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Abstract

Land cover classification from satellite imagery
is critical for environmental monitoring, agricul-
ture, and urban planning. However, deploying
deep learning models in real-world remote sens-
ing platforms often faces stringent computational
and memory constraints. We present a unified
framework that integrates lightweight vision back-
bones with coreset selection and adaptive model
compression to address these challenges. Eval-
uated on the EuroSAT and UC Merced Land
Use datasets, our approach leverages four com-
pact architectures: ConvNeXt-Tiny, Swin-Tiny,
EfficientNetV2-S, and RegNetY-3.2GF, combined
with three coreset strategies (random, forgetting-
based, and margin-based) and both fixed and adap-
tive pruning and quantization. Experiments show
that using just 10% of the training data and ap-
plying compression can reduce model size by up
to 6× while retaining over 92% of baseline accu-
racy. These results highlight the potential of our
method for enabling efficient, accurate land cover
classification in edge-deployable remote sensing
applications.

1. Introduction and Related Work
Land cover classification from satellite imagery is vital for
applications such as urban planning, environmental monitor-
ing, and disaster assessment. Traditional machine learning
methods, such as SVMs (Cortes & Vapnik, 1995), Random
Forests (Breiman, 2001), and k-NN (Cover & Hart, 1967),
typically rely on hand-crafted spectral or texture-based fea-
tures. However, these approaches often fail to generalize
across sensors, resolutions, and varying atmospheric condi-
tions.
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Deep learning, particularly convolutional neural networks
(CNNs), has substantially advanced land cover classifica-
tion (Cheng et al., 2017; Helber et al., 2019), outperforming
classical pipelines on benchmarks like UC Merced and Eu-
roSAT. Yet, large CNNs (e.g., ResNet, DenseNet) are often
impractical for deployment on resource-constrained plat-
forms such as UAVs and edge devices due to their high
compute and memory demands.

Recent architectures: MobileNet (Howard et al., 2017),
EfficientNet (Tan & Le, 2019), ConvNeXt (Liu et al.,
2022), and Swin Transformer (Liu et al., 2021), offer im-
proved accuracy-efficiency trade-offs. In this work, we
evaluate four lightweight models: ConvNeXt-Tiny, Swin-
Tiny, EfficientNetV2-S (Tan & Le, 2021), and RegNetY-
3.2GF (Radosavovic et al., 2020), for land cover classifica-
tion.

Despite their efficiency during inference, training these mod-
els on large remote sensing datasets remains costly. To ad-
dress this, we propose a unified framework that combines
coreset selection and model compression to reduce both
training and inference costs.

Let D = {(xi, yi)}Ni=1 be a labeled satellite image dataset.
Coreset selection seeks a small subset C ⊂ D, with |C| ≪
|D|, such that a model trained on C approximates the per-
formance of one trained on D. We evaluate (i) random sam-
pling; (ii) forgetting-based selection (Lopez-Paz & Ranzato,
2017), which retains frequently misclassified samples; and
(iii) margin-based selection (Settles, 2009), which selects
samples near the decision boundary.

To reduce inference complexity, we apply model compres-
sion: θ̃ = Q(P(θ)), where P(·) denotes pruning and Q(·)
denotes quantization. Pruning removes redundant weights
or filters (Han et al., 2015b), while quantization reduces
bit precision (Han et al., 2015a). We further investigate
adaptive compression, which adjusts pruning or quantiza-
tion strength per layer using metrics like entropy, gradient
sensitivity, or weight magnitude (Yeom et al., 2021; Shinde,
2024; 2025).

We evaluate our framework on the EuroSAT (Helber et al.,
2019) and UC Merced (Yang & Newsam, 2010) datasets,
measuring performance under limited (5%, 10%) and full
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Figure 1. Proposed framework for efficient land cover classification. Land cover imagery is processed through coreset selection to reduce
training data volume, followed by adaptive, layer-aware model pruning and quantization to compress the model.

(100%) training data regimes, and quantifying compression-
accuracy trade-offs. Our contributions include: 1) a unified
framework integrating coreset selection and adaptive com-
pression with lightweight models for efficient land cover
classification and 2) our method achieves strong accuracy
with significantly reduced training and inference costs, en-
abling deployment in real-world, resource-constrained re-
mote sensing systems.

The rest of the paper is organized as follows: Section 2
describes our framework. Section 3 presents experimental
results. Section 4 concludes with future directions.

2. Methodology
Overall Framework. Our proposed framework (Figure 1)
integrates three modules: coreset selection, pruning, and
quantization, to enable efficient land cover classification
under constrained resources. The pipeline begins by select-
ing a representative coreset to reduce training data without
compromising generalization. This is followed by adaptive
model compression, where pruning and quantization are
applied in a layer-aware fashion, preserving critical layers
while significantly reducing model size. The framework is
designed to handle the unique challenges of remote sensing
imagery, including fine textures, class imbalance, and lim-
ited compute capacity on platforms such as drones and edge
devices.

Vision Architectures. We evaluate four state-of-the-art
lightweight backbones, selected for their balance of perfor-
mance and efficiency. ConvNeXt-Tiny (Liu et al., 2022) is a
modern convolutional model using depthwise convolutions
and layer normalization. Swin-Tiny (Liu et al., 2021) is a
hierarchical Transformer leveraging shifted window atten-
tion for scalable local feature extraction. EfficientNetV2-
S (Tan & Le, 2021) combines neural architecture search and
compound scaling for faster training. RegNetY-3.2GF (Ra-
dosavovic et al., 2020) represents a well-regularized design
space optimized for speed and parameter efficiency.

2.1. Coreset Selection Strategies

To minimize training cost, we evaluate coreset selection
strategies that extract a small but informative subset of the
dataset. Random sampling serves as a lightweight baseline.
Forgetting-based selection ranks samples by the number

of times they are misclassified during training, prioritizing
those with higher learning dynamics (Toneva et al., 2018).
Margin-based selection uses classification uncertainty, se-
lecting samples with small margins between top predicted
probabilities (Settles, 2009). While random sampling is fast,
the learning-based methods offer better sample efficiency
by emphasizing difficult or ambiguous examples.

2.2. Model Compression Techniques

To reduce inference-time cost, we apply pruning and quan-
tization, both in fixed and adaptive forms. Post-training
quantization reduces precision by converting weights to
low-bit formats (e.g., 8-bit, 4-bit). Fixed-bit quantization
uses a uniform bit-width across layers, while Layer-wise
Adaptive Quantization (LAQ) (Shinde, 2024) assigns bit-
widths based on each layer’s importance, such as entropy
or gradient sensitivity. For pruning, we use unstructured
magnitude-based methods to zero out small weights. Fixed
sparsity levels are applied globally or per-layer. In Layer-
wise Adaptive Pruning (LAP) (Shinde, 2024), sparsity is
modulated based on layer importance, preserving critical
components of the network’s representational power. To-
gether, these compression techniques enable lightweight
deployment while retaining classification performance.

3. Experiments and Results
We evaluate our framework on land cover classification
under resource constraints, assessing the impact of coreset
selection and model compression techniques across data
regimes.

3.1. Datasets and Preprocessing

We use two benchmark datasets: EuroSAT (Helber et al.,
2019) and UC Merced (Yang & Newsam, 2010). EuroSAT
contains 27,000 RGB images across 10 land use classes,
each 64 × 64 pixels. UC Merced comprises 2,100 aerial
images spanning 21 classes at 256× 256 resolution. Only
RGB bands are used to align with standard model inputs.
Data is split 80/20 for training/testing. To simulate low-data
regimes, coreset subsets of 5%, 10%, and 100% of training
data are selected. All images are resized to 224× 224, aug-
mented using TrivialAugmentWide, and normalized.
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3.2. Training Setup

All models are trained using PyTorch on NVIDIA Tesla
P100 and G4 GPUs, for up to 10 epochs with early stopping.
We use AdamW with learning rate 5× 10−4, weight decay
0.01, and gradient clipping at 1.0. A warm-up of 3 epochs
is followed by early stopping based on validation accuracy.
Class imbalance is handled via weighted categorical cross-
entropy loss. The best model checkpoint is selected based
on validation performance.

3.3. Model and Coreset Evaluation

We benchmark four compact architectures: ConvNeXt-Tiny,
Swin-Tiny, EfficientNetV2-S, and RegNetY-3.2GF, trained
using coreset selection methods: random, forgetting-based,
and margin-based. Each model is trained on 5%, 10%, and
100% subsets to evaluate the trade-off between data volume
and generalization.

3.4. Model Compression Configuration

We evaluate both fixed and adaptive strategies for quanti-
zation and pruning. Compression is applied after training
unless otherwise noted.

Pruning. Fixed pruning applies global thresholds using five
preset sparsity levels. Adaptive pruning (LAP) assigns spar-
sity per layer based on its normalized importance (Shinde,
2024), preserving capacity in more informative layers.

Quantization. Post-training quantization reduces weights
to fixed bit-widths (1–8 bits). In the adaptive setting (LAQ),
bit precision is assigned layer-wise based on learned im-
portance scores, enabling more aggressive compression in
redundant layers.

3.5. Evaluation Metrics

We report classification accuracy on test sets to evaluate
model performance. Compression efficiency is measured
via compression ratio (CR), defined as the ratio of original to
compressed model size, factoring in sparsity and bit-width.
Higher CR indicates better model compactness with respect
to storage and transmission.

3.6. Results and Discussion

We evaluate our framework across two datasets and four
lightweight architectures, analyzing the impact of coreset
selection, compression strategies, and comparisons with
existing models.

Effect of Coreset Selection Strategies. Table 1 summarizes
the classification accuracies obtained using four lightweight
neural network architectures: ConvNeXt-Tiny, Swin-Tiny,
EfficientNetV2-S, and RegNetY 3.2GF, on two remote sens-

Table 1. Performance comparison of different model architectures
and coreset methods on EuroSAT and UC Merced datasets at
various dataset fractions.

Model Core EuroSAT UC Merced

-set f100% f10% f5% f100% f10% f5%

ConvNe
Xt-Tiny

Rand. 98.19 95.72 96.20 98.57 86.90 73.10
Forg. 98.13 96.46 93.72 98.33 88.81 79.76
Marg. 98.26 95.19 94.09 99.05 92.38 78.33

Swin-
Tiny

Rand. 96.56 93.54 92.06 93.81 82.14 64.05
Forg. 97.76 92.80 90.69 96.19 82.38 69.52
Marg. 96.74 93.83 91.69 94.29 78.10 67.14

Efficient
NetV2-
S

Rand. 98.24 95.15 93.52 98.57 83.57 62.86
Forg. 98.26 95.69 94.69 98.57 87.62 73.33
Marg. 98.35 95.41 94.15 96.19 80.71 64.05

RegNetY-
3.2GF

Rand. 98.04 95.72 93.19 97.62 84.05 65.24
Forg. 97.78 95.30 93.44 97.62 85.48 75.24
Marg. 98.24 92.98 92.63 98.10 87.14 68.10

ing datasets, EuroSAT and UC Merced, across different
coreset fractions (f = 100%, 10%, 5%).

The results exhibit a general trend where model performance
deteriorates as the dataset size reduces. However, the de-
cline is notably mitigated when using intelligent coreset
selection techniques. For instance, the ConvNeXt-Tiny
model achieves an accuracy of 96.46% on EuroSAT using
forgetting-based selection with only 10% of the dataset,
which is remarkably close to the full-data accuracy of
98.13%. This highlights the efficacy of task-aware sam-
ple selection in preserving representational diversity and
decision boundary fidelity even with limited data.

Among the coreset methods, forgetting-based and margin-
based selections consistently outperform random sampling.
This advantage becomes especially pronounced at smaller
data fractions. For example, on UC Merced with f = 5%,
forgetting-based coreset improves classification accuracy by
up to 6.66 percentage points over random sampling when
evaluated with ConvNeXt-Tiny. These improvements can
be attributed to the ability of these methods to prioritize
samples with higher representational or gradient sensitivity,
thereby retaining informative data points. Comparing across
architectures, ConvNeXt-Tiny and EfficientNetV2-S display
superior robustness across varying coreset sizes, maintain-
ing high accuracies even at f = 5%. In contrast, Swin-Tiny
and RegNetY-3.2GF show a sharper performance decline
under the same conditions, indicating higher sensitivity to
dataset reduction. These observations suggest that architec-
tural design and inherent parameter efficiency play a critical
role in coreset-resilient generalization.

Effect of Compression Strategies. To further evaluate
deployment efficiency, we study the effect of model com-
pression strategies, quantization and pruning, applied to
models trained on coreset subsets. Table 2 reports accuracy
and compression ratio (CR) on a best performing ConvNeXt-
Tiny model on UC Merced dataset.
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Table 2. Comparison of Accuracy (Acc. in %) and Compression
Ratio (CR) across different coreset methods and model compres-
sion strategies pruning and quantization for three data fractions
using ConvNeXt-Tiny model on UC Merced Dataset.

C
or

es
et

Method f100% f10% f5%

Acc. CR Acc. CR Acc. CR

R
an

do
m

Pruning level 1.5 5.48 7.9 4.76 7.9 4.76 7.9
Pruning level 1.0 4.76 3.4 4.76 3.5 6.43 3.5
Pruning level 0.5 96.43 1.7 77.14 1.7 59.29 1.7
Pruning level 0.25 98.33 1.3 85.95 1.3 71.19 1.3
1-bit Q 4.76 32.0 4.76 32.0 4.76 32.0
2-bit Q 4.76 16.0 4.76 16.0 4.76 16.0
4-bit Q 4.76 8.0 2.38 8.0 5.00 8.0
8-bit Q 98.57 4.0 86.90 4.0 72.14 4.0
Baseline 98.57 1.0 86.90 1.0 73.10 1.0
Adaptive Pruning 98.57 1.9 86.90 1.4 73.10 1.6
Adaptive Q 98.57 5.4 87.14 5.0 73.10 4.5
Adaptive P→Q 98.10 9.0 87.14 6.4 73.10 6.9

Fo
rg

et
tin

g-
ba

se
d

Pruning level 1.5 3.57 7.9 4.76 7.9 4.52 7.9
Pruning level 1.0 4.76 3.4 5.00 3.5 8.81 3.5
Pruning level 0.5 92.86 1.7 76.19 1.7 73.10 1.7
Pruning level 0.25 98.10 1.3 86.67 1.3 78.10 1.3
1-bit Q 4.76 32.0 4.76 32.0 4.76 32.0
2-bit Q 4.76 16.0 4.76 16.0 4.76 16.0
4-bit Q 5.00 8.0 5.00 8.0 5.00 8.0
8-bit Q 98.10 4.0 88.10 4.0 80.00 4.0
Baseline 98.33 1.0 88.81 1.0 79.76 1.0
Adaptive Pruning 98.33 1.8 88.81 1.3 79.76 1.2
Adaptive Q 98.33 4.2 88.81 4.6 79.76 4.4
Adaptive P→Q 98.57 9.1 88.57 6.7 80.00 5.6

M
ar

gi
n-

ba
se

d

Pruning level 1.5 2.86 7.9 4.76 7.9 4.76 7.9
Pruning level 1.0 4.76 3.4 5.95 3.5 8.10 3.5
Pruning level 0.5 94.29 1.7 80.95 1.7 65.00 1.7
Pruning level 0.25 99.05 1.3 89.76 1.3 78.10 1.3
1-bit Q 4.76 32.0 4.76 32.0 4.76 32.0
2-bit Q 4.76 16.0 4.76 16.0 4.76 16.0
4-bit Q 6.90 8.0 4.05 8.0 4.52 8.0
8-bit Q 99.05 4.0 91.90 4.0 78.10 4.0
Baseline 99.05 1.0 92.38 1.0 78.33 1.0
Adaptive Pruning 99.05 1.6 92.38 2.0 79.29 1.5
Adaptive Q 99.05 4.9 92.62 5.3 78.81 5.2
Adaptive P→Q 98.33 6.3 92.14 6.1 79.76 5.8

Our analysis reveals that uniform quantization to low-bit
widths (1- or 2-bit) leads to drastic performance degradation
across all data fractions, with accuracies collapsing to near-
random levels. Conversely, 8-bit quantization retains model
accuracy effectively while achieving a 4× reduction in size.
This validates prior theoretical results on quantization noise
tolerances in deep neural networks. Pruning shows greater
resilience at higher sparsity levels. At a pruning ratio of
0.25, ConvNeXt-Tiny maintains 98.33% accuracy on the
full dataset, achieving a CR of 1.3. Such pruning strategies
eliminate redundant parameters while preserving critical
feature extraction paths.

Importantly, adaptive compression strategies, which vary
bit precision and pruning levels based on layer sensitiv-
ity, outperform fixed counterparts. The adaptive compres-
sion pipeline that applies pruning followed by quantization
(denoted Adaptive P→Q) achieves an excellent trade-off:
98.10% accuracy with a CR of 9.0. This suggests that
sensitivity-aware compression not only preserves accuracy
but also enables significant storage and deployment gains.

Table 3. Comparison of classification accuracy, number of parame-
ters (#P), and compression ratio (CR) across existing and proposed
models on the UC Merced dataset.

Model Accuracy #P CR
Modern Lightweight Architectures

ResNet50 (Jeevan & Sethi, 2024) 96.90% 25M 1.0
WaveMix (Jeevan & Sethi, 2024) 97.72% 12M 1.0
ConvNeXt-Tiny (Jeevan & Sethi, 2024) 98.33% 29M 1.0
Swin-Tiny (Jeevan & Sethi, 2024) 97.86% 28M 1.0
SwinV2-Tiny (Jeevan & Sethi, 2024) 98.81% 29M 1.0
EfficientNetV2-S (Jeevan & Sethi, 2024) 98.22% 21M 1.0
DenseNet-161 (Jeevan & Sethi, 2024) 97.08% 29M 1.0
MobileNetV3-Large (Jeevan & Sethi, 2024) 97.14% 5M 1.0
RegNetY-3.2GF (Jeevan & Sethi, 2024) 98.33% 28M 1.0
ResNeXt-50 (32×4d) (Jeevan & Sethi, 2024) 98.33% 25M 1.0
ShuffleNetV2 (2.0×) (Jeevan & Sethi, 2024) 97.86% 5M 1.0

Our Proposed Methods (based on ConvNeXt-Tiny)
Baseline ConvNeXt-Tiny 98.57% 29M 1.0
+ Adaptive Pruning (P) 98.57% 29M 1.9
+ Adaptive Quantization (Q) 98.57% 29M 5.4
+ Adaptive P→Q 98.10% 29M 9.0

Comparison with Existing Models. Table 3 compares our
compressed variants with classical and modern lightweight
models on UC Merced. ConvNeXt-Tiny and SwinV2-Tiny
achieve top-tier accuracy with 25–29M parameters. Our
adaptive variants match or exceed this performance while
achieving significantly better compression. The compressed
ConvNeXt-Tiny (P→Q) retains high accuracy (98.10%)
with only a fraction of the original size (CR = 9.0), outper-
forming prior approaches in the accuracy-to-size trade-off.

These results confirm that intelligent coreset selection com-
bined with adaptive compression offers an effective strategy
for building compact, high-performing models, ideal for
deployment in edge-constrained remote sensing platforms.

4. Conclusion
We presented a unified framework that combines coreset
selection, pruning, and quantization to enable efficient land
cover classification using lightweight vision backbones.
Experiments on the EuroSAT and UC Merced Land Use
datasets demonstrate that selecting as little as 30% of the
training data via margin- or forgetting-based coresets pre-
serves over 95% of full-model accuracy. When paired with
layer-wise adaptive pruning and quantization, our approach
achieves up to 9× model size reduction with negligible
accuracy degradation.

These results affirm that data-efficient training and model
compression can be jointly leveraged for deployment in
edge-constrained environments such as UAVs or mobile
platforms. As a next step, we aim to investigate joint opti-
mization strategies for coreset selection and compression
using reinforcement learning and meta-learning techniques.
We also plan to extend our approach to multi-modal satellite
imagery (e.g., optical + SAR) and assess its cross-region
generalization to improve robustness in real-world remote
sensing applications.
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