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ABSTRACT

The two-sample testing problem, a fundamental task in statistics and machine
learning, seeks to determine whether two sets of samples, drawn from underlying
distributions p and q, are in fact identically distributed (i.e. whether p = q). A
popular and intuitive approach is the classifier two-sample test (C2ST), where
a classifier is trained to distinguish between samples from p and q. Yet despite
simplicity of the C2ST, its reliability hinges on access to a near-Bayes-optimal
classifier, a requirement that is rarely met and difficult to verify. This raises a major
open question: can a weak classifier still be useful for two-sample testing? We show
that the answer is a definitive yes. Building on the work of Hu & Lei (2024), we
analyze a conformal variant of the C2ST that converts the scores from any trained
classifier—even if weak, biased, or overfit—into exact, finite-sample p-values. We
establish two key theoretical properties of the conformal C2ST: (i) finite-sample
Type-I error control, and (ii) non-trivial power that degrades gently in tandem
with the error of the trained classifier. The upshot is that even poorly performing
classifiers can yield powerful and reliable two-sample tests. This general framework
finds a powerful application in Bayesian inference, particularly for validating
Neural Posterior Estimation (NPE) models, where the task of comparing a learned
posterior approximation q(θ | y) to the true posterior p(θ | y) can be framed
as a two-sample test. Empirically, the Conformal C2ST outperforms classical
discriminative tests across a wide range of benchmarks for this task. Our results
establish the conformal C2ST as a practical, theoretically grounded diagnostic tool.

1 INTRODUCTION

A fundamental problems in statistics and machine learning is to assess whether two sets of samples,
drawn from distributions p(x) and q(x), are in fact distributed identically. To this end, two-sample
tests (Lehmann & Romano, 2005) summarize the differences between the samples into a test statistic,
which is then used to test the null hypothesis that p = q. A key application for modern two-sample
tests is evaluating the sample quality of generative models, where p represents the true data-generating
process and q is a neural approximation.

This evaluation challenge is particularly acute in Neural Posterior Estimation (NPE), an increasingly
popular and practical tool for Bayesian inference. NPE methods use simulations to train a deep
generative model q(θ | y) to approximate the true, typically intractable posterior p(θ | y) (Ho
et al., 2020; Geffner et al., 2023; Chen et al., 2025; Gloeckler et al., 2024; Papamakarios et al.,
2021; Wildberger et al., 2023; Kingma et al., 2013). While powerful, this approach creates a critical
validation problem: how can we verify whether the learned posterior q faithfully approximates the
true posterior p? Several diagnostics exist for this purpose, yet they all suffer from drawbacks.
Simulation-based calibration (SBC) (Talts et al., 2018) is a widely used tool. Yet in its original form
(rank-SBC), it operates only on one-dimensional marginals. This not only creates a potentially severe
multiple-testing problem, but also leaves rank-SBC insensitive to inaccuracies that affect the joint
distribution of all parameters without affecting their one-dimensional marginals. Proposed fixes
that use the joint likelihood as a test statistic (Modrák et al., 2023) are inapplicable to many NPE
problems, where likelihoods are intractable. Another recent method called Test of Accuracy with
Random Points (TARP) (Lemos et al., 2023) is highly sensitive to the specification of a non-trainable
proposal distribution, limiting its practical use.
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Given the limitations of these specialized tools, a natural alternative is the classifier-based two-sample
test (C2ST) (Lopez-Paz & Oquab, 2016; Linhart et al., 2023), a flexible, general-purpose approach.
The C2ST reframes the problem as a classification task: if a classifier can reliably distinguish samples
from p and q, the distributions must be different. Yet in practice, the C2ST depends critically on the
quality of the classifier. If a model q "passes" the C2ST, that could mean either that q = p, or that
q ̸= p but the classifier is too weak or poorly trained to tell the difference. This ambiguity persists
even in more advanced methods classifier-based methods like Discriminative Calibration (DC) (Yao
& Domke, 2023), which also relies on access to a near-optimal classifier.

Summary of contributions. We address these limitations by introducing the Conformal C2ST.
Our approach builds on the conformal framework of (Hu & Lei, 2024) but departs on a crucial point.
Their method fundamentally relies on a nearly-Bayes-optimal classifier to model the density ratio
between distributions, an assumption that often fails in practice. This is especially problematic in
challenging settings like neural posterior estimation, where classifiers are often trained on limited
data and may be too weak to find an optimal decision boundary.

Our work is designed for this realistic, imperfect regime. We show how conformal calibration can
transform a weak, misspecified, or overfit classifier into a powerful and trustworthy two-sample test.
Specifically, we first show that conformal calibration effectively decouples type-I error control from
the classifier’s discriminative accuracy. More importantly, we also prove that conformal p-values
maintain meaningful power when p ̸= q, even when the classifier is weak or poorly trained. Intuitively,
they do so by aggregating weak but informative ranking signals, a property that is crucial in scenarios
where the traditional C2ST struggles, such as high-dimensional posteriors, small-sample regimes,
and tasks with low signal-to-noise ratios. We support these theoretical developments with extensive
empirical results, showing that the conformal C2ST exhibits state of the art performance for the
two-sample testing problem across a wide range of benchmark problems motivated by NPE.

(a) Perturbed classifier boundaries (b) Comparison under shift (c) Comparison under rotation

Figure 1: Power of the C2ST and conformal C2ST under shift and rotate perturbations of the optimal
decision boundary. The conformal test is much more robust to a weak or misspecified classifier.

A toy example Before detailing our results, we briefly focus on a toy example, to illustrate the
fundamental advantage of conformal calibration. The setup mimics the NPE setting, where the
marginal distribution of y is preserved under both the true and approximate joint distributions.
Specifically, we consider two bivariate normal distributions: p(θ, y) is a standard bivariate normal,
N (0, I2), while q(θ, y) is the same distribution with a mean shift of 0.5 in the θ coordinate, i.e.,
N ([0.5, 0]⊤, I2). The Bayes-optimal classifier for distinguishing between samples from p and q is
a linear decision boundary at θ = 0.25, bisecting R2 between the two means. Classifier scores are
obtained by computing the signed distance from a sample point (θ, y) to the decision boundary.

We then degrade the classifier by manipulating the decision boundary in two systematic ways. First
is translation, where the decision boundary is shifted horizontally by a parameter c, modifying the
decision boundary to θ = 0.25 + c. The parameter c can be positive, shifting the boundary toward
q, or negative, shifting it toward p. As |c| increases, the boundary moves further from its optimal
position, increasing classification error. As we see in Figure 1b, this rapidly degrades the power of the
C2ST for distinguishing p and q. Yet the conformal C2ST’s performance remains remarkably stable,
showing no degradation in power even for large shifts. This suggests a strong level of robustness to
biased or poorly calibrated classifiers. (Although the classifier is trained to distinguish individual
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draws from p and q, the goal of neural posterior testing is to assess whether two collections of
samples arise from the same distribution, allowing aggregation across multiple draws and yielding
greater power than would be expected from single-point classification alone.) The second form of
degradation is rotation, where the decision boundary is rotated about the midpoint between the means
of p and q. The boundary under rotation is described by (θ − 0.25) cosβ + y sinβ = 0, where β
controls the angle of rotation. A rotation of β = 0 corresponds to the optimal linear discriminant,
while increasing |β| introduces growing misalignment. Figure 1c shows that the conformal C2ST
continues to perform significantly better under quite severe rotations, indicating resilience even when
the classifier is badly misaligned. At β = π/2, the decision boundary becomes completely orthogonal
to the separation axis of the two distributions, rendering the distribution of classifier scores identical
under p and q. In this extreme case, the conformal C2ST has power 0.05, which is precisely the
type-I error rate of the test.

These results illustrate the key advantage of the conformal C2ST: even when the classifier itself
becomes progressively poorer or more miscalibrated, its ranking signals nonetheless remain useful.

2 CLASSIFIER-BASED POSTERIOR TESTING AND CONFORMAL CALIBRATION

2.1 PRELIMINARIES

While the conformal C2ST is general two-sample test, we focus on the NPE setting as a motivating
problem. Consider two distributions over joint parameter–observation pairs (θ, y) ∈ Θ× Y: the true
posterior p(θ | y), defined via the joint density p(θ, y) = π(θ)p(y | θ), and an approximate posterior
q(θ | y), learned using simulation-based inference (SBI). We are agnostic as to how q was learned;
instead, our goal is to assess whether q(θ | y) = p(θ | y) almost surely over Θ × Y . Assuming
a shared marginal π(y), we define the approximate joint as q(θ, y) := π(y)q(θ | y). Under this
assumption, testing equality of posteriors reduces to testing the null hypothesis H0 : p(θ, y) = q(θ, y)
almost surely over Θ× Y . This naturally frames the problem as a two-sample test between the joint
distributions p(θ, y) and q(θ, y).

In the NPE setting, i.i.d. samples from both p and q are readily available. To sample from p, we draw
θ ∼ π(θ) and then y ∼ p(y | θ). To sample from q, we use the y margin only of the true p, implicitly
generating y ∼ π(y), and then we sample θ ∼ q(θ | y) from the learned model. For convenience,
we write x = (θ, y), and use p and q as shorthand for the true and approximate joint densities over
x. We denote samples as {Xi}ni=1 ∼ p and {X̃i}ni=1 ∼ q. Throughout, we assume that p(θ | y) and
q(θ | y) are absolutely continuous with respect to a common base measure.

The classifier two-sample test (C2ST). The C2ST is a widely used approach for detecting differ-
ences between two distributions. In the context of posterior validation, suppose we are given two
datasets {xi}ni=1 ∼ p and {x̃i}ni=1 ∼ q. To test the null hypothesis H0 : p = q, a classifier is trained
to distinguish between the two samples. Specifically, each xi is assigned label 1 and each x̃i is
assigned label 0, producing a labeled dataset {(zi, ℓi)}2ni=1, where zi ∈ X and ℓi ∈ {0, 1}. The com-
bined dataset is randomly split into disjoint training and testing subsets. A classifier f : X → [0, 1] is
trained on the training portion to estimate the conditional probability P [ℓ = 1 | z], and evaluated on
the test set Dte. The C2ST test statistic is the classification accuracy on the test set:

t̂ :=
1

nte

∑
(zi,ℓi)∈Dte

I {I{f(zi) > 1/2} = ℓi} ,

which is shown to have an asymptotic normal distribution in Lopez-Paz & Oquab (2016). The null
hypothesis H0 : p = q is rejected if t̂ is significantly greater than 0.5, indicating that the classifier has
learned to distinguish between p and q.

While C2ST is easy to implement and effective in many cases, it has two key limitations. First,
its power depends heavily on the classifier quality. Poorly trained or underfit classifiers can yield
inconclusive results, even when the two distributions differ. Second, its test statistic relies on hard
decisions via thresholding at 0.5, discarding potentially useful information about classifier confidence.
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2.2 THE UNIFORM TEST: CONFORMAL CALIBRATION OF CLASSIFIER SCORES

To address these limitations, we adopt a conformal framework that calibrates classifier scores directly,
rather than thresholding them. This yields a method we term the Conformal C2ST. The core idea is
to treat each point as a test case, compute a score for that point (e.g., classifier log-odds), and use
a conformal p-value to assess how extreme that score is relative to a calibration sample from the
reference distribution (p). Each such p-value reflects the plausibility of a single test point from q
under the null. To test whether p = q globally, we repeat this procedure across many independent
draws from q, aggregating the resulting p-values to assess overall deviation from uniformity. This
allows the method to extract and accumulate weak signals for assessing distributional equality, even
from underperforming classifiers, by calibrating based on ranks rather than raw accuracy.

Concretely, let {X1, . . . , Xm} ∼ p be a calibration sample and let X̃ ∼ q be a test point. Let
s : X → R be a deterministic scoring function, which in our case will be the output of a classifier
trained to distinguish p from q, just like in C2ST. (Below we discuss the specific choice of s.) Define
the nonconformity scores Si = s(Xi) for i = 1, . . . ,m, and Sm+1 = s(X̃). The conformal p-value
(Vovk et al., 2005; Lei & G’Sell, 2018) for X̃ is then given by:

U :=
1

m+ 1

(
m+1∑
i=1

I {Si < Sm+1}+ ξ ·
m+1∑
i=1

I {Si = Sm+1}

)
, (1)

where ξ ∼ Unif[0, 1] is a tie-breaking random variable. The p-value U reflects the relative rank of
the test point’s score among the calibration scores.

2.3 RESULTS ON VALIDITY AND POWER

A key advantage of this approach is that it inherits the finite-sample validity guarantee from conformal
prediction. Under H0, the calibration points and the test point are exchangeable, implying the
following marginal guarantee.
Lemma 1 (Uniformity under the null). Under the null hypothesis H0 : p = q, the conformal p-value
U defined in (1) satisfies:

P(U ≤ u | H0) = u, ∀u ∈ [0, 1],

where the probability is over the random draw of the calibration sample, the test point, and the
tie-breaking variable.

This result holds for any deterministic scoring function s and for any finite calibration size m, making
the conformal C2ST robust to classifier quality and sample size. This result is a standard property of
conformal inference; see (Vovk et al., 2005; Lei & G’Sell, 2018).

From marginal p-values to a uniformity test. To turn the marginal validity established in Lemma 1
into a two-sample test of H0 : p = q, we repeat the conformal p-value computation across multiple
test points. Specifically, let {X̃j}

nq

j=1 ∼ q be independent test samples. For each j, we draw an
independent calibration set Cj = {Xj,i}mi=1 ∼ p, and compute the corresponding conformal p-value

Uj :=
1

m+ 1

(
m+1∑
i=1

I
{
s(Xj,i) < s(X̃j)

}
+ ξj ·

m+1∑
i=1

I
{
s(Xj,i) = s(X̃j)

})
,

where Xj,m+1 = X̃j , and ξj ∼ Uniform[0, 1] are independent tie-breaking variables. Under H0,
each Uj ∼ Unif[0, 1], so we can aggregate the {Uj} to form a global test statistic. We consider the
empirical CDF Ĝ(u) = 1

nq

∑nq

j=1 I{Uj ≤ u} and apply the one-sample Kolmogorov–Smirnov (KS)
test (Lehmann & Romano, 2005), using

TKS = sup
u∈[0,1]

∣∣∣Ĝ(u)− u
∣∣∣ .

Because H0 : p = q implies exchangeability between the calibration and test samples, each Uj is
uniformly distributed, and the KS test (or any similar test) controls Type-I error at level α. (We refer
to this in the benchmarks as the "uniform" test.)
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Power. While Lemma 1 ensures exact marginal validity of conformal p-values for any deterministic
score function s, the power of the test under the alternative H1 : p ̸= q crucially depends on how well
s separates samples from p and q. A natural and theoretically grounded choice is the oracle density
ratio between the joint distributions (or equivalently their conditionals for θ, since p(y) = q(y)). Let
r(x) = p(x)/q(x) denote this true density ratio. If η(x) := P(l = 1 | x) is the output of the Bayes
classifier distinguishing between x ∼ p (label l = 1) and x ∼ q (label l = 0), then the density ratio is
related to classifier scores via:

r(x) =
η(x)

1− η(x)
. (2)

We will soon consider what happens when r is estimated with error, but for now we suppose it is
known. Because the transformation t 7→ t/(1−t) is strictly increasing on (0, 1), the rankings induced
by r(x) and the probabilities η(x) are identical.

These rankings are of central importance to the conformal method, which depends only on the
orderings of scores, not their magnitudes. A natural way to quantify the quality of such a ranking is
the area under the ROC curve (AUC) (Fawcett, 2006), which measures how well a scoring function
separates the two distributions. Specifically, the AUC for r(x) is given by:

AUC(r) = PX∼p, X̃∼q

[
r(X) > r(X̃)

]
+

1

2
P
[
r(X) = r(X̃)

]
,

which reflects the probability that a randomly chosen p-sample is ranked above a q-sample by the
scoring function r(x). The next lemma formalizes that r(x) (or any monotonic transformation of it)
maximizes this quantity.
Lemma 2. For any measurable scoring function s : X → R, AUC(s) ≤ AUC(r), with equality if
and only if there exists a strictly increasing function h such that s(x) = h(r(x)) for q-almost every x.

This result justifies the use of the density ratio r(x) as an optimal scoring function for discriminating
between p and q; see Appendix A.1 for the full statement and proof.

Moreover, AUC serves as a useful proxy for the power of the conformal uniformity test, because it
quantifies how well the scoring function ranks samples from p above those from q. Specifically, as
the number of calibration samples m→ ∞, the conformal p-value for a test point X̃ ∼ q converges
almost surely to its population-level limit:

U
a.s.−−−−→

m→∞
P

X∼p

[
r(X) < r(X̃)

]
+ ξ P

X∼p

[
r(X) = r(X̃)

]
, where ξ ∼ Unif (0, 1) .

When r(x) has good separation between the distributions, these p-values tend to concentrate below
0.5, making them detectably non-uniform.

As the number of test points nq → ∞, the empirical CDF Ĝ(u) = 1
nq

∑nq

j=1 I{Uj ≤ u} converges
to the population CDF G(u) = P(U ≤ u), and the Kolmogorov–Smirnov test statistic converges to
supu∈[0,1] |G(u)− u|, which captures the deviation from uniformity. When AUC exceeds 0.5, i.e.,
r(x) tends to rank p samples above q, conformal p-values become stochastically smaller than uniform.
This deviation drives up the KS statistic and hence the test power. Moreover, the expected conformal
p-value under the alternative is directly related to AUC, as the following lemma establishes.
Lemma 3. Under the alternative H1 : p ̸= q, we have

E [U ] = 1−AUC(r) ≤ 1

2
− TV (p, q)

2
<

1

2

in the asymptotic limit of m→ ∞.

This result shows that, under the alternative, conformal p-values skew toward zero, with the extent of
skewness proportional to the total variation distance between the two distributions. (Hu & Lei, 2024)
also motivate the density ratio r(x) = p(x)/q(x) from an information-theoretic perspective, showing
that its variability under q controls the deviation from uniformity; see Lemma 4 in the Appendix.

Under degraded classifier scores. Our above analysis involves the oracle density ratio r(x). But
in practice, the density ratio is often approximated using a classifier trained to distinguish between
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the true and approximate joint distributions. Accordingly, our analysis explicitly incorporates an
error-prone plug-in estimate r̂, derived from a potentially weak classifier η̂ in (2).

Our main theoretical result shows that, under mild regularity conditions on the true and estimated
density ratios, the uniform conformal test retains high power, even when the scoring function is
imperfect. Our result specifically relates the error of the estimated density ratio to the performance of
the conformal C2ST.

Assumption 1 (Bounded density near zero). The random variable Z := r(X̃) − r(X̃ ′), where
X̃, X̃ ′ i.i.d.∼ q, has a density that is bounded in a neighborhood around zero.

Assumption 2 (L2 estimation error). The estimated density ratio r̂ : X → (0,∞) satisfies

EX̃∼q

[
(r̂(X̃)− r(X̃))2

]
≤ ε2,

for some ε > 0, where r(x) = p(x)/q(x) denotes the true density ratio.

Theorem 1 (Robustness to estimation error). Under Assumptions 1 and 2, let Û denote the conformal
p-value computed using the approximate score function r̂. Then under the alternative H1 : p ̸= q,
there exists M > 0, depending on ε, p, and q, such that

E[Û ]− E[U ] ≤ O(ε2/3) for all m > M.

This theorem shows that the uniform test enjoys a remarkable degree of robustness: even when
the classifier is weak or undertrained, the resulting p-values still exhibit systematic deviation from
uniformity under the alternative. In particular, the expected p-value computed using an approximate
score r̂ remains close to the ideal value obtained from the oracle score r, with the error controlled by
the quality of the approximation. As long as the estimated score preserves a reasonable approximation
to the true ranking, the test maintains power. This highlights a key advantage of the conformal
approach: it leverages relative score orderings rather than relying on absolute classifier accuracy;
We defer the proof to Appendix A.2. We further show in Lemma 5 in the Appendix, assuming zero
tie probability for continuous classifier outputs, the variance of the conformal p-values scales as
O(1/m). Consequently, the p-values converge quickly to their true non-uniform values under the
alternative as one increases m, leading to a better test power.

We also emphasize that Assumption 1 is mild and typically satisfied in practice. When p and q have
overlapping support and the true density ratio r(x) is smooth, the difference Z = r(X̃)− r(X̃ ′) is
a continuous random variable with a density that is finite around zero. This assumption rules out
degenerate cases where r(x) is constant or highly discontinuous, but permits a wide range of practical
scenarios in which r(x) is estimated via smooth classifier outputs. The condition is notably weaker
than assuming global Lipschitz continuity of r.

2.4 THE MULTIPLE TEST

A potential limitation of the conformal test described above is the need to generate a fresh calibration
set for each test point. In many settings, this is not a big issue; drawing from the true joint distribution
p(θ, y) will often be cheap, as it does not require forward simulation through the generative model.
Although repeated calibration does incur multiple passes through the classifier, we find that even a
small, low-capacity classifier, so long as it preserves good ranking behavior, can yield competitive
results. As a result, the overall computational burden often remains modest.

Nonetheless, we include in our benchmark set an alternative method proposed by (Hu & Lei, 2024),
which avoids repeated calibration by using a single shared calibration set. This approach is particularly
appealing in applications where sampling from p is expensive, such as when p(y | θ) involves a
costly forward simulation, since it requires only a single calibration set and avoids repeated draws
from the true joint distribution. However, as our experiments show, this convenience comes at the
cost of reduced statistical power in some settings.

To correct for the dependence introduced by using a shared calibration set, (Hu & Lei, 2024) analyze
the average of the conformal p-values computed using a single calibration set as a two-sample
U-statistic. They derive an asymptotically valid test statistic by normalizing the deviation of the
average p-value from 1/2, which is the expected value under the null. But since we assume the same

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

marginal distribution of y for both joint distributions, we can simplify their test statistic to obtain:

T̂ =

1
2 − 1

nq

∑nq

j=1 Ûj

σ̂/
√
np

(3)

where Ûj := 1
np

(∑np

i=1 I
{
r̂(Xi) < r̂(X̃j)

}
+ ξj ·

∑np

i=1 I
{
r̂(Xi) = r̂(X̃j)

})
is obtained from

the entire calibration set (common to all test points) with r̂(·) as the scoring function, and σ̂ is the
asymptotic estimated standard deviation of

√
np

nq

∑nq

j=1 Ûj ; see Appendix A.4 for details. Under the

null, T̂ ∼ N (0, 1), whereas under the alternative, T̂ → ∞ under the assumptions mentioned in
(Hu & Lei, 2024, Theorem 2). Although the original goal of this test was to enhance power under
distribution shift, we find that in the NPE setting—where the marginals are matched and classifiers
may be weak—the simpler uniform test often yields higher power in practice.

3 EXPERIMENTS

We now empirically evaluate the performance of the conformal C2ST against baseline methods in
a scenario with controlled perturbations of a known reference distribution. The experiments are
designed to address two key questions. The first concerns power under proper training: when the
classifier is well trained, how does the conformal C2ST compare to competing methods? The second
concerns robustness to classifier degradation: as we progressively degrade the quality of the classifier,
does the conformal C2ST retain power better than the the ordinary C2ST?

3.1 CONTROLLED POSTERIOR PERTURBATIONS.

Our first set of experiments involve a controlled simulation environment with a known ground-
truth p(θ | y). From this ground truth, we generate a series of flawed approximations q(θ | y),
by systematically applying a controlled perturbation of p. The magnitude of the perturbation is
controlled by a scalar γ, which acts as a “difficulty dial.” When γ = 0, the approximation is perfect
q = p, allowing us to assess a method’s Type-I error rate. As γ increases, the approximation becomes
progressively worse, allowing us to measure a test’s power.

Our perturbations, described in detail in Appendix B, are designed to mimic common failure modes
in NPE, such as biased means, overdispersion, miscalibrated covariance structure, or mode collapse.
This framework allows us to directly assess whether a testing method can reliably detect meaningful
discrepancies in a setting that mirrors real-world validation challenges. Specifically, we include four
perturbation types from Chen et al. (2024) in the main text and defer the rest to Appendix B.

Testing classifier degradation. After training a classifier on a given benchmark problem at a fixed
perturbation level γ, we generate a family of degraded classifiers by linearly interpolating the trained
model parameters with those of a randomly initialized model:

ψβ := (1− β) · ψη̂ + β · ψrand, β ∈ [0, 1],

where ψη̂ and ψrand are the parameter vectors of the trained and randomly initialized classifiers,
respectively. This setup allows us to systematically degrade the classifier’s quality by varying β,
from a fully trained model (β = 0) to a random, uninformative one (β = 1). Class probabilities and
nonconformity scores are calculated from the degraded classifier. We then evaluate the behavior of
both the standard C2ST and the conformal C2ST across this interpolation path. This experiment
provides a natural stress test for the conformal framework. If the conformal method maintains
detection power even as the classifier degrades, this would offer compelling evidence of its practical
robustness. We note that this experiment is specific to classifier-based testing methods; approaches
like SBC and TARP, which do not involve classifiers, are not applicable in this setting.

Experiment settings and baselines. We benchmark the conformal C2ST against several well-
established methods for assessing the quality of a neural posterior estimate. These include the
Classifier Two-Sample Test (C2ST) (Lopez-Paz & Oquab, 2016), described in Section 2.1; Simulation-
Based Calibration (SBC) (Talts et al., 2018), which computes rank statistics for each marginal
of q(θ | y) and checks for uniformity under the true posterior; Tests of Accuracy with Random

7
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Covariance Scaling Mean ShiftHeavy-TailedAnisotropic Perturbation

(a) Power curves as a function of perturbation level γ at fixed classifier quality (β = 0).

Covariance Scaling Anisotropic Perturbation Heavy-Tailed Mean Shift

(b) Power curves as a function of classifier degradation level β at fixed perturbation strength γ.

Figure 2: Statistical power of C2ST and conformal variants across benchmark perturbations. Panel (a)
evaluates sensitivity to posterior mismatch; panel (b) evaluates robustness to classifier degradation.

Points (TARP) (Lemos et al., 2023), which uses randomly sampled reference points and distance-
based statistics to construct a test that is both necessary and sufficient for posterior validity; and
Discriminative Calibration (DC) which uses a multiclass classifier to get the strongest log-predictive-
density (LPD) statistic (Yao & Domke, 2023, Algorithm 1).

We adapted each baseline to the validation task. For SBC, DC, and TARP, we drew m posterior
samples from the approximate posterior for each observation y. For C2ST-based methods, we drew
a single approximate posterior sample to create balanced datasets. For SBC, we performed a KS
test on the rank statistics for each parameter dimension, using a Bonferroni correction for multiple
testing. For TARP, we followed the recommended procedure to construct a KS test against a uniform
distribution based on the TARP statistic under random reference points. For DC, we trained a
multi-class classifier to compute the LPD statistic. Notably, this method is far more computationally
expensive as the classifier’s input dimension scales with m. For Conformal C2ST, we evaluated both
our proposed “uniform" and “multiple" variants.

All tests used a significance level of α = 0.05. Each experimental run used 1,000 independent
samples from the true joint distribution p, and we evaluated test performance (power or Type I error)
on 200 new data batched. All experiments were repeated with three random seeds, and we report the
average results. Further details regarding training procedures and hyperparameters are provided in
Appendix B.2.

In our experiments with the conformal-uniform test, we take advantage of the fact that samples from
the true joint distribution p(θ, y) are typically cheap to generate in the NPE setting. For each test
point drawn from the approximate posterior q, we sample m calibration points from p, resulting in a
total of m · 1000 labeled samples from p (with label 1), and 1000 labeled samples from q (with label
0). We refer to this configuration as Conformal Uniform(m), where m ∈ {1, 10, 50, 200} controls
the number of calibration points per test point used to calculate conformal p-values. Increasing m
generally improves the power of the test, since more calibration samples yield more accurate p-values
and finer resolution for detecting deviations from uniformity. For an empirical study of how test
performance varies with m, see the ablation experiments in Appendix B.1.

Results. As shown in Figure 2a, our conformal methods demonstrate a clear advantage over. They
consistently achieve higher power than the standard C2ST and match or outperform SBC, DC and
TARP across all types of model error. Most notably, DC fails to control Type I error, rendering
it an invalid test in this setting. The practical benefit of our approach is its ability to detect subtle

8
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Figure 3: Conformal C2ST consistently outperforms standard C2ST across different tasks. Solid
lines correspond to well-trained classifiers (β = 0.0), while dashed lines indicate weaker classifiers
(β = 0.95). Representative qualitative examples for each task are shown below.

deviations from the true p. The Conformal Uniform and Conformal Multiple tests reliably identify
misspecifications at low values of γ where other methods fail. While most tests can spot large errors,
our methods provide a much lower detection threshold, making them more useful for identifying the
small but significant imperfections common in generative models.

In our second experiment, we tested each method’s robustness to a weak classifier. For a fixed
model error γ, we systematically degraded the classifier’s performance from well-trained (β = 0) to
random (β = 1), as described previously. Figure 2b reveals that the standard C2ST is quite brittle; its
power collapses as soon as the classifier’s quality degrades. In contrast, our conformal methods are
highly robust, maintaining high power even when the classifier is far from optimal. This resilience
stems from a fundamental advantage. While the C2ST requires an accurate classifier to draw a sharp
decision boundary, our conformal methods only need the classifier’s scores to provide a weak but
informative ranking. This makes them far more reliable in practice, where perfectly trained classifiers
are rarely available.

3.2 HIGH-DIMENSIONAL IMAGE EXAMPLE

To demonstrate the broad utility of the Conformal C2ST, we also evaluated it for on the general-
purpose task of detecting distributional shift in high-dimensional images. We used the CIFAR-10
dataset (Krizhevsky et al., 2009) to create a two-sample problem: distinguishing original, clean
images from versions altered by one of three corruptions: Gaussian blur, swirl distortion, or additive
Gaussian noise. A parameter γ controlled the severity of the corruption. We compare the clean and
corrupted distributions using C2ST, C2ST-MULTIPLE, and C2ST-UNIFORM (k=20). Power is
reported (i) as a function of corruption strength γ with a well-trained classifier, and (ii) as a function
of classifier quality β at fixed γ (larger β denotes a weaker classifier). As summarized in Figure 3, the
Conformal C2ST achieved the highest power across all corruption types and severity levels. Crucially,
it maintained its superior performance even when the underlying classifier was weak, confirming its
robustness and practical value for general-purpose generative model validation.

Limitations. Our work has several limitations. First, in the NPE setting, our approach is designed
to assess whether the learned posterior q is a faithful approximation of the model’s true posterior p.
We therefore do not address the separate, crucial problem of statistical model validation, where p
may not accurately reflect the real-world data-generating process.

Second, our benchmarking framework benefits from cheap samples from p(y | θ), which may not be
available in many NPE settings where the data arises from a black-box simulation model. While this
enables rigorous evaluation in controlled experiments, it limits applicability to certain types of NPE
problems. Finally, our theoretical analysis relies on bounding arguments that may be conservative;
tighter techniques could potentially yield sharper error bounds and a more precise characterization of
the test’s behavior.
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A THEORETICAL RESULTS

In this section, we restate our key lemmas in full and provide rigorous proofs to support our theoretical
claims.

A.1 PROOFS OF LEMMA 2 AND 3

Lemma 2 (Full statement). Let p and q be two probability densities on a measurable space X , such
that p(x) > 0 and q(x) > 0 for all x ∈ X . Let r(x) := p(x)

q(x) denote the oracle density ratio. For any
measurable scoring function s : X → R, define the area under the ROC curve (AUC) as

AUC(s) := P[s(X) > s(X̃)] +
1

2
P[s(X) = s(X̃)],

where X ∼ p and X̃ ∼ q are independent.

Then AUC(s) ≤ AUC(r), with equality if and only if there exists a strictly increasing function h
such that s(x) = h(r(x)) for p× q-almost every x.

Proof. Define

ϕs(x, x̃) := I[s(x) > s(x̃)] +
1

2
I[s(x) = s(x̃)],

so that
AUC(s) =

∫∫
ϕs(x, x̃) p(x)q(x̃) dxdx̃.

Define the antisymmetric part

as(x, x̃) := ϕs(x, x̃)− ϕs(x̃, x) ∈ {−1, 0, 1}.

Note that ϕs(x, x̃) + ϕs(x̃, x) = 1, hence

ϕs(x, x̃) =
1

2
+

1

2
as(x, x̃),

and therefore
AUC(s) =

1

2
+

1

2

∫∫
as(x, x̃) p(x)q(x̃) dxdx̃.

Define the antisymmetric function

W (x, x̃) := p(x)q(x̃)− p(x̃)q(x),

so that ∫∫
as(x, x̃) p(x)q(x̃) dxdx̃ =

1

2

∫∫
as(x, x̃)W (x, x̃) dxdx̃,

and thus
AUC(s) =

1

2
+

1

4

∫∫
as(x, x̃)W (x, x̃) dxdx̃.

Now for each (x, x̃), the value as(x, x̃) ∈ {−1, 0, 1} that maximizes the product as(x, x̃)W (x, x̃) is
sign(W (x, x̃)). Therefore, the function

a∗(x, x̃) := sign(W (x, x̃))

maximizes the integral.

Next, define the likelihood ratio r(x) := p(x)
q(x) . Then

r(x) > r(x̃) ⇐⇒ p(x)

q(x)
>
p(x̃)

q(x̃)
⇐⇒ p(x)q(x̃) > p(x̃)q(x) ⇐⇒ W (x, x̃) > 0,

so
ar(x, x̃) := sign(r(x)− r(x̃)) = sign(W (x, x̃)) = a∗(x, x̃).

12
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Thus, ar maximizes the integral, and

AUC(s) ≤ 1

2
+

1

4

∫∫
|W (x, x̃)| dxdx̃ = AUC(r).

Finally, equality occurs if and only if as(x, x̃) = ar(x, x̃) for almost all (x, x̃), which implies that
s(x) > s(x̃) ⇐⇒ r(x) > r(x̃), i.e., s = h(r) for some strictly increasing function h almost
everywhere.

Corollary 1 (Lower Bound on AUC via Total Variation). Under the setup of the previous lemma, let
TV(p, q) := 1

2

∫
|p(x)− q(x)|dx denote the total variation distance between p and q. Then

AUC(r) ≥ 1 + TV(p, q)

2
.

Proof. Consider the binary Bayes classifier

ϕ∗(x) := I[r(x) > 1] = I
[
p(x)

q(x)
> 1

]
,

which is known to be the most powerful test at level α = 1
2 . Its classification accuracy is:

P[ϕ∗(X) = 1] · 1
2
+ P[ϕ∗(X̃) = 0] · 1

2
=

1

2
+

1

2
TV(p, q).

Now note that if we treat ϕ∗ ∈ {0, 1} as a scoring function, the AUC of this classifier is:

AUC(ϕ∗) = P[ϕ∗(X) > ϕ∗(X̃)] +
1

2
P[ϕ∗(X) = ϕ∗(X̃)] ≤ AUC(r),

since ϕ∗ is a thresholding of r, and AUC is maximized by ranking with r.

But:
AUC(ϕ∗) =

1

2
+

1

2
TV(p, q),

so we conclude:

AUC(r) ≥ 1

2
+

1

2
TV(p, q) =

1 + TV(p, q)

2
.

Lemma 3 (Expected conformal p-value under the alternative). Let p and q be as defined above, and
let U denote the conformal p-value computed using the oracle density ratio r(x) = p(x)/q(x) as the
score function, as defined in (1), with m calibration samples drawn from p for each test point drawn
from q. Then, under the alternative hypothesis H1 : p ̸= q, we have

E[U ] = 1−AUC(r) ≤ 1

2
− 1

2
TV(p, q) <

1

2
,

in the limit as m→ ∞.

Proof. We formalize our discussion in Section 2.3. First, by the strong law of large numbers, we have

U
a.s.−−−−→

m→∞
P

X∼p

[
r(X) < r(X̃)

]
+ ξ P

X∼p

[
r(X) = r(X̃)

]
, where ξ ∼ Unif (0, 1) .

Next, we take expectation with respect to X̃ ∼ q and ξ ∼ Unif (0, 1). However, since U ≤ 1,
Dominated Convergence Theorem gives that

E [U ]
a.s.−−−−→

m→∞
P
[
r(X) < r(X̃)

]
+

1

2
P
[
r(X) = r(X̃)

]
=1− AUC(r)

The result follows immediately from Corollary 1, since 0 < TV(p, q) ≤ 1 under H1 : p ̸= q.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We note that Hu & Lei (2024) present a related result from an information-theoretic perspective,
showing that the variability of the density ratio r(x) under q controls the deviation of conformal p-
values from uniformity. In contrast, our focus is on quantifying the relationship between a classifier’s
discriminative ability and the statistical power of the resulting two-sample test. While the underlying
intuition is similar, our formulation offers a more direct and operational perspective, grounded in
the ranking statistic captured by the AUC score. For completeness, we restate their relevant lemma
below.
Lemma 4 (Restated from Hu & Lei (2024)). Under the alternative H1 : p ̸= q, we have

E[U ] =
1

2
− 1

4
EX,X′∼q [|r(X)− r(X ′)|] < 1

2
as m→ ∞,

where X,X ′ are i.i.d. draws from q.

A.2 PROOF OF THEOREM 1

Proof. We start by taking the expectation of our conformal p-value wrt the tie breaking uniform
variable ξ:

2Eξ[Û ] =
1

m+ 1

(
m∑
i=1

I(r̂(Xi) < r̂(X̃)) +

m∑
i=1

I(r̂(Xi) ≤ r̂(X̃)) + 1

)
.

By the Strong Law of Large Numbers (SLLN), as m→ ∞, we have:

2Eξ[Û ] → E[I(r̂(X) < r̂(X̃)) | X̃] + E[I(r̂(X) ≤ r̂(X̃)) | X̃].

Taking expectation over X̃ and applying the Dominated Convergence Theorem (since Û ≤ 1):

2E[Û ] → E[I(r̂(X) < r̂(X̃))] + E[I(r̂(X) ≤ r̂(X̃))].

Now define X̃, X̃ ′ iid∼ q. Using importance reweighting, we write:

2E[Û ] = E
[
r(X̃ ′) · I(r̂(X̃ ′) < r̂(X̃))

]
+ E

[
r(X̃ ′) · I(r̂(X̃ ′) ≤ r̂(X̃))

]
.

Since E[r(X̃ ′)] = 1, this becomes:

2E[Û ] = 1− E[(r(X̃ ′)− r(X̃)) · I(r̂(X̃ ′) > r̂(X̃))].

Define:
Z := r(X̃ ′)− r(X̃), Ẑ := r̂(X̃ ′)− r̂(X̃), ∆ := Ẑ − Z.

Then:
E[Û ] = E [U ] +

1

2
δ, where δ :=

1

2
E[|Z|]− E[Z · I(Ẑ > 0)].

By symmetry of Z,

δ =
1

2
E[|Z|]− E[Z · I(Ẑ > 0)] = E[Z(I(Z > 0)− I(Ẑ > 0))].

Define events:
A := {Z > 0, Ẑ ≤ 0}, B := {Z ≤ 0, Ẑ > 0}.

Then:
δ = E[Z · IA]− E[Z · IB ] ≤ E[|Z| · I|∆|≥|Z|].

For any threshold t > 0, we decompose:

δ ≤ E[|Z| · I(|Z| ≤ t)] + E[|Z| · I(|∆| > t)].

The second term is bounded by Cauchy–Schwarz and Markov:

E[|Z| · I(|∆| > t)] ≤
√
E[Z2] ·

√
P(|∆| > t) ≤

√
E[Z2] · 2ε

t
.

Assuming the density fZ of Z is bounded near zero by C, we have:

E[|Z| · I(|Z| ≤ t)] ≤ 2C

∫ t

0

z dz = Ct2.

14
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Combining,

δ ≤ Ct2 +
2
√

E[Z2] ε

t
.

Minimizing the RHS by choosing t =
(

2
√

E[Z2] ε

C

)1/3

, we obtain:

δ = O(ε2/3).

A.3 VARIANCE SCALING OF CONFORMAL P-VALUE

In this section we assume that the score function s gives continuous outputs, so that the probability of
ties is zero. Note that the assumption is ubiquitously satisfied in practical settings when classifiers are
trained using neural networks.

Lemma 5 (Variance of Conformal p-value). Let Û be the conformal p-value for a test point X̃ ∼ q.
The variance of Û , conditioned on the test point, is:

Var(Û |X̃) =
mU(1− U)

(m+ 1)2
= O(1/m)

where U = P (s(X) ≤ s(X̃)|X ∼ p) is the true, population-level p-value (assuming no ties).

Proof. By definition, the conformal p-value (assuming no ties for simplicity) is given by:

Û =
1

m+ 1

(
1 +

m∑
i=1

I{s(Xi) ≤ s(X̃)}

)
where {Xi}mi=1 are i.i.d. calibration samples from the distribution p.

When we condition on the test point X̃ , the score s(X̃) becomes a fixed value. Let’s define a set of
indicator random variables Bi for i = 1, . . . ,m:

Bi = I{s(Xi) ≤ s(X̃)}
Since the calibration samples Xi are drawn i.i.d. from p, the variables Bi are i.i.d. Bernoulli random
variables. The probability of success for each Bi is:

P (Bi = 1) = P (s(Xi) ≤ s(X̃)) = U

where U is the population-level p-value as defined in the lemma statement. Thus, Bi ∼ Bernoulli(U).

We can now express Û in terms of these Bernoulli variables:

Û =
1

m+ 1

(
1 +

m∑
i=1

Bi

)
The variance of Û conditioned on X̃ is:

Var(Û |X̃) = Var

(
1

m+ 1

(
1 +

m∑
i=1

Bi

))

=

(
1

m+ 1

)2

Var

(
1 +

m∑
i=1

Bi

)

=
1

(m+ 1)2
Var

(
m∑
i=1

Bi

)
Since the Bi are i.i.d., the variance of their sum is the sum of their variances:

Var

(
m∑
i=1

Bi

)
=

m∑
i=1

Var(Bi)
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The variance of a Bernoulli(U) random variable is U(1− U). Therefore:
m∑
i=1

Var(Bi) =

m∑
i=1

U(1− U) = mU(1− U)

Substituting this back, we get the final result:

Var(Û |X̃) =
mU(1− U)

(m+ 1)2

As the number of calibration samples m→ ∞, the variance behaves as:

mU(1− U)

(m+ 1)2
≈ mU(1− U)

m2
=
U(1− U)

m
= O(1/m)

This completes the proof.

Hence, the resulting O(1/m) scaling of the variance of conformal p-value ensures that the test power
quickly rises as the p-values converge quickly to their true non-uniform values under the alternative
when one increases the number of calibration points m.

A.4 MULTIPLE TEST DETAILS

In this section, we summarize the multiple conformal testing procedure proposed by Hu & Lei (2024),
which accounts for the dependence among p-values arising from the use of a shared calibration set.
Under the NPE setting, where the marginal distribution of y is assumed to be the same under both the
true and approximate joint distributions, we derive a simplified form of their test statistic:

T̂ =

1
2 − 1

nq

∑nq

j=1 Ûj

σ̂/
√
np

where Ûj := 1
np

(∑np

i=1 I
{
r̂(Xi) < r̂(X̃j)

}
+ ξj ·

∑np

i=1 I
{
r̂(Xi) = r̂(X̃j)

})
is obtained from

the entire calibration set (common to all test points) with r̂(·) as the scoring function, and σ̂ is the
asymptotic estimated standard deviation of

√
np

nq

∑nq

j=1 Ûj . We also adapt their expression for the

variance estimate to the same-marginal setting. Let F̂ be the empirical CDF of
{
r̂(X̃j) : j ∈ [nq]

}
and F̂− be its left limit. Then the variance estimate is given by:

σ̂2 = σ̂2
1 +

np
12 · nq

where σ̂2
1 is the empirical variance of

{
F̂1/2(r̂(Xi)) : i ∈ [np]

}
and F̂1/2(t) =

(
F̂ (t) + F̂−(t)

)
/2.

B EXPERIMENT DETAILS

B.1 BENCHMARKING WITH PERTURBED GAUSSIANS

Below, we include perturbations from Chen et al. (2024) which we use as our benchmarking suite.
Section 3.1 of the main text shows results for the first four items in the following list.

• Mean Shift. To simulate systematic location bias, we perturb the posterior mean while
keeping the covariance fixed: q(θ | y) = N ((1 + γ)µy,Σy). This mimics scenarios where
the NPE model consistently misses the location of the true posterior mode.

• Covariance Scaling. To model over- or under-confidence in uncertainty quantification,
we uniformly inflate (or deflate) the covariance matrix: q(θ | y) = N (µy, (1 + γ)Σy).
This captures calibration failures where the posterior has the correct shape and center but
misrepresents its overall spread.
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• Anisotropic Covariance Perturbation. We introduce structured distortion in the posterior
shape by injecting uncertainty along the direction of least variance: q(θ | y) = N (µy,Σy +
γ∆), where ∆ = vminv

⊤
min and vmin is the eigenvector of Σy corresponding to its smallest

eigenvalue. This subtly alters the posterior geometry.
• Heavy-Tailed Perturbation. To explore deviations in tail behavior, we replace the Gaussian

with a multivariate t-distribution: q(θ | y) = tν(µy,Σy) where ν = 1/(γ + ϵ). As γ → 0,
the distribution approaches Gaussian; increasing γ yields heavier tails, modeling posterior
approximations that spuriously introduce more extreme values.

• Additional Mode. We introduce a symmetric mode in the approximate posterior with weight
γ, so that q(θ | y) = γN (−µy,Σy) + (1 − γ)N (µy,Σy) while p(θ | y) = N (µy,Σy).
As γ → 0, the two match, while increasing γ increases the mass of the spurious mode.

• Mode Collapse. We introduce a symmetric mode in the true posterior with weight γ, so that
p(θ | y) = γN (−µy,Σy) + (1− γ)N (µy,Σy) while q(θ | y) = N (µy,Σy). As γ → 0,
the two match, while increasing γ increases the mass of the missed mode.

Figures 6 to 11 present our experimental results, comparing our proposed methods against the
baselines and including ablations on the number of calibration samples used in the conformal uniform
test. Across all perturbation types, we observe consistent improvements over the classical C2ST
under classifier degradation, highlighting the robustness of our method.

B.2 TRAINING DETAILS

We use a three-layer neural network classifier with skip connections and a hidden dimension of 256.
The network is initialized using PyTorch’s default parameter initialization. Optimization is performed
using the Adam optimizer with a cosine annealing learning rate schedule.

The training set consists of 2,000 samples: 1,000 labeled examples of the form {yi, θi, 1}, drawn
from the joint distribution p(θ | y)p(y), and 1,000 negative examples from q(θ | y)p(y). Each pair
(θ, y) lies in R3×3. We train the model for 2,000 epochs using a fixed learning rate of 1 × 10−5,
which is sufficient to ensure convergence in our experiments.

For training the DC classifier, we set m = 10, consistent with the configuration in its official
repository. Increasing m significantly prolongs training and makes the classifier harder to
optimize effectively; we found m = 10 to be a practical sweet spot. The DC classifier is trained for
2000 epochs with a fixed learning rate of 1× 10−5

B.3 HIGH-DIMENSIONAL IMAGE EXPERIMENTS

We investigate the behavior of conformal two-sample testing (C2ST) methods under controlled
image corruptions applied to CIFAR-10 data. The experimental pipeline consists of: (i) sampling
“true” (uncorrupted) data from the empirical distribution, (ii) generating “fake” data via structured
corruption operators parameterized by a strength parameter γ, (iii) training a discriminative classifier
between the two sources under a conditional or unconditional formulation, (iv) constructing a family
of interpolated “weak” classifiers via a parameter β for robustness analysis, and (v) evaluating
multiple conformal calibration strategies and a baseline C2ST p-value.

Data Sampling and Corruption. Let (θ, y) denote (image, class label) pairs from the empirical
dataset D (CIFAR-10). In the conditional setting, y is a class label and θ the corresponding image; in
the unconditional setting only θ is used. We define:

(θ, y) ∼ p, (θ̃γ , y) ∼ qγ ,

where the corrupted image θ̃γ is obtain as θ̃γ = Cγ(θ) where θ ∼ p(· | y) and Cγ is a corruption
operator with strength γ ≥ 0. The following corruption families are considered:

1. Gaussian Blur (“blur”): per-channel convolution with a Gaussian kernel of standard
deviation σ = γ (implemented via scipy.ndimage.gaussian_filter).

2. Swirl Transformation (“swirl”): a geometric warp (skimage.transform.swirl)
with angular distortion parameter (strength) set to γ and radius proportional to the image
spatial extent.
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3. Additive Gaussian Noise (“noise”): θ̃γ = θ + ϵ, where ϵ ∼ N (0, γ2I), followed by
clipping to [−3, 3] in normalized pixel space.

When γ = 0 the corruption reduces to the identity map. For each experiment we sampleNtrue = 1024
uncorrupted and Nfake = 1024 corrupted images to form the training pool. Additional independently
sampled batches are used for evaluation replicates.

Preprocessing. CIFAR-10 images are normalized channelwise to zero mean and unit (scaled)
variance via the standard transform with mean (0.5, 0.5, 0.5) and std (0.5, 0.5, 0.5). All downstream
embedding extraction resizes inputs to 299 × 299 (bilinear) and converts grayscale to 3-channels
when necessary.

Network Architecture. We employ a frozen Inception V3 backbone (pretrained on ImageNet)
as a feature extractor producing a 2048-dimensional embedding f(y) ∈ R2048. In the conditional
setting, a learnable label embedding e(θ) ∈ R64 is concatenated to yield [f(y); e(θ)] ∈ R2112. A
feed-forward discriminator g consists of:

Linear(din, H) → ReLU → Dropout(0.5) → Linear(H,H/2) → ReLU → Dropout(0.5) → Linear(H/2, 1),

with H = 256 (so hidden layers of sizes 256 and 128). The model outputs a logit ℓ = g(·), trained
with binary cross-entropy against labels 1 (true) and 0 (fake). Only the classifier head and (if used)
label embeddings are trainable; the Inception backbone remains frozen.

Weak Classifier Interpolation. To probe robustness and create a spectrum of discriminator
strengths, we store (i) the randomly initialized classifier parameters ψrand and (ii) the fully trained
parameters ψtrained. For any β ∈ [0, 1], we define an interpolated (“weak”) classifier:

ψβ = (1− β)ψtrained + β ψrand.

Thus β = 0 recovers the trained discriminator and β → 1 approaches a near-random classifier. We
evaluate each β independently in the downstream statistical tests.

Training Procedure. Training is conducted for 200 epochs with Adam (learning rate 10−4) and
cosine annealing LR scheduling. We employ Distributed Data Parallel (DDP) across all available
GPUs. Instead of relying on a standard DataLoader with samplers, we materialize the full training
set in CPU memory, deterministically shuffle each epoch (synchronized seeds across ranks), and
partition indices among GPUs. Batch size per GPU is 256. This design avoids pinned-memory
bottlenecks and enables explicit control of memory usage (with periodic cache clearing).

Evaluation and Test Statistics. Let the (potentially interpolated) classifier yield logit ℓ(y) (condi-
tional case notationally suppressed). We estimate:

• Baseline C2ST p-value: using the held-out evaluation samples, comparing score distribu-
tions between true and fake.

• Conformal Multiple: a conformal calibration procedure applied to embeddings (concate-
nated with label embeddings if conditional), producing pconf, mult.

• Conformal Uniform Tests: scalability check by enlarging the reference (true) sample size
by multiplicative factors m ∈ M (e.g., {2, 5, 20}), yielding p(m)

conf, uni.

For each (γ, β) configuration we perform neval independent replicates (distinct random seeds), each
resampling true/fake evaluation sets (default 64 runs unless otherwise specified). Success rates are
reported as the empirical frequency of p < α with α = 0.05 for each test variant.

Hyperparameter Sweeps. We explore γ ranges tailored to the perceptual sensitivity of each
corruption type. Table 1 summarizes the grids and the shared β values.

The narrow interval for blur emphasizes the phase transition region of detectability, while noise
employs a single small variance ensuring subtle corruption. Swirl spans a broader geometric distortion
spectrum.
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Table 1: Corruption strength grids Γ per task and interpolation coefficients B.

Task γ (tested values)

Blur {0.00, 0.36, 0.37, 0.38, 0.39}
Swirl {0.00, 0.25, 0.30, 0.35, 0.40, 0.50}
Noise {0.0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008}

B = {0.0, 0.95} (strong vs. weak discriminator regimes).

B.4 EVALUATION DETAILS

For evaluation, using the trained classifier, we sample 1000 ·m data points {yi, θi} from p(θ | y)p(y),
and another 1,000 samples from q(θ | y)p(y) to compute the rejection rate for C2ST and its conformal
variants.

For classical C2ST and the Conformal Multiple testing variant, we setm = 1. For the Conformal Uni-
form test, we vary m ∈ {1, 2, 5, 10, 20, 50, 200}. We denote this setting as Conformal Uniform(m),
where m specifies the evaluation sample budget.

For SBC and TARP, which require multiple posterior samples per observation y, we draw 200
posterior samples θ for each y. The overall evaluation budget remains consistent, using 1,000 pairs
(y, θ) from p(θ | y)p(y). We denote these methods as SBC(200) and TARP(200) to indicate the
number of posterior samples used. For DC, we also fix m = 10 and bootstrap 100 times to make sure
it has sufficiently good power.

To ensure a fair comparison, we report results for C2ST, Conformal Multiple testing, Conformal
Uniform(200), SBC(200), and TARP(200) when evaluating the statistical power of our method.

C EXPERIMENTS ON HIGH DIMENSIONAL POSTERIORS WITH MANIFOLD
STRUCTURE

We further evaluate robustness and calibration of the proposed conformal tests in settings where the
true posterior lies on a low-dimensional manifold embedded in a high-dimensional space. Specifically,
we construct synthetic posteriors using a conditional normalizing flow model trained on data generated
from a nonlinear spherical manifold, enabling controlled perturbations and precise comparisons across
methods.

Problem setup. We first sample n points uniformly on the surface of the unit sphere in R3 using
spherical coordinates ϕ ∼ U [0, π], τ ∼ U [0, 2π], and convert them to Cartesian coordinates:

a = sin(ϕ) cos(τ), b = sin(ϕ) sin(τ), c = cos(ϕ).

These coordinates are mapped into a higher-dimensional ambient space Rd (with d = 100) via a
random projection matrix W ∈ R3×d sampled from a standard Gaussian, yielding

θ =W⊤(a, b, c)⊤ + ε, ε ∼ N (0, σ2I),

where θ ∈ Rd and σ > 0 controls the noise level. The corresponding conditioning variable is defined
as y = (ϕ/π, τ/2π), so that y ∈ [0, 1]2.

Training details. We simulate posterior distributions using a conditional normalizing flow (CNF)
model based on RealNVP Dinh et al. (2016). Our architecture consists of 8 RealNVP layers, each
parameterized by a neural network with one hidden layer of width 512. The model is trained for 500
epochs to ensure convergence. The true posterior is obtained by applying the inverse flow to a base
sample z ∼ N (γ, I), where γ = 0.

To simulate an approximate posterior, we perturb the base distribution by introducing a mean shift
γ ∈ Rd, such that z ∼ N (γ, I) instead of the true z ∼ N (0, I). The resulting approximate posterior
q(θ | y) is thus generated by applying the same flow model to this mis-specified base distribution.

Figure 4 illustrates samples from the true and approximate posteriors for various values of γ, projected
onto the first two principal components using Principal Component Analysis (PCA).
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Figure 4: Approximate posterior samples (as a function of the base mean perturbation γ) projected
on the first two principal axes

To distinguish between the true and approximate posteriors, we compute log density ratios by
subtracting the log-probabilities assigned by the two CNF models. To emulate degradation in the
classifier’s discriminative ability, we add Gaussian noise δ ∼ N (0, β2) to the log-density ratios.
When β = 0, the scores are exact; as β increases, the scores become progressively noisier, reflecting
reduced discriminative power. Figure 5 shows that conformal variants of C2ST outperform all
baselines under increasing posterior perturbation and retain a better test power under classifier
degradation. Note that even though DC achieves good power in some settings, it failed to control the
Type-I error rate, which is always the first priority when we conduct hypothesis testing.

(a) Statistical power as a function of base mean
perturbation γ

(b) Statistical power as a function of classifier noise
β

Figure 5: Power analysis under mean perturbation of the base distribution of the normalizing flow
model.
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(a) Statistical power as a function of γ

(b) Statistical power under Conformal Uniform with varying m

(c) Statistical Power degradation under classifier degeneration β

Figure 6: Power analysis under Mean Shift

(a) Statistical power as a function of γ

(b) Statistical power under Conformal Uniform with varying m

(c) Statistical Power degradation under classifier degeneration

Figure 7: Power analysis under Covariance Scaling.
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(a) Statistical power as a function of γ

(b) Statistical power under Conformal Uniform with varying m.

(c) Statistical Power degradation under classifier degeneration

Figure 8: Power analysis under Anisotropic Covariance Perturbation.

(a) Statistical power as a function of γ

(b) Statistical power under Conformal Uniform with varying m

(c) Statistical Power degradation under classifier degeneration

Figure 9: Power analysis under Heavy-Tailed Perturbation.
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(a) Statistical power as a function of γ

(b) Statistical power under Conformal Uniform with varying m

(c) Statistical Power degradation under classifier degeneration

Figure 10: Power analysis under Additional Mode.

(a) Statistical power as a function of γ

(b) Statistical power under Conformal Uniform with varying k

(c) Statistical Power degradation under classifier degeneration

Figure 11: Power analysis under Mode Collapse.
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