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Abstract

The standard architecture for continual learning is
a multi-headed neural network, which has shared
body parameters and task-specific heads. Features
for each task are generated in the same way. This
could be too restrictive, particularly when tasks
are very distinct. We propose combining FiLM
layers, a flexible way to enable task-specific fea-
ture modulation in CNNs, with an existing algo-
rithm, Variational Continual Learning (VCL). We
show that this addition consistently improves per-
formance, particularly when tasks are more varied.
Furthermore, we demonstrate how FiLM Layers
can mitigate VCL’s tendency to over-prune and
help it use more model capacity. Finally, we find
that FiLM Layers perform feature modulation as
opposed to gating, making them more flexible
than binary mask based approaches.

1. Introduction

In continual learning, unlike most machine learning re-
search, datasets are not static, but rather can change in size,
statistics, or number of tasks over time. This is highly ap-
plicable to real-world settings, where models are constantly
re-tuned in accordance to changing demands. Standard
machine learning models and training procedures fail in
these settings, resulting in “catastrophic forgetting” (French,
1999), so special fitting algorithms and architectures need
to be applied.

One approach to continual learning is to modify the architec-
ture of neural networks. While it is typical for each task to
have its own specific “head-network,” more complex archi-
tectures add intermediate or parallel components for each
task, such as in Serra et al. (2018) or Rusu et al. (2016).
These architectural approaches are motivated by the idea
that model capacity should scale as tasks are added, or alter-
natively by the need for more task-specific differentiation
beyond that provided by the “head-network.”
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In this paper, motivated by the inflexibility of having fully
shared features and the tendency of Variational Continual
Learning (VCL) to aggressively prune out hidden units,
we propose combining VCL with FiLM Layers, which are
flexible per-task feature modulation layers. Our method
can be seen as an architecture-based approach to continual
learning. In the next section, we provide background to VCL
and FiLM layers. In section 3 we describe our method. We
then show that it consistently improves VCL’s performance
in section 4. In sections 5 and 6 we demonstrate how FiLM
layers mitigate overpruning and perform feature modulation
rather than gating, achieving our initial motivating goals.

2. Background

Here, we detail relevant background on VCL, FiLM Layers
and related continual learning approaches.

2.1. Variational Continual Learning

Variational Continual Learning (VCL) is a widely-used
regularization-based approach to continual learning which
works by iteratively applying Bayes’ rule to form a run-
ning posterior of the model parameters given the previous
datasets (Nguyen et al., 2017). At each stage, variational
inference is applied to form an approximate posterior, which
is then used as the prior when training the next task. When
training a task, the Bayes’ by Backprop algorithm (Blun-
dell et al., 2015) is applied, optimizing the Evidence Lower
Bound (ELBO) using gradient descent:

ELBO = Eg.q) log p(Dr|0) — Drr.(q(0)|lgr—1(0)),

where gr_1 () is the previous task’s approximate posterior,
Dr is the task T dataset, D, is the KL-divergence, and
q(8) is the approximate posterior. VCL is model-agnostic,
however the discriminative architecture used in Nguyen
et al. (2017) consists of a shared set of “body” parame-
ters, representing all the layers before the final layer, and
a “head-network,” with parameters specific to each task.
This architecture is widely used in continual learning and
multi-task learning (Kirkpatrick et al., 2016; Zenke et al.,
2017; Rusu et al., 2016). The same set of features are used
for each task, regardless of how similar or distinct tasks are.
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2.2. FiLM Layers

While many continual learning algorithms continue to use
shared features between tasks, the use of task-specific
feature-wise adaptation has widely been explored in the
domains of few-shot and multi-task learning (Rebuffi et al.,
2017; 2018; Requeima et al., 2019). Perez et al. (2017)
describes FiLM layers, which perform feature-wise mod-
ulation by applying a scale and shift to the output of con-
volutional layers. A FiLM layer has parameters y and (3,
which respectively control the scale and shift of the trans-
formation. In fully-connected layers, the transformation is
applied element-wise: for a hidden layer with width W and
activation values h;, 1 < ¢ < W, FiLM layers perform
the transformation h} = ~;h; + 3;, before this is passed on
to the remainder of the network. For convolutional layers,
transformations are done feature-wise. Consider a layer
with N filters of size K x K, resulting in activations h; j x,
1<i<N,1<;3<W,1<k<H,where W and H are
the dimensions of the resulting feature map. The transfor-
mation has the form h; ; , = 7; * h; j ;. + (;. The number
of required parameters scales with the number of filters,
as opposed to the full activation dimension, making them
computationally cheap and parameter efficient.

2.3. Related Work

There has been past work investigating per-task gating mech-
anisms in continual learning. Masse et al. (2018) apply a
random binary mask to the nodes of a network for each
task. Serra et al. (2018) apply a similar mechanism to FiLM
layers, but only apply a scale parameter, and restrict this pa-
rameter to be 0 to 1. Furthermore, a more complex training
procedure involving gradient modification and parameter
annealing is required. Adel et al. (2020), like us, approach
per-task adaptation through variational inference, but have
many parameters and is therefore relatively complex, requir-
ing multiple subdivisions of the dataset and additional steps
outside of gradient descent.

3. Variational Continual Learning with FiLM
Layers

We propose combining FiLM Layers with the Variational
Continual Learning algorithm. Specifically, in addition to
the standard set of shared parameters § which are fit using
the VCL algorithm, we introduce a set of task-specific pa-
rameters ¥ in the form of FiLM Layers. Unlike the body
parameters, FILM parameters are not shared between tasks
so we do not need to model their uncertainties to prevent
“important” parameters from changing. Therefore, we fit
these FILM layer parameters using maximum likelihood
estimation, i.e. we apply no penalty to the shifts or scales.

This results in the following loss function for task 7
Lt = —Egqeo) log p(Dr|0, 1) + Drcr.(q(0)|lgr—1(8))

We chose VCL as opposed to other algorithms for fitting the
shared body parameters because when optimizing, to mini-
mize the KL-divergence term, there exists a non-degenerate
optimal weight and scale setting. In contrast, MAP estima-
tion leads to degeneracy in training, as the optimal solution
sets the shared weights to 0, and increases the FiLM scales
infinitely. A full explanation of this phenomenon is given in
supplementary material section 1. As evident by the com-
plex training procedure used in Serra et al. (2018), encourag-
ing effective use of scale parameters with point-estimation
is difficult and requires many arbitrary rules. Furthermore,
we also believe that adding a feature-wise scale invariance
to tasks is a useful inductive bias, and could aid in forwards
or backwards transfer.

4. Experimental Results

We applied our proposed algorithm to three sets of bench-
mark tasks. We test on both difficulties of the CHASY
benchmark: Easy-CHASY and Hard-CHASY. We then also
test on Split MNIST. The CHASY benchmark comprises of
a set of tasks specifically designed for multi-task and contin-
ual learning. It is derived from the HASYv2 dataset (Thoma,
2017), which consists of 32x32 handwritten latex characters.
Easy-CHASY was designed to maximize transfer between
tasks and consists of tasks with 20 classes for the first task,
to 11 classes for the last. Hard-CHASY represents scenar-
ios where tasks are very distinct, where tasks range from
18 to 10 classes. Details of this benchmark are supplied
in the supplementary material section 4. Hard-CHASY is
is a particularly useful test for FiLM layers, as we believe
that FiILM layers would allow for more flexible task-specific
features, which are more useful where features differ sig-
nificantly between tasks. For the two CHASY benchmarks
we used a convolutional network. For our Splir--MNIST ex-
periment, we used a fully-connected network, which is the
standard architecture used in the continual learning litera-
ture. In addition to the standard 5 binary classification tasks
for Split-MNIST, we add 5 more binary classification tasks
by taking characters from the KMNIST dataset (Clanuwat
et al., 2018). Architecture and experiment details are given
in the supplementary material section 2.

Figure 1 shows that there is a consistent performance gain in
all three benchmark scenarios over vanilla VCL. The gain is
most significant on Hard-CHASY and the Split MNIST set
of tasks. This is consistent with the hypothesis that FiLM
layers are more useful when used on sets of distinct tasks,
as sets of similar tasks require very similar features and
therefore show little benefit from per-task modulation.
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Figure 1. Performance of variational continual learning with FILM Layers with either their biases or scales removed in comparison to
standard FiLM layers and no FiLM layers, corresponding to vanilla VCL. FiLM layers consistently outperform no FiLM layers, particular
when tasks are more distinct (Hard-CHASY and Split-MNIST tasks). The bias-only version performs similar to or worse than having no
FiLM layers, while the scale-only variant performs slightly worse than standard FiLM layers. The mean over 5 runs is reported. Standard

deviations are shown in figure 1 in the supplementary material.

5. FiLM Layers Mitigate Overpruning

A known issue with Bayesian Neural Networks trained with
variational inference is overpruning (Trippe & Turner, 2018;
Turner et al., 2011), which is when a model unfits the dataset
and very few nodes of the network are actually used. In
the continual learning setting, this could affect performance
especially when tasks are more distinct. While overpruning
can free up model capacity and improve performance, as
argued in Swaroop et al. (2019), it can also have a detri-
mental effect. Due to the overpruning, models trained con-
tinually tend not to learn new features as more tasks are
trained, forcing new tasks to use existing features instead,
even if they are ill-fit for the task. Figure 2a shows this phe-
nomenon in action. As more tasks are trained sequentially
in Hard-CHASY, the KL-divergence of nodes in the first
convolutional layer remains constant, with the majority of
nodes remaining close to the prior. This means that new
features are not learnt with new tasks, going against one
of the desiderata of continual learning algorithms, which
is that model capacity should be allocated appropriately as
more tasks are trained.

In contrast, a model fit with FILM Layers results in figure
2b. Here, more filters begin to diverge from the prior as
more tasks are trained, in line with our expectation on Hard-
CHASY. To understand the cause of this, we visualised the
exact posterior distributions of the weights and biases of the
first layer convolutional layer after the first task was trained,
in figures 3 and 4.

In figures 3a and 4a we notice that when trained without
FiLLM layers, the weights and biases never quite return to the
prior. In particular, the bias for unused nodes concentrates
at a large negative value. This causes the filter to be cut
off by the ReL.U activations, preventing noise from being
added to the next layer. In this single task setting, this is not

an issue, but when trained sequentially, subsequent tasks
inherit this inactive node, and because of the shared bias
being negative, no gradients can flow to the weights and the
node remains inactive.
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Figure 2. Visualizations of deviation from the prior distribution
for filters in the first layer of a convolutional networks trained on
Hard-CHASY. Models are trained either sequentially using VCL
(a), or sequentially with VCL + FiLM (b). FiLM layers increase
the number of active units.

In contrast, because FiLM layers have unregularized shift
and scale parameters, to prune a node, either the task-
specific scale could be set to 0, or the shift can be set to a
large negative value. This can be done without incurring any
KL-divergence penalty, and the network therefore does this
rather than changing the global parameters. Meanwhile, the
global parameters are able to revert to the prior distribution,
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Figure 3. Weight posterior distributions of pruned and unpruned
nodes for the first convolutional layer after being trained on the
first task in Hard-CHASY with and without FiLM Layers (figures
3a and 3b, respectively). Each line represents the posterior of an
incoming weight. With FILM Layers, unused filters have their
weights return to the prior by setting the scale to zero.
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Figure 4. Bias posterior distributions of pruned and unpruned
nodes for the first convolutional layer after being trained on the
first task in Hard-CHASY with and without FiLM layers (figures
4a and 4b, respectively). In order to prune units without FiLM
Layers, the shared bias must be set to a negative values, preventing
node reactivation in subsequent tasks. With FILM layers, biases in
pruned units returns to the prior.

as seen by figures 3b and 4b, where unused nodes have their
weights and biases set at the standard unit Gaussian prior.
Now, the shared bias is no longer negative so nodes can
be “reactivated” in later tasks. Furthermore, because the
task-specific bias or scale performs pruning, re-activating a
node in later tasks would not affect prior tasks.

6. FiLM Layers Modulate Rather than Gate

To better understand the role that FiLM Layers play in a
network, we performed ablation tests on FILM layers, either
removing the scale or shift parameters. The result is shown
in figure 1.

From figure 1, we notice that scale-only FiLM layers per-
form reasonably well, meanwhile shift-only FiLM layers
perform just as poorly as having no FiILM Layers. This sug-

gests that FiILM Layers do not perform exclusively gating.
Gating can be performed using only shifts by setting unused
nodes to large negative values. Feature modulation on the
other hand, cannot be performed using only biases. This
suggests that FILM Layers modulate filters as well as gate
them, in line with our hypothesis that feature-wise scale
invariance is a useful inductive bias for continual learning.
We verified this hypothesis by looking at the actual distri-
butions of the scale parameters in FILM Layers, as seen in
figure 5.
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Figure 5. Distribution of the FILM scale parameters (aggregated
over all tasks) on Hard-CHASY for models trained sequentially
with VCL. The scale parameters do not have a large mode at 0, and
are distributed over a range of values, suggesting that the FILM
layers are not only performing gating, but actually modulating
features.

If FiLM layers performed primarily a gating function, we
would expect that there to be a large mode near 0, and
perhaps another one at a larger value. However, the largest
mode is consistently at a slightly positive value, and scales
vary between 0-1.5 for the convolutional layers and 0-3 for
the fully-connected layer. This continuous nature allows
for more flexibility than existing approaches which rely on
hard-gating, such as Masse et al. (2018). Since the scale
parameters often exceeded 1, gating mechanisms which
restrict scales to be between 0 and 1 such as Serra et al.
(2018) are too restrictive, and do not allow new tasks to
upscale existing features from previous tasks.

7. Conclusion

In this paper we proposed the use of task-specific FiLM Lay-
ers for continual learning, motivated by the belief that all
tasks having features generated by exactly the same weights
is too restrictive. We combined FiLM layers with Vari-
ational Continual learning and found consistent improve-
ments across a variety of benchmark tasks. By analyzing
the effect of FILM layers on the weight distributions of
models fit with VCL, we found that FiLM layers mitigated
overpruning by preventing deactivation of nodes through
the shared parameters, using the task-specific parameters
instead. Finally, by performing ablations on the FiLM lay-
ers and looking at the scale values of trained layers, we
found that FiLM layers perform not only gating, but also
modulation.
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Supplementary Material for
Combining Variational Continual Learning with FiLM Layers

1 MAP Degeneracy with FiLM Layers

Here we describe how training FiLM layer with MAP training leads to degenerate values for the weights and
scales, whereas with VI training, no degeneracy occurs. For simplicity, consider only the nodes leading into
a single node and let there be d of them, i.e. # has dimension d. Because we only have one node, our scale
parameter 7 is a single variable.

For MAP training, we have the loss function L = —p(D|0,v) + %927 with D the dataset and A the L2
regularization hyperparameter. Note that p(D|6,~) = p(D|cf, L), hence we can scale § arbitrarily without
affecting the likelihood, so long as 7 is scaled inversely. If ¢ < 1, %92 < %(%9)2, so increasing ¢ decreases the
L2 penalty if 6 is inversely scaled by c. Therefore the optimal setting of the scale parameter -y is arbitrarily
large, while 6 shrinks to 0.

At a high level, VI-training (with Gaussian posteriors and priors) does not have this issue because the
KL-divergence penalizes the variance of the parameters from deviating from the prior in addition to the mean
parameters, whereas MAP training only penalizes the means. Unlike with MAP training, if we downscale
the weights, we also downscale the value of the variances, which increases the KL-divergence. The variances
cannot revert to the prior either, as when they are up-scaled by the FiLM scale parameter, the noise would
increase, affecting the log-likelihood component of the ELBO. Therefore, there exists an optimal amount of
scaling which balances the mean-squared penalty component of the KL-divergence and the variance terms.

Mathematically we can derive this optimal scale. Consider the scenario with VI training with Gaussian
variational distribution and prior, where our approximate posterior ¢(6) has mean and variance u and ¥ and
our prior p(#) has parameters pg and Xg. First consider the scenario without FiLM Layers. Now, have our
loss function L = —Eg.q(9) log p(D[0) + Dxr(q(0)||qo(0)). For multivariate Gaussians,

Dicr(a(6)[p(6)) = 5 (log |Zo ~ log || — d + Tr(%5"S) + (n — o) S5 (1 — o)

Now consider another distribution ¢’(6), with mean and variance parameters cu and ¢?%. Now if ¢/(0) is
paired with FiLM scale parameter ~ set at %, the log-likelihood component is unchanged:

1
Eg~q(o) log p(DI0) = Egrgr(o) log p(DI0, 7 = )

with v being our FiLM scale parameter and p(D|6d,~y) representing a model with FiLM scale layers. Now



consider the Dxr(¢'(0)]|g0(0)), and optimize ¢ with g and ¥ fixed:

1 B B
Dic1(d'(9)|1p(0)) = 5 (log|So| —log ¢S] — d + Tr(S5 ' ¢*%) + (cp — o) g™ (e — p1o)

1
= 5 (log || — log || — 2dlog e — d + Tr(S5 ') + (e — 10) S5 (en — o))

e = 0= — % 4 Tr(S5 ) + (' — o) "S5

0= —d+ ¢2Tr(S5'S) + 2S5 - ¢l S5

0=c(Tr(S,'S) + p" S5 ) — ¢ pg S tp —d

Sy S )? AT (S5 S) 4 TSy )
- 2(Tr(Sg %) + pT% )

= C

Also note that ¢ = 0 results in an infinitely-large KL-divergence, so there is a barrier at ¢ = 0, i.e. If
optimized through gradient descent, ¢ should never change sign. Furthermore, note that

0?’Dkr, d _ _
92 @2’ Tr(S5 ') + 'S5 >0

So the KL-divergence is concave with respective to ¢, so ¢* is a minimizer of Dk and therefore

Dr1(q(0)||p(0)) > Di1.(q' (0)||p(6))]e=cs

Which implies the optimal value of the FiLM scale parameter -y is ci While no formal data was collected,
it was observed that the scale parameters do in fact reach very close to this optimal scale value after training.

2 Model and Training Parameters

All models trained on images from the HASYv2 dataset used the same convolutional model. This model
consists of: 16-wide 3x3 convolutional layer, 2x2 max pooling, ReLLU, 32-wide 3x3 convolutional layer, 2x2
max pooling, ReLU, flattening, 100-wide fully connected layer, then ReLU. The final head layer size is
determined by the number of classes in the task.

Split-MNIST models use a 2-layer MLP with 256 hidden units per layer and ReLU activations. Unless
otherwise stated, the batch size for training was 64 and the learning rate was 0.001.

Unless otherwise stated, all results are averaged over 5 repeats of the experiment with 5 different random
seeds. In the case of the HASYv2 dataset, there were 5 different train/test splits which were common across
all experiments dealing with that dataset. The means of these five runs are reported.

FiLM scale and biases are initialized at 1 and 0, respectively.

2.1 Continual Learning Experiments

Models trained with variational continual learning were trained for 1000 epochs for HASYv2 tasks and 50 for
split-MNIST. With no early stopping. The local reparameterization trick (Kingma, Salimans, and Welling
2015) was used in accordance to the suggestions in (Swaroop et al. 2019).

For Figures 2 and 3, 4, we looked at a network trained using a slightly modified version of VCL where
the KL-divergence term was down-weighted by a factor of 5. This was necessary, as without it many nodes
failed to converge in the allotted epochs, making each task have a larger KL-divergence from the prior for
all nodes, making it difficult to discern which nodes were “active”.
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Figure 1: Performance of variational continual learning with FiLM Layers with either their biases or scales
removed in comparison to standard FiLM layers and no FiLM layers, corresponding to vanilla VCL. Standard
deviations are given by in the shaded region. FiLM layers consistently outperform no FiLM layers, particular
when tasks are more distinct (Hard-CHASY and Split-MNIST tasks). The bias-only version performs similar
to or worse than having no FiLM layers, while the scale-only variant performs slightly worse than standard
FiLM layers. Each line representats the posterior distribution of a weight in the filter.

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6 Filter 7 Filter 8
w0 | 50 50 40 |
| L] = 20
0 ] : ] 0Lt
-2 0 2 -z 0 2 -2 0 2 -2 0 2
Filter 9 Filter 10 Filter 11 Filter 12
2 ] ? t
1 'R 1
1 /‘A AR/ S
0 4 N ol= // —] gl= =
-2 o 2 -2 o 2 -2 o 2 -2 o 2
Filter 1 Filter 2 10 Filter 3 Filter & Filter 7 Filter 8
10 1 || 04 \ 04 y 04
5 \ 5 It 5 n ‘ 0z| 4 0z N 0z
ﬂ& i \ o ! \\ .
0 = 0 = 0 00 0.0 00
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2
Filter 9 Filter 10 Filter 11 Filter 12 Filter 13 Filter 14 Filter 15 Filter 16
04 = 04 - 04 g\‘ 0.4 7~ 0.4 —~ 0.4 VN 04 N 04 N
02 /\ 02 /\ 02 \ 02 f M‘“m“‘ 02 ;""M N 02 ;"”M ‘“m‘“ 02 ;‘" “"‘a“ 02 ;"" N\
N / I N\ v N pd N I N
-2 o 2 -2 0 2 -2 0 2 -2 0 2 -2 o 2 -2 o 2 -2 o 2 -2 0 2

(b) With FiLM layers

Figure 2: Weight posterior distributions of incoming weights for the first convolutional layer after being
trained on the first task in Hard-CHASY with no FiLM Layers (figure 2a) and with FiLM Layers (figure
2b). With FiLM Layers, unused filters can have their weights return to their prior by setting the scale to
zero, as seen by filters 9-16 in figure 2b
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Figure 3: Bias posterior distributions of incoming biases for the first convolutional layer after being trained
on the first task in Hard-CHASY with no FiLM Layers (figure 3a) and with FiLM Layers (figure 3b). In
order to prune units without FiLM Layers, the shared bias must be set to a negative values, preventing node
reactivation in subsequent tasks. The bias in pruned units returns to the prior when FiLM layers are used

as seen by filters 9-16 in figure 3b
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Figure 4: Distribution of the FiLM scale parameters (aggregated over all tasks) on Easy-CHASY (top row)
and Hard-CHASY (bottom row) for models trained sequentially with VCL. The scale parameters do not
have a large mode at 0, and are distributed over a range of values, suggesting that the FiLM layers are not

only performing gating, but actually modulating features.




4 CHASY benchmark details

As discussed in the main text, we used the Clustered HASYv2 (CHASY) benchmark for our continual
learning tests. This dataset was first proposed in Noel Loo’s masters thesis, and has not yet been published.
Hence, we next present the relevant section of Anonymous. Further information about this benchmark will
be published online soon.

4.1 Clustered HASYv2 (CHASY)

The HASYv2 dataset is a dataset consisting over 32x32 black/white handwritten Latex characters. There
are a total of 369 classes, and over 150 000 total samples (Thoma 2017).

We constructed 10 classification tasks, each with a varying number of classes ranging from 20 to 11. To
construct these tasks, we first trained a mean-field Bayesian neural network on a 200-way classification task
on the 200 classes with the most total samples. To get an embedding for each class, we use the activations
of the second-last layer. Then, we performed K-means clustering with 20 clusters on the means of the
embedding generated by each class when the samples of the classes were input into the network. Doing this
yielded the classes shown in figure 5. Now, within each cluster are classes which are deemed “similar” by the
network. To make the 10 classification tasks, we then took classes from each cluster sequentially (in order of
the class whose mean was closest to the cluster’s mean), so that each task contains at most 1 symbol from
each cluster. Doing this ensures that tasks are similar to one another, since each task consists of classes
which are different in similar ways. With the classes selected, the training set is made by selecting 16 samples
of each classes, and using the remaining as the test set. This procedure was used to generate the “easy” set
of tasks, which should have the maximum amount of similarity between tasks. We also constructed a second
set of tasks, the “hard” set, in which each task is individually difficult. This was done by selecting each
task to be classification within each cluster, selecting clusters with the most number of symbols first. This
corresponds to clusters 3, 5, 10, 0, 12, 7, 9, 13, 19 and 8 in figure 5. With the classes for each task selected,
16 samples from each class are used in the training set, and the remainder are used as the test set. Excess
samples are discarded so that the test set class distribution is also uniform within each task.
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Figure 5: Clusters of symbols found by performing K-means clustering with K = 20 based on the embedding
layer of a model trained with variational inference on a 200-way classification task on the 200 most common
symbols in the HASYv2 dataset. The “Easy” set of tasks is made by taking the first symbol from each
cluster as the first task, then the second, and so on, up to 10 tasks. The “Hard” set of tasks in made by
taking the clusters with the most classes in order (3, 5, 10, 0, 12, 7, 9, 13, 19, 8)

It was necessary to perform this clustering procedure as we found it difficult to produce sizable transfer
gains if we simply constructed tasks by taking the classes with the most samples. While we were able to
have gains of up to 3% from joint training on 10 20-way classification tasks with the tasks chosen by class
sample count, these gains were significantly diminished when performing MAP estimation as opposed to
MLE estimation, and reduced even further when performing VI. Because one of our benchmark continual
learning methods is VCL, showing transfer when trained using VI is necessary.

Figures 6a and 7 show the performance gains of joint training over separate training on this new dataset,
for both MAP, and KL-reweighted VI, respectively. Figure 6b shows how relative test set accuracy varies
for each specific task for these training procedures.
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Figure 6: Relative test-set accuracy of models trained jointly on the easy set of tasks relative to individual
training for MAP estimation. Figure 6a shows the means aggregated over all tasks while figure 6b shows
the performance differences for individual tasks. Performance increases near monotonically as more tasks
are added, achieving an average of around 4.5% gain with 10 tasks
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Figure 7: Relative performance of models trained jointly on the easy set of tasks relative to individual training
for variational inference with various KL-reweighting coefficients 3. Performance gains reach around 2.5%
with 10 tasks, which is less than with MAP training but still significant
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