

000 BEYOND URLs: METADATA DIVERSITY AND POSITION 001 FOR EFFICIENT LLM PRETRAINING 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Incorporating metadata in Large Language Models (LLMs) pretraining has recently
011 emerged as a promising approach to accelerate training. However prior work
012 highlighted only one useful signal—URLs, leaving open the question of whether
013 other forms of metadata could yield greater benefits. In this study, we investigate
014 a wider range of metadata types and find other types of metadata, such as fine-
015 grained indicators of document quality that can also accelerate pretraining when
016 prepended. We identify a common feature among effective metadata: they encode
017 information at a finer granularity. We further introduce metadata appending as a
018 means of improving training efficiency, where predicting an appropriate metadata
019 as auxiliary task can help speed up pretraining. In addition, learnable meta-tokens
020 trained with masked loss can recover part of the speedup by inducing quality-aware
021 latent structure. Using probing, we analyze latent representations to understand
022 how metadata shapes learning. Together, these results yield practical guidelines
023 for integrating metadata to improve both the efficiency and effectiveness of LLM
024 pretraining.

025 026 1 INTRODUCTION 027

028 Large language models (LLMs) are typically pretrained on web-scale corpora sourced from Common
029 Crawl-style snapshots and related aggregates, then aggressively filtered and deduplicated to improve
030 quality and efficiency. Landmark datasets such as C4 (Raffel et al., 2020) and RefinedWeb (Penedo
031 et al., 2023) exemplify this trend: both begin from massive web crawls and rely on heuristic and
032 statistical filtering to remove boilerplate, low-quality, and near-duplicate content before tokenization;
033 more recent open corpora like Dolma (Soldaini et al., 2024a) extend this paradigm to trillions of
034 tokens spanning diverse sources. In parallel, a growing literature studies data filtering/selection, e.g.,
035 perplexity- or importance-based selection, to allocate pretraining compute toward the most useful
036 subsets, for which we refer the readers to a survey (Albalak et al., 2024). Together, these efforts frame
037 pretraining efficiency largely as a problem of “which web data to keep and how much of it to use.”

038 A complementary axis for improving pretraining efficiency is to enrich the input with document-level
039 metadata—information about a text’s source, domain, time, or other attributes—so the model can
040 condition its representation learning accordingly. Recent work formalizes this idea as “metadata
041 conditioning,” showing that prepending simple, readily available indicators (e.g., source URLs or
042 domain tags) during pretraining can accelerate learning and improve downstream controllability,
043 with a “cool-down” phase to remove the dependency at inference (MeCo, Gao et al. (2025)). This
044 direction builds on the broader intuition that structural signals beyond raw tokens (such as links,
045 domains, registers) can shape what is learned during pretraining.

046 However, the landscape of effective metadata types and positions remains underexplored. To date,
047 empirical evidence most consistently supports prepending the URL (or source identifier) before the
048 document as a practical and robust way to accelerate LLM pretraining; systematic comparisons further
049 report that other readily available metadata (e.g., coarse topics or quality indicators) have not yet
050 shown comparable acceleration under similar budgets and setups (Fan et al., 2025). Whether richer
051 metadata schemas (beyond URLs) or alternative integration strategies (e.g., suffixing, special-token
052 segment headers, side-channels) yield additional efficiency gains is still largely an open question.

053 Finally, despite encouraging empirical gains, we have limited mechanistic understanding of how
metadata shapes latent representations during pretraining—e.g., whether conditioning induces domain-

054 specific subspaces, affects token- and document-level mutual information, or alters cross-domain
 055 interference and transfer. Preliminary analyses from metadata-conditioning hint that such signals
 056 can reorganize representation geometry and influence downstream behavior, but a principled account
 057 connecting metadata types, injection positions, and emergent representation structure remains to be
 058 developed.

059 We summarize our contributions as follows:
 060

- 061 • We identify additional useful metadata signals in accelerating LLM pretraining when
 062 prepended, beyond URL. We show that the fine-granularity of the metadata is the key
 063 in bringing the acceleration effect (Section 4.1).
- 064 • We introduce and evaluate metadata appending as a method for accelerating pretraining,
 065 and highlight metadata types that are particularly suitable as auxiliary signals in this setup
 066 (Section 4.2).
- 067 • We show that learnable meta tokens can partially recover the speedup with metadata, where
 068 attention patterns to these tokens encode quality-aware information. (Section 4.4).
- 069 • We conduct layer-wise probing of latent representations for topic, quality, and authorship,
 070 providing mechanistic insight into how these factors are better encoded in the latent space.
 071

073 2 RELATED WORK

074 **Pretraining efficiency of LLMs.** Pretraining efficiency is enhanced through three axes: 1) Acquisition
 075 of better pretraining data. RefinedWeb (Falcon) (Penedo et al., 2023) argues that carefully filtered
 076 web-only data can outperform mixed curated corpora, while FineWeb (Penedo et al., 2024) scales this
 077 idea to $\sim 15T$ tokens with stronger decanting and deduplication at crawl-snapshot scale. Both report
 078 improved downstream performance per token, i.e., better data efficiency. In parallel, Dolma (Soldaini
 079 et al., 2024b) and RedPajama (Weber et al.) foreground transparent releases with quality signals,
 080 dedup IDs, and fine-grained metadata to enable learned filtering and weighting strategies—aiming
 081 to squeeze more performance out of each pretraining FLOP. 2) More efficient architectural design.
 082 Sparse Mixture-of-Experts architectures (e.g., Switch Transformer, Fedus et al. (2022)) activate only
 083 a small subset of parameters per token, yielding large effective capacity at near-constant compute
 084 and demonstrating multi- \times pre-training speedups at scale. Multi-Query Attention (MQA, Shazeer
 085 (2019)) and Grouped-Query Attention (GQA, Ainslie et al. (2023)) share or group KV heads to
 086 reduce KV cache and bandwidth costs; although often discussed for inference, these changes also
 087 lower training-time memory traffic and can improve throughput for long contexts. 3) Additional
 088 signals from metadata. Recently, Gao et al. (2025); Fan et al. (2025) have both demonstrated an
 089 acceleration effect from URL prepending, saving up to 30-40% tokens in pretraining time. This
 090 acceleration is considerable, even on top of data filtering. In this work, we aim to further advance this
 091 axis.
 092

093 **Metadata in LLM pretraining.** A growing body of work shows that exposing explicit meta-
 094 data—e.g., URL/domain, document IDs, and timestamps—can improve efficiency, steerability, and
 095 attribution. On the source/domain axis, CTRL conditions on control codes derived from data structure
 096 (domain, dates, etc.) to steer generation (Keskar et al., 2019); similarly, Fan et al. (2025) find
 097 that prepending topic and format tokens yield stronger controllability than raw URL domains. For
 098 provenance and attribution, Source-Aware Training injects document IDs in a light post-pretraining
 099 stage to enable intrinsic citation of pretraining sources (Khalifa et al., 2024). Along the temporal
 100 dimension, Zhao et al. (2024) align pretrained LMs to a target year using timestamp metadata, and
 101 Faro et al. (2025) pretrain experts on time-sliced corpora with routing by query time, boosting time
 102 awareness while preserving downstream performance. Finally, a line of metadata-as-context work
 103 shows theoretically and empirically that prepending metadata tokens (excluded from the loss) can
 104 substantially accelerate pretraining (Allen-Zhu & Li, 2024; Gao et al., 2025; Zhu et al., 2025; Fan
 105 et al., 2025). However, the benefits of metadata conditioning is not uniform: effectiveness depends on
 106 prompt length and setting (Higuchi et al., 2025; Fan et al., 2025). We extend this line by examining
 107 efficiency gains from metadata appending and by introducing learnable metatokens as a flexible
 108 alternative to fixed metadata strings.

Figure 1: Our tokenization. Each document begins with a default beginning-of-sequence ($<\text{s}>$) token. For each sequence, metadata is wrapped between beginning-of-context ($<\text{boc}>$) and end-of-context ($<\text{eoc}>$). Depending on the metadata position, the metadata is prepended (illustrated on the left) or appended (illustrated on the right) to the document. If a long document split into multiple sequences, metadata is attached to each one. A 10% dropout of metadata is always performed.

3 EXPERIMENTS

We follow the experimental setup of Fan et al. (2025), and extend their investigation to more metadata types. The model is an adopted 1.5B Llama model with 16 layers in total. We use AdamW optimizer with regularization strength 0.1 (Loshchilov & Hutter, 2019). For each batch, the model processes 2.06 million tokens, corresponding to a sequence length of 4,096 and a batch size of 504. We use cosine scheduler with a maximum learning rate of 3e-4, and in the first 5% steps we perform the learning rate warm-up. To train the models, we use the Megatron-LM framework (Narayanan et al., 2021).

We use FineWeb-Edu (Lozhkov et al., 2024) for comparability with Fan et al. (2025). In the metadata-prepending setup, we mask the metadata tokens from the loss both for reporting and during backpropagation. In the metadata-appending setup, we mask the metadata only for loss reporting; we retain its loss for backpropagation so the model learns to predict the metadata. The tokenization approach for metadata prepending and appending is depicted in Figure 1.

Evaluation Benchmarks. As standard practice, we evaluate models on general knowledge understanding using LM-Eval-Harness developed by Gao et al. (2024). The benchmarks used are Arc-Easy (Clark et al., 2018), Arc-Challenge (Clark et al., 2018), CommonSense QA (CSQA, Talmor et al., 2018), MMLU (Hendrycks et al., 2020), PIQA (Bisk et al., 2020), Social IQA (SIQA, Sap et al., 2019), HellaSwag (HS, Zellers et al., 2019), Lambada (LBD, Paperno et al., 2016) and Winogrande (WG, Sakaguchi et al., 2021).

Metadata Types. We examine the following types of metadata. Building on Fan et al. (2025), we extend the quality score and domain information to a finer level of granularity. In addition, for each metadata type, we explore two positional variants: prepending and appending.

- *Full URL (URL)*: Provided by the FineWeb-Edu dataset as `url`, from which the document was crawled.
- *Coarse-Grained Quality Score (QS-coarse)*: Provided by the FineWeb-Edu dataset as `int_score`. These scores are generated by a linear regressor trained on 410,000 web samples, each annotated by Llama-3-70B-Instruct on a scale from 0 (not educational) to 5 (highly educational), reflecting the sample’s educational value. The scores are then rounded to the closest integers, and only scores greater than or equal to 3 are kept. There are 3 categories of coarse-grained quality levels.
- *Fine-Grained Quality Score (QS-fine)*: Similar to QS-coarse, we take the raw score (provided as `score`) from the regressor instead of the rounded one. The score is presented as $\lfloor \text{score} * 10 \rfloor$. Thus, it is at least 10 times finer than QS-coarse.
- *Coarse-Grained Domain Information (DI-coarse)*: Following Fan et al. (2025), we annotate each document with WebOrganizer (Wettig et al., 2025), where topic and format domains are returned by pretrained classifiers. There are 24 categories per taxonomy. In total, we have 576 different Domain Information types.
- *Fine-Grained Domain Information (DI-fine)*: Each document is labeled with topic and format domains generated by Llama3.1-8B-Instruct model (Grattafiori et al., 2024). The

Figure 2: Pretraining acceleration measured by downstream evaluation performances. DI stands for domain information and QS stands for quality score.

generation prompt can be seen in Appendix B.1. The generation is open-ended, and there are unlimited number of categories.

Probing Experiments. In addition to downstream evaluation benchmarks, we employ probing to analyze the information encoded in layerwise representations. While benchmarks reflect the model’s overall knowledge and reasoning ability, they provide limited insight into how metadata affects the internal learning dynamics of different layers. Probing allows us to examine these differences more directly and shed light on the representational role of metadata in accelerating pretraining.

Specifically, we train probing classifiers on the following tasks:

- *Document quality prediction.* We sample 15,000 documents from FineWeb-Edu, annotated with QS-coarse and balanced across three quality levels (5,000 per score). Using a 90/10 train–test split, the objective is to predict the quality score from the document representation.
- *Document topic prediction.* We sample 20,000 documents from FineWeb-Edu, annotated with DI-coarse topics and balanced across 20 categories (1,000 per topic). Using the same 90/10 train–test split, the goal is to predict the topic label from the document representation.
- *Authorship prediction.* We use the dataset from Stamatatos (2017), consisting of 2,157 Guardian articles written by 13 authors. We adopt a 70/30 train–test split. This task is relatively straightforward: later layers achieve 100% test accuracy, while earlier layers still retain some distinguishable signal.

For these tasks, we train layer-wise three-layer MLP classifiers using representations from each layer. The probe takes the last hidden state of each document as input (truncated at the 100th token); for shorter documents, the final token representation is used instead.

4 HOW CAN METADATA ENHANCE PRETRAINING?

In this long section, we present results from a thorough investigation of metadata types and positions. Throughout, we explain some unique phenomena by probing through the latent representations.

4.1 PREPENDING: TRAINING SPEED-UP WITH FINE-GRAINED METADATA CONDITIONING

On top of the metadata types examined by Fan et al. (2025), we extend the investigation to two other fine-grained metadata types. The left panel of Figure 2 shows how downstream performances progress with prepending different metadata. The final average performance across downstream tasks is reported in Table 1. Among the five context types tested, both URL and fine-grained quality scores yield comparable acceleration, reaching the performance of a 100B-token baseline after only 60B tokens. Fine-grained domain metadata also provides a boost, surpassing the 100B-token baseline with 20B fewer tokens. It seems that quality score and domain information can be helpful, but fine granularity is the key.

Observation 1. Only fine-grained metadata conditioning has a positive effect in speeding up pretraining; conditioning on coarse-grained meta-information yields no noticeable change.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: 5shot evaluation results. When evaluating prepending models, we add the prefix `<boc><eoc>` to each evaluation text. When evaluating appending models and the standard model, we add no prefix texts.

	Arc-C	Arc-E	CSQA	MMLU	PIQA	SIQA	HS	LBD	WG	Avg
standard	33.9	68.6	45.1	31.8	71.7	41.5	41.9	30.6	54.9	46.7
<code><boc><eoc></code>	34.0	69.2	43.5	31.9	71.9	41.5	42.5	30.8	55.2	46.7
<i>prepend</i>										
URL	34.8	71.7	46.9	32.5	72.3	41.5	42.5	32.4	55.7	47.7
QS (Coarse)	32.7	69.6	41.0	31.8	72.1	41.6	43.0	32.4	55.2	46.6
QS (Fine)	35.3	70.0	45.4	32.1	72.4	41.6	42.3	32.3	54.5	47.3
DI (Coarse)	34.0	69.8	42.6	32.1	71.9	40.3	42.0	31.8	55.5	46.7
DI (Fine)	34.7	70.5	46.0	32.6	72.8	40.8	42.1	32.1	54.5	47.3
Meta Tokens	35.1	69.8	45.0	32.1	72.1	40.1	42.0	32.1	55.3	47.1
<i>append</i>										
URL	34.3	70.1	44.6	32.0	72.0	40.7	41.9	31.2	54.9	46.8
QS (Coarse)	34.4	69.0	46.0	32.1	72.6	40.6	42.3	31.1	56.2	47.1
QS (Fine)	34.8	69.8	44.9	32.2	71.8	36.5	42.2	33.0	55.6	46.8
DI (Coarse)	33.8	68.7	44.6	31.7	71.9	40.5	41.9	32.3	54.9	46.7
DI (Fine)	34.7	71.3	45.3	32.1	71.2	41.6	42.3	34.4	53.2	47.3

No additive effect from metadata. We further examine whether the model benefits from prepending two types of helpful metadata. Specifically, we provide both the URL and the fine-grained quality score as metadata and compare the results in Figure 3. The model shows faster learning during the early stages of training, indicating that the combined metadata helps it acquire information more quickly. However, as training progresses and more tokens are seen, this advantage diminishes, and the final performance is comparable to that of a model trained without metadata. Notably, the model does not appear to leverage either the URL or the fine-grained quality score consistently.

Figure 3: Comparison of downstream performance when prepending URL or QS-Fine individually versus in combination. Both metadata types are effective on their own, but combining them yields no additive effect on metadata acceleration.

Fine-grained metadata prepending performs better than coarse-grained. In Figure 2 and Table 1 we observe that the fine-grained metadata types lead to stronger model performance compared to their coarse-grained counterparts. We hypothesize that the finer distinctions in metadata enhance the model’s ability to capture and represent salient information in the data. We use the DI-coarse topic probing introduced in Section 3 to investigate this hypothesis. As shown in Figure 4, both fine-grained and coarse-grained metadata prepending improve over the standard model, and the fine-grained variant shows a modest but consistent advantage, which is in line with our hypothesis.

Which parts of a URL matter for pretraining? Unlike the other metadata types, URLs consist of different information. Taken <https://en.wikipedia.org/wiki/Metadata> as an example, we categorize `https://` as URL prefix, `en.wikipedia.org` as URL domain and everything after URL domain as URL suffix. Each component encodes different information, for example, URL domain usually corresponds to format and quality information, and URL suffix usually corresponds to topic information.

To investigate which parts of the URL contribute to the success of URL prepending, we sample 100 documents from Fineweb-Edu conditioned on their URLs and analyze attention patterns across layers. The absolute attention weights given to each part of the prepended components are plotted out in Figure 5, where it is observed that a significant portion of attention is directed toward the URL prefix

Figure 4: Probing results on document topic prediction for QS and DI models prepended with fine- and coarse-grained metadata. Models trained with finer-grained metadata generally achieve better performance.

— the part of the URL that carries no content information from the document. This observation highlights a common attention behavior: the model often focuses on consistent initial tokens, which can act as an “attention sink” without providing a meaningful signal for the task (Gu et al., 2025).

Since the majority of attention is given to the URL prefix part, does the attention pattern indicate that prepending the URL prefix should recover most of the URL-prepended performance? It turns out not to be the case. We conducted three ablation runs with different URL components prepended, as shown in Table 2. Prepending URL prefix does not outperform standard training. URL domain and suffix, even though given little attention to, are vital for the improvement in downstream tasks. Moreover, neither of them can catch the performance of full URL prepended run, suggesting that the domain and suffix encode complementary information. **We offer more evidence and analysis in Appendix B.3.**

Observation 2. URL-prepended model shows a pronounced attention sink on URL prefixes, but these features do not improve performance. In contrast, the URL domain and suffix provide complementary contributions.

Figure 5: Averaged attention weights across all attention heads in different layers. **A finer-grained per-layer per-attention head attention pattern is provided in Figure 13.**

Table 2: Downstream evaluation results for prepending various components of URL.

	Arc-C	Arc-E	CSQA	MMLU	PIQA	SIQA	HS	LBD	WG	Avg
URL	34.8	71.7	46.9	32.5	72.3	41.5	42.5	32.4	55.7	47.7
URL prefix	34.0	68.9	43.0	32.1	72.0	41.7	42.0	32.8	53.1	46.6
URL domain	35.3	69.3	46.4	32.3	72.9	39.9	42.3	32.1	54.2	47.2
URL suffix	34.1	68.1	44.7	31.9	72.1	41.0	42.4	32.0	55.8	46.9

4.2 APPENDING: PREDICTING AUXILIARY INFORMATION MAY HELP

Beyond prepending, metadata can also be inserted at various positions during training. Khalifa et al. (2024) explored placing metadata at the beginning or end of a document, as well as repeating it multiple times within the text, for the purpose of data attribution. A natural question for improving pretraining performance is whether appending metadata could be beneficial.

Appending turns metadata prediction into an auxiliary task: after processing the entire sequence, the LM is asked to predict information such as the sequence’s quality score or topic. This setup may encourage the model to build an internal representation of the input that is sufficiently informative to recover the metadata at the end, potentially incentivizing it to compress salient aspects of the sequence into its hidden states. In this way, the auxiliary objective could serve as a form of soft

regularization, nudging the model toward representations that are more aligned with higher-level properties of the data rather than only surface-level statistics.

We report the downstream performance for the five metadata types in the right panel of Figure 2, with the corresponding averages summarized in Table 1. Among these runs, appending fine-grained domain information helps the most. Additionally, coarse-grained quality score and URL appending also help improve downstream performance. In contrast, fine-grained quality score does not improve over standard pretraining. The acceleration effect of helpful metadata is, on average, not as great as prepending; however, we are still able to train on 20% fewer tokens to achieve the same performance as standard pretraining.

Observation 3. Auxiliary tasks such as coarse-grained quality score and fine-grained domain information prediction can accelerate training.

Fine-grained vs. coarse-grained quality score. It is noteworthy that appending coarse-grained quality scores (single-digit integers in 3, 4, 5) leads to better downstream performance than appending fine-grained quality scores (two-digit integers ranging from 25 to 50). In principle, a model trained with fine-grained scores could simply learn to predict the first digit and thereby achieve performance comparable to the coarse-grained case. However, it does not appear to do so. To verify this, we evaluated the fine-grained model’s ability to predict the two-digit quality score by prompting it to continue generation after `<bot>`, and found that its predictions were highly accurate. We hypothesize that the model becomes overly focused on solving this auxiliary prediction task, which detracts from its ability to develop other skills that would improve downstream performance.

To evaluate this hypothesis, we run the probing experiments described in Section 3. Results for predicting document topic and quality appear in Figure 6. In the left panel where the task is unrelated to the included metadata type (quality), the QS-coarse appended model outperforms the QS-fine appended model, especially in the early layers. In contrast, in the right panel where the task is to predict quality, the QS-fine model performs slightly better. This pattern suggests the QS-fine model is over-specializing on the quality-prediction auxiliary task, with a corresponding trade-off in other capabilities.

Figure 6: Probing results for two models with quality scores of different granularity appended on predicting document topic and quality. The QS-Fine model matches QS-coarse in predicting document quality but performs worse on document topic prediction.

4.3 DOES ACCELERATION ALSO APPLY TO TRAINING LOSS?

How is the training acceleration reflected in the training curves? In the left panel of Figure 7, we show the training perplexity curves for all runs that outperform the standard pretraining. Overall, there appears to be no clear correlation between downstream performance and training loss. The only notable exception is URL prepending, which leads to a visibly faster decrease in loss—consistent with the findings of Fan et al. (2025).

On top of this, we plotted out the gradient norm change throughout the whole training. Compared to the other runs that improve downstream performance, the standard pretraining run exhibits higher loss spikes. This suggests that including metadata may help stabilize LLM pretraining.

Figure 7: Training loss and gradient norm throughout the whole training.

4.4 CAN LMS LEARN TO ACQUIRE META INFORMATION?

It is unsurprising that LMs can leverage additional metadata to infer latent clusters. A natural question is whether LMs can also infer such metadata on their own. To investigate this, we introduce five new meta tokens, $\langle s1 \rangle$ through $\langle s5 \rangle$. These tokens do not exist in the original vocabulary and are prepended to each sequence with probability 0.9, enclosed by $\langle \text{boc} \rangle$ and $\langle \text{eoc} \rangle$. As all the prepending runs, we mask out the meta token loss for backpropagation.

With the five learnable meta tokens, we can observe an acceleration effect as well, as shown in the left panel of Figure 2. What information do the meta tokens encode? As the five meta tokens are always the same, we hypothesize that it is the attention to the five tokens that encodes useful information. To study this, we gathered synthetic documents of three different quality levels, and plotted out the average attention weights given to the five tokens for each quality level in Figure 10. Compared to the other low- and medium-quality documents, high-quality documents attend significantly less to $\langle s4 \rangle$.

Figure 8: Attention pattern to the five prepended meta tokens (last layer). Left: average attention weights to each of the meta tokens; Right: inter- and intra-category attention pattern distance. Each category is a quality level and the distance is calculated via euclidean distance of stacked attention weights from the first 100 tokens of a document to meta tokens.

We further flatten the attention weights from the first 100 tokens of each document to meta tokens and compute the average Euclidean distances both within and across quality clusters. The results in Figure 10. show that inter-cluster distances are consistently larger than intra-cluster distances, indicating that documents of different quality levels exhibit distinct attention patterns. In contrast, similar experiments based on topic and format did not reveal such a clear separation in attention patterns across clusters, see Appendix B.2.

Observation 4. LLMs can learn to encode quality-aware latent cluster information in learnable tokens that do not inherently carry any semantic meaning.

4.5 LATENT REPRESENTATION SHAPING

To better understand the differences in learned latent representations, we probe over three different tasks: writing style (approximated by authorship), document topic, and document

432 quality. We present the results from an intermediate layer, as intermediate layers strike
 433 a balance between preserving signal and avoiding over-specialization (Skean et al., 2025).
 434 Across all three tasks, the standard
 435 pretrained model shows the lowest
 436 probing accuracy, indicating a limited
 437 latent understanding of these higher-
 438 level concepts, as shown in Figure 9.

439 For authorship, models enhanced with
 440 URL and DI-Fine metadata achieve
 441 the highest performance, suggesting
 442 that both types of metadata contribute
 443 to capturing writing style. For quality,
 444 the most effective metadata are URL
 445 and QS-Fine, reinforcing the idea that
 446 URL encodes information about docu-
 447 ment quality. In the case of document
 448 topics, the top-performing models are
 449 QS-Fine prepend, URL-append, and
 450 DI-Fine append, though no consistent
 451 pattern emerges across these results.
 452 We argue that the task is very chal-
 453 lenging and the signal may be harder
 454 to observe.

Figure 9: Probing accuracy across different model checkpoints on three tasks. In each configuration, we conducted 3 seed runs, and the standard deviation is reflected in the red bars.

Observation 5. Including the URL as metadata (whether prepended or appended), enhances the model’s latent grasp of writing style and overall document quality.

5 CONCLUSION

In this work, we show that LLM pretraining can be accelerated by conditioning on a wider range of metadata, extending beyond the commonly used URL. Our experiments indicate that fine-grained metadata—such as fine-grained quality scores and domain information—consistently yields stronger improvements than coarse-grained alternatives when prepended. Moreover, appending metadata as auxiliary prediction tasks can accelerate training as well. We witness the biggest acceleration when fine-grained domain information is appended.

Overall, our findings highlight metadata as a versatile and underexplored lever for improving the efficiency and quality of LLM pretraining. An open question remains whether metadata can also enhance post-training. While we made initial attempts to explore how metadata shapes representations and gained some mechanistic insights into what aspects are improved, we still lack a clear understanding of why metadata is effective. We hope this work motivates the community to investigate these directions further.

473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485

486 REFERENCES
487

488 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
489 Sanghai. GQA: Training generalized multi-query transformer models from multi-head checkpoints.
490 In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL
491 <https://openreview.net/forum?id=hmOwOZWzYE>.

492 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
493 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
494 Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models,
495 2024. URL <https://arxiv.org/abs/2402.16827>.

496 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
497 laws, 2024. URL <https://arxiv.org/abs/2404.05405>.

498 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
499 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
500 volume 34, pp. 7432–7439, 2020.

501 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
502 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
503 *arXiv preprint arXiv:1803.05457*, 2018.

504 Dongyang Fan, Vinko Sabolčec, and Martin Jaggi.Urls help, topics guide: Understanding metadata
505 utility in llm training, 2025. URL <https://arxiv.org/abs/2505.16570>.

506 Robin Faro, Dongyang Fan, Tamar Alphaidze, and Martin Jaggi. Timoe: Time-aware mixture of
507 language experts, 2025. URL <https://arxiv.org/abs/2508.08827>.

508 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
509 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
510 2022.

511 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
512 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
513 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
514 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
515 language model evaluation, 07 2024. URL <https://zenodo.org/records/12608602>.

516 Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong, Sadhika Malladi, and Danqi Chen. Metadata
517 conditioning accelerates language model pre-training, 2025. URL <https://arxiv.org/abs/2501.01956>.

518 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
519 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
520 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
521 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
522 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
523 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
524 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
525 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
526 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
527 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
528 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
529 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
530 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
531 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
532 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
533 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
534 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
535 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
536 Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence

540 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 541 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 542 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
 543 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
 544 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
 545 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
 546 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
 547 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 548 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 549 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
 550 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
 551 Sharan Narang, Sharath Raparth, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
 552 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
 553 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
 554 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
 555 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
 556 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
 557 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
 558 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
 559 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 560 Papakipos, Aditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
 561 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
 562 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
 563 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
 564 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
 565 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
 566 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
 567 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 568 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
 569 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 570 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
 571 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 572 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 573 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 574 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
 575 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
 576 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi Zhang, Guna Lakshminarayanan, Hakan Inan,
 577 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
 578 Helen Suk, Henry Aspren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
 579 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
 580 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
 581 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
 582 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
 583 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
 584 Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
 585 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
 586 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madiam Khabsa, Manav Avalani, Manish
 587 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
 588 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
 589 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 590 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 591 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 592 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
 593 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh

594 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
 595 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
 596 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
 597 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
 598 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
 599 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
 600 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
 601 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
 602 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
 603 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
 604 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 605 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
 606 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
 607 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

608 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
 609 Min Lin. When attention sink emerges in language models: An empirical view, 2025. URL
 610 <https://arxiv.org/abs/2410.10781>.

611 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 612 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 613 *arXiv:2009.03300*, 2020.

614 Rei Higuchi, Ryotaro Kawata, Naoki Nishikawa, Kazusato Oko, Shoichiro Yamaguchi, Sosuke
 615 Kobayashi, Seiya Tokui, Kohei Hayashi, Daisuke Okanohara, and Taiji Suzuki. When does
 616 metadata conditioning (not) work for language model pre-training? a study with context-free
 617 grammars, 2025. URL <https://arxiv.org/abs/2504.17562>.

618 Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
 619 Ctrl: A conditional transformer language model for controllable generation, 2019. URL <https://arxiv.org/abs/1909.05858>.

620 Muhammad Khalifa, David Wadden, Emma Strubell, Honglak Lee, Lu Wang, Iz Beltagy, and Hao
 621 Peng. Source-aware training enables knowledge attribution in language models, 2024. URL
 622 <https://arxiv.org/abs/2404.01019>.

623 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

624 Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
 625 collection of educational content, 2024. URL <https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu>.

626 Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
 627 jay Anand Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
 628 Amar Phanishayee, and Matei Zaharia. Efficient large-scale language model training on gpu
 629 clusters using megatron-lm, 2021. URL <https://arxiv.org/abs/2104.04473>.

630 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 631 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
 632 Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.

633 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
 634 Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
 635 dataset for falcon llm: Outperforming curated corpora with web data, and web data only, 2023.
 636 URL <https://arxiv.org/abs/2306.01116>.

637 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 638 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 639 finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>.

648 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 649 Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
 650 text-to-text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL
 651 <http://jmlr.org/papers/v21/20-074.html>.

652 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 653 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 654 2021.

655 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
 656 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

657 Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL <https://arxiv.org/abs/1911.02150>.

658 Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid
 659 Schwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In *Forty-
 660 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=WGXb7UdvTX>.

661 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
 662 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
 663 Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 664 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
 665 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
 666 Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and
 667 Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research,
 668 2024a. URL <https://arxiv.org/abs/2402.00159>.

669 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
 670 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
 671 Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 672 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
 673 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
 674 Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
 675 and Kyle Lo. Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining
 676 Research. *arXiv preprint*, 2024b. URL <https://arxiv.org/abs/2402.00159>.

677 Efstathios Stamatatos. Authorship attribution using text distortion. In *Proc. of the 15th Conf. of the
 678 European Chapter of the Association for Computational Linguistics*, volume 1, pp. 1138–1149,
 679 2017.

680 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 681 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

682 Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
 683 Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset
 684 for training large language models, 2024. URL <https://arxiv.org/abs/2411.12372>, 25.

685 Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
 686 Organize the web: Constructing domains enhances pre-training data curation, 2025. URL <https://arxiv.org/abs/2502.10341>.

687 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 688 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

689 Bowen Zhao, Zander Brumbaugh, Yizhong Wang, Hannaneh Hajishirzi, and Noah A. Smith. Set the
 690 clock: Temporal alignment of pretrained language models, 2024.

691 Xingyu Zhu, Abhishek Panigrahi, and Sanjeev Arora. On the power of context-enhanced learning in
 692 llms, 2025. URL <https://arxiv.org/abs/2503.01821>.

693

702 **A LLM USAGE STATEMENT**
703704 We used LLMs to polish writing as well as modifying plotting scripts. Furthermore, we utilized
705 LLMs for synthetic document generation in Section 4.4.
706707 **B MORE EXPERIMENTAL RESULTS**
708709 **B.1 PROMPT FOR DI-FINE GENERATION**
710

```

711 Based on the given sampled snippet from a document (it could be a
712 webpage, book, codebase, paper, or anything else), write two concise
713 keyphrases that together capture the documents domain:
714
715 TOPIC ($\leq 3 words) the main subject matter.
716
717 FORMAT ($\leq 3 words) the documents genre or source type.
718
719 Examples of valid outputs include:
720 quantum physics, research paper
721
722 healthy cooking, personal blog
723
724 video games, forum thread
725
726 *** Start of the snippet ***
727
728 \{snippet\}
729
730 *** End of the snippet ***
731
732 Now output only the two keyphrases in the exact form:
733
734 <TOPIC>, <FORMAT>

```

735 **B.2 ATTENTION PATTERN ON TOPIC AND FORMAT CLUSTERS**
736737 Additional experiments to Section 4.4. The attention pattern to meta tokens do not encode topic/format
738 information, as we do not observe more similar attention patterns within one cluster.
739740 Figure 10: Attention pattern to the five prepended meta tokens (last layer). The cluster is topic. Left:
741 average attention weights to each of the meta tokens; right: inter- and intra-category attention pattern
742 distance.
743744 **B.3 FURTHER EXPERIMENTS ON UNDERSTANDING DIFFERENT URL PARTS**
745746 We extend the analysis from Figure 5 to all heads by aggregating attention into five categories: URL
747 prefix, domain, suffix, boc, and eoc. We then normalize these values to obtain a probability distribution
748 and compute the entropy. Low entropy values indicate a concentrated distribution—approaching a
749

one-hot vector—which signals a significant attention sink on the URL prefix. These patterns are illustrated in Figure 13.

We also show the training loss curves for models prepending different portions of the URL in Figure 12. Notably, adding only the URL suffix yields a drop in training loss nearly as fast as when the full URL is prepended. We attribute this to a copying effect: the model can easily repeat tokens from the URL suffix, which often functions as a concise summary. However, relying solely on the suffix does not achieve the same strong downstream performance as using the full URL (as shown in Table 2), indicating that the domain and other upstream components of the URL provide additional useful signals.

B.4 NO ADDITIVE EFFECT FROM PREPENDING AND APPENDING

Given that multiple prepended metadata types offer no cumulative benefit, we tested a hybrid approach: prepending and appending two different and helpful metadata types. We experimented this by prepending URL and appending QS-coarse which both can outperform standard pretraining individually. However, as shown in Figure 14, pairing both of these methods fails to surpass the performance of using a prepended URL by itself.

Figure 13: Attention pattern per layer and per attention head.

Figure 14: There is no additive effect for URL prepending and QS-coarse appending.