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ABSTRACT

Zero-shot low-light object detection (ZLOD) presents great challenges as it aims
to generalize detectors from the daytime domain to the nighttime domain with-
out target data. Existing methods primarily focus on learning illumination con-
sistency through daytime and synthetic nighttime image pairs, but they ignore a
crucial characteristic that commonly coexists with low illumination, i.e., motion
blur. Nighttime images are particularly susceptible to motion-induced blur due to
the long exposure times of cameras. Thus, solely considering illumination reduc-
tion without motion blur may be sub-optimal for ZLOD. To this end, we propose
a novel Illumination-Blur Consistency (IBC) framework for ZLOD. Specifically,
we synthesize nighttime images by considering illumination reduction and motion
blur generation under a unified pipeline to access the complex nighttime domain.
Then, we explore illumination-blur equivariant representations at the region and
instance levels for better model adaptation. Consequently, IBC enables detectors
to effectively generalize to the nighttime domain without relying on any dark data.
Experimental results demonstrate the superior generalizability of our method. We
also introduce a novel dataset named NightVision to expand the capacity of exist-
ing low-light benchmarks for community development.

1 INTRODUCTION

Low-light object detection is a challenging topic that aims to accurately localize objects in dark
scenes characterized by low brightness and sharpness. However, advanced detectors Ren et al.
(2016); Redmon & Farhadi (2018) are typically optimized on well-lit datasets (e.g., COCO Lin
et al. (2014)), resulting in poor generalizability to nighttime scenarios. An intuitive scheme is to
adopt image enhancement to enhance the visual quality of low-light images for benefiting detec-
tors Guo et al. (2020); Cai et al. (2023); Feijoo et al. (2025). However, enhancement methods are
biased toward human vision and ignore the significance of machine vision. Other research strives
to enhance the performance of detectors by generating pseudo-labels or directly training on dark
images Kennerley et al. (2023); Zhang et al. (2024); Wang et al. (2021; 2022). Nevertheless, these
methods heavily rely on real-world nighttime data, which is scarce and hard to annotate.

To reduce reliance on nighttime data, some research introduces zero-shot day-night domain adap-
tation that aims to achieve adaptation without target data Lengyel et al. (2021); Luo et al. (2023).
With this setting, this paper focuses on the detection task, extending it to zero-shot low-light object
detection (ZLOD). Recent studies on this task primarily focus on consistency learning by daytime
and synthetic nighttime image pairs. MAET Cui et al. (2021) explored the intrinsic pattern be-
hind the illumination-degrading transformation. Sim-MinMax Luo et al. (2023) devised a similarity
min-max paradigm to learn illumination-robust representations. DAI-Net Du et al. (2024) proposed
to learn illumination invariance based on Retinex Theory Land (1977). However, these methods
emphasize consistency learning only from the perspective of illumination reduction (as shown in
Fig. 1), overlooking that motion blur is a crucial facet of real-world nighttime scenarios.

In low-light environments, the risk of motion blur significantly increases as the long exposure times
required for capturing sharp photos can lead to unpredictable displacements of objects or cam-
eras Zhou et al. (2022). The appearance of motion blur reflects a more realistic nighttime domain
while posing greater challenges for detectors in dark scenes. As shown in Fig. 1, failed predictions
from other methods indicate that the blurry features can greatly impair the performance of detec-
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Figure 1: Motivation of this paper. In (a-b), existing zero-shot methods primarily focus on illu-
mination consistency between daytime (D) and synthetic nighttime (N ) images, while we explore
illumination-blur consistency and achieve accurate predictions in (c).

tors in low-light conditions. Therefore, further investigating the impact of motion blur under low
illumination conditions may be an effective solution to improve ZLOD.

To this end, we propose a novel Illumination-Blur Consistency (IBC) framework for ZLOD. Specif-
ically, we establish a connection between illumination reduction and motion blur generation through
a controllable exposure factor, coming up with an exposure-guided nighttime pipeline (ENP). This
pipeline synthesizes realistic nighttime images while enabling models to learn the coexistence of low
illumination and motion blur. Notably, the generation of motion blur on synthetic images changes
the spatial position of objects relative to the original. Hence, we fully consider this feature misalign-
ment between daytime images and their synthetic counterparts and innovatively propose a multi-
level model adaptation (MMA) to encourage region-wise and instance-wise feature consistency,
enabling detectors to learn spatial and global illumination-blur equivariant representations for better
model adaptation. Consequently, our IBC effectively achieves domain adaptation without relying
on any real-world nighttime data. Experimental results on low-light datasets highlight the superior
generalizability of our method in nighttime scenarios. In addition to IBC, we also build a novel
dataset named NightVision to alleviate the demand for dark data in the community. NightVision in-
cludes 10.0k low-light images and 56.0k objects of 18 categories, expanding the capacity of existing
low-light data with great diversity. Our contributions can be summarized as follows:

• We reveal that the neglect of motion blur limits the generalizability of existing methods in
dark scenes and provide an insight of further investigating motion blur under low illumina-
tion conditions to improve ZLOD.

• We propose a novel Illumination-Blur Consistency (IBC) framework to learn illumination-
blur equivariant representations, enhancing the low-light generalizability of detectors with-
out relying on any nighttime data.

• Experimental results on low-light datasets highlight the superior generalizability of our
method in nighttime scenarios compared to other competitive methods.

• We build a novel dataset named NightVision to facilitate community research. To our
knowledge, NightVision contains the largest amounts of categories for low-light object
detection with great generality.

2 RELATED WORKS

Motion Blur Learning. Motion blur, prevalent in dynamic scenes, is widely studied across vision
tasks. Image deblurring is a typical low-level task that improves the clarity of blurry images Bahat
et al. (2017); Zamir et al. (2022). In high-level vision, motion blur is treated as a specific dis-
turbance, with studies investigating its impact on tasks like classification Vasiljevic et al. (2016),
detection Sayed & Brostow (2021) and segmentation Rajagopalan et al. (2023).

Low-light Object Detection. Despite established benchmarks for dark scene perception Neumann
et al. (2019); Loh & Chan (2019); Yang et al. (2020); Morawski et al. (2022); Yu et al. (2020); Hong
et al. (2021); Chen et al. (2023), low-light object detection remains challenging. An intuitive scheme
is to brighten low-light images for benefiting detectors Zhang et al. (2019); Guo et al. (2020); Cai
et al. (2023), and some methods further integrated low-light image enhancement and deblurring by
exploiting their interrelated nature Zhou et al. (2022); Lv et al. (2024); Feijoo et al. (2025). Other
solutions involve arousing the potential of image restoration for detectors Hashmi et al. (2023); Cui
et al. (2024) or improving detection performance from the perspective of RAW data Chen et al.
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Figure 2: Examples of NightVision.

Table 1: Comparison of Low-Light Datasets

Dataset #Images #Boxes #Category Multi-
angle

Multi-
category

Multi-
weather

Darkface 6.0k 50.4k 1 ✓
NightOwls 36.7k 61.0k 1 ✓
RAW-NOD 7.2k 46.8k 3 ✓ ✓

LIS 2.2k 10.5k 8 ✓ ✓
BDD100K 31.9k 509.6k 10 ✓ ✓

ExDark 7.4k 23.7k 12 ✓ ✓ ✓
NightVision 10.0k 56.0k 18 ✓ ✓ ✓

(2023); Guo et al. (2025). Another research area focuses on generating pseudo-labels or directly
training on dark images Kennerley et al. (2023); Zhang et al. (2024); Wang et al. (2021; 2022),
which greatly relies on real-world nighttime data. To reduce the reliance on dark data, zero-shot
day-night domain adaptation is proposed as a more challenging setting that requires models to gen-
eralize to the nighttime domain without dark data Lengyel et al. (2021); Luo et al. (2023). With
this setting, CIConv Lengyel et al. (2021) proposed a physics prior by a color invariant convolution
layer to address domain shift. MAET Cui et al. (2021) explored the intrinsic representation of il-
lumination degradation. Sim-MinMax Luo et al. (2023) devised a similarity min-max paradigm to
learn illumination-robust representations for zero-shot learning. DAI-Net Du et al. (2024) focused
on learning illumination invariance for object detection based on Retinex Theory.

Despite these advances, image enhancement faces human bias and real-time limitations, while prior
zero-shot methods neglect the impact of motion blur on nighttime perception. Differently, we deeply
analyze motion blur in dark scenes and devise a novel framework to enhance ZLOD.

3 NIGHTVISION DATASET

Data Construction. Large-scale, high-quality datasets are critical for domain exploration, yet exist-
ing low-light object detection datasets have limited data capacity (e.g., categories, scenarios), hinder-
ing a thorough understanding of this task. Hence, we collect a novel dataset named NightVision for
future research. During data collection, we ensure generality in three key aspects: 1) All images are
from various devices to avoid bias from a single shooting system. 2) Diverse geographical/weather
conditions are fully considered for real-world fidelity. 3) Both indoor and outdoor scenes contain
objects of varying sizes to enhance applicability. Ultimately, we select 10.0k web-sourced sRGB
images to form NightVision without overlapping with existing public datasets. After image collec-
tion, we annotated 56.0k bounding boxes across 18 categories using X-AnyLabeling Wang (2023).
To minimize errors, we carefully examine all annotation results to confirm the correct category and
bounding box assignments. Some examples can be seen in Fig. 2. As for data split, our NightVision
is split (5:2:3 ratio) into training (4,997), validation (1,989), and test (3,037) sets. Moreover, the
assignment of images from different scenes is fully considered to prevent distribution shifts.

Data Statistics and Analysis. We compare NightVision with DarkFace Yang et al. (2020),
NightOwls Neumann et al. (2019), RAW-NOD Morawski et al. (2022), LIS Chen et al. (2023),
the nighttime part of BDD100K Yu et al. (2020), and ExDark Loh & Chan (2019) datasets in Ta-
ble 1. Though NightOwls and BDD100K contain large nighttime data, they mainly focus on traffic
conditions at parallel angles. While Darkface, RAW-NOD and LIS encompass multiple camera
angles, their limited categories and weather conditions constrain their generality. Compared to Ex-
Dark, the widely used benchmark for low-light object detection, NightVision offers greater data
capacity, wider object size variance, and broader illumination distribution, underscoring its higher
complexity (see Appendix A for details). To our knowledge, our NightVision has the largest number
of categories for low-light object detection, and we hope it will advance the community.

4 ILLUMINATION-BLUR CONSISTENCY

4.1 OVERVIEW

Existing ZLOD methods primarily address day-night representation disparity by learning illumi-
nation consistency though a designed pixel-wise illumination-reduced translation, yet neglect the
impact of motion blur on nighttime perception, limiting low-light generalizability.
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Figure 3: Overall of Illumination-Blur Consis-
tency (IBC).

Figure 4: An illustration of region-level consis-
tency.

Moving beyond illumination consistency, we propose a novel Illumination-Blur Consistency (IBC)
framework (Fig. 3) to enhance ZLOD, which consists of an exposure-guided nighttime pipeline
(ENP) and multi-level model adaptation (MMA). The ENP synthesizes domain-realistic nighttime
images by progressively darkening and blurring daytime images under the guidance of exposure,
while the MMA drives consistency learning between the daytime and synthetic nighttime images at
region and instance levels for better adaptation.

4.2 EXPOSURE-GUIDED NIGHTTIME PIPELINE

The ENP unifies illumination reduction and motion blur synthesis, explicitly modeling their joint
occurrence in low-light environments. Notably, we employ a single exposure factor to concurrently
regulate global brightness (Image Darkening) and motion blur intensity (Image Blurring), which
better approximates physical low-light image formation.

4.2.1 IMAGE DARKENING

Different from GAN-based Zhu et al. (2017); Karras et al. (2019) or ISP-based Cui et al. (2021)
methods, where the former relies on real dark data and the latter is biased toward specific camera
sensors, we develop a darkening function with learnable parameters based on Luo et al. (2023). This
function adjusts the image brightness by mapping pixel values to the expected exposure. Next, we
detail the mapping process and darkening function.

Mapping Process. The mapping function F is designed to nonlinearly adjust the pixel intensity
xi ∈ [0, 1] to an expected value yi ∈ [0, 1]. To avoid information loss caused by overflow, F should
satisfy the boundary conditions:

F (xi) =

{
0 if xi = 0

1 if xi = 1.
(1)

Following Guo et al. (2020), we adopt the iterative curve F (xi) = f8(xi), where f(xi) = α · x2
i +

(1 − α) · xi and α ∈ [−1, 1] is a learnable parameter. Therefore, the mapping function is defined
as yi = F (xi, α). To illustrate this at the image level, given a normalized image I ∈ [0, 1]C×H×W

and a learnable adjustment map A ∈ [−1, 1]H×W , the mapping process can be formulated as Im =
F (I, A), where Im is the mapping output.

Darkening Function. To achieve image darkening, we adopt a network to estimate the appropri-
ate adjustment map A for illumination reduction. Specifically, we train an estimation network to
produce the corresponding A for the mapping process according to the input controllable exposure
e and well-lit image I . This allows us to simulate different illumination conditions of the image I
by the controllable exposure e. However, due to the constraints in Eq. 1, the pixel xi = 1 could
not be adjusted by any A. To address this limitation, we divide all the pixel values by an operation
d(xi, β) = xi/β before performing mapping, and finally rescale the mapping output back to the
original space. Notably, d is parameterized by another learnable map B. Consequently, we can
synthesize realistic low-light image ID and avoid violating the constraints of the mapping function
F . The entire process can be formulated as:

D(I, e) = d−1(F (d(I,B), A), B), (2)
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where A and B are both estimated by the estimation network and D(, ) is the darkening function.
Notably, D(I, e) is equivalent to ID. The details of estimation network training and noise injection
are provided in Appendix B and Appendix C, respectively.

4.2.2 IMAGE BLURRING

Motion blur is common in nighttime photography since longer exposure times of cameras increase
the risk of egomotion-induced blur in low-light conditions, which is ignored by existing ZLOD
works. In contrast, we focus on the coexistence relationship between low illumination and motion
blur and further generate motion blur for ID based on its exposure e in Eq. 2 to simulate more
realistic low-light environments. Inspired by Sayed & Brostow (2021), we generates blur kernels to
achieve image blurring.

Blurring Function. Each blur kernel is generated based on a 2D trajectory and an exposure time.
To create each point of the trajectory x = (x0, . . . , xt, . . . , xl), we first simulate three types of
camera motion Mi ∈ {M1,M2,M3} by fixed parameters, where M1 represents a nervous camera
state, M2 denotes back-and-forth motion, and M3 signifies straight rectilinear movement. Then we
initialize a camera state (x0, v0) in the complex space, where x0 is the original position and v0 is a
velocity vector randomly sampled from the unit circle. At each iteration t, the velocity vector vt of
the camera is updated based on the previous state and a random camera jerk:

vt = Mi · (vn − Txt−1) + 2Mi · |vt−1| · vj︸ ︷︷ ︸
camera jerk

, (3)

where vn and vj are random velocity vectors sample from N (0, 1) and the unit circle, respectively,
Txt−1 is an inertial tendency at the position xt−1, and Mi represents the camera motion defined
above. Then, the position xt can be computed based on the previous position xt−1 as follows:

xt = xt−1 + vt · (l/L), (4)

where l is the trajectory length (defaulted to 96), and L is the total number of iterations.

Moreover, to simulate the effect of exposure time on trajectory, we truncate the trajectory length l
based on the controllable exposure factor e:

x = (x0, . . . , x⌊l×e⌋−1). (5)

Next, we initialize a 2D zero matrix with size k, then map each point xi of trajectory x to obtain the
blur kernel K:

K[⌊Re(xi)⌋, ⌊Im(xi)⌋] = 1, (6)
where Re(xi) and Im(xi) represent real quantity and imaginary quantity of the trajectory point xi,
respectively. Consequently, given the synthetic low-light image ID, the process of image blurring
can be formulated as:

B(ID, e) = IcD ∗K, c ∈ {R,G,B}, (7)
where c denotes the color channel, B represents the blurring function, and blur kernel K is generated
from a random trajectory x and the controllable exposure factor e. Similarly, B(ID, e) is equivalent
to IN .

Box Expanding. After the blurring as described in Eq. 7, the boundaries of each object in the image
are changed. To avoid information loss, we expand each original box to fit the boundaries of the
blurred objects. Defining an original box by two coordinates (x1, y1, x2, y2), the box expanding
process can be formulated as:

x′
1 = x1 +∆xl, y′1 = y1 +∆yt,

x′
2 = x2 +∆xr, y′2 = y2 +∆yb,

(8)

where ∆xl, ∆xr, ∆yt, and ∆yb are box expansions in the left, right, top, and bottom, respectively.

Overall, the ENP generates a nighttime image IN by gradually darkening and blurring the input
I under the control of exposure e, enabling exploration of a realistic nighttime domain (see Ap-
pendix D for comparisons of different low-light synthesis methods). Both I and IN are then fed into
the following multi-level model adaptation for consistency learning.
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4.3 MULTI-LEVEL MODEL ADAPTATION

Since the generation of motion blur changes the spatial position of each blurred object feature rel-
ative to the original, a simple vector-based (i.e., instance-wise) alignment Luo et al. (2023) is not
robust enough to capture dense consistency representations for object detection. To this end, we
further introduce region-wise consistency to adaptively align features between original and blurred
objects, addressing motion blur-induced spatial misalignment (validated in Appendix E).

Hence, given an input I and its synthetic image IN , their last three layer features E(I) and E(IN )
extracted by a shared encoder E are encouraged consistency at region and instance levels, resulting
in multi-level model adaptation.

4.3.1 REGION-LEVEL CONSISTENCY

As shown in Fig. 4, given the i-th layer feature Ei(I) ∈ RCi×Hi×Wi and its bounding box of the
object (i-th layer depends on the size of the bounding box according to the assignment strategy of Lin
et al. (2017)). We first accurately crop the object feature from Ei(I) based on the bounding box.
Next, we align the object feature to S × S region features, where each region feature is computed
by bilinear interpolation using its surrounding feature points in Ei(I) inspired by He et al. (2017).
This ensures that object features of different sizes can be scaled to a uniform size for consistency
learning.

By applying the Crop and Align processes to both Ei(I) and Ei(IN ), we can obtain two region
features, denoted as R ∈ RCi×S×S and RN ∈ RCi×S×S . These features are then flattened to
maximize the similarity of each pair, enabling the computation of the consistency loss Lreg:

Lreg = −
∑

i C(s(pr(r
i)), zr(r

i
N )) + C(zr(ri), s(pr(riN )))

2
, (9)

where ri ∈ R and riN ∈ RN denote a region feature pair, pr and zr are projection head and
prediction head Xie et al. (2021) at the region level, respectively, s is the operation of stop-gradient to
prevent model collapse Chen & He (2021), and C(, ) is a cosine function. The loss Lreg is averaged
over all region feature pairs and further averaged in a batch to drive representation learning.

4.3.2 INSTANCE-LEVEL CONSISTENCY

In addition to region-level consistency, we also introduce instance-level consistency to learn more
robust representations from global information. Specifically, we pool and flatten the last layer fea-
tures of E(I) and E(IN ), resulting in two feature vectors v and vN , respectively. Then we maximize
their similarity by a consistency loss Lins:

Lins = −C (s(pi(v)), zi(vN )) + C (zi(v), s(pi(vN )))

2
, (10)

where pi and zi are projection head and prediction head (initialized by MLPs Xie et al. (2021)) at
the instance level, respectively.

Besides the multi-level consistency loss Lcon, we also incorporate supervision detection loss LDet

to the final loss:
Lcon = Lreg + α · Lins, L = LDet + β · Lcon. (11)

where α and β are balanced factors, both defaulting to 1.

The proposed consistency losses Lreg and Lins are mutually beneficial: Lreg learns spatial consis-
tency representations and Lins explores the global consistency information, enabling detectors to
learn multi-level illumination-blur equivariant representations for better model adaptation. In ad-
dition, the incorporation of supervision detection loss LDet contributes to driving discriminative
representation learning for low-light object detection.

4.4 MODEL TRAINING AND INFERENCE

Training. We first train the estimation network of ENP to generate appropriate adjustment maps A
and B through the controllable exposure e that sampled uniformly in [0, 0.5]. During IBC train-
ing, the estimation network remains frozen to produce illumination-reduced examples guided by

6
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Table 2: Comparison results on NightVision
and ExDark Loh & Chan (2019). + denotes
enhancement method.

Methods NightVision ExDark
Recall mAP Recall mAP

Zero-shot
YOLOv3 0.629 0.474 0.673 0.503
+Retinexformer 0.606 0.455 0.668 0.490
+Zero-DCE 0.615 0.463 0.672 0.500
+LEDNet 0.629 0.472 0.680 0.510
+FourierDiff 0.644 0.483 0.665 0.490
+DarkIR 0.639 0.477 0.673 0.504
MAET 0.646 0.486 0.683 0.512
CIConv 0.657 0.495 0.690 0.518
Sim-MinMax 0.660 0.500 0.693 0.520
DAI-Net 0.665 0.505 0.698 0.522
IBC (Ours) 0.683 0.525 0.714 0.539

Fine-tuned
YOLOv3 0.734 0.604 0.832 0.678
+Retinexformer 0.704 0.577 0.815 0.664
+Zero-DCE 0.710 0.584 0.819 0.668
+LEDNet 0.709 0.580 0.820 0.670
+FourierDiff 0.715 0.594 0.815 0.666
+DarkIR 0.719 0.595 0.820 0.669
MAET 0.739 0.609 0.836 0.684
CIConv 0.743 0.614 0.843 0.692
IA-YOLO 0.740 0.610 0.834 0.683
Featenhancer 0.736 0.609 0.837 0.685
Sim-MinMax 0.745 0.617 0.847 0.696
YOLA 0.745 0.621 0.845 0.695
DAI-Net 0.747 0.620 0.852 0.699
IBC (Ours) 0.759 0.635 0.868 0.713

Table 3: Comparison results (mAP) of Sharp,
Synthetic blurry (Syn.), and Real-world blurry
(Real.) evaluations.

Methods COVO18→NightVision COCO12→ExDark
Sharp Syn. Real. Sharp Syn. Real.

YOLOv3 0.480 0.401 0.469 0.552 0.427 0.483
+Retinexformer 0.468 0.388 0.444 0.548 0.416 0.465
+Zero-DCE 0.478 0.395 0.449 0.551 0.421 0.472
+LEDNet 0.466 0.385 0.435 0.535 0.402 0.460
+FourierDiff 0.470 0.392 0.440 0.546 0.414 0.455
+DarkIR 0.479 0.393 0.433 0.550 0.415 0.460
MAET 0.501 0.416 0.470 0.578 0.445 0.492
CIConv 0.516 0.419 0.472 0.589 0.450 0.501
Sim-MinMax 0.520 0.426 0.479 0.594 0.453 0.505
DAI-Net 0.525 0.428 0.486 0.602 0.451 0.512
IBC (Ours) 0.535 0.467 0.521 0.600 0.492 0.532

Table 4: Ablation results (mAP) on NightVision
and ExDark Loh & Chan (2019). D and B are Im-
age Darkening and Image Blurring, respectively.

Methods ENP MMA NightVision ExDarkD B Lreg Lins

Baseline 0.474 0.503
IBC-A ✓ 0.496 0.517
IBC-B ✓ 0.478 0.506
IBC-C ✓ ✓ 0.504 0.520
IBC-D ✓ ✓ ✓ 0.519 0.534
IBC-E ✓ ✓ ✓ 0.512 0.526
IBC-F ✓ ✓ ✓ 0.503 0.520
IBC (Ours) ✓ ✓ ✓ ✓ 0.525 0.539

different e. These examples are then fed with corresponding exposures into image blurring (with
probability ρ = 0.75) to generate the final synthetic nighttime images. Unlike training the estimation
network, e is uniformly sampled in [0, 0.2] to simulate different poor illumination conditions. In the
MMA, the encoder E serves as a feature extractor, and the detector head is exploited to decode the
learnt features from E.

Inference. During testing, images are only fed into the encoder and detector head to predict cate-
gories and locations of objects. This will not introduce additional parameters and inference time to
the vanilla detector.

5 EXPERIMENTS

5.1 LOW-LIGHT OBJECT DETECTION

Settings. We compare IBC with Zero-DCE Guo et al. (2020), DarkIR Feijoo et al. (2025), Retinex-
former Cai et al. (2023), LEDNet Zhou et al. (2022), FourierDiff Lv et al. (2024), MAET Cui et al.
(2021), CIConv Lengyel et al. (2021), IA-YOLO Liu et al. (2022), Featenhancer Hashmi et al.
(2023), Sim-MinMax Luo et al. (2023), YOLA Hong et al. (2024) and DAI-Net Du et al. (2024)
on the NightVision and ExDark Loh & Chan (2019) datasets. Notably, enhancement methods are
adopted as preprocessing steps.

To meet the zero-shot setting, we sample daytime data from COCO Lin et al. (2014) and PAS-
CAL VOC Everingham et al. (2010) based on the categories of nighttime datasets, constructing two
dataset pairs: COVO18−NightVision and COCO12−ExDark. Following Cui et al. (2021); Du et al.
(2024), we adopt YOLOv3 Redmon & Farhadi (2018) as the vanilla detector for all methods. The
training of the estimation network is consistent in Luo et al. (2023). Images are resized to 416×416
before being fed into the detectors. We measure detection performance via mean Average Preci-
sion (mAP) and recall at the IoU threshold of 0.5. More information about daytime datasets and
implementation details are provided in Appendix F.
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Zero-shot Evaluation. In this part, we train all zero-shot methods on the training set of daytime
datasets and evaluate them on the test set of nighttime datasets. The experimental results presented
in Table 2 show that enhancement methods attempt to facilitate human vision but fail to handle the
complex low-light conditions for object detection, resulting in limited performance. Although other
zero-shot methods improve the performance of the vanilla YOLOv3 to varying degrees, the perfor-
mance gains are limited due to their insufficient consideration of the characteristics of dark images.
In contrast, our method yields superior results in all comparison methods and enhances the baseline
by 5.4% mAP (NightVision) and 3.6% mAP (ExDark), demonstrating the generalizability of our
method which considers motion blur for ZLOD. In addition, we also perform zero-shot evaluations
on RAW-NOD Morawski et al. (2022) and BDD100K Yu et al. (2020) datasets in Appendix G,
where the results further verify the effectiveness of our IBC.

Fine-tuned Evaluation. In this part, we further fine-tune and evaluate all the methods on the night-
time dataset. The results in Table 2 show that our method generally achieves the best results, demon-
strating that further considering motion blur contributes to searching for a more optimal pre-trained
feature space of the nighttime domain.

5.2 DETECTION WITH BLURRY DATA

This section analyzes the impact of blurry data on low-light object detection. To acquire real-world
blurry data, we select images with varying degrees of blur from the nighttime dataset (3,551 images
from NightVision and 2,748 images from ExDark), leaving the rest as sharp data.

Synthetic Blurry Evaluation. We first synthesize blurry images from sharp images based on Sayed
& Brostow (2021) and then evaluate the zero-shot methods on sharp images and synthetic blurry
images, respectively.

The results in Table 3 show that all methods exhibit significant performance degradation with syn-
thetic blurry images compared to sharp images. For instance, on the ExDark dataset, DAI-Net Du
et al. (2024) effectively learns reflectance and illumination with sharp images but struggles with
synthetic blurry scenes (60.2% → 45.1% mAP). By further considering motion blur, our method
presents less performance degradation and outperforms other methods in synthetic blurry scenes.

Real-world Blurry Evaluation. We also evaluate the zero-shot methods on the real-world blurry
data of nighttime datasets. The results in Table 3 show that our method remains superior among the
comparison methods, further validating its robustness against low illumination and motion blur in
real-world nighttime scenarios.

5.3 ABLATION STUDY

Here we conduct ablation studies to justify ENP and MMA, as shown in Table 4.

As for IBC-A, we train the baseline with synthetic images darkened by Image Darkening. The
results show a great average improvement of 1.8% mAP, indicating its effectiveness in simulating
low illumination conditions.

For IBC-B, we adopt daytime images blurred by Image Blurring for training, slightly boosting the
baseline by an average of 0.35% mAP. This implies that simply applying motion blur to well-lit
images is not robust enough to address the large gap between daytime and nighttime domains.

By combining Image Darkening and Image Blurring in a unified pipeline, IBC-C enhances the
baseline by an average of 2.35% mAP, verifying the strong capability of ENP in simulating nighttime
scenarios.

The region-level consistency loss Lreg seeks to encourage spatial consistency between each region
feature pair. Solely considering this loss, IBC-D presents an average improvement of 1.45% mAP,
indicating its ability to learn robust spatial representation for illumination-blur consistency.

The instance-level consistency loss Lins tries to align the instance features for learning global con-
sistency information. With this loss, IBC-E brings an average enhancement of 0.7% mAP. Com-
pared to Lreg, this lower result is probably because the instance-level consistency contributes less
to learning spatial representation in dense vision tasks.
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Figure 5: Prediction visualizations by different methods. The first row is from ExDark, and the rest
comes from NightVision.

Figure 6: Backbone feature visualizations by different methods on synthesis (left) and real-world
(right) blurry evaluation.

Without Image Blurring in the ENP, IBC-F greatly degrade IBC’s performance by 2.05% mAP,
verifying the importance of considering motion blur in low light conditions.

Combined with ENP and MMA, our IBC improves the average performance of baseline by 4.35%
mAP and IBC-C by 2.0% mAP, proving the effectiveness of MMA in learning illumination-blur
equivariant representations for ZLOD.

Please see Appendix H for more ablation studies of hyper-parameters and box expanding.

5.4 VISUALIZATION

We visualize the prediction results (real-world in Fig. 5 and synthetic in Fig. 12 of Appendix I) and
backbone features (Fig. 6) to highlight the strong generalizability of our method.

In Fig. 5, the results from NightVision show that other methods misidentify blurry cars as trucks
and miss blurry or small-sized objects, while our method accurately detects most objects in dark
dynamic scenes. These results also highlight the challenges of NightVision, which requires stronger
fine-grained and small-sized detection capabilities than ExDark. In Fig. 6, synthetic blurry features
from the vanilla model and Sim-MinMax Du et al. (2024) illustrate how motion blur degrades a
detector from the feature perspective, while our method remains robust and captures more detailed
object representations in both synthetic and real-world blurry nighttime scenarios.

6 CONCLUSION

This paper studies zero-shot low-light object detection (ZLOD) that aims to generalize detectors
from the daytime domain to the nighttime domain without relying on target data. We reveal the
neglect of motion blur in existing methods and propose an effective Illumination-Blur Consistency
(IBC) framework to explore the multi-level illumination-blur equivariant representations for improv-
ing ZLOD. Experimental results demonstrate the superior low-light generalizability of our method.
Moreover, we build a considerable dataset named NightVision to expand the capacity of existing
low-light benchmarks with great diversity. We hope this paper can inspire more insightful research
and facilitate further development in the community.
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APPENDIX

Our project is at https://anonymous.4open.science/r/nv1.. In this appendix, we in-
clude the following additional discussions:

• Appendix A provides more detailed statistics of NightVision.
• Appendix B introduces the training objectives of estimation network.
• Appendix C describes the noise injection during the process of synthesizing low-light im-

ages.
• Appendix D compares the performance of different low-light synthesis methods.
• Appendix E explores the motion blur-induced feature misalignment.
• Appendix F describes more implementation details, including the training settings and day-

time datasets.
• Appendix G provides additional zero-shot evaluations on BDD100K Yu et al. (2020) and

RAW-NOD Morawski et al. (2022) datasets.
• Appendix H presents more ablation studies, including hyper-parameters and box expand-

ing.
• Appendix I includes the visualization of synthetic blurry evaluation.
• Appendix J explores the generalization of our method to other domains, including the RAW

nighttime domain and daytime domain.
• Appendix K describes the detailed ethics statement.
• Appendix L describes the usage of the large language model.

A DETAILED STATISTICS OF NIGHTVISION

A.1 COMPARISON WITH EXDARK

To highlight the challenge of NightVision, we present a detailed statistical comparison with Ex-
Dark Loh & Chan (2019):

More categories and objects. As illustrated in Fig. 7a, compared to ExDark, our NightVision gen-
erally includes more objects per category and six additional categories, including umbrella, bench,
truck, aeroplane, bed and sofa. With the additional objects available for each category and the
broader spectrum of categories, researchers enable a deeper exploration of intra-class and inter-class
variability, allowing models to learn nuanced features and improve their generalization capabilities.

Wider size variance of objects. As shown in Fig. 7b, our NightVision covers a broader range of
object sizes than ExDark, containing not only larger objects but also smaller objects that are harder
to recognize in challenging low-light conditions. This substantial variance in object sizes is more in
line with real-world nighttime scenarios.

Broader illumination distribution. We quantify the illumination distribution of each dataset by
calculating the average pixel intensity per image. As illustrated in Fig. 7c, NightVision has a
broader low illumination distribution (30–80) than ExDark’s, greatly expanding nighttime illumi-
nation diversity. This broader spectrum aligns more closely with the varied illumination conditions
encountered in real-world dark environments.

A.2 STATISTICS OF MOTION BLUR

To investigate motion blur in nighttime images, we analyze the frequency of motion blur within
the NightVision dataset. As shown in Fig. 8, our statistics reveal that 35.4% of NightVision images
contain noticeable motion blur (while only 3.2% in daytime COCO exhibit this issue). This discrep-
ancy is particularly pronounced in dynamic scenarios like traffic (e.g., moving vehicles) compared to
static indoor settings (e.g., stationary furniture). Such a significant gap underscores the importance
of addressing motion blur for robust low-light object detection, especially in dynamic environments.
These findings motivate our exploration of illumination-blur consistency for zero-shot low-light
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Additional

(a) Statistics of categories and objects

(b) Statistics of object sizes

(c) Statistics of illumination distribution

Figure 7: Statistical information of NightVision and ExDark Loh & Chan (2019).

object detection, as we found that most previous methods primarily focus solely on illumination
consistency.

B ESTIMATION NETWORK TRAINING

In the darkening process, the learnable maps A and B are estimated by an estimation network. In
this paper, we adopt a U-Net Ronneberger et al. (2015) as the estimation network and four training
losses Luo et al. (2023) as regularization.
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Figure 8: Statistics of motion blur in NightVision. The number and percentage of blurry images for
each category are provided.

Following Guo et al. (2020), a color constancy loss LC is introduced to correct color deviations:

LC =
∑

∀(m,n)∈ε

(Jm − Jn)2, ε = {(R,G), (R,B), (G,B)} (12)

To control the exposure of the synthesized image, the input exposure e is aligned with the channel
average of ID:

LE =
1

M

M∑
i

|x̄i − e|, (13)

where x̄i represents the channel-wise average value of pixel xi and M is the total number of pixels.

The exposure adjustment map A is adopted to reduce the illumination by mapping pixels. To pre-
serve the illumination variation relations between neighboring pixels, we constrain A by:

LA =
∑
c

(t(|∇xA
c|)2 + t(|∇yA

c|)2), c ∈ {R,G,B}

t(x) = max(α− |x− α|, 0),
(14)

where ∇x and ∇y denote gradient operations along the horizontal and vertical axis, respectively,
and t is an identity function with a hyper-parameter α set to 0.02 by default.

To prevent the network from adjusting exposure solely through d, we additionally introduce LB =
1−B to regularize the network optimization.

In total, the overall training loss of darkening function LD can be summarized as:

LD = λCLC + λELE + λALA + λBLB , (15)

where λC , λE , λA and λB represent the hyper-parameters and are set to 25, 10, 1600 and 5 by
default, respectively.

C NOISE INJECTION

We follow the noise injection method of Sim-MinMax Luo et al. (2023) for the darkened images.
Specifically, pixel-wise Gaussian noise z1 and patch-wise Gaussian noise z2 are both injected into
the exposure factor e:

e = e+ z1 + z2,

z1 ∈ Rh×w ∼ N (0, α1),

z2 ∈ R
h
d×w

d ∼ N (0, α2),

z2 = interpolate(z2, h, w),

(16)

where h,w is the height and width of the image, d is the downsampling scale, α1, α2 are the noise
intensity both defaulting to 0.025.
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Figure 9: The synthesizing process of the ENP with different values of exposure factor e. The
changing process of bounding boxes is also provided.

Table 5: Comparisons of different low-light synthesis methods on NightVision.

Method mAP
Baseline 0.474
Brightness adjustment1 0.483
Gamma correction 0.490
Cui et al. Cui et al. (2021) 0.463
Zhou et al. Zhou et al. (2022) 0.472
ENP (Ours) 0.504

D COMPARISONS OF LOW-LIGHT SYNTHESIS METHODS

The Exposure-guided Nighttime Pipeline (ENP) is designed to synthesize realistic nighttime images
IN by progressively darkening and blurring the daytime images I under the consistent guidance of
exposure factor e, as shown in Fig. 9.

To compare its low-light synthesis ability with other low-light synthesis methods, we adopt different
low-light synthesis methods to synthesize low-light data to train the baseline YOLOv3 Redmon &
Farhadi (2018). The results in Table 5 show that the ENP enhances the baseline by 3.0% mAP and
outperforms other synthesis methods, verifying the effectiveness of our ENP in simulating more
realistic nighttime conditions.

E MOTION BLUR-INDUCED FEATURE MISALIGNMENT

To quantify the feature misalignment caused by motion blur, we evaluate the mean IoU between
synthetic blurry/sharp objects and region-level alignment (Lreg+Box Expanding) across varying
blur levels (exposure times) on NightVision.

As shown in Fig. 10, the results show that increasing blur severity could reduce IoU (Fig. 10a),
amplifying spatial-semantic misalignment and consequently degrading model performance. While
our region-level alignment effectively mitigates this decline (including on small objects APS) by

1https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html
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(a) IoU (b) Performance (mAP) (c) Results on small object (APs)

Figure 10: Study of Motion blur-induced Feature Misalignment on NightVision.

Table 6: Daytime-nighttime dataset pairs. The daytime datasets are sourced from COCO Lin et al.
(2014) and PASCAL VOC Everingham et al. (2010) (VOC for short).

Nighttime Daytime #Images #Category Source
NightVision COVO18 96,006 18 COCO, VOC

ExDark COCO12 90,150 12 COCO

Table 7: Comparison results (mAP) of different methods on RAW-NOD and BDD100K.

Method Publication BDD100K RAW-NOD
YOLOv3 Redmon & Farhadi (2018) - 0.298 0.425
+Retinexformer Cai et al. (2023) ICCV 2023 0.280 0.424
+Zero-DCE Guo et al. (2020) CVPR 2020 0.299 0.409
+LEDNet Zhou et al. (2022) ECCV 2022 0.275 0.410
+FourierDiff Lv et al. (2024) CVPR 2024 0.269 0.400
+DarkIR Feijoo et al. (2025) CVPR 2025 0.289 0.420
MAET Cui et al. (2021) ICCV 2021 0.312 0.429
CIConv Lengyel et al. (2021) ICCV 2021 0.320 0.429
Sim-MinMax Luo et al. (2023) ICCV 2023 0.346 0.433
DAI-Net Du et al. (2024) CVPR 2024 0.336 0.445
IBC (Ours) - 0.386 0.465

spatially aligning features between blurry/sharp objects, demonstrating the feature misalignment
and the effectiveness of our region-level alignment.

F MORE IMPLEMENTATION DETAILS

We train all the zero-shot models for 80 epochs on the training sets of daytime datasets and fine-tune
them for 12 epochs on the union of training and validation sets of nighttime datasets. The batch size
is 16. We adopt an SGD optimizer Ruder (2016), set the learning rate to 1e-3, and adopt a Cosine
Learning Rate Deacy. We perform all the experiments using two Nvidia GeForce RTX 4090 GPUs
on a Linux system. The results are averaged over three runs.

Daytime-Nighttime dataset pairs. We conduct two daytime-nighttime dataset pairs:
COVO18−NightVision and COCO12−ExDark Loh & Chan (2019), where each subscript indicates
the same number of categories as the corresponding nighttime dataset. Notably, COCO12 is to-
tally sourced from COCO Lin et al. (2014) while COVO18 is additionally sampled from PASCAL
VOC Everingham et al. (2010). The information about datasets is summarized in Table 6.

G ZERO-SHOT EVALUATIONS ON OTHER DATASETS

To further validate the effectiveness of our IBC approach, we conduct zero-shot evaluations on
two additional datasets: BDD100K Yu et al. (2020) and RAW-NOD Morawski et al. (2022). For
BDD100K, we partition the dataset following its original annotations, utilizing daytime scenes for
training and nighttime scenes for evaluation. For RAW-NOD, we construct a training set by sam-
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(a) ρ (b) S (c) α (d) β

Figure 11: Analysis of different hyper-parameters on NightVision.

Table 8: Analysis of exposure factor e on NightVision.

Dataset [0, 0.1] [0, 0.15] [0, 0.2] [0, 0.25]
Separate Joint Separate Joint Separate Joint Separate Joint

NightVision 0.508 0.519 (+1.1%) 0.509 0.522 (+1.3%) 0.510 0.525 (+1.5%) 0.509 0.522 (+1.3%)
ExDark 0.521 0.530 (+0.9%) 0.523 0.534 (+1.1%) 0.523 0.539 (+1.6%) 0.523 0.536 (+1.3%)

Table 9: Ablation results (mAP) of Box Expanding.

Dataset IBC (Ours) w/o Box Expanding
NightVision 0.525 0.506 (-1.9%)
ExDark 0.539 0.521 (-1.8%)

pling daytime images from COCO Lin et al. (2014) according to RAW-NOD’s object categories,
while employing the RAW-NOD test set for evaluation. All experimental configurations maintain
consistency with those established in the main text. The results (mAP) are provided in Table 7.

As shown in Table 7, our method consistently outperforms other competitive enhancement and zero-
shot methods on both BDD100K and RAW-NOD datasets. It can be observed that due to the con-
sideration of motion blur in low-light environments, our method achieves a higher performance
improvement (8.8% mAP) over the baseline on BDD100K dataset which contains a large number of
traffic dynamic scenarios. These results further demonstrate the superior zero-shot generalizability
of our method in low-light object detection.

H MORE ABLATION STUDIES

H.1 HYPER-PARAMETERS ANALYSIS

The probability ρ of image blurring. Fig. 11a examines the impact of ρ. The results indicate
that the involvement of motion blur brings general enhancements where ρ = 0.75 achieves the best
result.

The size S of region features. Fig. 11b ablates the impact of S. The results indicate that perfor-
mance rises initially and then falls as S increases. One possible explanation is that a small S loses
spatial information of large-sized objects, while a large S results in sparse spatial information of
small-sized objects, and S = 7 achieves the best balance.

The balanced factor α. Fig. 11c examines the impact of α in Eq.11. It can be observed that the
involvement of the instance-level consistency loss contributes to enhancing the performance, and
α = 1.0 yields the best result.

The balanced factor β. Fig. 11d ablates the impact of β in Eq.11. The results show that when β =
1.0, the multi-level consistency loss could regularize the detector to achieve the best performance.

The exposure factor e. As shown in Table 8, we analyze separate (different e) and joint (shared e)
controls of brightness/blur within different ranges, where the results (mAP) justify our joint control’s
superiority, with [0, 0.2] yielding the best.
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Figure 12: Visualization of Synthetic Blurry Evaluation.

Table 10: Comparison results
(mAP) on RAW nighttime data.

Methods LIS (RAW)
Original Syn. Blurry ∆ (%)

Faster-RCNN 0.374 0.253 -12.1
Chen et al. (2023) 0.566 0.453 -11.3
IBC (Ours) 0.587 0.531 -5.6

Table 11: Comparison results (mAP) on daytime data.

Datasets YOLOv3 CIConv MAET Sim-
MinMax DAI-Net IBC

(Ours)

COVO18
Ori. 0.505 0.506 0.511 0.516 0.513 0.521
Syn. 0.417 0.415 0.420 0.425 0.420 0.465

COCO12
Ori. 0.526 0.529 0.532 0.533 0.530 0.541
Syn. 0.426 0.419 0.411 0.430 0.427 0.483

H.2 BOX EXPANDING

To study the effectiveness of Box Expanding, we remove this operation from our IBC. The results
in Table 9 show that removing Box Expanding greatly degrades the performance of IBC, due to the
feature misalignment between blurred/original objects. This also verifies the effectiveness of Box
Expanding.

I VISUALIZATION OF SYNTHETIC BLURRY EVALUATION

Here we provide the visualization of Synthetic Blurry Evaluation to highlight the effectiveness of our
method. Examples in Fig. 12 show that our method can accurately localize both sharp and synthetic
blurry objects while others fail.

J GENERALIZATION TO OTHER DOMAINS

RAW Nighttime Domain. RAW-based low-light detection is a compelling direction since RAW
images contain more original information than sRGB data Chen et al. (2023); Guo et al. (2025).
To study the generalizability of IBC over RAW images, we replace our darkening pipeline with
the RAW-based synthetic pipeline of Chen et al. (2023), and motion blur is generated on the de-
mosaicked RAW images. The models are trained on the COCO Lin et al. (2014) and evaluated on
the LIS dataset Chen et al. (2023). Notably, we did not conduct real-world blurry evaluation as
LIS is collected under a stable system, hence there were no blurry images. The baseline is Faster-
RCNN Ren et al. (2016). The results in Table 10 justify our method which significantly outperforms
the baseline and presents less performance degradation in synthetic blurry RAW images.

Daytime Domain. In addition to low-light data, we also evaluate the methods on daytime datasets
in Table 11. These results verify that our method remains generalizable over original (Ori.) and
synthetic blurry (Syn.) daytime data.

K ETHICS STATEMENT

The images of NightVision are CC0/CC BY 4.0 licensed, and all image provenance is included in
the metadata to avoid potential copyright disputes. Before the release of NightVision, all identifi-
able content will undergo verification and blurring to safeguard privacy. The dataset is for academic
purposes only and not for commercial usage. We confirm that we bear all responsibility in case of
violation of rights during the collection of data on NightVision, ensuring accountability and com-
mitment to maintaining ethical standards. We will take appropriate action when needed.
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L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we only used large language models to correct grammar errors and polish the writing.
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