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ABSTRACT

Incorporating metadata in Large Language Models (LLMs) pretraining has recently
emerged as a promising approach to accelerate training. However prior work
highlighted only one useful signal—URLs, leaving open the question of whether
other forms of metadata could yield greater benefits. In this study, we investigate
a wider range of metadata types and find other types of metadata, such as fine-
grained indicators of document quality that can also accelerate pretraining when
prepended. We identify a common feature among effective metadata: they encode
information at a finer granularity. We further introduce metadata appending as a
means of improving training efficiency, where predicting an appropriate metadata
as auxiliary task can help speed up pretraining. In addition, learnable meta-tokens
trained with masked loss can recover part of the speedup by inducing quality-aware
latent structure. Using probing, we analyze latent representations to understand
how metadata shapes learning. Together, these results yield practical guidelines
for integrating metadata to improve both the efficiency and effectiveness of LLM
pretraining.

1 INTRODUCTION

Large language models (LLMs) are typically pretrained on web-scale corpora sourced from Common
Crawl–style snapshots and related aggregates, then aggressively filtered and deduplicated to improve
quality and efficiency. Landmark datasets such as C4 (Raffel et al., 2020) and RefinedWeb (Penedo
et al., 2023) exemplify this trend: both begin from massive web crawls and rely on heuristic and
statistical filtering to remove boilerplate, low-quality, and near-duplicate content before tokenization;
more recent open corpora like Dolma (Soldaini et al., 2024a) extend this paradigm to trillions of
tokens spanning diverse sources. In parallel, a growing literature studies data filtering/selection, e.g.,
perplexity- or importance-based selection, to allocate pretraining compute toward the most useful
subsets, for which we refer the readers to a survey (Albalak et al., 2024). Together, these efforts frame
pretraining efficiency largely as a problem of “which web data to keep and how much of it to use.”

A complementary axis for improving pretraining efficiency is to enrich the input with document-level
metadata—information about a text’s source, domain, time, or other attributes—so the model can
condition its representation learning accordingly. Recent work formalizes this idea as “metadata
conditioning,” showing that prepending simple, readily available indicators (e.g., source URLs or
domain tags) during pretraining can accelerate learning and improve downstream controllability,
with a “cool-down” phase to remove the dependency at inference (MeCo, Gao et al. (2025)). This
direction builds on the broader intuition that structural signals beyond raw tokens (such as links,
domains, registers) can shape what is learned during pretraining.

However, the landscape of effective metadata types and positions remains underexplored. To date,
empirical evidence most consistently supports prepending the URL (or source identifier) before the
document as a practical and robust way to accelerate LLM pretraining; systematic comparisons further
report that other readily available metadata (e.g., coarse topics or quality indicators) have not yet
shown comparable acceleration under similar budgets and setups (Fan et al., 2025). Whether richer
metadata schemas (beyond URLs) or alternative integration strategies (e.g., suffixing, special-token
segment headers, side-channels) yield additional efficiency gains is still largely an open question.

Finally, despite encouraging empirical gains, we have limited mechanistic understanding of how
metadata shapes latent representations during pretraining—e.g., whether conditioning induces domain-
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specific subspaces, affects token- and document-level mutual information, or alters cross-domain
interference and transfer. Preliminary analyses from metadata-conditioning hint that such signals
can reorganize representation geometry and influence downstream behavior, but a principled account
connecting metadata types, injection positions, and emergent representation structure remains to be
developed.

We summarize our contributions as follows:

• We identify additional useful metadata signals in accelerating LLM pretraining when
prepended, beyond URL. We show that the fine-granularity of the metadata is the key
in bringing the acceleration effect (Section 4.1).

• We introduce and evaluate metadata appending as a method for accelerating pretraining,
and highlight metadata types that are particularly suitable as auxiliary signals in this setup
(Section 4.2).

• We show that learnable meta tokens can partially recover the speedup with metadata, where
attention patterns to these tokens encode quality-aware information. (Section 4.4).

• We conduct layer-wise probing of latent representations for topic, quality, and authorship,
providing mechanistic insight into how these factors are better encoded in the latent space.

2 RELATED WORK

Pretraining efficiency of LLMs. Pretraining efficiency is enhanced through three axes: 1) Acquisi-
tion of better pretraining data. RefinedWeb (Falcon) (Penedo et al., 2023) argues that carefully filtered
web-only data can outperform mixed curated corpora, while FineWeb (Penedo et al., 2024) scales this
idea to ~15T tokens with stronger decanting and deduplication at crawl-snapshot scale. Both report
improved downstream performance per token, i.e., better data efficiency. In parallel, Dolma (Soldaini
et al., 2024b) and RedPajama (Weber et al.) foreground transparent releases with quality signals,
dedup IDs, and fine-grained metadata to enable learned filtering and weighting strategies—aiming
to squeeze more performance out of each pretraining FLOP. 2) More efficient architectural design.
Sparse Mixture-of-Experts architectures (e.g., Switch Transformer, Fedus et al. (2022)) activate only
a small subset of parameters per token, yielding large effective capacity at near-constant compute
and demonstrating multi-× pre-training speedups at scale. Multi-Query Attention (MQA, Shazeer
(2019)) and Grouped-Query Attention (GQA, Ainslie et al. (2023)) share or group KV heads to
reduce KV cache and bandwidth costs; although often discussed for inference, these changes also
lower training-time memory traffic and can improve throughput for long contexts. 3) Additional
signals from metadata. Recently, Gao et al. (2025); Fan et al. (2025) have both demonstrated an
acceleration effect from URL prepending, saving up to 30-40% tokens in pretraining time. This
acceleration is considerable, even on top of data filtering. In this work, we aim to further advance this
axis.

Metadata in LLM pretraining. A growing body of work shows that exposing explicit meta-
data—e.g., URL/domain, document IDs, and timestamps—can improve efficiency, steerability, and
attribution. On the source/domain axis, CTRL conditions on control codes derived from data structure
(domain, dates, etc.) to steer generation (Keskar et al., 2019); similarly, Fan et al. (2025) find
that prepending topic and format tokens yield stronger controllability than raw URL domains. For
provenance and attribution, Source-Aware Training injects document IDs in a light post-pretraining
stage to enable intrinsic citation of pretraining sources (Khalifa et al., 2024). Along the temporal
dimension, Zhao et al. (2024) align pretrained LMs to a target year using timestamp metadata, and
Faro et al. (2025) pretrain experts on time-sliced corpora with routing by query time, boosting time
awareness while preserving downstream performance. Finally, a line of metadata-as-context work
shows theoretically and empirically that prepending metadata tokens (excluded from the loss) can
substantially accelerate pretraining (Allen-Zhu & Li, 2024; Gao et al., 2025; Zhu et al., 2025; Fan
et al., 2025). However, the benefits of metadata conditioning is not uniform: effectiveness depends on
prompt length and setting (Higuchi et al., 2025; Fan et al., 2025). We extend this line by examining
efficiency gains from metadata appending and by introducing learnable metatokens as a flexible
alternative to fixed metadata strings.
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Figure 1: Our tokenization. Each document begins with a default beginning-of-sequence (<s>) token.
For each sequence, metadata is wrapped between beginning-of-context (<boc>) and end-of-context
(<eoc>). Depending on the metadata position, the metadata is prepended (illustrated on the left) or
appended (illustrated on the right) to the document. If a long document split into multiple sequences,
metadata is attached to each one. A 10% dropout of metadata is always performed.

3 EXPERIMENTS

We follow the experimental setup of Fan et al. (2025), and extend their investigation to more metadata
types. The model is an adopted 1.5B Llama model with 16 layers in total. We use AdamW optimizer
with regularization strength 0.1 (Loshchilov & Hutter, 2019). For each batch, the model processes
2.06 million tokens, corresponding to a sequence length of 4,096 and a batch size of 504. We use
cosine scheduler with a maximum learning rate of 3e-4, and in the first 5% steps we perform the
learning rate warm-up. To train the models, we use the Megatron-LM framework (Narayanan et al.,
2021).

We use FineWeb-Edu (Lozhkov et al., 2024) for comparability with Fan et al. (2025). In the
metadata-prepending setup, we mask the metadata tokens from the loss both for reporting and during
backpropagation. In the metadata-appending setup, we mask the metadata only for loss reporting;
we retain its loss for backpropagation so the model learns to predict the metadata. The tokenization
approach for metadata prepending and appending is depicted in Figure 1.

Evaluation Benchmarks. As standard practice, we evaluate models on general knowledge un-
derstanding using LM-Eval-Harness developed by Gao et al. (2024). The benchmarks used are
Arc-Easy (Clark et al., 2018), Arc-Challenge (Clark et al., 2018), CommonSense QA (CSQA, Talmor
et al., 2018), MMLU (Hendrycks et al., 2020), PIQA (Bisk et al., 2020), Social IQA (SIQA, Sap et al.,
2019), HellaSwag (HS, Zellers et al., 2019), Lambada (LBD, Paperno et al., 2016) and Winogrande
(WG, Sakaguchi et al., 2021).

Metadata Types. We examine the following types of metadata. Building on Fan et al. (2025), we
extend the quality score and domain information to a finer level of granularity. In addition, for each
metadata type, we explore two positional variants: prepending and appending.

• Full URL (URL): Provided by the FineWeb-Edu dataset as url, from which the document
was crawled.

• Coarse-Grained Quality Score (QS-coarse): Provided by the FineWeb-Edu dataset as
int_score. These scores are generated by a linear regressor trained on 410,000 web
samples, each annotated by Llama-3-70B-Instruct on a scale from 0 (not educational) to 5
(highly educational), reflecting the sample’s educational value. The scores are then rounded
to the closest integers, and only scores greater than or equal to 3 are kept. There are 3
categories of coarse-grained quality levels.

• Fine-Grained Quality Score (QS-fine): Similar to QS-coarse, we take the raw score (provided
as score) from the regressor instead of the rounded one. The score is presented as
⌊score ∗ 10⌋. Thus, it is at least 10 times finer than QS-coarse.

• Coarse-Grained Domain Information (DI-coarse): Following Fan et al. (2025), we annotate
each document with WebOrganizer (Wettig et al., 2025), where topic and format domains
are returned by pretrained classifiers. There are 24 categories per taxonomy. In total, we
have 576 different Domain Information types.

• Fine-Grained Domain Information (DI-fine): Each document is labeled with topic and
format domains generated by Llama3.1-8B-Instruct model (Grattafiori et al., 2024). The

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

20B 40B 60B 80B 100B

0.42

0.44

0.46

0.48

Av
g 

Pe
rfo

rm
an

ce

Prepending

standard
URL
DI-coarse
QS-coarse

DI-fine
QS-fine
Meta Tokens

20B 40B 60B 80B 100B

0.42

0.44

0.46

0.48

Av
g 

Pe
rfo

rm
an

ce

Appending

standard
URL
DI-coarse

QS-coarse
DI-fine
QS-fine

Figure 2: Pretraining acceleration measured by downstream evaluation performances. DI stands for
domain information and QS stands for quality score.

generation prompt can be seen in Appendix B.1. The generation is open-ended, and there
are unlimited number of categories.

Probing Experiments. In addition to downstream evaluation benchmarks, we employ probing to
analyze the information encoded in layerwise representations. While benchmarks reflect the model’s
overall knowledge and reasoning ability, they provide limited insight into how metadata affects the
internal learning dynamics of different layers. Probing allows us to examine these differences more
directly and shed light on the representational role of metadata in accelerating pretraining.

Specifically, we train probing classifiers on the following tasks:

• Document quality prediction. We sample 15,000 documents from FineWeb-Edu, annotated
with QS-coarse and balanced across three quality levels (5,000 per score). Using a 90/10
train–test split, the objective is to predict the quality score from the document representation.

• Document topic prediction. We sample 20,000 documents from FineWeb-Edu, annotated
with DI-coarse topics and balanced across 20 categories (1,000 per topic). Using the same
90/10 train–test split, the goal is to predict the topic label from the document representation.

• Authorship prediction. We use the dataset from Stamatatos (2017), consisting of 2,157
Guardian articles written by 13 authors. We adopt a 70/30 train–test split. This task is
relatively straightforward: later layers achieve 100% test accuracy, while earlier layers still
retain some distinguishable signal.

For these tasks, we train layer-wise three-layer MLP classifiers using representations from each layer.
The probe takes the last hidden state of each document as input (truncated at the 100th token); for
shorter documents, the final token representation is used instead.

4 HOW CAN METADATA ENHANCE PRETRAINING?

In this long section, we present results from a thorough investigation of metadata types and positions.
Throughout, we explain some unique phenomena by probing through the latent representations.

4.1 PREPENDING: TRAINING SPEED-UP WITH FINE-GRAINED METADATA CONDITIONING

On top of the metadata types examined by Fan et al. (2025), we extend the investigation to two
other fine-grained metadata types. The left panel of Figure 2 shows how downstream performances
progress with prepending different metadata. The final average performance across downstream tasks
is reported in Table 1. Among the five context types tested, both URL and fine-grained quality scores
yield comparable acceleration, reaching the performance of a 100B-token baseline after only 60B
tokens. Fine-grained domain metadata also provides a boost, surpassing the 100B-token baseline
with 20B fewer tokens. It seems that quality score and domain information can be helpful, but fine
granularity is the key.

Observation 1. Only fine-grained metadata conditioning has a positive effect in speeding up
pretraining; conditioning on coarse-grained meta-information yields no noticeable change.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: 5shot evaluation results. When evaluating prepending models, we add the prefix
<boc><eoc> to each evaluation text. When evaluating appending models and the standard model,
we add no prefix texts.

Arc-C Arc-E CSQA MMLU PIQA SIQA HS LBD WG Avg
standard 33.9 68.6 45.1 31.8 71.7 41.5 41.9 30.6 54.9 46.7
<boc><eoc> 34.0 69.2 43.5 31.9 71.9 41.5 42.5 30.8 55.2 46.7

prepending
URL 34.8 71.7 46.9 32.5 72.3 41.5 42.5 32.4 55.7 47.7
QS (Coarse) 32.7 69.6 41.0 31.8 72.1 41.6 43.0 32.4 55.2 46.6
QS (Fine) 35.3 70.0 45.4 32.1 72.4 41.6 42.3 32.3 54.5 47.3
DI (Coarse) 34.0 69.8 42.6 32.1 71.9 40.3 42.0 31.8 55.5 46.7
DI (Fine) 34.7 70.5 46.0 32.6 72.8 40.8 42.1 32.1 54.5 47.3
Meta Tokens 35.1 69.8 45.0 32.1 72.1 40.1 42.0 32.1 55.3 47.1

appending
URL 34.3 70.1 44.6 32.0 72.0 40.7 41.9 31.2 54.9 46.8
QS (Coarse) 34.4 69.0 46.0 32.1 72.6 40.6 42.3 31.1 56.2 47.1
QS (Fine) 34.8 69.8 44.9 32.2 71.8 36.5 42.2 33.0 55.6 46.8
DI (Coarse) 33.8 68.7 44.6 31.7 71.9 40.5 41.9 32.3 54.9 46.7
DI (Fine) 34.7 71.3 45.3 32.1 71.2 41.6 42.3 34.4 53.2 47.3

No additive effect from metadata. We further examine whether the model benefits from prepend-
ing two types of helpful metadata. Specifically, we provide both the URL and the fine-grained quality
score as metadata and compare the results in Figure 3. The model shows faster learning during the
early stages of training, indicating that the combined metadata helps it acquire information more
quickly. However, as training progresses and more tokens are seen, this advantage diminishes, and
the final performance is comparable to that of a model trained without metadata. Notably, the model
does not appear to leverage either the URL or the fine-grained quality score consistently.
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Figure 3: Comparison of downstream performance when prepending URL or QS-Fine individually
versus in combination. Both metadata types are effective on their own, but combining them yields no
additive effect on metadata acceleration.

Fine-grained metadata prepending performs better than coarse-grained. In Figure 2 and
Table 1 we observe that the fine-grained metadata types lead to stronger model performance compared
to their coarse-grained counterparts. We hypothesize that the finer distinctions in metadata enhance
the model’s ability to capture and represent salient information in the data. We use the DI-coarse
topic probing introduced in Section 3 to investigate this hypothesis. As shown in Figure 4, both
fine-grained and coarse-grained metadata prepending improve over the standard model, and the
fine-grained variant shows a modest but consistent advantage, which is in line with our hypothesis.

Which parts of a URL matter for pretraining? Unlike the other metadata types, URLs con-
sist of different information. Taken https://en.wikipedia.org/wiki/Metadata as an
example, we categorize https:// as URL prefix, en.wikipedia.org as URL domain and
everything after URL domain as URL suffix. Each component encodes different information, for
example, URL domain usually corresponds to format and quality information, and URL suffix usually
corresponds to topic information.

To investigate which parts of the URL contribute to the success of URL prepending, we sample 100
documents from Fineweb-Edu conditioned on their URLs and analyze attention patterns across layers.
The absolute attention weights given to each part of the prepended components are plotted out in
Figure 5, where it is observed that a significant portion of attention is directed toward the URL prefix
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Figure 4: Probing results on document topic prediction for QS and DI models prepended with fine-
and coarse-grained metadata. Models trained with finer-grained metadata generally achieve better
performance.

— the part of the URL that carries no content information from the document. This observation
highlights a common attention behavior: the model often focuses on consistent initial tokens, which
can act as an “attention sink” without providing a meaningful signal for the task (Gu et al., 2025).
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Figure 5: Averaged attention weights across all
attention heads in different layers. A finer-grained
per-layer per-attention head attention pattern is pro-
vided in Figure 13.

Since the majority of attention is given to the
URL prefix part, does the attention pattern indi-
cate that prepending the URL prefix should re-
cover most of the URL-prepended performance?
It turns out not to be the case. We conducted
three ablation runs with different URL compo-
nents prepended, as shown in Table 2. Prepend-
ing URL prefix does not outperform standard
training. URL domain and suffix, even though
given little attention to, are vital for the improve-
ment in downstream tasks. Moreover, neither
of them can catch the performance of full URL
prepended run, suggesting that the domain and
suffix encode complementary information. We
offer more evidence and analysis in Appendix B.3.

Observation 2. URL-prepended model shows a pronounced attention sink on URL prefixes,
but these features do not improve performance. In contrast, the URL domain and suffix
provide complementary contributions.

Table 2: Downstream evaluation results for prepending various components of URL.

Arc-C Arc-E CSQA MMLU PIQA SIQA HS LBD WG Avg
URL 34.8 71.7 46.9 32.5 72.3 41.5 42.5 32.4 55.7 47.7
URL prefix 34.0 68.9 43.0 32.1 72.0 41.7 42.0 32.8 53.1 46.6
URL domain 35.3 69.3 46.4 32.3 72.9 39.9 42.3 32.1 54.2 47.2
URL suffix 34.1 68.1 44.7 31.9 72.1 41.0 42.4 32.0 55.8 46.9

4.2 APPENDING: PREDICTING AUXILIARY INFORMATION MAY HELP

Beyond prepending, metadata can also be inserted at various positions during training. Khalifa et al.
(2024) explored placing metadata at the beginning or end of a document, as well as repeating it
multiple times within the text, for the purpose of data attribution. A natural question for improving
pretraining performance is whether appending metadata could be beneficial.

Appending turns metadata prediction into an auxiliary task: after processing the entire sequence, the
LM is asked to predict information such as the sequence’s quality score or topic. This setup may
encourage the model to build an internal representation of the input that is sufficiently informative
to recover the metadata at the end, potentially incentivizing it to compress salient aspects of the
sequence into its hidden states. In this way, the auxiliary objective could serve as a form of soft
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regularization, nudging the model toward representations that are more aligned with higher-level
properties of the data rather than only surface-level statistics.

We report the downstream performance for the five metadata types in the right panel of Figure 2,
with the corresponding averages summarized in Table 1. Among these runs, appending fine-grained
domain information helps the most. Additionally, coarse-grained quality score and URL appending
also help improve downstream performance. In contrast, fine-grained quality score does not improve
over standard pretraining. The acceleration effect of helpful metadata is, on average, not as great as
prepending; however, we are still able to train on 20% fewer tokens to achieve the same performance
as standard pretraining.

Observation 3. Auxiliary tasks such as coarse-grained quality score and fine-grained domain
information prediction can accelerate training.

Fine-grained vs. coarse-grained quality score. It is noteworthy that appending coarse-grained
quality scores (single-digit integers in 3, 4, 5) leads to better downstream performance than appending
fine-grained quality scores (two-digit integers ranging from 25 to 50). In principle, a model trained
with fine-grained scores could simply learn to predict the first digit and thereby achieve performance
comparable to the coarse-grained case. However, it does not appear to do so. To verify this, we
evaluated the fine-grained model’s ability to predict the two-digit quality score by prompting it to
continue generation after <boc>, and found that its predictions were highly accurate. We hypothesize
that the model becomes overly focused on solving this auxiliary prediction task, which detracts from
its ability to develop other skills that would improve downstream performance.

To evaluate this hypothesis, we run the probing experiments described in Section 3. Results for
predicting document topic and quality appear in Figure 6. In the left panel where the task is unrelated
to the included metadata type (quality), the QS-coarse appended model outperforms the QS-fine
appended model, especially in the early layers. In contrast, in the right panel where the task is to
predict quality, the QS-fine model performs slightly better. This pattern suggests the QS-fine model
is over-specializing on the quality-prediction auxiliary task, with a corresponding trade-off in other
capabilities.
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Figure 6: Probing results for two models with quality scores of different granularity appended
on predicting document topic and quality. The QS-Fine model matches QS-coarse in predicting
document quality but performs worse on document topic prediction.

4.3 DOES ACCELERATION ALSO APPLY TO TRAINING LOSS?

How is the training acceleration reflected in the training curves? In the left panel of Figure 7, we
show the training perplexity curves for all runs that outperform the standard pretraining. Overall,
there appears to be no clear correlation between downstream performance and training loss. The only
notable exception is URL prepending, which leads to a visibly faster decrease in loss—consistent
with the findings of Fan et al. (2025).

On top of this, we plotted out the gradient norm change throughout the whole training. Compared to
the other runs that improve downstream performance, the standard pretraining run exhibits higher
loss spikes. This suggests that including metadata may help stabilize LLM pretraining.
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Figure 7: Training loss and gradient norm throughout the whole training.

4.4 CAN LMS LEARN TO ACQUIRE META INFORMATION?

It is unsurprising that LMs can leverage additional metadata to infer latent clusters. A natural question
is whether LMs can also infer such metadata on their own. To investigate this, we introduce five
new meta tokens, <s1> through <s5>. These tokens do not exist in the original vocabulary and
are prepended to each sequence with probability 0.9, enclosed by <boc> and <eoc>. As all the
prepending runs, we mask out the meta token loss for backpropagation.

With the five learnable meta tokens, we can observe an acceleration effect as well, as shown in the left
panel of Figure 2. What information do the meta tokens encode? As the five meta tokens are always
the same, we hypothesize that it is the attention to the five tokens that encodes useful information.
To study this, we gathered synthetic documents of three different quality levels, and plotted out the
average attention weights given to the five tokens for each quality level in Figure 10. Compared to the
other low- and medium-quality documents, high-quality documents attend significantly less to <s4>.

<s1> <s2> <s3> <s4> <s5>
Meta tokens

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

La
ye

r 1
6 

at
te

nt
io

n

Average attention to meta tokens
high
low
medium

hig
h low

med
ium

high

low

medium

0.03 0.07 0.08

0.07 0.05 0.07

0.08 0.07 0.02

Mean pairwise distances

0.03

0.04

0.05

0.06

0.07

0.08

Distance

Figure 8: Attention pattern to the five prepended meta tokens (last layer). Left: average attention
weights to each of the meta tokens; Right: inter- and intra-category attention pattern distance. Each
category is a quality level and the distance is calculated via euclidean distance of stacked attention
weights from the first 100 tokens of a document to meta tokens.
We further flatten the attention weights from the first 100 tokens of each document to meta tokens
and compute the average Euclidean distances both within and across quality clusters. The results
in Figure 10. show that inter-cluster distances are consistently larger than intra-cluster distances,
indicating that documents of different quality levels exhibit distinct attention patterns. In contrast,
similar experiments based on topic and format did not reveal such a clear separation in attention
patterns across clusters, see Appendix B.2.

Observation 4. LLMs can learn to encode quality-aware latent cluster information in
learnable tokens that do not inherently carry any semantic meaning.

4.5 LATENT REPRESENTATION SHAPING

To better understand the differences in learned latent representations, we probe over three
different tasks: writing style (approximated by authorship), document topic, and document

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

quality. We present the results from an intermediate layer, as intermediate layers strike
a balance between preserving signal and avoiding over-specialization (Skean et al., 2025).
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Figure 9: Probing accuracy across different model check-
points on three tasks. In each configuration, we conducted 3
seed runs, and the standard deviation is reflected in the red
bars.

Across all three tasks, the standard
pretrained model shows the lowest
probing accuracy, indicating a limited
latent understanding of these higher-
level concepts, as shown in Figure 9.

For authorship, models enhanced with
URL and DI-Fine metadata achieve
the highest performance, suggesting
that both types of metadata contribute
to capturing writing style. For quality,
the most effective metadata are URL
and QS-Fine, reinforcing the idea that
URL encodes information about docu-
ment quality. In the case of document
topics, the top-performing models are
QS-Fine prepend, URL-append, and
DI-Fine append, though no consistent
pattern emerges across these results.
We argue that the task is very chal-
lenging and the signal may be harder
to observe.

Observation 5. Including the URL as metadata (whether prepended or appended), enhances
the model’s latent grasp of writing style and overall document quality.

5 CONCLUSION

In this work, we show that LLM pretraining can be accelerated by conditioning on a wider range of
metadata, extending beyond the commonly used URL. Our experiments indicate that fine-grained
metadata—such as fine-grained quality scores and domain information—consistently yields stronger
improvements than coarse-grained alternatives when prepended. Moreover, appending metadata as
auxiliary prediction tasks can accelerate training as well. We witness the biggest acceleration when
fine-grained domain information is appended.

Overall, our findings highlight metadata as a versatile and underexplored lever for improving the effi-
ciency and quality of LLM pretraining. An open question remains whether metadata can also enhance
post-training. While we made initial attempts to explore how metadata shapes representations and
gained some mechanistic insights into what aspects are improved, we still lack a clear understanding
of why metadata is effective. We hope this work motivates the community to investigate these
directions further.
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A LLM USAGE STATEMENT

We used LLMs to polish writing as well as modifying plotting scripts. Furthermore, we utilized
LLMs for synthetic document generation in Section 4.4.

B MORE EXPERIMENTAL RESULTS

B.1 PROMPT FOR DI-FINE GENERATION

Based on the given sampled snippet from a document (it could be a
webpage, book, codebase, paper, or anything else), write two concise
keyphrases that together capture the documents domain:

TOPIC ($\leq$3 words) the main subject matter.

FORMAT ($\leq$3 words) the documents genre or source type.

Examples of valid outputs include:
quantum physics, research paper

healthy cooking, personal blog

video games, forum thread

*** Start of the snippet ***

\{snippet\}

*** End of the snippet ***

Now output only the two keyphrases in the exact form:

<TOPIC>, <FORMAT>

B.2 ATTENTION PATTERN ON TOPIC AND FORMAT CLUSTERS

Additional experiments to Section 4.4. The attention pattern to meta tokens do not encode topic/format
information, as we do not observe more similar attention patterns within one cluster.
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Figure 10: Attention pattern to the five prepended meta tokens (last layer). The cluster is topic. Left:
average attention weights to each of the meta tokens; right: inter- and intra-category attention pattern
distance.

B.3 FURTHER EXPERIMENTS ON UNDERSTANDING DIFFERENT URL PARTS

We extend the analysis from Figure 5 to all heads by aggregating attention into five categories: URL
prefix, domain, suffix, boc, and eoc. We then normalize these values to obtain a probability distribution
and compute the entropy. Low entropy values indicate a concentrated distribution—approaching a
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Figure 11: Attention pattern to the five prepended meta tokens (last layer). The cluster is format.
Left: average attention weights to each of the meta tokens; right: inter- and intra-category attention
pattern distance.
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Figure 12: Training loss curves across different models with URL parts pre-conditioning.

one-hot vector—which signals a significant attention sink on the URL prefix. These patterns are
illustrated in Figure 13.

We also show the training loss curves for models prepending different portions of the URL in
Figure 12. Notably, adding only the URL suffix yields a drop in training loss nearly as fast as when
the full URL is prepended. We attribute this to a copying effect: the model can easily repeat tokens
from the URL suffix, which often functions as a concise summary. However, relying solely on the
suffix does not achieve the same strong downstream performance as using the full URL (as shown in
Table 2), indicating that the domain and other upstream components of the URL provide additional
useful signals.

B.4 NO ADDITIVE EFFECT FROM PREPENDING AND APPENDING

Given that multiple prepended metadata types offer no cumulative benefit, we tested a hybrid
approach: prepending and appending two different and helpful metadata types. We experimented
this by prepending URL and appending QS-coarse which both can outperform standard pretraining
individually. However, as shown in Figure 14, pairing both of these methods fails to surpass the
performance of using a prepended URL by itself.
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Figure 13: Attention pattern per layer and per attention head.
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Figure 14: There is no additive effect for URL prepending and QS-coarse appending.
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