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Abstract

Machine Learning as a Service (MLaaS) has sim-
plified access to powerful machine learning mod-
els but faces challenges in complying with the
“right to be forgotten” while resisting adversar-
ial threats. Machine Unlearning (MU) addresses
these issues by enabling selective data removal
from models. However, existing methods are slow,
label-dependent, vulnerable to black-box attacks,
and computationally impractical for large-scale
MLaaS deployments. We introduce SALSA, a Se-
cure, Adaptive, Label-Agnostic, Scalable Algo-
rithm for efficient and robust machine unlearning
tailored to classification tasks in MLaaS. SALSA
redistributes the class-wise predicted probabilities
of data to be forgotten and optimizes a novel loss
function that minimizes the divergence between
redistributed and predicted probabilities while an-
choring model parameters near their initialization.
This ensures simultaneous unlearning and general-
ization. SALSA requires neither labels nor access
to the remaining data, making it ideal for MLaaS
environments. It is exceptionally fast, achieving at
least 25x faster unlearning, on average, than the
fastest baseline, while consistently outperforming
five state-of-the-art MU techniques across eight
metrics on benchmark datasets. Experiments on
synthetic data show that SALSA’s altered decision
boundaries closely approximate exact unlearning.
Rigorous evaluations against state-of-the-art black-
box attacks demonstrate its resilience to security
threats. Thus, SALSA redefines practical machine
unlearning, offering a scalable and resilient solu-
tion for safeguarding privacy in modern MLaaS
systems.
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1 INTRODUCTION

Machine learning (ML), particularly deep learning (DL), has
revolutionized data-driven services, achieving remarkable
performance in domains such as computer vision [He et al.
2016l Dosovitskiy et al.,2021]], natural language processing
[Brown et al., 2020b, |OpenAlL |2023]], and speech recogni-
tion [Radford et al., 2023, Baevski et al., [2020]]. At the core
of this progress lies the emergence of deep neural network
foundation models that leverage billions of parameters to
deliver exceptional performance across diverse tasks|Xi et al.
[2023]]. ML’s success has catalyzed the widespread adop-
tion of cloud-based platforms known as Machine Learning
as a Service (MLaaS) that democratize access to power-
ful predictive and analytic tools by allowing users to train,
fine-tune, and deploy models without managing complex
computational infrastructure. These platforms abstract the
complexities of machine learning through APIs, offering
benefits such as scalability, cost-effectiveness, and enhanced
privacy by separating user data from service providers dur-
ing deployment [Shmueli et al., [2023]].

However, MLaaS is not without its own security and vul-
nerability issues. Models trained on sensitive data are sus-
ceptible to memorizing and exposing private information
[Wu et al., 2022, |Carlini et al., [2023]]. Such vulnerabilities
are particularly critical in cloud platforms, where deployed
models interact with potentially malicious users, risking
data leakage and exploitation through attacks like member-
ship inference and model inversion [Hu et al.,|2024b} \Shokri
et al.,|2017a]. In response, government regulations mandate
the “right to be forgotten," requiring the effective removal
of personal data upon request. While straightforward in stor-
age systems, enforcing this in trained ML models remains
a formidable challenge [Thudi et al., |2022b]]. Machine Un-
learning (MU) has emerged as a potential solution, aiming
to erase the influence of specific data points while preserv-
ing model performance [Xu et al.,[2024, Bourtoule et al.,
2021]).
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1.1 MOTIVATION

A naive approach to machine unlearning (MU) involves
retraining the model from scratch on the remaining data
to guarantee complete unlearning. While effective, this ap-
proach is computationally prohibitive for modern deep learn-
ing models and impractical in Machine Learning as a Ser-
vice (MLaaS) settings, where servers hosting models lack
access to the original training data. To address these chal-
lenges, researchers have proposed efficient MU techniques
categorized as exact [Bourtoule et al.,[2021} Yan et al.||2022]
and approximate unlearning [Tarun et al.l 2024, |Wang et al.|
2023|, [Thudi et al.l 2022a]. However, most methods rely
on access to remaining training data or labels, which is
often unavailable in MLaaS environments due to privacy
constraints [Shen et al.| 2024]. Exact methods, such as influ-
ence functions, require computationally expensive Hessian
inversions [[Chen et al., 2023|, [Warnecke et al., [2023]], while
approximate methods [Huang et al.,|2024/ Tarun et al.,|2024|
involve iterative fine-tuning, further limiting scalability.

MU techniques must also address adversarial threats in
MLaaS. Models are vulnerable to membership inference
Ding et al.|[2025]], model inversion [Hu et al., 2024b]], and
malicious unlearning, where attackers exploit unlearning
requests to cause over-unlearning, degrading model util-
ity [Hu et al.|[2024a]. These risks are particularly severe
in classification tasks central to MLaaS applications, such
as facial recognition [Nair et al.||2023]], anomaly detection
[Du et al., 2019], and medical diagnosis [Zhou et al.| 2023]],
where breaches or malicious unlearning can have dire con-
sequences. Addressing these computational and security
challenges is critical for advancing practical and resilient
machine unlearning solutions.

1.2 OUR CONTRIBUTION

We propose SALSA, a Secure, Adaptive and Label-agnostic
Scalable Algorithm for Machine Unlearning specifically de-
signed for classification tasks. We introduce a new strategy
to redistribute the class-wise predicted probabilities of a
model for a given set of samples that need to be forgotten. A
novel loss function is then employed to implement unlearn-
ing while maintaining generalization performance. This is
achieved by simultaneously minimizing the divergence be-
tween the redistributed and predicted class-wise probabili-
ties as well as the Euclidean distance between the original
and current model parameters. Iteratively fine-tuning a pre-
trained model using this process results in a computationally
efficient unlearning approach that we empirically find to
converge within a few steps. Thus, unlike prior techniques,
SALSA solely relies on samples that need to be forgotten
without requiring corresponding label information to per-
form unlearning while preserving the model’s generalization
on the remaining data without its explicit utilization.

We extensively evaluate SALSA under diverse settings. First,
we observe that on non-linear synthetic datasets, across mul-
tiple unlearning paradigms (sample-wise, subclass-wise, and
class-wise unlearning), the altered decision boundary of our
unlearned models closely approximate those of exact un-
learning. Second, we evaluate SALSA’s efficacy on three
benchmark datasets, CIFAR10, SVHN and TinyImageNet
using ResNet18 and Swin Transformer models, under dif-
ferent unlearning paradigms (sample-wise and class-wise
unlearning) against five state-of-the-art machine unlearning
methods. SALSA consistently outperforms all considered
baselines under eight different evaluation metrics across all
datasets while being at least 25 faster, on average, than
the fastest baseline. Finally, to ensure the security of the
unlearning process, we test SALSA against three prominent
black-box attacks that are possible in the MLaaS setting,
namely, membership inference, model inversion, and mali-
cious unlearning (over-unlearning). The attacks consistently
fail to recover any information about samples unlearned
using our approach while also remaining unsuccessful in
compromising the performance of the end model. Thus, our
proposed algorithm effectively mitigates threats encountered
by MLaaS while maintaining high performance.

2 RELATED WORK
2.1 MACHINE UNLEARNING

Introduced by [Cao and Yang| [2015]], machine unlearning
focuses on removing specific data influences from trained
models. While retraining without the samples to be for-
gotten ensures complete unlearning, its computational cost
is prohibitive for large-scale models like GPT-3 [Brown
et al., [2020al], which requires 34 days on 1024 GPUs for
retraining [Narayanan et al.,[2021]]. To address this, efficient
unlearning strategies have emerged, categorized as exact
and approximate.

Exact Unlearning: Exact unlearning methods, such as SISA
[Bourtoule et al.} 2021], retrain only on affected data shards
while DaRE [Brophy and Lowd, |2021]] selectively retrains
parts of random forests, reducing overhead but requiring
access to the training dataset, an issue in privacy-centric
MLaaS environments.

Approximate Unlearning: Approximate methods adjust
model parameters without full retraining. Amnesiac ML
[Graves et al.l 2021]] removes gradient updates correspond-
ing to the samples that need to be forgotten to achieve un-
learning but risks residual influence. Influence-based ap-
proaches [Guo et al.| [2020, [Izzo et al.| |2021} |Chen et al.|
2023, Warnecke et al.,2023]] use influence functions but face
scalability issues due to costly inverse Hessian computations.
Gradient-based techniques offer practical alternatives. War{
necke et al.|[2023]] overwrite unlearned data contributions,
while methods like SalUn [[Fan et al.| 2024]], SFTC [Perifa;



nis et al.,[2024]], and LAF [Shen et al., [2024]| refine model
weights or rely on biased labeling strategies for efficiency.
Recent works, including FEMU [Tarun et al.| [2024] and
SFRon [Huang et al.,|2024]] achieve scalable and practical
unlearning, aligning well with MLaaS requirements.

2.2 BLACK-BOX THREATS IN MLAAS

Black-box attacks present significant challenges to privacy
and security in MLaaS.

Membership Inference Attacks (MIAs): MIAs determine
training data membership by exploiting overfitting patterns
in model outputs [Shokri et al.,[2017b]. Advanced methods
infer unlearned data membership by analyzing confidence
vectors before and after unlearning [Hu et al., 2024c| (Chen
et al., 2021} [Lu et al.|, 2022} |Gao et al.| [2022]], with top-1
confidence scores enhancing efficacy [Lu et al., 2022].

Model Inversion: Model inversion reconstructs training
data from outputs, transitioning from white-box |[Fredrikson
et al.|[2014) 2015]] to black-box settings. Approaches like
LBMI [Yang et al.,2019] leverage autoencoders, while MIR-
ROR [An et al.| [2022]] and BREP-MI [Kahla et al.| [2022]]
exploit residual data influence using GANs and hard-label
outputs, respectively.

Malicious Unlearning: Malicious unlearning degrades
model performance during the unlearning phase. |Hu et al.
[2024a] showed that by pushing data closer to the decision
boundary, over-unlearning increases misclassification risks.
This threat is amplified in black-box MLaaS settings, where
limited transparency exposes models to exploitation.

3 PRELIMINARY

Notations: Let D = {z;}7_, be a dataset containing n data
points where each samples is z; = (x;,y;). Here, x; €
R? ~ P is a feature vector assumed to be sampled from
an underlying distribution P while y; € {1,--- ,c} is the
target/label and c is the number of classes. Let D = Dy,in U
Diest Where Diin 18 the train set and Dy is the test set used
for model training and evaluation, respectively. Let D,, =
{2}, C Dyain, denote a subset of training samples to be
unlearned, termed the forget set. Here, n,, is the number of
samples to be unlearned. The remaining samples, termed
retain set are denoted as, D, = Digin \ Dy = {2},
where n,, = n — n,,. Let a machine learning model, trained
on Dy.in, referred to as the original pre-trained model, be
fo : RY — R® parameterized by 6 = [0y, , 0] where
L is the depth/number of layers of the model. Retraining
the original model from scratch on D, yields fy, which is
considered as the oracle for unlearning.

Evaluation Metrics: We assess unlearning using eight met-
rics: forgetting and retain accuracies on the train set (FA
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Figure 1: Overview of the MLaaS framework and potential
black-box attacks that the unlearning algorithm must defend
against to safeguard the model.

and RAy, respectively) and test sets (FA, and RA, re-
spectively) to measure unlearning and generalization per-
formance, test accuracy (TA) for overall generalization, av-
erage discrepancy (Avg. D), defined as the average dispar-
ity in metrics between the unlearned and retrained model,
to compare their overall “closeness" [Huang et al., [2024],
robustness to membership inference attacks (MIA), and
computational efficiency through the number of iterations
(Iters) required for unlearning. Ideally, the MIA score for
any unlearning method should be close to 50% [Hu et al.,
2022].

Assumptions: We assume the deployed model is well-
trained, achieving high accuracy on Dy, and reliable pre-
dictions on unseen data, consistent with the MLaa$S setting.
In this work, we focus on classification tasks. We also con-
sider three distinct unlearning paradigms, sample-wise for-
getting which entails unlearning a random subset of data
points from Dy,;,, subclass-wise forgetting which requires
unlearning all samples from Dy,;, that belong to a particu-
lar subclass within a class and class-wise forgetting which
unlearns all samples from Dy, that belong to a single class.

MLaaS Framework: In the MLaaS paradigm, developers
train proprietary models and deploy them on servers for
commercialization. While the server handles model mainte-
nance, including periodic updates, it lacks access to Dyin
and relies on D for monitoring model performance. To
comply with data protection regulations, developers pre-
select an unlearning method executed by the server when au-
thorized users submit data revocation requests for instances
x; € D,,. However, this opens avenues for malicious attacks.
Black-box attacks, such as membership inference and model
inversion, target Dy,in, While authorized malicious users aim
to degrade model utility through the exploitation of revoca-
tion rights by submitting corrupted inputs post-deployment.
Fig.[T]illustrates the MLaaS framework and potential attack
channels.

4 METHODOLOGY

Our proposed approach comprises two key components: (i)
a probability redistribution module that redistributes the



predicted output fy(x;) for each z; € D, to simulate the re-
moval of sample influence from fy and (ii) a regularized loss
function that balances the performance across the retained
dataset D, and test data D, While ensuring unlearning
occurs effectively on D,,.

4.1 ADAPTIVE PROBABILITY REDISTRIBUTION

We formulate unlearning for a given sample as reducing the
probability mass assigned to the predicted class while redis-
tributing it proportionally among the remaining classes. Let
pi = 0 (fo(x;)) € R® where o(-) is the Softmax function.
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where ¥; is the predicted class for z; while o € [0,1] is a
hyper-parameter controlling the extent of unlearning.

4.2 LOSS FUNCTION

Achieving effective unlearning requires fine-tuning 6 to min-
imize the influence of samples in D,,, while simultaneously
preserving its performance on D, and Dxg. To this end, we
propose the following regularized loss function,

L
KL (B || for (x:)) + D Mill6 — 67117 ()

=1

Here )\; is a layer-wise regularization hyper-parameter while
¢ represents the parameters of the unlearned model at it-
eration ¢ with #° = 6. Each layer is assigned a unique \
to account for the heterogeneous importance of layers in
large deep neural networks Zhang et al| [2022]]. Section [6.3]
outlines a straightforward method for determining A values
based on layer depth. The term KL (p; || fot(x;)) ensures
that fp is updated to align with the modified target distri-
bution p;, effectively reducing the influence of samples in
D,,. The term \;||0; — 6F||% is a regularizer on the distance
between the original pre-trained network 6 and the updated
parameters % at iteration ¢ in euclidean space which pre-
serves model generalization on D,..

4.3 UNDERSTANDING AND OPTIMIZING
HYPER-PARAMETER DYNAMICS

The balance between unlearning and retention is controlled
by the hyper-parameters « and \;, respectively. Therefore,
effective unlearning hinges on a precise understanding of
hyper-parameter selection and their dynamic interplay.

Balancing Stability and Unlearning: The hyper-parameter
« governs the extent of unlearning on D,,. Initializing «
close to 1 causes significant reductions in the predicted
probabilities of the target class, resulting in a large deviation
from the original predictions. This results in large losses and
significant weight updates that push the model parameters
far from their initial state, thereby degrading performance on
D,.. Conversely, initializing « close to 0 results in negligible
changes to the predicted probabilities, rendering unlearning
ineffective. To strike an effective balance, we propose using
a cosine annealing |Loshchilov and Hutter|[2017]] inspired
dynamic update rule for « that gradually increases its value
during training, enabling controlled unlearning while main-
taining stability. Specifically, « is updated at each training
iteration ¢ as follows,

t
3 (Cmax — Qumin) (1 + cos (T — 177)) 3)

Here o represents the value of « at iteration ¢, vy, and
Qmax are hyper-parameters defining the the range of o and T’
denotes the total number of iterations. The proposed sched-
ule begins with o = ay,, and gradually increases as train-
ing progresses until o’ = ..

Preserving Generalization: The hyper-parameter \; con-
trols the regularization that preserves model performance on
D,.. If initialized too high, \; overly constrains parameter
updates, preventing effective unlearning of D,,. Conversely,
initializing it too low allows the parameters to drift exces-
sively, leading to significant degradation in generalization.
To ensure a smooth balance, we dynamically adjust \; dur-
ing training. The update rule for A; at iteration ¢ is,

1 t
M= — 3 (Nimax = Aipsn) (1 + cos ( 7 171')) )

Here, \! represents the value of )\, at iteration ¢, \;,, and
Al,... are hyperparameters defining the range of A\; and T’
denotes the total number of iterations. Starting with A) =
Al....» this schedule allows flexibility in the early stages of
training to prioritize unlearning. By the end, \] = X\,
reinforces constraints, pulling parameters closer to their
original state and recovering performance on D,..

Interplay of o' and \}: The dynamic interaction between
o' and A! is crucial for balancing unlearning and perfor-
mance. Early in training, the gradual increase in oy allows
the network to incrementally update its weights. During this
phase, /\f exerts minimal influence, allowing the network to
slowly unlearn D,,. Even near the end of training, when !
is close to ayax, the relative change in the class-wise target
probabilities, in between iterations, is small, ensuring that
parameter updates due to unlearning are never aggressive.
On the contrary, the increase in /\f forces the model weights
to move closer to the original parameters thus allowing the
network to recover performance on D,.. This synergy be-
tween o' and )} ensures that the model achieves effective
unlearning without compromising its overall utility.
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Figure 2: The non-linear synthetic datasets generated for the controlled simulations and their corresponding decision
boundaries across multiple tasks. Fig. [2a] is the Moons dataset and Fig. 2g]is the Blobs dataset. Figs. 2b| and 2h] are the
visualization of corresponding decision boundaries. Figs. [2c| and [2d] are the retrained and unlearned models’ decision
boundaries, respectively, for class-wise forgetting on the Moons dataset. Figs. 2¢|and [2f] are the retrained and unlearned
models’ decision boundaries, respectively, for sample-wise forgetting on the Moons dataset. Figs. 2] and 2] are the retrained
and unlearned models’ decision boundaries, respectively, for subclass-wise forgetting on the Blobs dataset. Figs. [2k|and [2]]
are the retrained and unlearned models’ decision boundaries, respectively, for sample-wise forgetting on the Blobs dataset.

S CONTROLLED SIMULATIONS ON
SYNTHETIC DATA

Existing metrics for machine unlearning offer valuable in-
sights into post-forgetting performance but fail to fully cap-
ture how unlearning reshapes a model’s decision-making
behaviour. Since a model’s classification performance fun-
damentally depends on its decision boundary, analyzing it
directly reveals the impact of unlearning on generalization.
Thus, we conduct controlled experiments on two synthetic
datasets with known ground truths, applying SALSA under
sample-wise, subclass-wise, and class-wise unlearning. This
setup allows us to precisely evaluate how unlearning trans-
forms the model’s decision boundary, providing a deeper
understanding of its generalization dynamics.

5.1 DATASET AND MODELS

5.2 IMPLEMENTATION DETAILS

On the Moons dataset, class 3 is chosen for class-wise un-
learning while the smaller sub-class of class 1 is chosen for
subclass unlearning on the Blobs dataset. For sample-wise
unlearning, we unlearn a random 10% subset of examples
from both datasets. We report all results by averaging over
three different runs for each experiment. Further details for
reproducibility are provided in Section[A]of the Appendix.

Table 1: Simulation results on the Moons and Blobs datasets
for sample-wise, subclass-wise and class-wise unlearning.
Results have been averaged over three different runs.

We use two non-linear synthetic datasets, Moons |scikit learn
[2024b]] and Blobs [scikit learn| [2024a], to evaluate SALSA
across different unlearning paradigms. The Moons dataset
comprises three classes, each with 5000 training and 500
test samples. A three-layer MLP, trained to convergence,
learns the decision boundary shown in Fig.[2b] This dataset
is used for class-wise and sample-wise unlearning. The
Blobs dataset includes two classes, each with two distinct
subclasses, reflecting hierarchical structures in real-world
data. It contains 7500 training and 500 test samples per
class. A three-layer MLP captures the decision boundary
(Fig.[Zh). This dataset is used for subclass-wise and sample-
wise unlearning.

Dataset Task Method FA; RA; FA. RA. TA
Clgss RT 00.0 100.0 00.0 100.0 -
wise  SALSA 00.0 98.8 00.6 98.4 -

Moons
Sample RT 100.0 100.0 - - 100.0
wise  SALSA 100.0 100.0 - - 100.0

Subglass RT 00.0 100.0 00.0 100.0 -
wise  SALSA 00.0 97.6 00.0 97.5 -

Blobs
Sample RT 98.5 100.0 - - 98.0
wise  SALSA 96.9 95.8 - - 95.3

5.3 RESULTS

Across all scenarios, SALSA consistently matches retrained
models in forgetting targeted information while preserving
generalization (see Table [I] for fine-grained results).

Class-wise Unlearning: The ideal decision boundary



learned by the retrained model is visualized in Fig.
SALSA closely replicates this boundary (Fig. [2d), effec-
tively forgetting the class while maintaining overall general-
ization. The Average Discrepancy is 0.85%.

Subclass-wise Unlearning: The retrained boundary is visu-
alized in Fig. 21 SALSA reproduces this boundary (Fig.
with a low Average Discrepancy of 1.23%.

Sample-wise Unlearning: Randomly removing 10% of
training samples minimally affects the model’s decision
boundary. SALSA produces boundaries (Figs. nearly
identical to those of the retrained models (Figs. 2e} 2k}, with
Average Discrepancies of 0% (Moons) and 2.8% (Blobs).

6 EXPERIMENTS ON STANDARD DATA

We assess the performance of our proposed approach on
benchmark datasets, focusing on class-wise and sample-
wise unlearning.

6.1 DATASET AND MODELS

Our experiments leverage three widely used image classi-
fication datasets with varying sizes, resolutions, and class
distributions. CIFAR10 [Krizhevsky et al.,[2009] comprises
50, 000 training images and 10, 000 test images distributed
uniformly over 10 classes. We use the ResNet18 model [He
et al.| [2016]] for training on this dataset. The Street View
House Numbers or SVHN [Netzer et al., 2011] is a real-
world dataset with 73, 257 training images and 26, 032 test
images across 10 classes. ResNet18 is employed for training
on this dataset. The TinyImageNet [Yang| [2015] dataset
consists of 200 classes, each comprising 500 training im-
ages and 50 test images, totaling 100, 000 training samples
and 10, 000 test samples. Swin-T transformer [Liu et al.,
2022] is chosen for training on this dataset.

6.2 BASELINES

We regard the retrained model (RT) as the oracle of ap-
proximate machine unlearning and compare SALSA against
five state-of-the-art machine unlearning methods. These in-
clude SFTC [Perifanis et al.,2024], SalUn [Fan et al.| [2024],
FEMU [Tarun et al., [2024], LAF [Shen et al., [2024] and
SFRon [Huang et al.| [2024]]. We also consider Fine-tuning
(FT), a strong baseline, where fy is fine-tuned on D,.. This
is akin to catastrophic forgetting where fine-tuning without
D,,, may lead to unlearning.

6.3 IMPLEMENTATION DETAILS

is essen-

max

According to Eqn. |4} determining \;_, and \;
tial to balance unlearning across network layers effectively.

Recognizing that the initial layers of a neural network play a
more critical role in learning [Zhang et al.|[2022]], we assign
higher weights to these layers during unlearning which is
achieved using an linear function.

Al
Al

o=mx(L-l4+1)+c¢ Vlie{l,--- L} 5)
:Almin—i_ry

max

where m and c are the scale and shift hyper-parameters that
dictate how A;_, varies across the network depth. Mean-
while,  determines how much \! increases as training pro-
gresses. We choose to forget the best-performing class in
each dataset (classes 1,4 and 23 for CIFAR10, SVHN and
TinyImageNet, respectively) as it typically causes the largest
drop in performance, challenging all unlearning algorithms
to match the performance of the oracle. Following [Shen
et al., [2024], we forget 40% random subset of samples
from the last 50% of classes for sample-wise unlearning
in each dataset. On the CIFAR10 and SVHN datasets, the
ResNet18 model is trained from scratch while we fine-tune
an ImageNet [Russakovsky et al., 2015] pre-trained Swin-T
transformer on TinyImageNet which closely follows MLaaS
practice of fine-tuning strong foundation models on custom
datasets. We report all results by averaging over three dif-
ferent runs for each experiment. Further implementation
details for reproducibility are provided in Section [A]of the
Appendix.

6.4 RESULTS

Under the metrics, FAy, RA¢, FA¢, RA and TA, the algo-
rithm with the smallest discrepancy from the oracle (RT)
is considered the best. Additionally, for the MIA and Iters
metrics, the method achieving scores closest to 50% and 1,
respectively, is considered optimal.

Class-wise and Sample-wise Unlearning: Table [2] show-
cases both class-wise and sample-wise unlearning perfor-
mance across all datasets.

For class-wise unlearning, SALSA consistently outper-
forms all considered baselines across each dataset, achiev-
ing the lowest average discrepancy (< 1.5%) from exact
unlearning. This near-perfect approximation demonstrates
that SALSA effectively emulates retraining without access
to the original data, ensuring the preservation of model
generalization. Moreover, SALSA achieves remarkable effi-
ciency, being up to 25x faster than the next fastest baseline,
SFRon. Note that, due to LAF’s high resource requirements,
we were unable to evaluate it on TinylmageNet. In terms of
privacy preservation, SALSA’s MIA scores are consistently
close to 50%, aligning with the gold standard for privacy.
For instance, on SVHN and TinyImageNet, even RT exhibits
slight membership leakage, with MIA scores deviating from
50%. In contrast, SALSA’s near-ideal MIA scores showcase
robust privacy preservation while maintaining high utility.



Table 2: Combined class-wise and sample-wise unlearning performance comparison. For class-wise unlearning, the class
with the highest training accuracy is unlearned. For sample-wise unlearning, a random subset of 10% examples is unlearned.
Values closest to RT under each metric are bolded, with the second best underlined. For MIA, scores nearest to 50% are
bolded, with the second nearest underlined. For Iters, the method with the fewest iterations is bolded, with the second best

underlined. Results are averaged over three runs.

Class-wise Unlearning

Sample-wise Unlearning

Dataset Methods FA; RA; FA, RA, Avg.D MIA Iters FAx RA;xy TA Avg.D MIA TIters
RT 00.0 100 00.0 95.6 — 46.6 70K 93.3 100 92.6 — 60.4 56K
FT 00.0 92.7 00.0 88.5 03.6 60.6 14K 99.8 99.9 95.0 3.0 64.2 11K
SFTC 00.0 92.7 00.0 88.6 03.6 59.0 16K 100 100 954 3.2 66.4 15K
CIFAR10 SalUn 00.0 85.5 00.0 82.8 06.8 63.1 4K 100 100 95.3 3.1 66.2 3K
LAF 00.0 60.2 00.0 93.3 105 624 5K 94.1 99.9 93.9 0.7 55.6 109K
SFRon 00.0 74.5 00.0 73.2 120 62.0 2K 100 99.9 95.2 3.1 65.5 4K
SALSA 00.3 98.7 00.5 92.0 014 502 0.1K 969 979 954 29 51.1 0.02K
RT 00.0 99.4 00.0 96.7 - 62.6 70K 92.9 99.9 95.8 — 54.8 664K
FT 00.0 96.0 00.0 95.6 01.1 56.7 374K 97.8 994 964 2.0 55.3 8K
SFTC 00.0 95.7 00.0 954 01.3 59.5 20K 99.8 998 964 2.6 55.6 33K
SVHN SalUn 00.0 93.3 00.0 93.0 024 63.2 22K 99.7 99.7 964 2.5 55.7 33K
LAF 04.1 65.2 01.3 96.4 10.0 64.5 595K 00.0 98.7 60.2 43.2 33.5 595K
SFRon 00.0 90.7 00.0 90.4 03.8 53.1 2K 97.8 99.1 96.2 2.0 55.7 2K
SALSA 00.7 99.6 00.7 95.3 00.7 45.7 0.2K 97.1 98.1 91.2 3.5 51.1 0.03K
RT 00.0 92.0 00.0 85.3 — 63.4 78K 85.81 97.8 85.81 — 58.06 78K
FT 82.8 923 84.0 844 420 60.0 4K 67.8 776 69.3 18.0 55.3 3K
Tiny SFTC 98.2 91.4 84.0 834 498 63.2 4K 76.6 77.6 70.1 14.8 56.9 4K
Image SalUn 97.4 91.5 98.0 84.0 49.3 623 4K 75.2 76.8 704 154 56.9 4K
Net LAF — — — — — — — — — — — — —
SFRon 00.0 91.4 00.0 84.7 00.3 39.3 1K 48.3 65.7 59.3 31.8 558 1K
SALSA 00.2 91.5 00.0 85.3 00.2 47.8 0.02K 89.7 91.2 849 36 49.1 0.08K

For sample-wise unlearning, SALSA outperforms all con-
sidered baselines on CIFAR10 and TinyImageNet, achieving
the lowest average discrepancy (< 4%) from exact unlearn-
ing. On SVHN, SFRon achieves the lowest average discrep-
ancy. However, our approach is 84 x faster, on average, than
SFRon, the fastest considered baseline. Moreover, SALSA’s
MIA scores are near 50% on all datasets, aligning with the
gold standard for privacy. The combined results demonstrate
SALSA’s superior efficiency across both unlearning scenar-
ios while maintaining competitive performance metrics and
robust privacy preservation.

7 MODEL INVERSION ATTACK

7.1 SETUP

To assess the robustness of SALSA, we evaluate its effective-
ness against MIRROR [Tao et al.| 2022]], a state-of-the-art
model inversion attack. We adopt the experimental setup
of MIRROR, where a StyleGAN [Karras et al.| 2019] pre-
trained on the CelebA dataset [Liu et al.,[2015]] serves as the

generator for the attack. An InceptionResNet-v1 [Szegedy|
et al.}2017] pre-trained on the VGGFace2 dataset [[Cao et al.|
2018] is targeted in the attack. The StyleGAN iteratively
optimizes its generated images using a genetic algorithm
[Bhandari et al., [1996]], aiming to infer private data from
the model in a black-box setting. The hyperparameters for
unlearning are detailed in Section [A]of the Appendix.

7.2 RESULTS

To demonstrate the efficacy of SALSA against state-of-the-
art black box model inversion attack, we select two visually
similar classes from the VGGFace2 dataset (Figs.[3ajand[3D).
Without unlearning, MIRROR reconstructs facial and hair
features of private training samples with striking fidelity, as
shown in Figs.[3c|and [3dl However, after unlearning with
SALSA, MIRROR struggles to recover even rudimentary
information about the forgotten classes, as demonstrated in
Fig. A critical goal of unlearning is to ensure that data
from retained classes remains unaffected. Fig. [3f] confirms
this, as the images generated by MIRROR for the retained
class are nearly indistinguishable from the originals. Our re-
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Figure 3: The black box model inversion attack variant of
MIRROR. Figs. [3aland [3b] are images taken from two visu-
ally similar classes in the VGGFace?2 dataset and represent
the ground truth. Figs. [3c| and [3d] are randomly selected
batches of output generated by the inversion attack on the
pre-trained network for each class before unlearning. Figs.
[Be]and 3f] are randomly selected batches of output generated
by the same attack model on the unlearned network.

sults highlight SALSA’s robustness against model inversion
attacks, successfully erasing private data while maintaining
the integrity of retained classes.

8 MALICIOUS UNLEARNING

8.1 SETUP

Malicious Unlearning (Over-unlearning) simulates a black-
box attack in MLaaS, where the server has no knowledge
of the unlearning request. We specifically implement subset
over-unlearning II as proposed by (2024al]. For
each dataset, we shift 50% of the best-performing class’
samples just across the model’s decision boundary, pushing
them toward the second-highest-performing class. These
adversarially modified samples form the unlearning request.

8.2 RESULTS

[2024a]] showed that over-unlearning can signif-
icantly degrade test accuracy (TA). However, SALSA re-

mains remarkably robust, experiencing nearly no drop in
performance on CIFAR10 and TinyImageNet (Table[3). On
SVHN, however, TA drops by over 10%. We attribute this
to the high visual similarity between the top two performing
classes, digits 1 and 4, making decision boundaries more sus-
ceptible to perturbations. These results highlight SALSA’s
resilience against adversarial unlearning in most MLaaS
settings.

Table 3: Test accuracy (TA) for Malicious Unlearning (over-
unlearning) in contrast to normal (benign) unlearning.

Dataset Benign Unlearn Malicious Unlearn
CIFARI10 88.57 88.42
SVHN 86.71 74.06
TinyImageNet 86.64 86.71

9 ANALYSIS STUDY

We investigate different aspects of SALSA through the lens
of class-wise unlearning.

Visualizing the Unlearning: We leverage GradCAM
to visualize how the Swin-T transformer
attends to images from both unlearned and retained classes
in TinyImageNet. Fig. ] shows activation maps before and
after applying SALSA, highlighting the forget set (class
23) and three random retained samples. Post-unlearning,
the model no longer focuses on key regions, indicating the
effective removal of class-specific information. This visu-
alization provides intuitive evidence of SALSA’s ability to
successfully unlearn without compromising generalization.

Forgetting class Non-forgetting class

Figure 4: Swin-T transformer activation maps on TinyIm-
ageNet. Fig. [4a] shows a random batch from the forget set,
while Fig. @] shows random images from the retained set.
Figs. fic|and fid] depict activation maps before unlearning,
whereas Figs. e] and [4f] demonstrate the same map but after
unlearning.

Effect of varying «o,,;, and oy, Fixing ap.x = 1, we
expect FA,. to start low and approach 0 as a,,;, increases
from O to 1. This is because smaller au,;,, values delay most
of the probability mass redistribution until the final stages
of unlearning. Similarly, fixing oin, = 0 and varying aunax
in [0, 1] should amplify this effect, as class-wise unlearning
demands ey — 1. Fig.|§|conﬁrms this trend for ResNet18
on CIFAR10. Notably, SALSA remains robust, i.e., RA,
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Figure 5: Accuracy trends for retain and forget classes on
test sets with varying alpha values.

remains stable while FA. steadily declines.

Effect of varying m, c, y: Increasing m amplifies weight
penalization near the input layers, while higher c enforces
stronger regularization across all layers. Larger ~y further
intensifies weight penalization as unlearning progresses. In
all cases, we expect the amount of unlearning to reduce, i.e.,
FA,. should rise due to increased regularization. Figs.[6] [7}
and[§] validate this trend for ResNet18 on CIFAR10. Once
again, SALSA remains robust to changes in RA with re-
spect to the variation in the regularization hyperparameters.

10 CONCLUSION

In this work, we present SALSA, a Scalable, Adaptive and
Label-Agnostic Scalable Algorithm for machine unlearn-
ing tailored for classification tasks in the MLaaS scenario.
SALSA redistributes model output probabilities for samples
that need to be forgotten. Thereafter, it employs a novel loss
function that minimizes the divergence between predicted
and redistributed probabilities while maintaining minimum
distance from model initialization. This ensures simultane-
ous unlearning and generalization. Our approach is label in-
dependent and requires only the samples to be forgotten, for
unlearning which makes SALSA exceptionally fast, achiev-
ing at least 25x and 84 x faster class-wise and sample-wise
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Figure 6: Accuracy variation with the slope (m), showing
its effect on retention and forgetting.
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Figure 7: Accuracy dependence on the shift (c), illustrating
how offset adjustments influence performance.
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Figure 8: Accuracy trends with respect to -, highlighting its
role in modulating class retention and forgetting.

unlearning, respectively, than the fastest considered base-
line. Extensive experiments on benchmark and synthetic
datasets show that SALSA achieves the closest approxi-
mation to exact unlearning. Through rigorous evaluations
against state-of-the-art black box attacks, we demonstrate
SALSA’s resilience to privacy and security threats. By bal-
ancing utility and privacy at scale, SALSA marks a signifi-
cant step forward in practical, privacy-preserving unlearning
for MLaaS and sensitive data management.
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A CHOICE OF HYPER-PARAMETERS

A.1 UNLEARNING

Table 4: Hyperparameters for different datasets and model combinations for both class-wise and sample-wise unlearning.

Dataset Model Task Epochs  Batch Size Ir QUmin Qmax  Slope (m) shift(c) ~
Class 10 512 20e4 01 09 0.1 1 0.4
CIFARIO ResNetl8 o mple 1 512 1.0e5 01 03 0.01 01 02
Class 10 512 20e4 01 09 0.1 1 0.4
SVHN ResNetl8 o mple 1 512 10e5 01 03 00l 01 02
TinvimaseNet  Swinr  ClasS 10 32 1.0e-3 1-le6 1 40e3  1.0e2  3.0e-2
yimag Sample 1 32 90e-4 03 06  50e4  50e3 1.0e-2
Subset 50 64 20e4 03 1 0.09 005  0.04
Blobs MLP Sample 20 64 20e-6 001 005 00l 005 0.0l
Class 20 64 20e-4 03 1 0.07 001 0
Moons MLP Sample 20 64 20e-6 001 005 001 005 001
Inception
VGGFACE2 ResnetV1 Class 10 16 1.0e-3  1-1e-8 1 1.0e-5 1.0e-4  1.0e-2

A.2  ORIGINAL TRAINING

Table 5: Hyperparameters for different dataset and model combinations.

Dataset Model Epochs  Batch Size Ir
CIFARI10 ResNet18 200 128 0.1
SVHN ResNet18 200 128 0.1
TinyImageNet SwinT 200 128 0.1
Blobs MLP 75 64 0.01

Moons MLP 50 64 0.01
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