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ABSTRACT

Generating sequential events data, such as adverse patient events, can provide
valuable insights for clinical trial development, pharmaceutical research, patient
modeling, and more. One approach to generate such data is by using generative
AI models, which can synthesize data that resembles real-world data. However,
in the domains such as clinical trials, patient data is especially limited. Data gen-
eration methods from literature such as LSTM, Probabilistic Auto-regressive, and
Diffusion-based data generators struggle with this particular task off the shelf, as
we show empirically. To address this task, we propose HawkesVAE, a Variational
Autoencoder (VAE) that models events using Hawkes Processes (HP). Hawkes
Processes are specialized statistical models designed specifically for the task of
event and time-gap prediction, and VAEs enable an end-to-end generative design.
Additionally, traditional VAEs rely solely on embeddings to decode events, but
in a data-limited setting, this approach can have issues fitting the data. There-
fore, we experiment with different ways of allowing the decoder to access vary-
ing amounts of information from the input events. Our experiments show that
HawkesVAE outperforms other methods in terms of fidelity and allows the gen-
eration of highly accurate event sequences in multiple real-world sequential event
datasets with only a small amount of external information. Furthermore, our em-
pirical experiments demonstrate that HawkesVAE generates data that allows for
superior utility over existing baselines while maintaining privacy.

1 INTRODUCTION

Generating sequential event data with limited training data is a crucial area of research, especially in
healthcare (Wang & Sun, 2022a; Das et al., 2023; Theodorou et al., 2023). Clinical trials provide an
example where generating synthetic event data for patients is particularly useful, as real data is often
inaccessible due to patient privacy and legal reasons. Thus, high-quality synthetic sequential event
data can be of great value for machine learning applications and data analysis. Our primary objective
is to develop an effective algorithm for generating sequential event data with limited training data.
However, developing a high-quality model for sequential data can be more complicated than data-
rich tasks in computer vision or natural language processing. This is due to the diversity of individual
features and the small training datasets available. Previous work in this area (Beigi et al., 2022;
Shafquat et al., 2023) have generally focused on generating the static context information for each
subject (e.g. subject demographics), while generating the sequential events has remained an elusive,
yet vital next step in order to create a fully synthetic dataset.

Hawkes processes are statistical models that are specialized for event-type and time gap prediction
(Hawkes, 1971), which has been shown to be highly effective at point process prediction when
augmented with Transformer Layers (Zuo et al., 2020). Variational Autoencoders (VAEs) (Kingma
& Welling, 2013) are a generative framework that specializes encoding an observed data into a
probabilistic latent space z that may be sampled. In our research, we demonstrate that combining
the Hawkes Process with VAEs can successfully approximate sequential event generation, leading
to state-of-the-art performance on our real-world data benchmarks.

To summarize our contributions,
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1. We introduce HawkesVAE–a model that combines Variational Autoencoder + Hawkes
Process that is able to generate sequential event data with their time gaps on 7 real-world
clinical trial datasets. Additionally, our generation supports a high level of control, allowing
users to specify specific event types to generate. To our knowledge, we are the first to
propose this method for synthetic sequential event generation.

2. We demonstrate that HawkesVAE outperforms the alternative approaches in terms of AU-
CROC for downstream ML classification designed for tabular data, including VAE+LSTM,
PAR, and DDPM.

3. We conduct experiments demonstrating that HawkesVAE’s privacy with two metrics: ML
Inference Score, which shows that synthetic event sequences are hard to distinguish from
the original sequences, and Distance to Closest Record (DCR), which shows that synthetic
sequences are not copies of the original data.

2 RELATED WORK

Synthetic Data Generation as a research area has been quickly garnering attention from the re-
search community, with examples such as CTGAN (Xu et al., 2019), CTabGan (Zhao et al., 2022),
TabDDPM (Kotelnikov et al., 2023), the Synthetic Data Vault1 (Patki et al., 2016), and more. How-
ever, most of these models, such as TabDDPM and CTGAN, are focused on explicitly generating
tabular data with no time component; or, in the case of SDV’s ParSynthesizer (Zhang et al., 2022a),
it is relatively simple and may be approximated with a GRU or LSTM model. In related fields such
as synthetic clinical trial data generation (Choi et al., 2017; Das et al., 2023; Wang et al., 2023b;
Lu et al., 2023; Theodorou et al., 2023), the model usually only focuses on generating the order at
which certain clinical events happen (i.e., the diagnosis code of next patient visit), as opposed to
generating the specific times of the visits as well. While it would be possible to extend this line
of previous work, we believe that is out of scope for this paper and should be considered as future
work.

Hawkes Processes and VAEs have been somewhat explored in the past. However, we found dis-
advantages that limit application in a full synthetic data generation setting. Previous work explores
variational Hawkes processes in the context of event prediction for (disease progression (Sun et al.,
2021) and social events sequences Pan et al. (2020), but they rely on the context of previous ground
truth observations as well as the hidden state, whereas we can generate a synthetic sequence of event
types and times. Another work (Lin et al., 2021) explores using variational approaches to disentan-
gle multivariate Hawkes Process for event type prediction, but it also relies on knowing the ground
truth to predict the next timestep. Additionally, our model only requires a single embedding to syn-
thesize a sequence, whereas they require an embedding at each timestep. Furthermore, none of these
methods are able solely to consider specific event types to generate, which HawkesVAE supports.

3 PROBLEM SETUP

3.1 NEURAL HAWKES PROCESS

We are given a set of L observations of the form (time tj , event type kj). S =
{(t1, k1), . . . , (tj , kj), . . . , (tL, kL)} Each time tj ∈ R+

⋃
{0} and is sorted such that tj < tj+1.

Each event kj ∈ {1, . . . ,K}. The traditional Hawkes Process assumption that events only have
a positive, decaying influence on future events is not realistic in practice, as there exist examples
where an occurrence of an event lowers the probability of a future event (e.g., medication reduces
the probability of adverse events). Therefore, the Neural Hawkes Process (Mei & Eisner, 2017) was
proposed to generalize the traditional Hawkes Process. The following derivations follow (Zuo et al.,
2020).

λ(t) :=

K∑
k=1

λk(t) :=

K∑
k=1

fk(W
⊤
k h(t)) =

K∑
k=1

βk log

(
1 + e

WT
k h(t)

βk

)
,

1https://docs.sdv.dev/sdv/
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where λ(t) is the intensity function for any event occurring, λk(t) is the intensity function for the
event k ∈ K occurring, K = |K| is the total number of event types, and h(t) are the hidden states of
the event sequence obtained by a Transformer encoder and W⊤

k are learned weights that calculate
the significance of each event type at time t. fk(c) = βk log(1 + e

x
βk ) is the softplus function with

parameter βk. The output of fk(x) is always positive. Note that the positive intensity does not
mean that the influence is always positive, as the influence of previous events are calculated through
W⊤

k h(t). If there is an event occurring at time t, then the probability of event k is P (kt = k) =
λk(t)
λ(t) .

Let the history of all events before t be represented by Ht = {(tj , kj), tj < t}. The continuous time
intensity for prediction is defined as

λ(t|Ht) :=

K∑
k=1

λk(t|Ht) :=

K∑
k=1

fk

(
αk

t− tj
tj

+W⊤
k h(tj) + µk

)
,

where time is defined on interval [tj , tj+1), fk is the softplus function as before, αk is a learned
importance of the interpolation between the two observed timesteps tj and tj+1. Note that when
t = tj , αk does not matter as the influence is 0 (intuitively, this is because we know that this event
exists, so there is no need to estimate anything). The history of all previous events up to time t is
represented by tj . W⊤

k are weights that convert this history to a scalar. µk is the base intensity of
event k. Therefore, the probability of p(t|Htj ) is the intensity at t ∈ [tj , tj+1) given the history Ht

and the probability that no other events occur from the interval (tj , t)

p(t|Htj ) = λ(t|Ht) exp

(
−
∫ t

tj

λ(t′|Ht′)dt
′

)
.

Note that if tj is the last observation, then tj+1 = ∞. Finally, the next time value t̂j+1 and event
prediction k̂j+1 is given as

t̂j+1 =

∫ ∞

tj

t · p(t|Ht)dt, k̂j+1 = argmax
k

λk(tj+1|Htj+1
)

λ(tj+1|Htj+1
)

For training, we want to maximize the likelihood of the observed sequence {(t1, k1), . . . , (tL, kL)}.
The log-likelihood function is given by2

ℓ({(t1, k1), . . . , (tL, kL)}) =
L∑

j=1

log(λ(tj |Htj ))−
∫ tL

t1

λ(t|Ht)dt.

Finally, since the gradient of the log-likelihood function has an intractable integral, one may obtain
an unbiased estimate by performing Monte Carlo sampling (Robert et al., 1999).

∇
[∫ tL

t1

λ(t|Ht)dt

]
MC

=

L∑
j=2

(tj − tj−1)(
1

N

N∑
i=1

∇λ(ui))

With ui ∼ Uniform(tj−1, tj). ∇λ(ui) is fully differentiable with respect to ui.

4 HAWKESVAE

Figure 1 shows an example of the proposed model with all optional structural constraints (allowing
the model to access the true event knowledge, such as type and event length information). A diagram
of the model without such additions is shown in Figure 3 in the Appendix. To combine the VAE
and the Hawkes Process, we realize that the log-likelihood can be modeled as the log-likelihood of a
Hawkes process if we assume that the event times and event types are generated from a multinomial
Gaussian, i.e., the combined loss may be written as the following.

2The proof is shown in (Mei & Eisner, 2017) and Section A.8
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Figure 1: Diagram of the HawkesVAE Encoder-Decoder structure where. Here, the model input
is the real patient event sequence + time, which is used to train a VAE model to the same output
event sequence + time. The event sequence length for each event (if not known) is predicted as
well. Optional inputs (in dashed lines) include the ground truth knowledge of which event types to
generate and/or event lengths. The input observations are encoded first by a specific event encoder
(Hawkes, LSTM, etc), and then embeddings are mapped to the patient embedding space via an MLP.
The opposite process occurs for decoding from the patient embedding.

Sample event sequence Sz ∼ Pθ(S|z) where Sz = {(t1, k1), . . . , (tj , kj), . . . , (tLz , kLz )}. Then
Ht,z denotes the history up to time t in Sz .

λθ(t|Ht,z) :=

K∑
k=1

λθ,k(t|Ht,z) :=

K∑
k=1

fk

(
αk

t− tj
tj

+W⊤
θ,khθ(tj) + µθ,k

)
,

Where t ∈ [tj , tj+1). That is, t lies between the jth and j + 1th observation in Sz (if tj is the last
observation, then tj+1 = ∞). λθ,k, W⊤

θ,k, and h⊤
θ are the same as the Neural Hawkes Process, only

parameterized by θ.

The log-likelihood is:

lnPθ(Sz|z) =
Lz∑
j=1

log(λθ(tj |Htj ,z))−
∫ tLz

t1

λθ(t|Ht,z)dt.

Adding the VAE ELBO loss (Appendix A.7), the combined HawkesVAE loss is:

Lθ,ϕ = Ez∼qϕ(·|Sz) [lnPθ(Sz|z)]−DKL(qϕ(·|Sz)||Pθ(·|Sz)).

4.1 KEY DETAILS

Encoding and Decoding Hawkes Processes The encoder model EHawkesVAE(Hi) → µ̂, σ̂ takes
in the original event types and times, and predicts the mean and standard deviation to sample z ∼
Normal(µ̂, σ̂). This is used for qϕ(·|Sz) in the loss function and follows the previous Transformer
Hawkes Process implementation of a transformer encoder, with alternating sine and cosine waves to
denote temporal information as specified in Vaswani et al. (2017).

However, the decoder model is more complicated. Hawkes Process is usually evaluated via one
prediction step at a time (i.e., the input is the ground truth time-step and event type, and the task
is to predict the next time step and event type). For our purposes, we need to adapt this into an
autoregressive decoding scheme similar to the language modeling task.
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At training time, the input to the decoder DHawkesVAE(z,Hi) → (t̂i+1, k̂i+1, λ) is hidden vector z
and a sequence of ground truth event types and times. It is tasked with predicting the next event type
k̂, next event time t̂, and the λs necessary to compute Pθ(·|Sz). Furthermore, we follow Transformer
Hawkes Process’s approach of also adding mean squared error losses to the time: time loss =

∥t− t̂∥2 and cross-entropy loss of the predicted type loss = −
∑|K|

c=1 k log(pk).

At inference time, the input to decoder is only z, and we auto-regressively decode the predicted
event types and times. To predict next time and event tuple (t̂i, k̂i), the input is the previously pre-
dicted times and events {(t̂1, k̂1), . . . , (t̂i−1, k̂i−1))}). (each predicted time and event is repeatedly
appended to the input). We find that auto-regressive greedy sampling k̂ = argmax(k̂) of the next
event type does not result in good sequences, and probabilistic sampling based on the raw logit score
will result in higher utility sequences. Finally, we note that we can control for generating events that
are similar to the original patient by first encoding the original patient, and then sampling around it,
a benefit of the probabilistic nature of the VAE latent space z. Otherwise, it would be impossible to
correspond the original labels to the synthetic data.

Event Type Information In addition to proposing HawkesVAE, we also propose several variants
of it. In some applications, such as clinical trial patient modelling (Wang & Sun, 2022a; Fu et al.,
2022; Das et al., 2023), we may be interested in an event sequence with the event types known, that
is, the model only needs to generate the timestamps at which events occur. This is to address the
concern of subject fidelity–that is–the generated subject must be significantly similar to the original
subject in order for the generated data to be useful; therefore, knowing which events occur in a
subject to generate a similar subject would not be unreasonable. The “Events Known” model was
created to enforce ONLY simulating specific events, without consideration of all events (which may
be irrelevant and confuse the generator).

To accommodate this framework, we train num event Transformer Hawkes Process expert en-
coders and decoders that only model a single event. Since event type is known, we may index into
the specific encoder/decoder pair as given by the event index (shown in Figure 1). Finally, all inde-
pendent event time predictions over all known types are combined via their predicted event times to
create a final multi-event sequence prediction. Since the VAE model requires a single embedding to
sample a latent vector, we sum the patient embedding output of all expert event encoders, and pass
this joint embedding to the expert decoders. The decoder is trained to generate the predicted time
and type sequence of its respective expert event.

Note that we have the sum the latent patient embeddings of the expert decoders due to the limitation
of having a fully generative model. It would be unfair for to have varying size latent spaces for each
patient.

Sequence Length Prediction Given known subset of events K′ ∈ K, we generate event sequences
such that S = {(tj , kj); j = 1, . . . , L; kj ∈ K′}, where L is learned from the data. Note that by
default, all HawkesVAE variants autoregressively continue to predict event types and times until
it reaches its own predicted stopping length. Like other synthesizers (Zhang et al., 2022a), we
also experiment with using a max-length criterion, such that the event generation still stops at a
certain L. We explore 2 cases. (1) If the event type is not known, we simply generate sequence S =
{(tj , kj); j = 1, . . . , L′} where L′ is a prespecified sequence length. (2) If the event type is known,
then we allow the model to know the specific max lengths L′

k for each specific event type. Let L′ =∑
ki∈K′ L′

ki
We then generate a sequence S = {(tj , kj); j = 1, . . . , L′;

(∑L′

j=1 1(kj = ki)
)

=

L′
ki
;∀ki ∈ K′}

5 EXPERIMENTS

Datasets We evaluated our models on 7 real-world clinical trial outcome datasets obtained from
Project Data Sphere3 (Green et al., 2015; Fu et al., 2022). Specifically, we chose the trials as outlined
in Table 1. These datasets have shown to be effective evaluation datasets for tabular prediction (Wang
& Sun, 2022b; Wang et al., 2023a) and digital twin generation (Das et al., 2023). Specifically, we use

3https://data.projectdatasphere.org/projectdatasphere/html/access
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Table 1: A description of all of the real-world datasets used in the evaluation. All trial data was
obtained from Project Data Sphere (Green et al., 2015). Num Rows refers to the raw number of
data points in the trial. Num Subj refers to the total number of patients. Num Events denotes the
total number of unique events. Events / Subj denotes the average number of events that a patient
experiences. Positive Label Proportion denotes the percentage of patients that did not experience
the death event.

Dataset Description Num Rows Num Subj Num Events Events / Subj Positive Label
Proportion

NCT00003299 Small Cell
Lung Cancer 20210 548 34 36.880 0.951

NCT00041119 Breast Cancer 2983 425 150 7.019 0.134

NCT00079274 Colon Cancer 316 70 18 4.514 0.184

NCT00174655 Breast Cancer 7002 953 21 7.347 0.019

NCT00312208 Breast Cancer 2193 378 182 5.802 0.184

NCT00694382
Venous

Thromboembolism
in Cancer Patients

7853 803 746 9.780 0.456

NCT03041311 Small Cell
Lung Cancer 1043 47 207 22.192 0.622

NCT00003299 (Niell et al., 2005), NCT00041119 (Baldwin et al., 2012), NCT00079274 (Alberts
et al., 2012), NCT00174655 (Fernández-Cuesta et al., 2012), NCT00312208 (Mackey et al., 2016),
NCT00694382 (Agnelli et al., 2012), NCT03041311 (Daniel et al., 2021). A full description of
the data is shown in Table 1. Each dataset contains events and the times at which they occur, e.g.
medications, procedures, as well as some adverse events like vomiting, etc. We use these datasets to
predict if the subject experiences the death event, which is an external label. Note that HawkesVAE
does not require a fixed patient event sequence length.

Models to Compare We compared the following models:

1. LSTM VAE: To compare against a VAE baseline, we manually implement our own LSTM VAE,
which predicts the event type as a categorical classification task and the timestamp as a regression
task at each event prediction.

2. PARSynthesizer from SDV (Zhang et al., 2022a; Patki et al., 2016) since it is the most relevant
model for synthesizing sequential event data, based on a conditional probabilistic auto-regressive
(CPAR) model. To the best of our knowledge, no other models specifically handle sequential event
data generation from scratch with easily accessible code.

3. DDPM (Kotelnikov et al., 2023) is a recently proposed state-of-the-art general tabular synthesizer
based on diffusion models. Although it is not explicitly built for sequential data, we are able to
enhance it by adding time as a numerical column. This model also outperforms CTGAN-related
models Xu et al. (2019); Zhao et al. (2021; 2022), the previous go-to for synthetic tabular data
generation. We believe that this is a strong, representative baseline of general tabular synthetic data
generation.

3. HawkesVAE (Multivariate) is the VAE + Multivariate Hawkes Process that is trained without
any assumptions. At training time, the task is to predict the next event and timestamp given a history
of observations. At inference time, we perform autoregressive decoding, adding the last prediction
to the history until a predicted cutoff is reached.

4. HawkesVAE (Events Known) assumes that one knows which specific events occur for the
Hawkes Model (but not the timestamps or the number of occurrences). Similar to HawkesVAE
(Multivariate), training is performed by predicting the next event and timestamp given history, and
autoregressive decoding is done at inference time until a predicted cutoff.

Additionally, we attempted to implement HALO (Theodorou et al., 2023), a hierarchical autoregres-
sive language model that achieved state-of-the-art performance for Electronic Health Record (EHR)
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synthesis, but was not able to obtain representative results on the clinical trial evaluation datasets,
primarily due to the small size of training data, demonstrating the difficulty of this task.

5.1 UTILITY EVALUATION

We evaluate the utility (ROCAUC) of the generated synthetic data by performing binary classifi-
cation of death events in all 7 clinical trials. The standard deviation of each ROCAUC score is
calculated via bootstrapping (100x bootstrapped test datapoints). Training is performed completely
on synthetic data by matching each generated patient to its ground truth death event label. Testing is
performed on the original held-out ground truth split. For the Original Data baseline, we performed
5 cross validations on 80/20 train test splits of the real data. The main results are shown in Table 2.
We see that synthetic data generated by HawkesVAE variants generally perform the best in terms
of downstream death event classification performance, where HawkesVAE (Multivariate) outper-
forms the next best model (in 4/7 datasets and is within 1 standard deviation with the rest of the
datasets). Allowing the model access to the specific types also enables it to significantly outperform
other baselines. Occasionally, synthetic data is able to support better performance than the original
dataset on downstream tasks (this behavior is also seen in TabDDPM). We believe that this is due
to the synthetic model generating examples that are more easily separable and/or more diverse than
real data. However, this is only a hypothesis and should be investigated further in future research,
but we are encouraged to see that our proposed method captures this behavior. Additionally, some
examples of an (anonymized) generated sequence can be seen in Figure 2.

Table 2: Binary classification ROCAUCs (↑ higher the better, ± standard deviation) of a downstream
LSTM trained on data generated from the HawkesVAE models as well as the original data and
baselines. Note that the LSTM and the HawkesVAE models estimate their own sequence length.
HawkesVAE (Events Known) is put in a separate category due to its requirement of event type
information. Bolded indicates original data mean within 1 standard deviation.

Dataset Original Data LSTM VAE PAR DDPM
Hawkes

(Multivariate)
Hawkes

(Events Known)

NCT00003299 0.689 ± 0.105 0.563 ± 0.053 0.504 ± 0.066 0.557 ± 0.055 0.572 ± 0.051 0.709 ± 0.049
NCT00041119 0.678 ± 0.078 0.617 ± 0.036 0.573 ± 0.043 0.630 ± 0.045 0.646 ± 0.037 0.665 ± 0.045
NCT00079274 0.637 ± 0.140 0.481 ± 0.092 0.567 ± 0.096 0.583 ± 0.098 0.622 ± 0.016 0.653 ± 0.019
NCT00174655 0.660 ± 0.128 0.535 ± 0.073 0.523 ± 0.074 0.513 ± 0.078 0.548 ± 0.024 0.594 ± 0.068
NCT00312208 0.632 ± 0.072 0.454 ± 0.039 0.463 ± 0.039 0.503 ± 0.043 0.590 ± 0.050 0.634 ± 0.032
NCT00694382 0.640 ± 0.038 0.490 ± 0.019 0.549 ± 0.022 0.531 ± 0.021 0.568 ± 0.018 0.625 ± 0.020
NCT03041311 0.738 ± 0.149 0.563 ± 0.097 0.507 ± 0.087 0.574 ± 0.096 0.689 ± 0.084 0.755 ± 0.059

5.2 PRIVACY EVALUATIONS

ML Inference Score: We first calculate the performance of predicting whether a generated sequence
is real vs synthetic via an LSTM binary classification (Patki et al., 2016). The real subjects are
labelled with ”0” and the synthetic subjects are labelled with ”1”. Results are shown in Table 3, and
we see that HawkesVAE variants perform closest to the optimal 0.5 ROCAUC ideal score. One
thing to note is that a perfect copy of the original data would result in a 0.5 score, so we have the
following metric to measure the opposite scenario.

Distance to Closest Record (DCR) Score: Second, we follow the evaluation metrics per TabDDPM
(Kotelnikov et al., 2023). That is, we compare the feature vectors of the real vs synthetic data,
and measure how far the synthetic data is from the original. The higher this distance is, the more
different the generated data is from the original data, and thus the more private it is. A completely
different version of the data would obtain the highest distance, but could result in bad performance
in the downstream LSTM classification performance or a high ML Inference score (close to 1).
We calculate this by featurizing the event time predictions in terms of (count, means, and standard
deviations). Then, we normalize and obtain the L2 distance between a generated subject and the
closest real subject. Table 4 shows this result. Notice that HawkesVAE variants generally obtain
quite low scores on this metric. DDPM and PAR also generate data closer to the original data
compared to LSTM VAE. We note the privacy-fidelity tradeoff, as LSTM VAE generates data that
is further away from the original, but yields worse utility (Table 2).

7



Under review as a conference paper at ICLR 2024

Table 3: Results of ML Inference Score: LSTM binary classification of real vs synthetic (the closer
to 0.5 the score is, the better). Standard deviation calculated via bootstrapping is shown via ±.
AUCROC scores are shown. HawkesVAE (Events Known) is put in a separate category due to its
requirement of event type info.

Dataest LSTM VAE PAR DDPM HawkesVAE
(Multivariate)

HawkesVAE
(Events Known)

NCT00003299 1.000 ± 0.000 0.968 ± 0.010 0.762 ± 0.024 0.792 ± 0.019 0.689 ± 0.020
NCT00041119 0.932 ± 0.017 0.998 ± 0.002 0.926 ± 0.017 0.726 ± 0.015 0.768 ± 0.021
NCT00079274 1.000 ± 0.000 0.807 ± 0.082 0.894 ± 0.050 0.733 ± 0.012 0.701 ± 0.054
NCT00174655 1.000 ± 0.000 0.999 ± 0.001 0.998 ± 0.001 0.696 ± 0.008 0.593 ± 0.023
NCT00312208 0.994 ± 0.007 0.874 ± 0.026 0.729 ± 0.035 0.712 ± 0.024 0.693 ± 0.038
NCT00694382 1.000 ± 0.000 0.923 ± 0.012 0.992 ± 0.005 0.891 ± 0.014 0.856 ± 0.016
NCT03041311 1.000 ± 0.000 0.651 ± 0.112 0.374 ± 0.121 0.573 ± 0.111 0.477 ± 0.127

Table 4: Distance to Closest Record (DCR) Score. Note that this score only tells part of the picture.
The higher this score is, the larger the difference between the synthetic data and the original data.
The lower the score, the more similar the synthetic data is to the original data.

Dataset LSTM VAE PAR DDPM HawkesVAE
(Multivariate)

HawkesVAE
(Events Known)

NCT00003299 3.700 2.647 1.426 2.256 1.138
NCT00041119 4.677 4.633 1.007 3.251 0.612
NCT00079274 2.732 1.977 1.346 1.618 1.675
NCT00174655 32.185 56.915 3.581 2.110 1.215
NCT00312208 87.015 2.348 1.207 1.535 0.745
NCT00694382 17.946 35.362 1.059 2.125 0.971
NCT03041311 36.740 37.723 4.662 5.565 4.922

5.3 ABLATIONS

Assuming Knowledge of Event Lengths In this section, we examine the ability of our frame-
work to take in additional subject-level information regarding sequence generation. For example,
HawkesVAE assumes that we have access to the original event lengths (e.g., event 1 occurs 5 times
in the original sequence, generate the times at which event 1 occurs), as well as the event indices
(e.g., we know that subject 1 has events 2,5,6). For more details, see Section 4.1. Table 5 shows
the result of allowing the model to know how many times events occur (for HawkesVAE (Events
Known)) or how the total length of the sequence to be generated (for HawkesVAE (Multivariate)
and LSTM VAE). We see that providing the model with a list of event types that occur boosts per-
formance significantly, as HawkesVAE (Events Known) performs markedly better than the other
models.

Table 5: AUCROC results (↑ higher the better, ± standard deviation) from fitting a downstream
LSTM to predict death event from the ablation of informing of the exact length of the sequence to
generate.

Dataset Original Data LSTM Hawkes
(Multivariate)

Hawkes
(Events Known)

NCT00003299 0.689 ± 0.105 0.485 ± 0.050 0.574 ± 0.071 0.761 ± 0.038
NCT00041119 0.678 ± 0.078 0.613 ± 0.037 0.643 ± 0.039 0.652 ± 0.042
NCT00079274 0.637 ± 0.140 0.403 ± 0.094 0.632 ± 0.017 0.654 ± 0.098
NCT00174655 0.670 ± 0.128 0.560 ± 0.053 0.557 ± 0.057 0.618 ± 0.053
NCT00312208 0.632 ± 0.072 0.437 ± 0.040 0.589 ± 0.041 0.624 ± 0.037
NCT00694382 0.640 ± 0.038 0.496 ± 0.021 0.585 ± 0.022 0.642 ± 0.022
NCT03041311 0.738 ± 0.149 0.608 ± 0.092 0.717 ± 0.083 0.860 ± 0.056

HawkesVAE for Event Forecasting The results in Table 6 show that the HawkesVAE variants
are generally significantly better than their other counterparts in terms of event forecasting. Note
that it is possible for HawkesVAE (Events Known) not to have perfect accuracy in terms of event
prediction because the time prediction may be incorrect, and therefore, the predicted ordering of the
events could not match the original ordering.
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Figure 2: Example of a generated sequence from HawkesVAE (Events Known) from NCT00003299
plotted by the individual events. The blue dots denoting the specific event timestamp prediction. The
red dots are the ground truth timestamps and the ground truth predictions. Each prediction is linked
with dashed lines for clarity.

Table 6: Accuracy of HawkesVAE for Event Forecasting (↑ higher the better, ± standard deviation).
A correct prediction is made if raw predicted event matches the original event in the ordering
respectively. Note that HawkesVAE (Events Known) is a special case since it only needs to
generate event types from a given event list.

Dataset LSTM VAE PAR DDPM HawkesVAE
(Multivarate)

HawkesVAE
(Events Known)

NCT00003299 0.043 ± 0.047 0.052 ± 0.048 0.056 ± 0.054 0.023 ± 0.034 0.602 ± 0.085
NCT00041119 0.001 ± 0.013 0.110 ± 0.151 0.339 ± 0.283 0.357 ± 0.012 0.848 ± 0.228
NCT00079274 0.028 ± 0.074 0.073 ± 0.145 0.376 ± 0.255 0.406 ± 0.101 0.765 ± 0.234
NCT00174655 0.134 ± 0.062 0.093 ± 0.144 0.117 ± 0.005 0.158 ± 0.340 0.992 ± 0.055
NCT00312208 0.002 ± 0.022 0.037 ± 0.112 0.154 ± 0.225 0.102 ± 0.031 0.530 ± 0.294
NCT00694382 0.000 ± 0.005 0.015 ± 0.053 0.033 ± 0.168 0.051 ± 0.009 0.360 ± 0.267
NCT03041311 0.000 ± 0.005 0.036 ± 0.051 0.130 ± 0.133 0.140 ± 0.013 0.265 ± 0.215

6 DISCUSSION

Creating sequential events and data of significance is crucial for advancing clinical trial develop-
ment, pharmaceutical research, and related domains. However, in many of these fields, strict le-
gal privacy regulations have resulted in much of this valuable data being isolated and inaccessible.
Generation of synthetic data addresses this, but sparse event occurrences and limited training data
increase the complexity and difficulty of this task.

We introduce HawkesVAE, a novel model that combines Variational Autoencoder and Hawkes Pro-
cess techniques. While we have evaluated HawkesVAE on clinical trial patient data, the methodol-
ogy is quite general and can be applied to other forms of sequential data, such as financial or social
media data. This model excels at generating sequential event data with precise timestamps, and we
demonstrate its superior performance compared to the traditional LSTM and GAN-based models
in handling tabular data for downstream machine learning tasks. Additionally, HawkesVAE show-
cases its ability to forecast events. Through experiments, we illustrate its capacity to generate event
sequences that closely resemble the originals, without resorting to mere duplication. Ultimately, we
demonstrate that HawkesVAE outperforms existing methods in terms of data utility, enabling the
generation of highly authentic event sequences across multiple real-world sequential event datasets.
Empirical experiments indicate that providing the model with additional information, such as event
index or event length, leads to significant improvements in the synthetic data quality. We believe that
a sweet spot is reached by allowing the model to know the event index–as it provides a significant
downstream classification boost while maintaining a low ML inference score.

REFERENCES

Giancarlo Agnelli, Daniel J George, Ajay K Kakkar, William Fisher, Michael R Lassen, Patrick Mis-
metti, Patrick Mouret, Umesh Chaudhari, Francesca Lawson, and Alexander GG Turpie. Semu-

9



Under review as a conference paper at ICLR 2024

loparin for thromboprophylaxis in patients receiving chemotherapy for cancer. New England
Journal of Medicine, 366(7):601–609, 2012.

Steven R Alberts, Daniel J Sargent, Suresh Nair, Michelle R Mahoney, Margaret Mooney, Stephen N
Thibodeau, Thomas C Smyrk, Frank A Sinicrope, Emily Chan, Sharlene Gill, et al. Effect of
oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients
with resected stage iii colon cancer: a randomized trial. Jama, 307(13):1383–1393, 2012.

R Michael Baldwin, Kouros Owzar, Hitoshi Zembutsu, Aparna Chhibber, Michiaki Kubo, Chen
Jiang, Dorothy Watson, Rachel J Eclov, Joel Mefford, Howard L McLeod, et al. A genome-
wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy
in calgb 40101. Clinical Cancer Research, 18(18):5099–5109, 2012.

Mandis Beigi, Afrah Shafquat, Jason Mezey, and Jacob Aptekar. Simulants: Synthetic clinical trial
data via subject-level privacy-preserving synthesis. In AMIA Annual Symposium Proceedings,
volume 2022, pp. 231. American Medical Informatics Association, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Edward Choi, Nan Du, Robert Chen, Le Song, and Jimeng Sun. Constructing disease network and
temporal progression model via context-sensitive hawkes process. In 2015 IEEE International
Conference on Data Mining, pp. 721–726. IEEE, 2015.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun.
Generating multi-label discrete patient records using generative adversarial networks. In Machine
learning for healthcare conference, pp. 286–305. PMLR, 2017.

Davey Daniel, Vladimer Kuchava, Igor Bondarenko, Oleksandr Ivashchuk, Sreekanth Reddy, Jana
Jaal, Iveta Kudaba, Lowell Hart, Amiran Matitashvili, Yili Pritchett, et al. Trilaciclib prior to
chemotherapy and atezolizumab in patients with newly diagnosed extensive-stage small cell lung
cancer: a multicentre, randomised, double-blind, placebo-controlled phase ii trial. International
journal of cancer, 148(10):2557–2570, 2021.

Trisha Das, Zifeng Wang, and Jimeng Sun. Twin: Personalized clinical trial digital twin generation.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 402–413, 2023.

Lynnette Fernández-Cuesta, Catherine Oakman, Priscila Falagan-Lotsch, Ke-seay Smoth, Em-
manuel Quinaux, Marc Buyse, M Stella Dolci, Evandro De Azambuja, Pierre Hainaut, Patrizia
Dell’Orto, et al. Prognostic and predictive value of tp53mutations in node-positive breast cancer
patients treated with anthracycline-or anthracycline/taxane-based adjuvant therapy: results from
the big 02-98 phase iii trial. Breast Cancer Research, 14(3):1–13, 2012.
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A APPENDIX

A.1 ETHICS AND REPRODUCIBILITY

Transformer Hawkes (Zuo et al., 2020) is open source and can be found at https://github.
com/SimiaoZuo/Transformer-Hawkes-Process. Training on an NVIDIA GeForce
RTX 3090 takes around 12 hrs to run the full model. The code will be made public and open
source on GitHub. for the camera-ready version. All datasets were obtained from Project Data
Sphere (Green et al., 2015) with permission via a research data access request form. The links are
as follows:

1. NCT00003299 (Niell et al., 2005): A Randomized Phase III Study Comparing Etopo-
side and Cisplatin With Etoposide, Cisplatin and Paclitaxel in Patients With Extensive
Small Cell Lung Cancer. Available at https://data.projectdatasphere.org/
projectdatasphere/html/content/261

2. NCT00041119 (Baldwin et al., 2012): Cyclophosphamide And Doxorubicin (CA) (4
VS 6 Cycles) Versus Paclitaxel (4 VS 6 Cycles) As Adjuvant Therapy For Breast
Cancer in Women With 0-3 Positive Axillary Lymph Nodes:A 2X2 Factorial Phase
III Randomized Study. Available at https://data.projectdatasphere.org/
projectdatasphere/html/content/486

3. NCT00079274 (Alberts et al., 2012): A Randomized Phase III Trial of Oxaliplatin (OXAL)
Plus 5-Fluorouracil (5-FU)/Leucovorin (CF) With or Without Cetuximab (C225) After Cu-
rative Resection for Patients With Stage III Colon Cancer. Available at https://data.
projectdatasphere.org/projectdatasphere/html/content/407

4. NCT00174655 (Fernández-Cuesta et al., 2012): An Intergroup Phase III Trial to Eval-
uate the Activity of Docetaxel, Given Either Sequentially or in Combination With Dox-
orubicin, Followed by CMF, in Comparison to Doxorubicin Alone or in Combination
With Cyclophosphamide, Followed by CMF, in the Adjuvant Treatment of Node-positive
Breast Cancer Patients. Available at https://data.projectdatasphere.org/
projectdatasphere/html/content/127

5. NCT00312208 (Mackey et al., 2016): A Multicenter Phase III Randomized Trial Compar-
ing Docetaxel in Combination With Doxorubicin and Cyclophosphamide Versus Doxoru-
bicin and Cyclophosphamide Followed by Docetaxel as Adjuvant Treatment of Operable
Breast Cancer HER2neu Negative Patients With Positive Axillary Lymph Nodes. Available
at https://data.projectdatasphere.org/projectdatasphere/html/
content/118
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6. NCT00694382 (Agnelli et al., 2012): A Multinational, Randomized, Double-Blind,
Placebo-controlled Study to Evaluate the Efficacy and Safety of AVE5026 in the Prevention
of Venous Thromboembolism (VTE) in Cancer Patients at High Risk for VTE and Who Are
Undergoing Chemotherapy. Available at https://data.projectdatasphere.
org/projectdatasphere/html/content/119

7. NCT03041311 (Daniel et al., 2021): Phase 2 Study of Carboplatin, Etoposide, and Ate-
zolizumab With or Without Trilaciclib in Patients With Untreated Extensive-Stage Small
Cell Lung Cancer (SCLC). Available at https://data.projectdatasphere.
org/projectdatasphere/html/content/435

A.1.1 HAWKESVAE HYPERPARAMETERS

For PARSyntheizer, default hyper-parameters were used. For DDPM, we followed the GitHub ex-
ample for churn2 https://github.com/yandex-research/tab-ddpm, but trained for
10,000 steps for each dataset.

Table 7: Hyperparameters Considered for HawkesVAE
Parameter Space

embedding size [32,64,128]
patient embedding size [64,128,256]

num transformer layers (Encoder) [1,2,3,4,5,6,7,8]
num heads (Encoder) [2,4,8]

num transformer layers (Decoder) [1,2,3,4,5,6,7,8]
num heads (Decoder) [2,4,8]

lr [1e-3, 1e-4]

Table 8: Hyperparameters Considered for LSTM VAE
Parameter Space

embedding size [32,64,128]
patient embedding size [64,128,256]
num lstm layers (Encoder) [1,2]
hidden size (Encoder) [32,64,128]

num lstm layers (Decoder) [1,2]
hidden size (Decoder) [32,64,128]

lr [1e-3, 1e-4]

A.1.2 ML UTILITY CALCULATION HYPERPARAMETERS

This section outlines hyperparameters explored for the downstream model for downstream ML Util-
ity.

Table 9: Hyperparameters Considered for LSTM Predictor Models
Parameter Space

embedding size [32,64,128]
num lstm layers (Encoder) [1,2]
hidden size (Encoder) [32,64,128]

lr [1e-3, 1e-4]

A.2 MORE RELATED WORK

Hawkes Processes (Hawkes, 1971; Isham & Westcott, 1979; Liniger, 2009) are point process that
models event occurrence times as a function of previous event occurrences. Recent work has gener-
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alized this classical model to achieve state-of-the-art results in point process modeling tasks, such as
estimating the causal influence of misinformation on social media (Zhang et al., 2022b), knowledge
graph temporal entity/time prediction (Choi et al., 2015; Fu et al., 2021; Sun et al., 2022), neural
differential equations (Chen et al., 2018; Kidger et al., 2020), time series prediction (Wen et al.,
2022), and more.

Variational Autoencoders (VAEs) (Kingma & Welling, 2013) are generative models that have been
applied to many data-synthesizing tasks such as probabilistic multivariate time series imputation
(Fortuin et al., 2020) or generating diverse videos from a single input example video (Gur et al.,
2020). Furthermore, VAEs have the unique advantage of being able to sample from the embed-
ding distribution. Therefore, at inference time, we have the option to sample around the encoded
embeddings of a certain data point.

A.3 AUTOREGRESSIVE GREEDY SAMPLING VS PROBABILISTIC SAMPLING

In this section, we compare the results of greedily choosing the best type as opposed to probabilistic
sampling from the rescaled logits l ∈ RNevents . We rescale the logits to be positive and sum to 1: l =
l−min(l∑
l−min(l , and sample from k ∼ Multinomial(l) (For the Greedy version, we take argmaxk(l)).

Let HawkesVAE (Probabilistic) represent the probabilistic sampling and HawkesVAE (Greedy)
represent greedy sampling. Table 10 shows the results, and we see that the Greedy version often
fails to generate useful synthetic sequences.

Table 10: Binary death event classification ROCAUCs of a downstream LSTM trained on data
generated from the HawkesVAE models as well as the original data and baselines. Note that the
LSTM and the HawkesVAE models estimate their own sequence stopping length.

Dataset NCT00003299 NCT00041119 NCT00079274 NCT00174655

Original Data 0.5608 ± 0.0891 0.6322 ± 0.0679 0.6009 ± 0.1525 0.6008 ± 0.1015
HawkesVAE (Probabalistic) 0.5860 ± 0.0564 0.6379 ± 0.0378 0.6007 ± 0.0831 0.5775 ± 0.0538
HawkesVAE (Greedy) 0.4525 ± 0.0517 0.6287 ± 0.0420 0.3909 ± 0.0939 0.4505 ± 0.0919

Dataset NCT00312208 NCT00694382 NCT03041311

Original Data 0.5285 ± 0.0566 0.5915 ± 0.0281 0.6046 ± 0.1244
HawkesVAE (Probabilistic) 0.5632 ± 0.0384 0.5149 ± 0.0198 0.5584 ± 0.0741
HawkesVAE (Greedy) 0.4495 ± 0.0142 0.3829 ± 0.0613 0.5001 ± 0.0341

A.4 DIAGRAM OF THE VAE ENCODER-DECODER STRUCTURE USING A SINGLE MODEL

In the main paper, we show the diagram of HawkesVAE (Events Known). For VAE LSTM and
HawkesVAE (Multivariate), we do not need the additional complexity of learning separate weights
for each event, as we simply model all events in a multivariate fashion. Figure 3 shows this con-
struction.
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Figure 3: Diagram of HawkesVAE (Multivariate) Encoder-Decoder structure, where event types
and lens are learned. Here, the model output is the event times, event types, and total sequence
length. The input observations are encoded first by a specific event encoder (Hawkes, LSTM, etc),
and then embeddings are then mapped to the patient embedding space via an MLP. The opposite
process occurs for decoding from the patient embedding.

A.5 PLOTS OF SUBJECTS

Figure 4: Plot of 10 subject embeddings (in different colors) with 10 randomly sampled embeddings
surrounding them. Embeddings are obtained from the predicted mean and standard deviation. The
original predicted mean is shown with a × and the sampled embeddings are shown with a dot.
These embeddings can be used to generate event sequences that should look somewhat similar to
the original.

In this section, we visualize some of the HawkesVAE embeddings. Using Principal Component
Analysis (PCA) to obtain a 2-dimensional visualization, we show 10 randomly sampled embeddings
surrounding an initial subject embedding. The VAE loss penalizes event sequences generated from
these similar embeddings to be the same as the original patient embedding. Figure 4 shows this plot,
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which makes sense as a sanity check that the sampled subject embeddings are close to the original
and generally do not overlap with other subjects.
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Figure 5: Example of another generated sequence from HawkesVAE (Events Known) from
NCT00003299. The blue dots denoting the specific event timestamp prediction. The red dots are
the ground truth timestamps and the ground truth predictions. Each prediction is also linked with
dashed lines for clarity
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Figure 6: Example of another regenerated (encoded and decoded) sequence from HawkesVAE
(Events Known) from NCT00003299. The blue dots denoting the specific event timestamp predic-
tion. The red dots are the ground truth timestamps and the ground truth predictions. Each prediction
is also linked with dashed lines for clarity

Figure 5 and Figure 6 show some examples of reconstructed subjects as generated by the best-
performing model (HawkesVAE (Events Known)). Intuitively, it visually reveals that the generated
data generally matches the original data.
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A.6 TRADITIONAL HAWKES PROCESS

The Hawkes Process is a double stochastic point process. The traditional Hawkes Processes assumes
that past events can temporarily raise (never lower) the probability of future events, assuming that
such excitation is positive, additive over the past events, and exponentially decaying with time.

λ(t) :=

µ+
∑

{tj ,tj<t}

e−δ(t−tj)

 ,

where δ is a decaying rate. Occurrence of a single event occurring at t has intensity λ(t), calculated
as the sum of base intensity µ as well as all previously occurring events tj < t.

A.7 VARIATIONAL AUTOENCODER

We follow the standard formulation of VAEs (Kingma & Welling, 2013). To generate a latent vari-
able in the multidimensional case, we first sample a noise vector ϵ ∼ N (0, I and hidden vector
z ∼ N (µ,σ2I) where µ and σ2 are one-dimensional vectors. The relationship between the in-
put and its latent representation is defined as: prior = pθ(z), likelihood = pθ(x|z), and posterior
= pθ(z|x). The intractable posterior is approximated by qϕ(z|x). We want to minimize the Kull-
back–Leibler divergence between qϕ(z|x) and pθ(z|x), which in practice leads to maximizing the
evidence lower bound (ELBO) for training along with the likelihood of x.

Lθ,ϕ = Ez∼qϕ(·|x)[ln pθ(x|z)]−DKL(qϕ(·|x)||pθ(·)).

A.8 NEURAL HAWKES PROCESS LIKELIHOOD

The following derivation is reformatted from (Mei & Eisner, 2017). For the proposed models, given
complete observations of an event stream over the time interval [0, T ], the log-likelihood of the
parameters turns out to be given by the simple formula:

ℓ({(t1, k1), . . . , (tL, kL)}) =
L∑

j=1

log(λ(tj |Htj ))−
∫ tL

t1

λ(t|Ht)dt (1)

Where λ(t) =
∑K

k=1 λk(t). For the rest of the proof, let us drop the H notation for the sake of
simplicity.

The cumulative distribution function of Ti ∈ (ti−1, ti) given history HTi is given by:

F (t) = P (Ti ≤ t) = 1− P (Ti > t) (2)

P (Ti > t) is the probability that no events occur from ti−1 to t, so we sum over the integral of those
intensities.

F (t) = 1− exp

(
−
∫ t

ti−1

λ(s)ds

)
(3)

= 1− exp

(∫ ti−1

0

λ(s)ds−
∫ ti

0

λ(s)ds

)
(4)

(5)

The derivative can be written as:

f(t) = exp

(∫ ti−1

0

λ(s)ds−
∫ ti

0

λ(s)ds

)
(6)

Moreover, given the past history Hi and the next event time ti, the type distribution of ki is given
by:

P (ki | ti) =
λki(ti)

λ(ti)
(7)
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Therefore, we can derive the likelihood function as follows:

L =
∏

i:ti≤T

Li =
∏
ti≤T

{f(ti)P (ki | ti)} (8)

=
∏

i:ti≤T

{exp
(∫ ti−1

0

λ(s)ds−
∫ ti

0

λ(s)ds

)
λki(ti)} (9)

(10)
(11)

Taking the log of the likelihood:

ℓ := logL =
∑

i:ti≤T

log λki
(ti)−

∑
i:ti≤T

(∫ ti

0

λ(s)ds−
∫ ti−1

0

λ(s)ds

)
(12)

=
∑

i:ti≤T

log λki
(ti)−

∑
i:ti≤T

(∫ ti

ti−1

λ(s)ds

)
(13)

=
∑

i:ti≤T

log λki
(ti)−

∫ T

s=0

λ(s)ds (14)

(15)

A.9 UTILITY / PRIVACY SPIDER PLOTS

Here, we visualize the utility/privacy trade-off that is inherent to any synthetic data generation task.
Each metric is normalized for ease of visualization so that the maximum achieved metric is set as the
tip of the triangle by dividing by the max. For ML Inference Privacy (where 0.5 is the ideal value),
we first take the absolute value of the difference (i.e. x = |x− 0.5|), and then divide by the max as
before.

The results are shown in Figure 7. We see a clear tradeoff, as the best-performing Distance to Clos-
est Record model, usually VAE LSTM or PAR, performs worse on the downstream ROCAC metric.
This is because the generated sequences are of poorer quality, being too different from the origi-
nal. The best-performing Downstream ROCAUC models also generally have good ML Inference
Privacy, which is to be expected as those models generate data that is similar to the original, which
would allow for (1) better performance on the held-out test set for ROCAUC and (2) being harder to
distinguish from original data.
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Figure 7: Spider Plots of all Models over each dataset.

21



Under review as a conference paper at ICLR 2024

A.10 FUTURE WORK

Future work should continue exploring sequential event information. Currently, numeric values,
such as lab values, are not considered. Initial experiments showed that directly regressing on the
event values yielded poor results. Different methods of encoding lab values into events should
be explored, such as discretization into bins. Furthermore, while we chose VAE to be the main
generator framework due to its proven effectiveness, exploring Diffusion Models, which have shown
superior performance over GANs as TabDDPM, is also an interesting future topic of research.

Cox-Hawkes Miscouridou et al. (2022) use a log-Gaussian Cox process (LGCP) as a prior for the
background rate of the Hawkes process, allowing flexibility in capturing a wide range of under-
lying background effects. The computational complexity of the Hawkes process and LGCP poses
challenges, but the authors introduce an efficient method for inference. Specifically, they employ
a unique approach for Markov Chain Monte Carlo (MCMC) sampling, utilizing pre-trained Gaus-
sian Process generators. This innovative technique offers direct and cost-effective access to samples
during inference, addressing the computational expenses associated with the Hawkes process and
LGCP.

Since Cox models are frequently used in survival analysis, a common healthcare task, this approach
would be an exciting future direction to explore, potentially combining synthetic event generation
with survival analysis.

22


	Introduction
	Related Work
	Problem Setup
	Neural Hawkes Process

	HawkesVAE
	Key Details

	Experiments
	Utility Evaluation
	Privacy evaluations
	Ablations

	Discussion
	Appendix
	Ethics and Reproducibility
	HawkesVAE Hyperparameters
	ML Utility Calculation Hyperparameters

	More Related Work
	Autoregressive Greedy Sampling vs Probabilistic Sampling
	Diagram of the VAE Encoder-Decoder structure using a single model
	Plots of subjects
	Traditional Hawkes Process
	Variational Autoencoder
	Neural Hawkes Process Likelihood
	Utility / Privacy Spider Plots
	Future Work


