by the ability to share attention
cache across models from MatLM which is infeasible for the baselines (see Appendix C.1). Finally,
MatLM further reduces the memory overhead for inference by removing the need to have two models
during resource-constrained deployment.

7



4.1.2 MatLM Scales as well as Vanilla Transformer LMs

0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

2.8

3.0

3.2

3.4

3.6

3.8

Lo
ss

MatFormer
Baseline

(a) Validation loss: XL-models

0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

3.00

3.25

3.50

3.75

4.00

Lo
ss

MatFormer
Baseline

(b) Validation loss: all models

0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

36

38

40

42

44

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

MatFormer
Baseline

(c) 1-shot Evals

Figure 3: We train various decoder-only MatLM models at a range of sizes from 78M to 850M
parameters and observe the scaling trends of all granularities (S, M, L, XL) for validation loss and
1-shot downstream evaluation scores. We find that the MatLM-XL models across scales mimic
the training trends of Baseline-XL models. Interestingly, we also note that that validation loss and
downstream evaluations follow the scaling trends of the XL-models across all granularities.

Now that we have established that a 850M MatLM model and its submodels are at least as accurate
as the baseline Transformer LMs, we want to examine the scalability of training MatLM models.
So, we study the scaling properties [29, 25] of MatLMs and compare them to vanilla Transformer
baseline LMs trained for the same number of tokens. We train models ranging from 78M to 850M
parameters on 10B to 80B tokens (per granularity) and plot the validation loss for MatLM – {S, M, L,
XL} compared against independently trained baselines in Figure 9.

Table 3: Fitted parameters for the scaling equa-
tion: Loss(N,D) = a · (ND)b + c

a b c

Baseline 14.08 -0.10 0.89
Matformer 21.60 -0.13 1.33

First, in Figure 3a, we observe that the training of
MatLM-XL models across model sizes scale as re-
liably as the Baseline-XL LMs for loss vs. number
of parameters. Figure 3b interestingly shows that all
granularities {S, M, L, XL}, of MatLM and Baseline
follow the same scaling trend. Therefore, we fit a scal-
ing law according to the number of non-embedding
parameters (N ) and training tokens (D) for all possi-
ble submodels for both MatLMs and the baselines in
Table 3. We observe that the fitted parameters are extremely similar, suggesting that MatLMs scale
similarly to vanilla Transformer LMs. In Figure 3c we also find that the downstream evals for MatLM
0.3% better than the baselines, with the smaller submodels further outperforming the baselines at
scale by upto 1.4%. Finally, Figure 9f in the Appendix shows that the MatLM submodels are more
consistent with their XL model compared to the baseline counterparts across scales.

We note that the scaling laws do not capture how MatLMs have been optimized for multiple
submodels and even have performant submodels that have not been explicitly optimized for (Section
4.1.1) We leave formulations that capture these subtleties to future work and further discuss this
in Appendix E.1. We provide full results split by granularity in Appendix E.

35 45 55 65 75 85
Total Parameters (M)

76

77

78

79

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

MatFormer
Mix'n'Match
Baseline

(a) B/16 trained on ImageNet-1K with AugReg

125 150 175 200 225 250 275 300
Total Parameters (M)

84.50

84.75

85.00

85.25

85.50

To
p-

1 
Ac

cu
ra

cy
 (%

)

MatFormer
Mix'n'Match
Baseline

(b) L/16 pretrained on IN-21K → ImageNet-1K.

Figure 4: MatViT variants match or outperform standard ViT models on ImageNet-1K classification
and provide free extracted models that span the accuracy-compute curve through Mix’n’Match.

8



35 45 55 65 75 85
Total Parameters (M) in Query Encoder

70

72

74

76

78

1-
NN

 A
cc

ur
ac

y 
(%

)

MatFormer
Mix'n'Match
Baseline

(a) B/16 trained on ImageNet-1K with AugReg

125 150 175 200 225 250 275 300
Total Parameters (M) in Query Encoder

82.0

82.5

83.0

83.5

1-
NN

 A
cc

ur
ac

y 
(%

)

MatFormer
Mix'n'Match
Baseline

(b) L/16 pretrained on IN-21K → ImageNet-1K.

Figure 5: MatViT natively enables elastic encoders for adaptive retrieval that can be used for real-time
query side computation while retaining strong accuracy on ImageNet-1K, unlike the baselines.

4.2 MatViT: MatFormer Vision Transformers

We extend MatFormer to Vision Transformer (ViT) [21] based computer vision encoder models.
MatFormer-based ViT (MatViT) enables elastic inference for fundamental tasks like image classifica-
tion and retrieval. We train the MatFormer variant of the standard ViT-B/16 and ViT-L/16 models
– MatViT-B/16 and MatViT-L/16 that are trained with g = 4 nested granularities (FFN ratios of
{0.5, 1, 2, 4}). B/16 models are trained on ImageNet-1K [50] with AugReg [57] while L/16 models
are pretrained on ImageNet-21K [18] followed by finetuning on ImageNet-1K. All models use the
training setup and optimal hyperparameters of standard ViT variants from the Scenic library [16].

4.2.1 Image Classification

For image classification, we evaluate both ViT & MatViT models on ImageNet-1K. Figure 4a shows
that the explicitly optimized granularities in MatViT result in as accurate models as the independently
trained baselines for the B/16. However for L/16, as shown in Figure 4b, we see that the MatViT
models are up to 0.35% more accurate than the baseline for the same inference cost.

We then explore using MatFormer at different training stages with a 2×2 grid of pretraining-finetuning
pairs (Table 7 in Appendix G.1) and find that using a MatFormer during pretraining helps bring more
accurate and flexible encoders for downstream use. Further, finetuning using MatFormer enhances
elastic deployment depending on the constraints at hand through Mix’n’Match.

Adaptive Encoders with Mix’n’Match. Furthermore, our Mix’n’match models’ accuracy almost
lies on the line joining accuracy of explicitly trained granularities. In scenarios where, say, an
application can host 50M parameter B/16 model, MatViT can provide 0.8% more accurate model
than the current approach which would host the largest baseline model with ≤ 50M parameters.

During deployment, the universal MatViT model can be stored in memory and depending on the
compute constraints be used to extract an adaptable smaller model to maximize accuracy with the
available resources at that moment. Currently, we find the Mix’n’Match models on the accuracy-
compute curve through a quick inference on the validation set. While relatively scalable, this points
to the need for optimal budget allocation across layers in neural networks [33].

4.2.2 Adaptive Image Retrieval

The goal of image retrieval is to find semantically similar images – e.g. images from the same class
– using representations obtained from a pretrained encoder [13]. Standard approach is to encode
the database images as well as query image with same encoder and run nearest neighbor retrieval
for the query embedding. While we can embed database images with an expensive encoder, the query
encoder generally has to be real-time. Furthermore, the setting of query encoding might be varied,
e.g., on-device vs. cloud processing, varying query load and query complexity. Current solutions
have a fixed encoder thus compromising on accuracy or cost for various settings.

Given the elastic nature of MatViT, it is a good candidate for query encoder. However, retrieval
also requires that submodels preserve distances between fixed database (with large encoder) and
query embeddings across all the granularities. If we use smaller baseline ViT models only for query
encoding, these distances are not preserved and lead to nearly 0 retrieval accuracy (see Figure 5).

9



We evaluate both ViT and MatViT encoders on ImageNet-1K for image retrieval. We compute
1-nearest neighbor (NN) accuracy using the representation vector of the [CLS] token (also see
Appendix G.2). Figure 5 shows that submodels extracted from MatViT can approximately preserve
distances and provide significantly more flexibility. For example, with a loss of < 0.5% accuracy,
MatViT-L/16 can reduce compute cost by 40%. This corresponds to the 175M Mix’n’Match parameter
model in Fig 5b, which is 40% smaller than the 300M XL model, and has < 0.5% accuracy drop. To
our knowledge, this is the first result of its kind and opens up a wide variety of adaptive inference
strategies for large-scale semantic search.

5 Conclusion

In this work we presented MatFormer, a natively elastic Transformer architecture that allows training
a single universal model which can be used to extract hundreds of smaller accurate submodels at zero
additional cost at deployment time. We find that the MatFormer Language Model (MatLM) matches
the perplexity & 1-shot accuracy of independently trained models. In fact, MatLM demonstrates an
interesting loss-vs-compute scaling curve that is nearly independent of trained granularity indicating
robust generalization to extremely large models as well. Finally, MatFormer submodels enable diverse
inference time speedups like faster autoregressive generation with speculative decoding and elastic
query encoders for adaptive dense retrieval across modalities. We believe dynamically routing these
models to change inference latency [32, 40, 20], and developing the hardware optimizations required
is a promising area for future work.

Acknowledgments

We are grateful to Aishwarya P S, Yashas B.L. Samaga, Varun Yerram, Lovish Madaan, Anurag
Arnab for assistance in setting up training pipelines, Matthew Wallingford, Praneeth Netrapalli, Orhan
Firat, Rohan Anil, Tom Duerig, Luke Zettlemoyer, Manish Gupta, Rahul Sukthankar and Jeff Dean
for helpful discussions, support and feedback.

We also acknowledge the computing resources and support from HYAK at the University of Wash-
ington, FAS RC at Harvard University, Kempner Institute and a GCP credit award for the early-stage
exploration of this project. Ali Farhadi acknowledges funding from the NSF awards IIS 1652052, IIS
1703166, DARPA N66001-19-2-4031, DARPA W911NF-15-1-0543, and gifts from Allen Institute
for Artificial Intelligence and Google. Sham Kakade acknowledges funding from the Office of
Naval Research under award N00014-22-1-2377. This work has been made possible in part by a gift
from the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for the Study of
Natural and Artificial Intelligence. Yulia Tsvetkov acknowledges support from the National Science
Foundation under CAREER Grant No. IIS2142739, NSF grants No. IIS2125201 and IIS2203097, and
gift funding from Google, MSR, and OpenAI. Hannaneh Hajishirzi acknowledges funding through a
gift from Allen Institute for Artificial Intelligence.

References
[1] O. Ahia, J. Kreutzer, and S. Hooker. The low-resource double bind: An empirical study of

pruning for low-resource machine translation. arXiv preprint arXiv:2110.03036, 2021.

[2] AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

[3] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa,
P. Bailey, Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

[4] J. Berant, A. K. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-
answer pairs. In Conference on Empirical Methods in Natural Language Processing, 2013.
URL https://api.semanticscholar.org/CorpusID:6401679.

[5] L. Beyer, P. Izmailov, A. Kolesnikov, M. Caron, S. Kornblith, X. Zhai, M. Minderer, M. Tschan-
nen, I. Alabdulmohsin, and F. Pavetic. Flexivit: One model for all patch sizes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14496–14506,
2023.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://api.semanticscholar.org/CorpusID:6401679


[6] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piqa: Reasoning about physical common-
sense in natural language, 2019.

[7] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[9] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize
it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

[10] H. Cai, C. Gan, J. Lin, and S. Han. Network augmentation for tiny deep learning. arXiv preprint
arXiv:2110.08890, 2021.

[11] A. Chavan, Z. Shen, Z. Liu, Z. Liu, K.-T. Cheng, and E. P. Xing. Vision transformer slimming:
Multi-dimension searching in continuous optimization space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4931–4941, 2022.

[12] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating large
language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318, 2023.

[13] W. Chen, Y. Liu, W. Wang, E. M. Bakker, T. Georgiou, P. Fieguth, L. Liu, and M. S. Lew. Deep
learning for instance retrieval: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[14] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes,
Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, et al. Palm: Scaling language modeling with pathways,
2022.

[15] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge, 2018.

[16] M. Dehghani, A. Gritsenko, A. Arnab, M. Minderer, and Y. Tay. Scenic: A jax library for
computer vision research and beyond. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 21393–21398, 2022.

[17] M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer, A. P. Steiner, M. Caron,
R. Geirhos, I. Alabdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In
International Conference on Machine Learning, pages 7480–7512. PMLR, 2023.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[19] T. Dettmers and L. Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pages 7750–7774. PMLR, 2023.

[20] D. Ding, A. Mallick, C. Wang, R. Sim, S. Mukherjee, V. Ruhle, L. V. Lakshmanan, and
A. H. Awadallah. Hybrid llm: Cost-efficient and quality-aware query routing. arXiv preprint
arXiv:2404.14618, 2024.

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[22] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu,
O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou, T. Wang, Y. E. Wang, K. Webster, M. Pellat,
K. Robinson, K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and
C. Cui. Glam: Efficient scaling of language models with mixture-of-experts, 2022.

11



[23] M. Grimaldi, L. Mocerino, A. Cipolletta, and A. Calimera. Dynamic convnets on tiny devices
via nested sparsity. IEEE Internet of Things Journal, 10(6):5073–5082, 2022.

[24] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[25] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556, 2022.

[26] S. Hooker, N. Moorosi, G. Clark, S. Bengio, and E. Denton. Characterising bias in compressed
models. arXiv preprint arXiv:2010.03058, 2020.

[27] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu. Dynabert: Dynamic bert with
adaptive width and depth. Advances in Neural Information Processing Systems, 33:9782–9793,
2020.

[28] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611,
Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/
P17-1147. URL https://aclanthology.org/P17-1147.

[29] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models. 2020.

[30] S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc, G. Dinh, Q. Huang, K. Keutzer,
M. W. Mahoney, et al. Full stack optimization of transformer inference: a survey. arXiv preprint
arXiv:2302.14017, 2023.

[31] T. Kudo and J. Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

[32] S. Kudugunta, Y. Huang, A. Bapna, M. Krikun, D. Lepikhin, M.-T. Luong, and O. Firat.
Beyond distillation: Task-level mixture-of-experts for efficient inference. arXiv preprint
arXiv:2110.03742, 2021.

[33] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade, and A. Farhadi. Soft
threshold weight reparameterization for learnable sparsity. In International Conference on
Machine Learning, pages 5544–5555. PMLR, 2020.

[34] A. Kusupati, G. Bhatt, A. Rege, M. Wallingford, A. Sinha, V. Ramanujan, W. Howard-Snyder,
K. Chen, S. Kakade, P. Jain, et al. Matryoshka representation learning. Advances in Neural
Information Processing Systems, 35:30233–30249, 2022.

[35] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai,
J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: A benchmark for question answering
research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019. doi:
10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026.

[36] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush. Block pruning for faster transformers. arXiv
preprint arXiv:2109.04838, 2021.

[37] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. Race: Large-scale reading comprehension dataset
from examinations, 2017.

[38] H. J. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Proceedings
of the Thirteenth International Conference on Principles of Knowledge Representation and
Reasoning, KR’12, page 552–561. AAAI Press, 2012. ISBN 9781577355601.

[39] Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative
decoding. 2023.

12

https://aclanthology.org/P17-1147
https://aclanthology.org/Q19-1026


[40] M. Li, S. Gururangan, T. Dettmers, M. Lewis, T. Althoff, N. A. Smith, and L. Zettlemoyer.
Branch-train-merge: Embarrassingly parallel training of expert language models. arXiv preprint
arXiv:2208.03306, 2022.

[41] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating
wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198, 2018.

[42] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity? a
new dataset for open book question answering, 2018.

[43] N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and
J. Allen. A corpus and cloze evaluation for deeper understanding of commonsense stories.
In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 839–849, San Diego,
California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1098.
URL https://aclanthology.org/N16-1098.

[44] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial nli: A new
benchmark for natural language understanding, 2020.

[45] R. OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.

[46] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Fernández. The lambada dataset: Word prediction requiring a broad discourse
context, 2016.

[47] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever. Robust speech
recognition via large-scale weak supervision. In International Conference on Machine Learning,
pages 28492–28518. PMLR, 2023.

[48] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier
architecture search, 2019.

[49] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b. Alayrac, R. Soricut,
A. Lazaridou, O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115:211–252, 2015.

[51] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale, 2019.

[52] M. Salehi, S. Mehta, A. Kusupati, A. Farhadi, and H. Hajishirzi. Sharcs: Efficient transformers
through routing with dynamic width sub-networks. Findings of Empirical Methods in Natural
Language Processing, 2023.

[53] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[54] T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Tran, Y. Tay, and D. Metzler.
Confident adaptive language modeling. Advances in Neural Information Processing Systems,
35:17456–17472, 2022.

[55] N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[56] D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Primer: Searching for efficient
transformers for language modeling. arXiv preprint arXiv:2109.08668, 2021.

[57] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L. Beyer. How to train
your vit? data, augmentation, and regularization in vision transformers. arXiv preprint
arXiv:2106.10270, 2021.

13

https://aclanthology.org/N16-1098


[58] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,
L. Baker, Y. Du, et al. Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022.

[59] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[60] M. Valipour, M. Rezagholizadeh, H. Rajabzadeh, M. Tahaei, B. Chen, and A. Ghodsi. Sortednet,
a place for every network and every network in its place: Towards a generalized solution for
training many-in-one neural networks. arXiv preprint arXiv:2309.00255, 2023.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. 2023.

[62] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman.
Superglue: A stickier benchmark for general-purpose language understanding systems, 2020.

[63] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han. Hat: Hardware-aware transformers
for efficient natural language processing. arXiv preprint arXiv:2005.14187, 2020.

[64] J. Yu and T. Huang. Universally slimmable networks and improved training techniques, 2019.
URL https://arxiv.org/abs/1903.05134.

[65] J. Yu and T. S. Huang. Universally slimmable networks and improved training techniques. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 1803–1811,
2019.

[66] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018.

[67] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence?, 2019.

[68] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning, 2017.

14

https://arxiv.org/abs/1903.05134


A Broader Impact Statement

The elasticity of MatFormer enables its use in diverse deployment scenarios. This lowers the barrier
for practitioners to use foundation models tailored to their deployment scenarios. Training foundation
models remains expensive, with the largest models we discuss trained on 256 TPU-v4 cores for
3 days. Moreover, while we report validation loss and downstream evaluation scores on a variety
of tasks, we acknowledge the possibility that MatFormer can have adverse effects on bias [26] or
underrepresented domains/languages [1].

B Implementation Details

B.1 Architecture and Training

For our experiments, we train a range of MatLMs varying from size 78M to 850M for 10B-80B
tokens – we scale model size equally with the number of training tokens [25]. For each MatLM
granularity, we also train a corresponding baseline vanilla Transformer model. That is, for each model
size we train Baseline-XL, L, M, S with dff = 4 ∗ dmodel, 2 ∗ dmodel, dmodel, dmodel/2. All models
have 16 layers, 16 attention heads, and a dmodel : dff ratio of 1 : 4. We train a 256k vocabulary
using the SentencePiece library [31], use a maximum context length of 1024 tokens, and a batch size
of 1M tokens. We pretrained the 850M models on 256 v3 TPU chips. We provide further details on
these models in Table 4. For further details on training setup, we point the reader to [58].

Table 4: Model details for the models scales used to conduct the experiments described in Section 4.1,
with a breakdown of total parameter counts, non-embedding parameter counts and FFN parameter
counts for each model granularity.

Parameter Count (full / spliced) Non-Embedding Params (full / spliced) FFN Params (full) dmodel N(tokens)

78M (74M / 72M / 71M) 12.6M (8.4M/6.3M/ 5.3M) 8.4M 256 10B
180M (164M / 157M / 152M) 50M (33.7M/25.3M/21.1M) 33.6M 512 20B
310M (272M / 253M / 244M) 113M (75M/56M/47M) 75.6M 768 30B
463M (397M / 363M / 346M) 201M (134M/100M/84M) 134M 1024 40B
850M (696M / 620M / 582M) 453M (302M/227M/189M) 302M 1536 80B

B.2 Downstream Evaluation

We evaluate all the LM models trained on set of 25 English tasks similar to [8, 22, 14, 3], including:

1. Open-Domain Closed-Book Question Answering tasks: TriviaQA [28], Natural Questions [35],
and WebQuestions [4].

2. Cloze and completion tasks: LAMBADA [46], HellaSwag [67], and StoryCloze [43].
3. Winograd-style tasks: Winograd [38] and WinoGrande [51].
4. Reading comprehension: RACE [37].
5. Common sense reasoning: PIQA [6], ARC [15], and OpenBookQA [42].
6. SuperGLUE [62]
7. Natural language inference: Adversarial NLI [44].

For all the granularities corresponding to each model, we present evaluation numbers along with
development set log perplexity loss on all the 25 tasks in Tables 9 to 13.

B.3 Baseline Implementation Details

Independently trained Baseline: Baselines are trained from scratch independently, where each
granularity in a given model size uses X tokens mentioned in Table 4. For example, for 850M model
X = 80B tokens. Therefore, Baseline-{S, M, L, XL} process 4X tokens in total. Baselines trained
from scratch result in the same number of models that are explicitly trained for. That is, there is no
way to directly get a submodel of size in between the trained granularities without using additional
methods like distillation, pruning, etc.

15



OFA: OFA [9] trains a big model from scratch, then freezes it and starts another run of a similar
sized "universal model" where it samples random subnetworks and optimizes them with distillation
and ground truth loss. The central idea of this work is sampling random submodels and optimizing
them. Distillation is a orthogonal component which can be added to MatFormer as well. In order
to use comparable compute and memory to the Baseline (Section 4.1), we modify the method to
only optimize w.r.t. ground truth loss - as also done in the case of MatFormer. Overall, OFA uses
4X tokens, same as all the baseline granularities trained form scratch. In each step, OFA samples
a random model, where each of its layer has {S, M, L, XL} granularity sampled randomly, and
optimizes it.

To obtain submodels according to a given cost constraint, OFA proposes using NAS [48] to search
for optimal architecture. Specifically, OFA samples a random set of (architecture, loss) pairs from the
universal model. Then, it trains a predictor on this pair, taking architecture as input and predictiing the
loss. Finally, it uses an evolutionary search based routine [48] to search for the optimal architecture
within a specified constraint, using the predictor in its search routine. More details of NAS and
comparison with MatFormer Mix’n’Match is presented in Section D.

DynaBERT: DynaBERT [27] has g fixed granularities of submodels - similar to MatFormer. Similar
to OFA, DynaBERT employs distillation loss as well. For a comparable analysis and to maintain
compute/memory comparable to baseline, we only optimize DynaBERT wrt ground truth loss, similar
to MatFormer.

The crucial difference between DynaBERT and MatFormer lies in its training methodology. In
each step, DynaBERT takes 4 batches of data, optimizes each batch with each of the {S, M, L, XL}
granularity and averages these losses. Similar to Matformer and OFA, it processes a total of 4X
tokens. Though, since it optimizes on 4 batches of data in a single step, it runs for one fourth the
steps of MatFormer or OFA, and same number of steps as the baseline.

An important distinction between contribution of DynaBERT work and MatFormer is the search
strategy. In MatFormer, we introduced the Mix’n’Match heuristic, which calculates an optimal
submodel with a cost constraint without any overhead. In contrast, DynaBERT doesn’t introduce any
search strategy and discusses only using explicitly trained granularities as submodels.

B.4 Comparison with Baselines

Here we do a more detailed discussion of comparison between MatFormer and the baselines used in
Section 4.

1. MatFormer vs trained from scratch Baseline: Let Baseline-{S, M, L, XL} combined process
4X tokens, where each granularity is trained on X tokens independently. Since MatFormer maintains
just one model, we train it for 4X tokens, in each step sampling either of MatLM-{S, M, L, XL}. As
a result, the total compute and peak memory is still the same as Baseline since we effectively train
MatLM-{S, M, L, XL} for X tokens each – matching Baseline training configuration. But since we
maintain a single model, the shared parameters get trained for up to 4X tokens for free. For example,
each time we train XL/L/M granularity, since S granularity is contained in them, it also receives
gradients updates. Therefore, the MatLM-S effectively processes 4X tokens, MatLM-M processes
3X tokens, MatLM-L processes 2X tokens, and MatLM-XL processes X tokens. We can also see this
translating to Validation loss (Figure 2a) – the smaller granularities outperform Baseline by a large
margin. Whereas the larger granularity match in performance.

2. MatFormer vs DynaBERT: DynaBERT, similar to MatFormer, trains g nested subnetworks,
but differs critically in its training methodology. It performs joint optimization - simultaneously
processing 4 batches of data - 1 batch through each {S, M, L, XL} granularity. The final loss
being optimized is the average of each granularity’s loss. Conversely, MatFormer samples and
optimizes individual granularities in separate steps, resulting in four times more gradient updates
for the same amount of data and compute. This difference in training methodology translates to a
substantial performance gap: DynaBERT exhibits a significant 0.01 log perplexity gap compared to
MatFormer on the 850M model. Even with a 15% increase in compute, DynaBERT still falls short of
MatFormer’s performance. Moreover, unlike MatFormer, which offers flexibility in submodel size
selection through its Mix’n’Match approach, DynaBERT lacks a dedicated sampling strategy.

16



2.0 2.5 3.0 3.5 4.0 4.5
N(Non-Embedd. Parameters) 1e8

2.85

2.90

2.95

3.00

Lo
ss

Baseline
MatFormer
MatFormer - MnM
MatFormer - NAS

Figure 6: We search for optimal architectrure configuration using evolutionary search [48] and with
Mix’n’Match. We find that Mix’n’Match yields architectures lying on pareto-optimal curve, and are
at least as good as those found using the evolutionary search.

3. MatFormer vs OFA: OFA maintains one universal model similar to MatFormer, but randomly
samples subnetworks such that each layer is one of {S, M, L, XL}. Similar to MatFormer and
DynaBERT, it takes advantage of processing 4X data by a single model. But due to sampling, not
enough small or large models (close to S and XL granularity model) are sampled, leading to inferior
performance in these regions. That is, sampling models ranging from S model size to XL model size,
most of the sampled models are close to M-L model sizes. This can also be seen in the Loss curve,
where we see a bell like curve having much higher loss close to S and XL model sizes, and matching
MatLM’s performance in between. Another disadvantage of OFA is since random model are sampled,
once can’t employ simple Mix’n’Match technique like in matFormer. Rather a more complicated
NAS strategy is needed to find optimal submodels. To train a NAS when searching for such large
models is costly and erroneous, as we discuss in Appendix D.2.

C Training and Inference Costs

We currently make minimal changes and optimizations to the training scripts of vanilla Transformer
architecture. In other words, we use the same implementation for both Baselime and MatFormer,
except using different sized splices of FFN block for each forward pass. The wall-clock time for
MatLM training is the same cost as training all the 4 granulatities baseline counterparts. During
serving, we observe the 850M model FFN latency to attention latency ratio = 56 : 44. We note that
this FFN:MHA latency ratio depends highly on scale and sequence length. More specifically, for a
given sequence length FFN latency dominates the overall latency at scale, while the attention heads’
cost increases with sequence length. We refer the reader to Kim et al. [30] for a more extensive
illustration of this. We emphasize that though we trained one MatFormer and compare its training
time with Baselines combined, we can extract many more models than the 4 model granularities we
explicitly trained.

C.1 Speculative Decoding Attention Sharing

An additional benefit of MatLM is that the attention cache is shared between the draft and verifier
model. When the XL model verifies S model’s draft, it overwrites the attention cache with its richer
latent representation compared to the one generated by the drafter model. Note that 1) this does not
involve extra computation since MatLM has a single universal model including both draft and verifier
model; 2) attention sharing isn’t possible in the Baseline since they are not explicitly trained together.
Hence, latent representation of one model is quite meaningless to the other model. Thus, attention
sharing gives further improvement over vanilla speculative decoding as shown in Table 2.

17



Table 5: On 850M MatFormer model, while running NAS we observe it prefers balanced granularities across
layers rather than skewed. On a few parameter constraints we list the MnM heuristic configuration, and
configuration predicted with NAS.
FFN Params budget Mix’n’Match configuration & loss NAS predicted configuration & loss

226M [M,M,M,M,M,M,M,M,M,M,M,M,M,M,M,M]; 2.931 [S,M,M,M,M,M,M,S,M,M,M,M,M,M,M,L]; 2.944
245M [M,M,M,M,M,M,M,M,M,M,M,M,L,L,L,L]; 2.926 [M,M,M,M,M,L,M,M,M,L,M,L,M,M,M,L]; 2.932
278M [M,M,M,M,M,L,L,L,L,L,L,L,L,L,L,L]; 2.9 [M,L,L,L,L,L,L,L,L,L,M,L,M,M,M,L]; 2.91
377M [L,L,L,L,XL,XL,XL,XL,XL,XL,XL,XL,XL,XL,XL,XL]; 2.865 [L,L,XL,L,XL,L,XL,L,XL,XL,XL,L,XL,L,L,XL]; 2.874

D Search Techniques

D.1 Mix’n’Match

For a given compute or parameter budget multiple submodels may meet the constraint. A common
strategy could involve employing Neural Architecture Search (NAS) to identify the optimal architec-
ture within this subset; however, this approach can be prohibitively expensive. Instead, we propose
a simpler Mixn’Match heuristic, which identifies optimal submodels that lie on the Pareto-optimal
accuracy-vs-parameters curve.

The Mix’n’Match heuristic recommends selecting layer granularities with minimal changes across
layers, ensuring that the granularity of the jth layer is at least that of the ith layer for j > i.
This means that a gradual increase in granularity with the "least slope" empirically yields the best
performance among all tested mix-and-match configurations. Our heuristic is underpinned by the
training methodology, where each sampled granularity configuration maintains consistent layer
granularity across the model. Consequently, the model adapts best to configurations where layer
granularities are either uniform or display minimal variation. For instance, a configuration of [M, M,
M, M, L, L, L] across layers is more effective than [S, S, S, S, S, XL, XL] despite having similar
number of parameters, as it maintains a more balanced distribution of granularity as opposed to a
skewed one.
This intuition is also supported by results from an evolutionary search-based Neural Architecture
Search (NAS) method [48], similar to that employed in [9]. Our NAS experiments, few of the runs
we present in Table 5, indicated a preference for balanced configurations under various constraints,
aligning with the findings from our Mix’n’Match heuristic.

We explored various balanced configurations, including:

1. Increasing-Decreasing: Granularity increases until the midpoint and then decreases, e.g.,
[M, M, L, L, L, M, M].

2. Decreasing-Increasing: The reverse of the previous heuristic, where granularity decreases
then increases.

3. Increasing: A non-decreasing sequence of layer granularities, such as [M, M, M, M, L, L,
L].

4. Decreasing: The opposite of the Increasing heuristic.

Among these configurations, the Increasing heuristic consistently outperformed the others. Therefore,
we recommend adopting a strategy of selecting increasing granularities across layers with the
minimum slope for effective model performance.

On the 850M MatLM, we compare architectures predicted by Mix’n’match and the NAS algorithm,
in Figure 6. We find that our heuristic works at least as well as NAS, resulting in models that lie on
pareto-optimal curve. Note that Mix’n’match requires no additional training of a module or overhead
in calculating optimal submodel within a cost constraint.

D.2 NAS

Neural Architecture Search [68, 48] is a natural method to search an optimal network among
possible architectures within a constraint budget. In fact, OFA [9] uses an evolutionary search based
technique [48] along with a architecture loss predictor (Appendix B.3) in its search routine. While on
smaller scale models, it might be easy to deploy NAS method similar to what OFA does, on larger
scale it becomes prohibitively costly and erroneous.

18



To get loss corresponding to an architecture, one needs to run on a sufficiently large held out set to
get an average value. For example, in our runs we used a held out set of around 200M tokens. On
large scale, it becomes costly to repeatedly run large models on this held out set to collect loss values.
For example, to collect 16k (architecture, loss) pairs, we used 256 TPUv-4 chips for around 2 days.

Once we have the dataset, we split it into 60%-40% train-eval split. After training the architecture
loss predictor, we tested out its performance on the held out set and noticed ∼ 5e− 5 mean squared
error.
As we move to large models regime, the performance gap between different sized models diminish.
For example, the gap between 78M parameter Baseline-S and Baseline-XL, which are of size 71M
and 78M, is 4.01 vs 3.83. Which is a gap of 0.18 loss for just 7M parameter difference. But in case of
850M model, Baseline-S and Baseline-XL has size 582M vs 850M , the corresponding loss is 3.017
vs 2.84. Thus, a difference of 0.177 for 268M parameter difference. This trend scales to larger models,
and the gap reduces between various model sizes. So, training a architecture accuracy predictor
becomes increasingly challenging and erroneous, since it has to learn differentiating architectures
with very small differences in their loss values.

In our experiment for OFA, we take the best of the model configs predicted by NAS and the model
config among the sampled points for a corresponding budget.

E Scaling Laws for Language Decoders

We provide results split by granularities for validation loss, average score on evaluation tasks, and
consistency in Figures 9, 10, and 11 respectively. We observe that the gap in validation loss and
evaluation accuracy between MatLMs and Baselines appears to be constant. For consistency, the gap
appears to reduce with scale, but one would need to scale the models by many orders of magnitude
beyond what’s possible today for baselines to have comparable consistency with MatLMs.

E.1 Scaling laws of MatFormers vs Transformers.

Scaling laws are essential tools to estimate quality as the cost of training or inference is increased.
Scaling laws can help us consider various nuances of training and deployment such as overall training
cost in FLOPS, training data and parameter efficiency, and inference mean FLOPS utilization vs
latency for deployments.

The scaling relationship of MatFormers versus Transformers is both simple and complex. Simple,
because MatFormers scaling curves for pretraining are similar to that of Transformers – thus Mat-
Formers only require a similar amount of compute and the same hyperparameters that work for
Transformers are effective for MatFormers. The complex scaling relationship comes from the fact
that MatFormers allow the training of multiple models with a single training run which is a qualitative
different from Transformers and difficult to factor into scaling equations. In terms of efficiency, if
we compare the training FLOPs equivalent of all the extractable models from MatFormers, then
MatFormer training alone has a clear advantage in any case where all parameters used to train standard
Transformer models on the same dataset exceed 2.58P , where P is the number of parameters of
the MatFormer and the largest Transformer model. This is so because MatFormer uses 2.58 times
more FLOPs per token for a training run than a Transformers: 4× more FLOPs for attention layers
parameters and {1 + 1/2 + 1/4 + 1/8 = 1.875}× more FLOPs for MLP layers.

F Further Analysis on Language Decoders

F.1 KL Divergence Between S, M, L and XL Models

Figure 7 showcases the smoother consistency calculation between two generative models measured
with KL-divergence of the smaller model’s outputs with the larger model outputs. Similar to the exact
match style hard consistency metric used in the main paper, there is a significant gap between the
consistency of MatLM’s submodels with the MatLM-XL model and between that of the corresponding
baseline models. This points to how sampling strategies based on the output probabilities do not
change the behavioral consistency between two models and that it still follows the trend of generating
the token with the highest probability. This smoother notion of consistency argues for the metric-space

19



Table 6: For 850M model, we experiment with modifying {pS , pM , pL, pXL} to sample submodels
from a non-uniform distribution during training and report the results across all granularities. We
find that all strategies that upweight the loss for the largest granularity perform well, with modest
degradation on the M and S granularties.

Model Probabilities S M L XL

Baseline N/A 3.017 2.971 2.910 2.840

MatFormer

0.44/0.31/0.15/0.10 2.963 2.925 2.899 2.877
0.31/0.27/0.22/0.20 2.977 2.929 2.890 2.857
0.25/0.25/0.25/0.25 2.970 2.934 2.886 2.846
0.20/0.22/0.24/0.34 3.000 2.939 2.885 2.836
0.17/0.20/0.22/0.41 3.010 2.943 2.884 2.829

preservation given that the output classifier/embedding matrix is shared across all the submodels of
MatLM.

2.0 2.5 3.0 3.5 4.0
N(Non-Embedd. Parameters) 1e8

0.0

0.1

0.2

0.3

0.4

0.5

KL
 d

iv
 w

/ X
L 

M
od

el MatFormer
Mix'n'Match
Baseline

Figure 7: The smoother variant of consistency measures the KL divergence between the smaller
models and the corresponding XL model. This metric, unlike the exact match accuracy variant, also
accounts for different sampling strategies on the output distribution during deployment. In this figure,
we plot KL divergence of S, M, L granularities with respect to XL for the 850M parameter model.

F.2 Using MatFormers for Attention Sub-Block

We experiment with applying MRL to the attention sub-block of the Transformer block. More
specifically, we jointly optimize 4 subnetworks with a varying number of attention heads nattn,
3 ∗ nattn/4, nattn/2, nattn/4 of size d/nattn each. In Figure 8, we plot the validation loss for
these models (MatLM-Attn), their corresponding baselines and Mix’n’Matched subnetworks. We
find that similar to our experiments on Mix’n’Matched MatLMs, Mix’n’Match helps obtain many
MatLM-Attn models on the optimal loss-vs-compute curve.

F.3 Tuning Sampling Probability

In Table 6, we experiment with tuning the sampling probabilities for individual granularities in order
to investigate the trade-off between granularity size and performance. More specifically, we tune
{p1, p2, p3, p4}, and find that all strategies that upweight the loss for the largest granularity perform
well, with modest degradation on the M and S granularties.

G Further Analysis on Vision Encoders

G.1 Decoupling Effect of MatFormer on Pretraining and Finetuning

Table 7 investigates the effect of MatFormer on pretaining and finetuning phases of ViT-L/16 model.
ViT-L/16 is typically pretrained on ImageNet-21K and then finetuned on ImageNet-1K for the final
evaluation. Table 7 shows that having a MatFormer during pretraining generates a better model for

20



7.50 7.75 8.00 8.25 8.50
N(Non-Embedd. Parameters) 1e8

2.2

2.4

2.6

2.8

3.0

Lo
ss

MatFormer
Mix'n'Match
Baseline

(a) Validation loss

Figure 8: Validation loss for the 850M MatLM-Attn & baseline models.

downstream finetuning compared to regular ViT pertaining. At the same time, finetuning a vanilla
pretrained ViT with MatFormer results in flexibility being induced into the model. Despite being
up to 2% less accurate than its counterparts at some granularities, a fine-tuned MatViT learned to
reallocate the information to provide strong nested models. Considering that this is insignificant
compared to pretaining costs, possible to take the largest pretrained ViT model and finetune with
MatFormer to obtain a deployable MatViT variant.

Table 7: 2 × 2 grid of pairs to evaluate (top-1 accuracy (%)) the effects of MatFormer and standard
training on the pretraining (PT) on ImageNet-21K and finetuning (FT) on ImageNet-1K using a L/16
architecture. Using a MatFormer during pretraining helps bring more accurate, and elastic encoders
for downstream uses.

PT↓ / FT→ # Params (M) ViT MatViT

ViT

306 85.26 85.57
206 85.12 84.27
156 85.02 82.79
131 84.42 82.1

MatViT

306 85.58 85.61
206 – 85.40
156 – 85.02
131 – 84.41

G.2 Traditional Image Retrieval Evaluation

Table 8 showcases traditional image retrieval evaluation on ImageNet-1K where the query and the
document encoders are the same for nearest neighbor retrieval. The 1-nearest neighbor (NN) based
evaluation closely follows one-vs-all classification results shown in Figure 4. Both MatViT variants
B/16 and L/16 have submodels that have as good or better retrieval performance compared to their
independently trained counterparts. Concretely, MatViT-based retrieval can be up to 0.5% more
accurate than the baselines while a 200M parameter MatViT submodel can be more accurate than the
300M parameter ViT baseline.

21



Table 8: Image retrieval 1-NN accuracy (%) when the query and document encoders are the same
model. Similar to the image classification results, MatViT variants either match or outperform the
corresponding standard ViT counterparts. Note that all the smaller models of a given model in
MatViT are extracted for free while the baselines have to be explicitly trained for the constraints.

Encoder # Params (M) ViT MatViT

B/16

85 77.46 77.38
57 76.58 76.41
43 74.90 74.49
36 71.44 71.72

L/16

300 83.17 83.67
200 82.92 83.23
150 82.81 82.89
125 82.22 82.14

0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

2.8

3.0

3.2

3.4

3.6

3.8

Lo
ss

MatFormer
Baseline

(a) XL-model Loss

0 1 2 3
N(Non-Embedd. Parameters) 1e8

3.0

3.2

3.4

3.6

3.8

Lo
ss

MatFormer
Baseline

(b) L-model Loss

0.0 0.5 1.0 1.5 2.0
N(Non-Embedd. Parameters) 1e8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

MatFormer
Baseline

(c) M-model Loss

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

MatFormer
Baseline

(d) S-model Loss

0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

3.00

3.25

3.50

3.75

4.00

Lo
ss

MatFormer
Baseline

(e) Loss for all granularities - XL, L, M, S.

0 1 2 3
N(Non-Embedd. Parameters) 1e8

70

75

80

85

90

Co
ns

ist
en

cy

MatFormer
Baseline

(f) Consistency with the XL-models

Figure 9: We train various decoder-only MatLM models at a range of sizes from 78M to 850M
parameters and observe the scaling trends for each model granularity on validation loss. We observe
that the gap between MatLM and the baseline appears to be constant at each granularity. The
consistency between the submodels of granularities and the XL models shows the effect of MatFormer
joint training on natively ensuring similar behavior across submodels.

22



0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

36

38

40

42

44

Av
er

ag
e 

Ac
cu

ra
cy

 (%
) MatFormer

Baseline

(a) XL-model Average Score on Evals

0 1 2 3
N(Non-Embedd. Parameters) 1e8

36

38

40

42

44

Av
er

ag
e 

Ac
cu

ra
cy

 (%
) MatFormer

Baseline

(b) L-model Average Score on Evals

0.0 0.5 1.0 1.5 2.0
N(Non-Embedd. Parameters) 1e8

36

38

40

42

Av
er

ag
e 

Ac
cu

ra
cy

 (%
) MatFormer

Baseline

(c) M-model Average Score on Evals

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e8

36

38

40

42

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

MatFormer
Baseline

(d) S-model Average Score on Evals

0 1 2 3 4
N(Non-Embedd. Parameters) 1e8

36

38

40

42

44

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

MatFormer
Baseline

(e) Average Score on Evals for all granularities -
XL, L, M, S

Figure 10: We train various decoder-only MatLM models at a range of sizes from 78M to 850M
parameters and observe the scaling trends for each model granularity for the average score on 1-shot
evaluation. We observe that the gap between MatLM and the baseline stays the same with scale,
outperforming the baselines for on all granularities for the largest models.

23



0 1 2 3
N(Non-Embedd. Parameters) 1e8

7500

8000

8500

9000

Co
ns

ist
en

cy

MatFormer
Baseline

(a) Consistency of L-model with XL-model

0.0 0.5 1.0 1.5 2.0
N(Non-Embedd. Parameters) 1e8

7500

8000

8500

Co
ns

ist
en

cy

MatFormer
Baseline

(b) Consistency of L-model with XL-model

0.0 0.5 1.0 1.5
N(Non-Embedd. Parameters) 1e8

7000

7250

7500

7750

8000

Co
ns

ist
en

cy

MatFormer
Baseline

(c) Consistency of L-model with XL-model

0 1 2 3
N(Non-Embedd. Parameters) 1e8

70

75

80

85

90

Co
ns

ist
en

cy

MatFormer
Baseline

(d) Consistency of all model granularities with XL-
model - L, M, S

Figure 11: We train various decoder-only MatLM models at a range of sizes from 78M to 850M
parameters and observe the scaling trends for each submodel S, M, L for the consistency with the XL
model. We observe that the gap between MatLM and the baseline reduces with scale, but one would
need to scale the baseline by many orders of magnitude to have consistency comparable to that of
MatLMs.

24



Table 9: Downstream Eval numbers and development set log perplexity loss on 78M model size
granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 0.14 0.13 0.19 0.14 0.14 0.11 0.19 0.10
NaturalQuestions (EM) 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.00
WebQuestions (EM) 0.10 0.10 0.15 0.10 0.20 0.15 0.30 0.15
LAMBADA 0.06 0.00 0.02 0.02 0.02 0.02 0.00 0.04
HellaSwag 25.42 26.59 26.00 26.28 25.95 25.95 25.95 26.32
StoryCloze 52.81 53.82 53.13 54.14 54.46 55.32 54.46 55.16
WSC 52.98 52.98 53.68 54.74 55.79 55.09 52.28 57.19
WinoGrande 48.46 47.91 51.54 50.36 50.99 51.38 48.86 50.20
Winograd 53.11 55.31 52.38 52.01 55.31 55.31 52.75 55.68
RACE-H 25.53 27.22 24.73 27.13 26.07 26.70 25.96 26.73
RACE-M 29.18 32.80 28.83 33.15 28.83 32.94 29.74 32.38
PIQA 55.77 56.47 54.62 56.31 54.52 56.42 56.86 56.09
ARC-C 21.50 22.01 21.08 21.50 21.59 21.76 22.35 21.76
ARC-E 34.55 34.55 34.30 34.68 34.89 34.97 34.55 34.55
OpenBookQA 25.40 28.00 27.60 29.00 28.20 30.60 29.80 30.60
BoolQ 48.72 52.14 51.87 52.08 51.28 52.14 52.11 52.20
COPA 62.00 58.00 62.00 59.00 63.00 58.00 60.00 59.00
RTE 53.79 53.43 52.35 53.07 51.26 52.35 51.99 52.35
WiC 49.53 47.49 49.06 47.18 47.34 47.34 47.65 47.18
MultiRC 51.28 53.38 51.51 53.96 47.67 53.57 49.38 52.74
RECORD 39.52 41.60 40.03 41.75 40.55 42.77 40.80 43.72
CB 41.07 41.07 44.64 41.07 44.64 41.07 42.86 42.86
ANLI-RI 30.90 32.60 32.30 32.30 32.50 32.40 32.50 32.70
ANLI-R2 31.10 30.60 31.10 30.60 30.70 30.60 30.60 30.70
ANLI-R3 31.75 31.17 30.58 30.58 30.33 30.67 30.00 31.00

Average 34.59 35.17 35.02 34.86 35.41 35.20 35.12 35.53

Loss 4.011 3.874 3.966 3.82 3.905 3.776 3.83 3.74

25



Table 10: Downstream Eval numbers and development set log perplexity loss on 180M model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 1.04 0.79 0.98 1.05 1.16 1.11 1.86 1.21
NaturalQuestions (EM) 0.08 0.17 0.14 0.30 0.30 0.33 0.28 0.39
WebQuestions (EM) 0.59 0.44 0.44 0.64 1.28 0.79 1.33 0.94
LAMBADA 0.16 1.13 0.43 1.28 1.51 1.20 0.49 1.28
HellaSwag 27.77 27.99 27.45 28.29 27.58 28.53 28.86 28.95
StoryCloze 56.33 57.03 57.03 57.40 57.30 58.31 58.63 58.90
WSC 55.44 56.14 56.49 57.89 58.25 58.25 57.54 57.89
WinoGrande 52.01 52.09 50.28 54.30 51.22 52.25 51.54 51.54
Winograd 54.21 56.78 56.78 56.78 61.54 57.14 60.44 61.17
RACE-H 27.93 28.82 27.50 28.47 28.70 29.33 28.73 28.99
RACE-M 33.29 34.05 34.19 33.98 34.54 34.89 33.29 35.58
PIQA 57.13 59.30 56.91 59.85 57.94 59.52 59.52 60.50
ARC-C 22.53 22.10 23.63 22.87 24.06 23.55 24.66 22.95
ARC-E 40.24 40.19 40.19 41.46 41.71 41.71 41.62 42.72
OpenBookQA 30.60 34.20 30.80 33.60 31.00 33.60 34.00 35.00
BoolQ 54.13 52.48 52.45 53.00 55.63 52.57 55.90 52.94
COPA 62.00 65.00 61.00 63.00 61.00 66.00 64.00 64.00
RTE 52.71 50.18 52.35 50.90 50.54 47.65 52.71 48.38
WiC 47.34 47.34 47.34 49.84 47.96 47.96 47.65 47.96
MultiRC 51.44 52.91 52.52 52.62 50.23 53.09 52.41 52.41
RECORD 48.58 50.56 48.99 52.11 50.56 53.21 52.82 54.09
CB 42.86 42.86 42.86 42.86 39.29 44.64 42.86 42.86
ANLI-RI 31.80 32.20 31.80 31.50 32.40 32.50 32.20 32.60
ANLI-R2 30.50 29.40 31.10 29.70 32.00 29.30 30.50 30.30
ANLI-R3 30.08 31.33 30.50 30.67 33.50 30.75 30.67 30.42

Average 36.43 37.02 36.56 37.37 37.24 37.57 37.78 37.75

Loss 3.548 3.484 3.513 3.43 3.456 3.387 3.354 3.348

Table 11: Downstream Eval numbers and development set log perplexity loss on 310M model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 2.09 3.77 2.20 3.87 2.84 4.92 5.18 5.40
NaturalQuestions (EM) 0.11 0.69 0.28 0.72 0.58 0.72 0.91 1.00
WebQuestions (EM) 2.12 2.41 1.08 2.41 1.67 2.71 2.41 3.35
LAMBADA 0.29 1.28 0.66 2.10 1.90 2.66 2.76 3.10
HellaSwag 29.89 30.49 30.05 31.28 31.18 31.87 32.52 32.65
StoryCloze 59.17 60.24 59.54 60.88 60.24 61.79 61.68 62.48
WSC 61.05 59.30 59.30 60.00 61.75 63.16 58.95 62.46
WinoGrande 51.46 52.25 49.57 50.75 52.41 52.72 50.91 52.33
Winograd 55.68 62.27 57.88 64.10 63.00 67.77 61.17 67.40
RACE-H 29.45 29.50 28.90 29.42 29.22 29.87 29.67 29.42
RACE-M 35.31 37.19 36.14 37.26 36.42 37.53 37.60 38.23
PIQA 58.98 60.83 59.58 61.92 59.79 63.00 62.19 62.62
ARC-C 23.38 25.17 23.21 24.06 23.81 24.49 25.00 23.98
ARC-E 42.30 43.86 44.11 45.50 44.53 47.05 46.80 48.36
OpenBookQA 32.80 35.60 34.60 35.80 35.20 37.80 36.80 37.00
BoolQ 53.43 54.56 55.32 53.79 52.87 51.87 54.22 51.31
COPA 61.00 62.00 61.00 62.00 64.00 67.00 60.00 65.00
RTE 52.71 49.10 53.43 49.46 51.62 48.74 54.15 51.26
WiC 47.18 48.75 47.65 47.65 47.65 47.34 47.34 47.34
MultiRC 51.67 51.57 52.70 51.16 53.84 52.58 53.28 52.76
RECORD 54.34 55.93 55.18 56.80 56.75 58.21 58.39 58.97
CB 42.86 44.64 42.86 51.79 42.86 50.00 50.00 44.64
ANLI-RI 32.00 33.20 32.00 33.40 32.50 33.30 32.20 32.40
ANLI-R2 32.60 30.60 30.90 30.10 30.60 30.70 29.80 30.60
ANLI-R3 32.08 31.58 30.75 31.83 32.17 32.00 31.50 31.17

Average 37.75 38.67 37.95 39.12 38.77 40.00 39.41 39.81

Loss 3.316 3.29 3.299 3.235 3.225 3.19 3.16 3.15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in abstract are backed up by experimental results in Section 4.

2. Limitations

26



Table 12: Downstream Eval numbers and development set log perplexity loss on 463M model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 4.63 5.67 4.87 6.78 6.11 7.51 8.09 7.76
NaturalQuestions (EM) 0.61 1.19 0.80 1.33 0.94 1.41 1.66 1.33
WebQuestions (EM) 2.31 2.61 2.26 2.56 2.85 2.71 2.85 3.20
LAMBADA 2.10 1.82 2.60 1.98 3.94 2.60 3.49 3.71
HellaSwag 32.12 32.69 32.83 34.05 33.80 34.88 36.21 36.36
StoryCloze 61.25 61.46 61.36 62.21 63.66 63.23 64.24 64.35
WSC 57.54 62.81 61.40 62.11 66.32 62.46 61.05 62.81
WinoGrande 52.33 51.46 49.09 51.78 52.64 50.20 53.12 51.85
Winograd 60.07 61.17 60.07 63.37 67.40 64.47 68.50 64.84
RACE-H 29.85 29.65 29.47 30.10 30.56 30.33 30.70 30.93
RACE-M 37.53 38.23 37.33 39.28 40.39 39.62 40.95 40.67
PIQA 61.26 61.43 61.48 62.40 60.99 62.79 63.17 63.44
ARC-C 23.04 24.23 24.06 24.32 24.49 25.43 23.72 24.91
ARC-E 45.83 46.42 46.30 47.35 47.73 49.54 51.73 50.72
OpenBookQA 37.20 37.40 37.00 38.60 36.40 38.80 41.00 39.20
BoolQ 52.39 51.77 56.12 51.96 50.28 53.52 54.98 55.17
COPA 67.00 65.00 73.00 64.00 71.00 63.00 67.00 70.00
RTE 52.35 55.23 53.43 50.54 52.35 49.46 52.35 52.35
WiC 47.34 47.34 47.34 47.34 47.34 47.34 47.34 47.34
MultiRC 54.93 53.01 50.89 53.11 52.62 52.10 52.33 52.89
RECORD 57.58 59.93 59.31 61.06 60.87 62.16 63.42 63.51
CB 42.86 41.07 44.64 46.43 44.64 37.50 42.86 35.71
ANLI-RI 32.60 32.90 31.70 32.30 31.40 32.40 32.50 32.30
ANLI-R2 30.70 33.70 28.40 30.50 30.40 30.90 31.20 31.90
ANLI-R3 30.83 33.17 30.08 32.50 30.83 31.58 30.92 31.25

Average 39.05 39.64 39.43 39.91 40.40 39.83 41.01 40.83

Loss 3.205 3.162 3.16 3.107 3.096 3.06 3.023 3.02

Table 13: Downstream Eval numbers and development set log perplexity loss on 850M model size granularities.
Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 6.62 10.50 9.78 11.61 11.72 13.15 13.31 15.15
NaturalQuestions (EM) 0.89 1.97 1.58 1.97 2.38 2.33 2.66 2.52
WebQuestions (EM) 3.35 3.69 4.18 2.95 4.43 3.94 4.08 4.82
LAMBADA 8.25 6.89 10.83 7.51 10.44 9.55 14.03 9.96
HellaSwag 36.64 37.42 37.70 39.21 39.64 41.48 43.40 43.43
StoryCloze 65.26 65.10 66.17 67.08 67.13 68.47 71.25 70.12
WSC 65.96 65.96 64.21 67.02 69.12 69.82 70.53 67.72
WinoGrande 51.54 52.57 52.57 54.46 52.96 54.54 54.14 54.85
Winograd 69.23 64.84 71.43 67.77 70.33 71.79 72.16 73.26
RACE-H 30.76 31.82 31.88 32.96 31.88 33.45 33.79 33.42
RACE-M 40.95 41.85 41.16 42.76 42.55 44.43 44.64 44.57
PIQA 63.98 64.04 64.91 65.02 65.23 66.81 67.25 67.19
ARC-C 24.15 26.02 24.91 27.65 26.54 28.84 27.13 30.38
ARC-E 51.01 52.69 52.95 55.13 54.92 56.27 57.11 59.01
OpenBookQA 40.40 41.60 41.20 42.20 40.80 42.20 43.00 43.40
BoolQ 50.31 52.48 47.80 54.80 50.15 54.59 55.60 54.46
COPA 73.00 74.00 73.00 73.00 73.00 75.00 73.00 78.00
RTE 51.99 54.87 52.35 54.15 51.99 54.15 53.07 53.43
WiC 47.18 47.34 47.18 47.34 47.18 47.18 47.34 47.18
MultiRC 51.79 55.01 53.09 54.81 53.36 55.61 56.08 56.19
RECORD 64.27 65.16 65.36 65.99 66.53 67.74 69.56 68.72
CB 37.50 41.07 42.86 44.64 42.86 48.21 46.43 50.00
ANLI-RI 31.80 32.70 32.10 31.80 32.20 31.20 32.60 31.30
ANLI-R2 31.50 30.20 30.90 30.00 30.60 30.40 30.40 30.90
ANLI-R3 30.25 30.92 30.17 31.33 30.00 32.08 30.58 31.92
Average 42.58 43.34 43.35 44.23 44.01 45.42 45.83 46.11
ANLI-R3 30.83 33.17 30.08 32.50 30.83 31.58 30.92 31.25

Average 41.14 42.03 42.01 42.92 42.72 44.13 44.53 44.87

Loss 3.017 2.987 2.971 2.934 2.91 2.886 2.84 2.843

27



Table 14: Downstream Eval numbers and development set log perplexity loss on 850M model size granularities
for DynaBERT and OFA
Downstream Task DynaBERT-S OFA-S DynaBERT-M OFA-M DynaBERT-L OFA-L DynaBERT-XL OFA-XL

TriviaQA (EM) 8.52 9.96 9.57 10.60 13.14 11.35 14.55 13.34
NaturalQuestions (EM) 1.39 1.52 1.83 2.24 2.55 2.22 2.96 2.60
WebQuestions (EM) 3.30 4.28 3.74 4.63 4.68 4.33 5.46 4.72
LAMBADA 8.85 4.72 11.84 5.74 14.88 5.98 14.65 8.31
HellaSwag 37.86 37.22 39.26 39.33 41.15 41.26 43.39 43.04
StoryCloze 65.42 64.40 66.54 66.49 68.36 68.57 69.05 69.75
WSC 64.91 68.07 68.77 65.96 71.58 68.77 72.63 68.42
WinoGrande 55.72 52.09 55.72 56.04 57.30 55.33 59.35 55.33
Winograd 69.23 68.86 69.60 68.50 72.53 70.33 75.46 72.53
RACE-H 31.16 32.70 32.30 32.96 32.62 32.99 33.19 33.96
RACE-M 41.43 42.41 43.04 43.04 45.54 43.73 46.52 43.73
PIQA 63.71 63.49 65.67 65.23 65.89 66.49 67.14 66.76
ARC-C 24.66 24.74 25.94 26.62 26.62 27.22 28.50 29.27
ARC-E 52.44 52.78 54.46 54.46 57.41 56.78 58.54 58.96
OpenBookQA 39.60 39.60 39.40 42.00 41.40 42.40 42.00 42.40
BoolQ 54.56 52.11 52.81 52.17 50.55 54.13 51.28 54.92
COPA 70.00 68.00 72.00 72.00 75.00 71.00 73.00 74.00
RTE 53.07 52.71 54.15 52.71 49.10 52.71 46.21 52.71
WiC 47.34 47.34 47.34 47.34 47.02 47.34 47.34 47.34
MultiRC 51.73 54.41 53.01 54.93 55.42 55.18 55.18 55.42
RECORD 65.05 64.60 66.65 66.61 68.33 67.96 68.91 68.68
CB 41.07 42.86 41.07 42.86 41.07 46.43 41.07 44.64
ANLI-RI 32.60 32.50 31.70 32.50 32.60 32.30 32.10 32.10
ANLI-R2 30.60 30.60 30.60 30.50 31.00 30.80 31.70 30.70
ANLI-R3 30.42 30.67 31.08 30.67 32.00 30.58 31.58 30.75

Average 41.78 41.71 42.72 42.64 43.9 43.44 44.47 44.17

Loss 2.993 3.01 2.942 2.935 2.895 2.89 2.854 2.863

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss this throughout the draft.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: No theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are provided in Appendix B. Moreover, code to repro-
duce Section 4.2 will be been open-sourced at link.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Implementation details are provided in Appendix B. While code to reproduce
Section 4.2 has been open-sourced, the language model has been trained on proprietary data.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]

28

https://devvrit.github.io/matformer/


Justification: Implementation details are provided in Appendix B, with citation of the models
upon which these models are built.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This has not been done due to the computational expense of training language
models from scratch.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is provided in Appendix B.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Broader impacts have been discussed in Appendix A.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts have been discussed in Appendix A.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No datasets or models are released with this paper.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The vision models and data used in this have been public for a long time. The
language models inherit the appropriate licenses of the Lamda [58] paper while we train on
proprietary data.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code to reproduce experiments will be released for camera ready.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

29

https://neurips.cc/public/EthicsGuidelines


• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30


	Introduction
	Related Work
	MatFormer
	MatFormer Structure
	Training
	Mix'n'Match
	Deployment

	Experiments
	MatLM: MatFormer Language Models
	Elastic Inference with MatLM
	MatLM Scales as well as Vanilla Transformer LMs

	MatViT: MatFormer Vision Transformers
	Image Classification
	Adaptive Image Retrieval


	Conclusion
	Broader Impact Statement
	Implementation Details
	Architecture and Training
	Downstream Evaluation
	Baseline Implementation Details
	Comparison with Baselines

	Training and Inference Costs
	Speculative Decoding Attention Sharing

	Search Techniques
	Mix'n'Match
	NAS

	Scaling Laws for Language Decoders
	Scaling laws of MatFormers vs Transformers.

	Further Analysis on Language Decoders
	KL Divergence Between S, M, L and XL Models
	Using MatFormers for Attention Sub-Block
	Tuning Sampling Probability

	Further Analysis on Vision Encoders
	Decoupling Effect of MatFormer on Pretraining and Finetuning
	Traditional Image Retrieval Evaluation


