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ABSTRACT

Large language model (LLM) generation often requires balancing output quality
against inference cost, especially when using multiple generations. We introduce
a new framework for inference-time optimization based on the classical Pandora’s
Box problem. Viewing each generation as opening a costly “box” with random
reward, we develop algorithms that decide when to stop generating without know-
ing the underlying reward distribution. Our first contribution is a UCB-style Pan-
dora’s Box algorithm, which achieves performance that is provably close Weitz-
man’s algorithm, the optimal strategy when the distribution is known. We further
adapt this method to practical LLM settings by addressing reward scaling across
prompts via a Bradley–Terry inspired transformation. This leads to an adaptive
inference-time optimization method that normalizes rewards and learns stopping
thresholds on the fly. Experiments on the AlpacaFarm and HH-RLHF datasets,
using multiple LLM–reward model pairs, show that our adaptive strategy can ob-
tain the same performance as non-adaptive Best-of-N sampling while requiring
15-35% fewer generations on average. Our results establish a principled bridge
between optimal stopping theory and inference-time scaling, providing both theo-
retical performance bounds and practical efficiency gains for LLM deployment.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed in applications where both quality and
efficiency are critical (Achiam et al., 2023; Hoffmann et al., 2022). A widely used approach to
improve generation quality is Best-of-N sampling: generate N candidate responses, score them
with a reward model, and select the best (Nakano et al., 2021; Touvron et al., 2023). While effective,
this approach wastes compute: the number of generations is fixed in advance, even if an acceptable
output is found early or if a prompt is inherently easy (Wang et al., 2025; Sun et al., 2024; Manvi
et al., 2024). As models scale and inference costs rise, the need for adaptive inference-time strategies
that dynamically balance quality and compute has become urgent (Snell et al., 2025; Jin et al., 2025).

Several recent methods have sought to improve inference-time efficiency. Reranking strategies (e.g.,
Best-of-N , rejection sampling, majority-vote) improve quality but rely on over-generation, making
them computationally expensive (Wang et al., 2025; Manvi et al., 2024; Jain et al., 2023; Wang et al.,
2022). Speculative decoding accelerates sampling by offloading work to a smaller draft model, but it
does not address how many generations to produce (Leviathan et al., 2023; Chen et al., 2023). Early
stopping heuristics exist in practice, yet they lack theoretical guarantees and often underperform on
difficult prompts (Agrawal et al., 2024; He et al., 2025; Wei et al., 2025). Overall, there lacks a
principled framework for deciding when to stop generating while maintaining near-optimal reward.

In this paper, we introduce a new perspective by connecting LLM inference with the classical Pan-
dora’s Box problem from optimal stopping theory (Weitzman, 1978). In our view, each generation
corresponds to opening a costly “box” that yields a random reward. The task is to decide whether
to stop and accept the best reward so far or continue generating, without knowing the underlying re-
ward distribution. This abstraction provides a rigorous foundation for inference-time optimization,
subsuming heuristics like Best-of-N as special cases.

Our Contributions. We develop both theoretical and practical foundations for adaptive LLM in-
ference on the following three fronts:
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1. A UCB-style Pandora’s Box algorithm. We propose the first stopping strategy that adapts
to unknown reward distributions. By maintaining anytime-valid confidence bounds on the
optimal stopping threshold, our algorithm guarantees vanishing regret relative to Weitz-
man’s optimal policy, which assumes full distributional knowledge. 1

2. A practical adaptive meta-generation framework. To handle cross-prompt reward scal-
ing issues, we introduce a Bradley–Terry inspired transformation that normalizes rewards.
This yields a general-purpose meta-generation procedure that dynamically learns stopping
thresholds.

3. Empirical validation. On the AlpacaFarm and HH-RLHF dataset, across multiple
LLM–reward model pairs, our adaptive strategy achieves the same reward as non-adaptive
Best-of-N sampling while requiring 15-35% fewer generations on average. This estab-
lishes that principled stopping rules yield concrete efficiency gains in realistic settings.

1.1 RELATED WORKS

Inference-Time Optimization. A growing body of work studies how to allocate inference-time
compute more effectively. Beyond Best-of-N , (Nakano et al., 2021; Touvron et al., 2023; Wang
et al., 2025; Sun et al., 2024; Manvi et al., 2024), recent methods frame test-time scaling as adap-
tive self-calibration (Huang et al., 2025; Qu et al., 2025). Chain-of-thought prompting and self-
consistency (Wei et al., 2022; Wang et al., 2022) also improve reliability by generating multiple
reasoning paths, though at the cost of substantial extra compute. Lastly, Snell et al. (2025) show that
prompt-adaptive compute allocation can outperform model scaling, while Jin et al. (2025) analyze
energy–accuracy tradeoffs. See the survey by Welleck et al. (2024) for a comprehensive review.

Early Stopping, Confidence, and Adaptive Decoding. Several works address the question of
when to stop allocating further computation. Classic approaches include adaptive computation time
(Graves, 2016) and confident adaptive decoding (Schuster et al., 2022). Agrawal et al. (2024) pro-
pose an entropy-based stopping rule during speculative decoding, adaptively halting draft expansion
when confidence is sufficient. He et al. (2025) introduce an uncertainty-guided mechanism for code
generation, pausing and reranking when uncertainty is high. Similarly, Wei et al. (2025) leverage
adaptive layerwise exits to accelerate decoding without sacrificing accuracy. These approaches share
our motivation of minimizing unnecessary compute while preserving output quality.

Pandora’s Box and Optimal Stopping. Our approach draws inspiration from the Pandora’s Box
problem, a classic framework in optimal stopping (Weitzman, 1978). Recent advances have ex-
panded this framework into online and learning-theoretic domains Esfandiari et al. (2019); Gergat-
souli & Tzamos (2022); Atsidakou et al. (2024), establishing important connections with prophet
inequalities and multi-armed bandit formulations (Gatmiry et al., 2024; Xie et al., 2024). While
this problem has generated substantial theoretical insights across various domains, its application to
LLM inference remains unexplored. Our work brings this perspective to test-time optimization by
framing candidate generation as opening costly boxes.

We review other related works in Appendix B.

2 PRELIMINARIES

2.1 NOTATION

Let X denote the space of prompts and Y be the space of responses. A Large Language Model
(LLM) π : X → ∆Y maps a prompt to a distribution over responses, where we let ∆Y denote the
set of all distributions on Y . A reward model is a function r : X × Y → R that maps a prompt and
a response to a real-value. Given a prompt x ∈ X , LLM π, and reward model r, we use Dr,π(x)

to denote the distribution over rewards induced by passing x to π, sampling y ∼ π(x), and then
computing r(x, y). We will often just use D as shorthand and use F to denote its CDF and f to
denote its PDF, omitting dependence on π, x and r when those are clear from context.

1We note, however, that Weitzman’s algorithm applies to multiple box types. Our results are concerned with
the i.i.d. special case, though we expect effective the natural generalization of our approach to multiple boxes
will apply to generation from LLM ensembles
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2.2 TEST-TIME STEERING AND BEST-OF-N SAMPLING

After the pre-training stage, the focus often shifts from learning general language ability to steering
a model’s outputs toward more desirable responses. One way to formalize this is through a reward
model r : X × Y → R, which assigns higher scores to responses y for a given prompt x when they
exhibit preferred properties. The objective is then to generate outputs that achieve high reward under
r at test time. There are two broad ways to influence the outputs of a pre-trained model:

(i) Fine-tuning. Techniques such as reinforcement learning from human feedback (RLHF) fine-
tune the model so that high-reward responses are more likely (Christiano et al., 2017; Ouyang et al.,
2022).

(ii) Test-time steering. Instead of additional training, these methods rely purely on how inference
is conducted. Test-time steering treats compute at generation time as the resource to be allocated,
biasing outputs toward higher-reward responses by modifying the decoding process (Welleck et al.,
2024).

A simple and widely studied test-time approach is Best-of-N sampling (Nakano et al., 2021; Tou-
vron et al., 2023). For a given prompt x, we generate N candidate responses y1, . . . , yN ∼ π(x),
evaluate each with r(x, yi), and select the response with the highest score. Best-of-N has been
shown to substantially improve output quality across tasks, both empirically and theoretically, (Wang
et al., 2025; Sun et al., 2024; Beirami et al., 2024; Yang et al., 2024), but it can be computationally
expensive since it requires N forward passes per prompt, with N fixed in advance. Moreover, in
practice, N is typically fixed. However, some prompts may yield strong candidates after only a few
samples, while others require more, making a uniform budget potentially wasteful. This motivates
the design of adaptive test-time strategies that allocate compute more efficiently across prompts.

2.3 OPTIMAL STOPPING, PANDORA’S BOX, AND WEITZMAN’S ALGORITHM

The Pandora’s Box problem (Weitzman, 1978) is a classical optimal stopping problem: a decision-
maker faces k boxes, each box i ∈ [k] containing a reward drawn from a known distribution Di and
requiring an opening cost ci > 0. The objective is to adaptively decide which boxes to open and
when to stop, maximizing the best observed reward minus total costs. Once opened, a box’s reward
can be claimed at any time.

This framework maps naturally to LLM generation. For a prompt x, an LLM π samples responses
from π(x), with rewards assigned by a deterministic model r, inducing a reward distributionDr,π(x).
Each generation incurs a computational cost c that depends on the prompt, model, and reward func-
tion. Thus, generating responses mirrors opening boxes: each sample reveals a reward at cost c, and
the decision-maker must trade off computation against reward.

A particularly relevant special case is when all boxes share the same distribution D and cost c,
modeling repeated queries to a single LLM. We focus on this setting throughout, though extensions
to multiple LLMs are natural directions for future work.

A fundamental concept in solving this problem is the fair-cap value, the threshold where expected
excess reward exactly covers the opening cost.

Definition 1 (Fair-cap value). Let D be a distribution and c > 0 be the cost value for each sample.
The fair-cap value τ ∈ R associated with (D, c), denoted τ(D, c), is the number satisfying the
equality Ev∼D [[v − τ ]+] = c, where [·]+ = max(0, ·).

Weitzman’s celebrated algorithm provides the optimal stopping strategy using fair-cap values when
distributions are known. Though Weitzman’s algorithm is defined for an arbitrary collection of not-
necessarily-identical distributions in general, we describe its special case for infinitely-many boxes
with identical distributions below. This corresponds to our focus on a single LLM which can be
queried an unbounded number of times.

Definition 2 (Weitzman’s Algorithm for infinitely-many identical boxes). Let D be a known dis-
tribution, c > 0 be the cost value for each sample, and τ := τ(D, c) be the fair-cap value.
The algorithm samples from D until it observes a report exceeding τ . More formally: Letting
v1, v2, · · · ∼ D∞ be a countably infinite sequence of i.i.d. rewards, the stopping time of Weitzman’s
algorithm is the random variable TW := inf{n ≥ 1 : maxi≤n vi ≥ τ}.

3
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In practice, reward distributions are effectively unknown. While implicitly encoded in the model
weights, they lack compact representation and are only accessible through sampling. The meta-
generation problem thus becomes a Pandora’s Box problem with an unknown single distribution but
known cost value. To evaluate algorithms in the unknown distribution setting, we compare against
an oracle that knows the true distribution and executes Weitzman’s algorithm optimally.
Definition 3 (Additive Sub-optimality Gap). Consider distribution D with cost c. Let W denote
Weitzman’s optimal policy with full knowledge of D, achieving net payoff RW (maximum reward
minus total costs). For any policy S that learns D only through sampling, with payoff RS , the
additive sub-optimality gap is ED[RW −RS ].

In general, if the reward distribution is allowed to be picked completely adversarially, then there is
no hope for designing a single, minimax optimal stopping policy S whose additive sub-optimality
gap is uniformly bounded across all distributions. As a result, we will assume that we have a known
distribution family F such that the unknown D ∈ F .

3 PANDORA’S BOX WITH UNKNOWN REWARD DISTRIBUTIONS

When the distribution D is unknown, the fair-cap value τ must be learned from data. Our main
algorithm, UCB Pandora’s Box, adapts the upper confidence bound (UCB) principle from multi-
armed-bandit theory (Auer et al., 2002). The algorithm iteratively samples rewards and uses them
along with the family F to construct an upper confidence bound τ+ on the fair-cap value τ . It stops
once the maximum observed rewardM exceeds the UCB on τ . Pseudo-code is given in Algorithm 2.

The specific update for the UCB τ+ depends on F and the method for constructing confidence
bounds for τ . In particular, F must be “nice” enough to admit an anytime-valid confidence sequence
for τ . We define this rigorously and provide one such example in Section 3.1. In practice, the
confidence parameter is a hyperparameter that influences the exploration-exploitation balance.

3.1 MAIN THEORETICAL RESULT

As previously highlighted, UCB Pandora’s Box requires an anytime-valid upper confidence bound
on the fair-cap value τ . Definition 4 makes this precise.
Definition 4 (Anytime Valid Upper Confidence Bound on the Fair-cap Value). Let F be a family of
distributions and c > 0 be the cost value for each sample. A function τ+ : N× (0, 1)× R⋆ → R is
an anytime valid upper confidence bound of the fair-cap value with width function σ : N×(0, 1)×R
for F if for every δ ∈ (0, 1) and D ∈ F , we have

Pv1:∞∼D∞
[
∀n ∈ N : τ ∈ [τ+δ (n, v1:n)− σδ,τ (n), τ+δ (n, v1:n)]

]
≥ 1− δ.

where τ = τ(D, c) is the fair-cap value.

If F is a parametric family of distributions, the fair-cap value often admits a simple monotonic de-
pendence on the distribution’s parameters. This observation allows us to obtain an upper confidence
bound on the fair-cap value by applying the same monotonic transformation to an upper confidence
bound on the parameters themselves. For example, in Section 6 we show that when F is the class
of Exponential distributions, an upper confidence bound on the mean directly yields an upper con-
fidence bound on the fair-cap value. More generally, constructing a confidence sequence for τ can
be reduced to two steps: (1) build a confidence sequence for the distribution’s parameters, and (2)
propagate it through the monotonic mapping to obtain a confidence sequence for the fair-cap value.

We now present Theorem 5, our main theoretical result of this section, which upper bounds the
additive sub-optimality gap of UCB Pandora’s Box algorithm.
Theorem 5 (Upper bound on Additive Sub-optimality). LetF be a family of distributions and c > 0
be the cost value for each sample. Let τ+δ (n, v1:n) be an anytime upper confidence bound with
deterministic width σδ,τ (n) for F according to Definition 4. i.e., for every distribution D ∈ F , on

the eventEδ :=
{
∀n ≥ 1 : τ ≤ τ+δ (n, v1:n) ≤ τ+σδ,τ (n)

}
we have that Pv1,v2,···∼D(Eδ) ≥ 1−δ.

Consider the two stopping policies:

• Weitzman policy: TW := inf{n ≥ 1 : maxi≤n vi ≥ τ} w/ RW := maxi≤TW
vi − c TW .

4
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• UCB policy: TU := inf{n ≥ 1 : maxi≤n vi ≥ τ+δ (n, v1:n)}w/RU := maxi≤TU
vi−c TU .

Then for every D ∈ F and δ ∈ (0, 1), we have that

ED [(RW −RU )1Eδ
] ≤

∞∑
n=1

σδ,τ (n) (1− FD(τ))
(
F n−1
D

(
τ + σδ,τ (n)

)
− F n−1

D (τ)
)
,

where FD is the CDF of D and τ = τ(D, c) is the fair-cap value of D.

The proof of Theorem 5 can be found in Appendix E.

3.2 EXAMPLE: EXPONENTIAL DISTRIBUTION WITH UNKNOWN PARAMETER λ

The upper bound in Theorem 5 is abstract and instance-dependent. To obtain a more concrete result,
we instantiate it with the family F of Exponential distributions parametrized by λ ∈ (0, 1/(ce)].

For λ in this range, let Dλ ∈ F denote the Exponential distribution with rate λ, with CDF Fλ(x) =
1 − e−λx and PDF fλ(x) = λe−λx. The restriction 1

λ ≥ ec ensures that the sampling cost c is at
most 1/e of the expected reward. Indeed, if c > 1/λ, not even a single sample would be worthwhile.

Theorem 6 provides an any-time valid UCB on the fair-cap value for distributions in F .
Theorem 6 (Anytime-valid Upper Confidence Bound for Exponential Fair-cap value). Let c > 0 be
the sampling cost and F be the class of Exponential distributions with parameter λ ∈ (0, 1

c·e ]. Then,

the function τ+δ (n, v1:n) = µ̂n(1 + rδ(n)) log
(
µ̂n(1+rδ(n))

c

)
with width function σδ,τ (n) = 16τ ·

rδ(n) is an anytime valid upper confidence bound on the fair-cap value, where µ̂n = 1
n

∑n
i=1 vi,

and rδ(n) := min

{
1
2 ,

√
6
n log

(
2n(n+1)

δ

)}
.

The proof of Theorem 6 (Appendix E.2) proceeds by expressing the fair-cap value of an Exponential
distribution as a monotonic function of its mean, constructing an anytime-valid UCB for the mean,
and then transferring this bound to the fair-cap value. With Theorem 6 in hand, we can now explicitly
compute the right-hand side of the expected sub-optimality gap in Theorem 5.

Corollary 7 (Sub-optimality gap upper bound for Exponential distribution). Let c > 0 be the sam-
pling cost and F be the class of Exponential distribution with parameter λ ∈ (0, 1

c·e ]. Then, for
every δ ∈ (0, 1) and Dλ ∈ F we have that

∞∑
n=1

σδ,τ (n) · (1− Fλ(τ)) · (Fn−1
λ (τ + σδ,τ (n))− Fn−1

λ (τ)) ≤ Õδ
(
1

λ

)
,

where σδ,τ (n) is defined as in Theorem 6, τ = τ(Dλ, c) is the fair-cap value, and Õδ(·) hides
polylog terms of 1

δ . As a result, we have that for every δ ∈ (0, 1) and Dλ ∈ F the additive sub-
optimality gap for UCB Pandora’s Algorithm satisfies EDλ

[(RW −RU )1Eδ
] ≤ Õδ

(
1
λ

)
.

At a high level, Corollary 7 (proved in Appendix E.2) shows that under eventEδ (see Theorem 5), the
expected sub-optimality gap of UCB Pandora’s Box is bounded by the mean 1/λ (up to logarithmic
factors in δ). In Section 4, we leverage these results to develop prompt-adaptive inference-time
optimization methods.

4 APPLYING UCB PANDORA’S BOX TO INFERENCE-TIME OPTIMIZATION

Building on the connection between test-time steering and the Pandora’s Box problem established in
Section 2.3, we now cast inference-time optimization as an instance of the Pandora’s Box problem.
Each generation from the base LLM can be viewed as opening a costly box whose payoff is the
reward assigned by r. The challenge is to decide when to stop sampling: too early risks missing high-
reward outputs, while too late wastes computation. In what follows, we develop adaptive stopping
rules that navigate this tradeoff without prior knowledge of the underlying reward distribution.

5
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4.1 THE REWARD SCALING CHALLENGE

A key subtlety in framing inference-time optimization as a Pandora’s Box problem is deciding what
makes a response “high quality.” Using a fixed reward threshold is inadequate because reward scales
vary dramatically across prompts. For example, Figure 4 in Appendix D shows large variance in
median rewards across 100 prompts, even when evaluated with the same model.

To enable cost-shared semantics across prompts with different reward scales, we adopt a percentile-
based approach. Specifically, we select a gold standard percentile α of the reward distribution as our
quality benchmark. This choice naturally adapts to each prompt’s reward scale while maintaining
consistent quality standards. Throughout our work, we set α = 0.99 to compete with best-of-N
sampling (where typically α ≈ 1 − 1

N ), though practitioners may adjust this parameter based on
quality requirements. We formalize this approach through what we term the “acceptance criterion”:
Definition 8 (Acceptance Criterion). A response y ∈ Y to prompt x ∈ X is acceptable with respect
to the LM-reward model pair (π, r) if its reward r(x, y) exceeds the α-percentile of the reward
distribution Dr,π(x), denoted Dα

r,π(x). We set α = 99 throughout, though larger values correspond
to stricter acceptance.

Even so, scaling issues remain. For two prompts x1 and x2, the 99th percentiles Dα
r,π(x1)

and
Dα
r,π(x2)

may differ greatly (e.g., Dα
r,π(x1)

≪ Dα
r,π(x2)

), yet exceeding either yields the same utility
B. This mismatch between reward magnitude and utility motivates the need for normalization.

4.2 BRADLEY-TERRY TRANSFORMATION FOR REWARD NORMALIZATION

We resolve the scaling issue through a transformation inspired by the Bradley–Terry model, which
also underlies RLHF training (Bradley & Terry, 1952; Christiano et al., 2017). In RLHF, the prob-
ability of preferring response A over B is modeled as erA

erA+erB , where rA and rB are their rewards.
We adapt this idea by comparing each response against an acceptance threshold.
Definition 9 (Acceptance Rate). The acceptance rate of a response y with reward vy = r(x, y) with

respect to threshold κ is defined as ARκ(v) = min
{
2 · ev

ev+eκ , 1
}
.

This transformation maps rewards into [0, 1]. The Bradley–Terry term ev

ev+eκ represents the prob-
ability of preferring a response with reward v over one with reward κ. Intuitively, the acceptance
rate approximates the probability that an end-user accepts the response: below-threshold responses
are accepted in proportion to their quality relative to κ, while at- or above-threshold responses are
accepted with certainty. This normalization enables consistent comparisons across prompts with
different reward scales. In our application, we set κ = Dα

r,π(x) as in Definition 8, making accep-
tance rates prompt-, model-, and reward-dependent. However, as the true distribution is unknown,
we estimate Dα

r,π(x) from samples, which proves sufficiently accurate.

The acceptance rate naturally induces a utility function.
Definition 10 (Utility Function). For an acceptance threshold κ, the utility function uκ : R→ [0, B]
maps rewards to utilities via uκ(v) = B ·ARκ(v), where B > 0 is the maximum achievable utility.

Here, responses below the threshold map to utilities in [0, B), while acceptable responses map ex-
actly to B. When κ = Dα

r,π(x), ARκ(v) is the probability that a response with reward v is ac-
cepted, B is the utility of an accepted response, and hence uκ(v) is the expected utility of a response
with reward v (assuming rejected responses get no utility). Pushing the reward distribution Dr,π(x)

through uκ yields the utility distribution Uκ,r,π(x) := uκ(Dr,π(x)) supported on [0, B]. Setting cost
c ∈ [0, B] then allows direct comparison of generation costs with achievable utilities.

4.3 THE ADAPTIVE ALGORITHM

We are now ready to adapt the UCB Pandora’s Box Algorithm from Section 3.1 to the Best-of-N
inference-time optimization setting. Given a prompt x ∈ X , LLM π, and reward model r, our
algorithm sequentially generates responses and adaptively decides when to stop. After collecting a
minimum number of samples, it estimates the reward distribution’s tail. To do so, we exponentiate

6
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the rewards and fit a shifted exponential distribution to the right-tail values (those above the median).
From this fit, we construct both upper and lower confidence bounds (UCB/LCB) on the scale of the
exponential distribution. The LCB on the scale is then used to derive a conservative estimate of
the α percentile of the exponentiated rewards, while the UCB is used to bound the tail distribution
itself. This combination yields an upper confidence bound on the fair-cap value of the true utility
distribution. If the utility of the best reward observed so far exceeds this fair cap, the algorithm
terminates; otherwise, it continues sampling. Pseudocode is given in Algorithm 1.

Algorithm 1 Adaptive Best-of-N Sampling via UCB Pandora’s Box
Parameters: Cost c, Max utility B, Minimum samples t, Percentile α, Confidence parameter δ.
Input: LLM π, reward model r, prompt x

1: Initialize: S = ∅ (observed rewards) and M = −∞ (max reward)
2: while True do
3: Generate response y ∼ π(x) and compute its reward ry = r(x, y).
4: Update M ← max{M, ry} and S ← S ∪ {ry}.
5: if |S| ≥ t then
6: —Right Tail Estimation via Exponential Distribution—
7: Estimate tail shift θ̂ ← emedian(S) and scale of shifted tail µ̂ ← mean({er − θ : r ∈

S such that r > median(S)}).
8: Apply upper and lower confidence estimation:

µucb ← µ ·

(
1 +

√
log |S| · log(1/δ)

|S|

)
µlcb ← µ ·

(
1−

√
log |S| · log(1/δ)

|S|

)
.

9: Let D̂ucb ← ShiftedExp(θ, 1
µucb

) and D̂lcb ← ShiftedExp(θ, 1
µlcb

) be shifted exponential
distributions with shift parameter θ and scales 1

µucb
and 1

µlcb
respectively.

10: —Utility Transformation and Fair Cap Computation—
11: Let D̂α

r,π(x) ← log(Percentileα(D̂
lcb)) be a LCB estimate of Dα

r,π(x).

12: Define utility distribution Û ← uκ(log(D̂
ucb)) where κ = D̂α

r,π(x).

13: Compute fair-cap value τ for (Û , c).
14: if uκ(M) ≥ τ then
15: break
16: end if
17: end if
18: end while
19: Return the response with reward M

Implementation Efficiency. The algorithm can be implemented with negligible overhead rela-
tive to generation costs. A priority queue maintains the median and tail statistics with O(log n)
updates and O(1) queries, while streaming updates eliminate redundant computation. Key distribu-
tional operations are closed-form. For example, the α-percentile of the shifted exponential distribu-
tion is computed in O(1) time from an analytical formula. Fair-cap computation requires solving
E[max(v − τ, 0)] = c for the threshold τ . We approximate the expectation via a Riemann sum with
∼5000 intervals. Empirically, this achieves under 1% relative error. The subroutine executes over
100 times per second2, enabling real-time adaptation during generation. In practice, the overhead of
adaptive stopping is negligible as LLM and reward model forward passes dominate runtime.

4.4 TARGET ACCEPTANCE RATE VARIANT

Algorithm 1 requires specifying the utility B and cost c, which may be difficult to estimate in prac-
tice. To address this, we provide an alternative formulation that instead targets a desired acceptance
rate. Rather than computing the fair-cap value from utility–cost tradeoffs, this variant sets a target
acceptance rate τtarget ∈ [0, 1] that encodes the desired quality level relative to the acceptance thresh-
old. For example, τtarget = 0.9 seeks responses nearly as good as acceptable ones, while τtarget = 1

2Measured on a single core of an AMD EPYC 7513 32-Core Processor.
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Figure 1: Our algorithm (red) matches optimal non-adaptive performance across varying cost ratios.

requires fully acceptable responses. The algorithm proceeds identically to Algorithm 1 except that
the stopping condition is now fixed: it halts when ARD̂α

r,π(x)
(M) ≥ τtarget

3. This formulation is

useful in settings where quality requirements are clear but utilities are hard to quantify, for instance,
when “good enough” responses are well-defined but the value of marginal improvements is ambigu-
ous.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate our adaptive Best-of-N algorithm on 100 prompts from AlpacaFarm (Dubois et al.,
2023) and 100 from HH-RLHF (Bai et al., 2022). We use four LLM (Google-Gemma-2 (9B),
Meta-Llama-3.1 (8B), Mistral-Instruct-v0.3 (7B), Qwen-2.5 (7B)) and two reward models (FsfairX-
LLaMA3-RM-v0.1, RM-Mistral-7B; Dong et al., 2023; Xiong et al., 2024). This yields 1,600 gen-
eration profiles (2 datasets × 100 prompts × 4 LLMs × 2 reward models). For each profile, we
generate 960 responses, compute rewards, and randomize response–reward orderings 100 times to
remove ordering effects. We always fix the max utility B = 1, and only vary the cost c.

We benchmark against non-adaptive Best-of-N across three tasks: (1) profit optimization, comparing
utility–cost tradeoffs; (2) win rate analysis, under fixed compute budgets; and (3) efficiency gains,
measuring compute savings at target quality levels. More experimental results are in Appendix F.

5.2 EXPERIMENT 1: PROFIT OPTIMIZATION

We evaluate how well our adaptive algorithm maximizes profit (utility minus total cost) relative to
the best non-adaptive strategy. We consider four cost-to-utility ratios: 0.002, 0.001, 0.0004, 0.0002.
Figure 1 reports results for Mistral-Instruct-v0.3 (7B) with the RM-Mistral-7B reward model. The
adaptive algorithm (red) either closely approximates or outperforms the profit envelope defined
by the best non-adaptive strategies (blue/green), automatically achieving this performance with-
out knowing the optimal N in advance. Across all 1,600 generation profiles, the adaptive method
outperforms the generator-dependent best non-adaptive algorithm in nearly all cases, demonstrating
clear superiority (Figure 5).

5.3 EXPERIMENT 2: WIN RATE UNDER FIXED BUDGET

We compare our adaptive algorithm with non-adaptive Best-of-N under equal computation budgets.
For each prompt x, LLM π, and cost c ∈ [10−5, 10−3], we: (1) run the adaptive algorithm on 100
random orderings and record the average sample count nπ,x,c, (2) run non-adaptive Best-of-N with
N = nπ,x,c on the same orderings, and (3) compare maximum rewards, awarding half credit for ties.
Figure 2 shows the results. The adaptive algorithm consistently outperforms non-adaptive Best-of-
N , with win rates exceeding 54% across most cost settings. Gains are largest when costs are low
(permitting more samples) or budgets are higher, where adaptive stopping better exploits variation
across prompts. Figure 6 confirms these results across different datasets and reward models.

3In this variant, we estimate D̂α
r,π(x) using D̂ucb. Otherwise, the algorithm tends to stop prematurely by

overestimating the acceptance rate of the maximum sample.
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Figure 2: Win rate of the adaptive algorithm compared to non-adaptive Best-of-N . Adaptive stop-
ping leverages computation more effectively, particularly at lower costs.

Figure 3: Adaptive algorithm achieves specified target acceptance rates while saving 15–35% of
samples compared to non-adaptive Best-of-N .

5.4 EXPERIMENT 3: EFFICIENCY AT TARGET QUALITY LEVELS

We next evaluate the target acceptance rate variant, which allows users to directly specify a desired
quality level. For target rates τ ∈ [0.60, 1] and each configuration (LLM π, prompt x, target τ ), we:
(1) measure the adaptive algorithm’s average acceptance rate aπ,x,τ and sample count nπ,x,τ ; (2)
identify the non-adaptive N⋆ that achieves the same aπ,x,τ ; and (3) compute the efficiency gain

SaveRatioπ,x,τ =
N⋆ − nπ,x,τ

N⋆
.

Figure 3 shows that the adaptive algorithm both tracks the target quality (right) and yields substantial
savings in sample counts (left). For acceptance rates 0.75+, it consistently reduces sampling by 15–
35% relative to non-adaptive methods. Savings increase monotonically with stricter targets, from
∼15% up to ∼35%, reflecting more effective use of learned tail information at higher quality levels.

6 DISCUSSION

We highlight several directions for future investigation. (1) Multi-model inference: Although we
consider a single LLM in this work, the Pandora’s Box framework extends naturally to ensembles
of models, where each model corresponds to a box type with its own cost–quality profile. An open
question is whether adaptive algorithms can automatically route queries across models, reducing the
need for hand-designed cascades (Yue et al., 2023). (2) Tree search and reasoning: Approaches
such as tree-of-thought (Yao et al., 2023) and Monte Carlo tree search (Feng et al., 2023) also involve
sequential explore–exploit trade-offs at each decision point. Optimal stopping may help formalize
when to expand or backtrack in such settings, potentially improving efficiency relative to existing
heuristics.
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A DISCLOSURE OF LLM USAGE

LLMs were used to aid and polish the writing throughout the paper. In addition, LLMs were used
for retrieval and discovery to help write the Related Works section.

B OTHER RELATED WORKS

Extreme Bandits. Another related line of work is the extreme bandit problem, which optimizes
the maximum observed reward rather than cumulative reward (Streeter & Smith; Cicirello & Smith;
Bhatt et al., 2021). This is closely aligned with best-of-N sampling, where one selects the highest-
quality output among multiple candidates. However, most extreme bandit formulations assume
repeated rounds of play, while inference requires efficient decision-making in a single prompt. Our
framework adapts these insights to one-shot inference with explicit cost–quality tradeoffs.

Cascading, Routing, and Hybrid Strategies. Beyond stopping and sampling, researchers have
explored cascaded or routed inference to reduce cost. Chen et al. (2024) escalate from cheaper
to larger models only when necessary, using self-testing to decide. Mohammadshahi et al. (2024)
learn to route prompts among multiple models, balancing cost and performance. These strategies
complement our focus by showing that adaptive allocation can occur across models as well as within
a single model’s sampling process.

C UCB PANDORA’S BOX ALGORITHM

Algorithm 2 provides the exact pseudo-code for the algorithm outlined in Section 3.

Algorithm 2 UCB Pandora’s Box Algorithm
Input: Distribution family F , sampling cost c.
Parameter: Confidence level parameter δ > 0.

1: Initialize S = ∅ (set of observed sample values).
2: Initialize m = −∞ (maximum value seen so far).
3: Initialize τ+ =M0 (a large initial upper confidence bound for the fair cap).
4: while M < τ+ do
5: Query sample and obtain v ∼ D.
6: S ← S ∪ {v}.
7: M ← max{M, v}.
8: Update τ+: Compute the UCB for the fair-cap value τ of (D, c), based on S, F , and the

confidence parameter δ.
9: end while

10: Return: M .

D MISSING FIGURES

Figure 4: Median rewards across 960 generations for 100 prompts from the AlpacaEval dataset.

We find that the median reward across 960 generations can vary significantly across prompts.
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E MISSING PROOFS AND THEORETICAL RESULTS

E.1 PROOF OF THEOREM 5

In this section, we include all missing proofs and helper lemmas needed to prove Theorem 5. The
following helper lemmas will be useful.

Lemma 11. Let D be any distribution, c > 0 be the cost value for each sample, and τ = τ(D, c)
be the fair-cap value according to Definition 1. For every σ > 0, we have that

Ev∼D [[v − (τ + σ)]+] ≥ c− σ · (1− F (τ)),

where F denotes the CDF of D.

Proof. Observe the following sequence of inequalities.

Ev∼D [[v − (τ + σ)]+]− c = Ev∼D [[v − (τ + σ)]+]− Ev∼D [[v − τ ]+]
= Pv∼D [v ≥ τ ]Ev∼D [[v − τ − σ]+ − (v − τ)|v ≥ τ ]
≥ Pv∼D [v ≥ τ ]Ev∼D [v − τ − σ − (v − τ)|v ≥ τ ]
= (1− F (τ)) · (−σ).

Rearranging completes the proof.

Lemma 12. Let D be any distribution, c > 0 be the cost value for each sample and τ = τ(D, c) be
the fair-cap value according to Definition 1. Then, for every n ∈ N and σ > 0 we have that

Pv1:n−1∼Dn−1 [max{v1, . . . , vn−1} ∈ [τ, τ + σ]] ≤ Fn−1(τ + σ) − Fn−1(τ).

Proof. Fix n ≥ 1 and let Mn−1 = max{v1, . . . , vn−1}. Observe that P [Mn−1 ≤ x] = Fn−1(x)
where F is the CDF of D because v1:n−1 are iid draws. Noting that

P [Mn−1 ∈ [τ, τ + σ]] = P [Mn−1 ≤ τ + σ]− P [Mn−1 ≤ τ ]

completes the proof.

Lemma 13. Let D be any distribution, c > 0 be the cost value for each sample, and τ = τ(D, c)
be the fair-cap value according to Definition 1. Then, for every n ∈ N and σ > 0, we have that

Ev1:n∼Dn [∆n1Bn
] ≥ −σ(1− F (τ))P [Bn]

where
∆n := [vn −max{v1:n−1}]+ − c,

and Bn is the event that
max{v1:n−1} ∈ [τ, τ + σ].

Proof. (of Lemma 13) It suffices to prove the lower bound

E [∆n|v1:n−1] ≥ −σ(1− F (τ))

on the event that Bn occurs. Since vn is independent of v1:n−1, we have that

E [∆n|v1:n−1] ≥ E [[vn − (τ + σ)]+]− c ≥ −σ · (1− F (τ)),

where the last inequality follows by Lemma 11.

We are now ready to prove Theorem 5.

Proof. (of Theorem 5) Let c > 0 be the sampling cost and F be any family of distributions that
admits an anytime-valid upper confidence bound τ+δ (n, v1:n) with width function σδ,τ (n). Fix some
D ∈ F and consider the iid sequence v1, v2 · · · ∼ D. let τ = τ(D, c) be the fair-cap value of (D, c)
and F denote the CDF of D. For every δ ∈ (0, 1), let Eδ denote the event in Definition 4.
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For n ≥ 1, write Mn−1 = max{v1:n−1} and define

∆n := [vn −Mn−1]+ − c

and
Bn := {Mn−1 ∈ [τ, τ + σδ,τ (n)]}.

On the event Eδ , the two policies disagree only when event Bn occurs. Hence,

E ((RW −RU )1Eδ
] ≤ E

[ ∞∑
n=1

−∆n1Bn1Eδ

]
.

We aim to use Fubini’s theorem to swap the expectation with the sum. To do so, we need to show
that

∞∑
n=1

E [| −∆n1Bn
1Eδ
|] <∞.

To see this, note that

| −∆n1Bn
1Eδ
| ≤ (c+ [vn −Mn−1]+)1Bn

≤ (c+ [vn − τ ]+)1Bn
,

where the last inequality follows from the fact that on Bn, we have that Mn−1 ≥ τ. Thus, it suffices
to upper bound

E [(c+ [vn − τ ]+)1Bn ] .

By conditioning on Mn−1 and using the tower law, we can write

E [(c+ [vn − τ ]+)1Bn ] = E [E [(c+ [vn − τ ]+)1Bn |Mn−1]]

= E [E [c+ [vn − τ ]+|Mn−1]1Bn
]

= E [E [c+ [vn − τ ]+]1Bn
]

= E [2c1Bn
]

= 2c · P [Bn]

= 2c ·
(
Fn−1(τ + σδ,τ (n))− Fn−1(τ)

)
≤ 2c · Fn−1(τ + σδ,τ (n)),

where the third equality is by independence of vn and Mn−1, the fourth equality is by definition of
τ , and the sixth equality by Lemma 12. Hence,

∞∑
n=1

E [| −∆n1Bn1Eδ
|] ≤ 2c

∞∑
n=1

Fn−1(τ + σδ,τ (n)) <∞,

since σδ,τ (n)→ 0 as n→∞. Accordingly, by Fubini’s, theorem, we have that

E ((RW −RU )1Eδ
] ≤

∞∑
n=1

E [−∆n1Bn1Eδ
] .

By Lemma 13 we have that

∞∑
n=1

E [−∆n1Bn1Eδ
] ≤

∞∑
n=1

σδ,τ (n)(1− F (τ))P [Bn] .

Finally, by Lemma 12, we have that

P [Bn] = Fn−1(τ + σδ,τ (n))− Fn−1(τ),

which completes the proof.
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E.2 PROOF OF COROLLARY 7

In this section, we include all missing proofs and helper lemmas needed to prove Corollary 7.

In order to use Theorem 5, we need to specify several things. First, Lemma14 computes the fair cap
value for an Exponential distribution with parameter λ.

Lemma 14 (Fair-cap value for Exponential distribution). Let Dλ be the exponential distribution

with parameter λ > 0. Then, for every c > 0, the fair cap value τ associated with (D, c) is
log( 1

λc )
λ

Proof. For v ∼ Exp(λ), we have

E [[v − τ ]+] =
∫ ∞

τ

(x− τ)λe−λx =
e−λτ

λ
.

Setting this equal to c > 0 and solving for τ completes the proof.

Next, we need to derive an anytime valid upper confidence bound on the fair-cap value for the
Exponential distribution with parameter λ. Note that an upper confidence bound on 1/λ gives an
upper confidence bound on τ when Dλ is an exponential distribution with parameter λ. Hence, as a
first step, Lemma 15 derives an anytime-valid confidence sequence for the mean of the Exponential
distribution.

Lemma 15 (Anytime-valid Confidence Sequence for Exponential distribution). Fix λ > 0 and let
Dλ be an Exponential distribution with parameter λ. Define

rδ(n) := min

{
1

2
,

√
6

n
log

(
2n(n+ 1)

δ

)}
.

Then, for every δ ∈ (0, 1), we have that

Pv1:∞∼D∞ [∀n ≥ 1 : µ ∈ [µ̂n(1− rδ(n)), µ̂n(1 + rδ(n))]] ≥ 1− δ

where µ = 1
λ and µ̂n = 1

n

∑n
i=1 vi.

Proof. Let λ > 0 and Dλ be an exponential distribution with parameter λ. Let v1, v2, . . . denote a
sequence of iid draws from Dλ. Define wi = vi/µ, where µ = 1/λ. Note that wi ∼ Exp(1). Fix
some n ≥ 1 and define Sn :=

∑n
i=1 wi ∼ Gamma(n, 1). Note that µ̂n

µ = Sn

n . For any s ∈ (0, 1)

we will show that

P
[
µ̂n
µ
≥ 1

1− s

]
≤ e−nψ+(s)

and

P
[
µ̂n
µ
≤ 1

1 + s

]
≤ e−nψ−(s),

where
ψ+(s) :=

s

1− s
+ log(1− s),

and
ψ−(s) := log(1 + s)− s

1 + s
.

Starting with the upper tail, by Markov’s inequality and the MGF of the Gamma(n, 1), we have that

P [Sn ≥ a] = P
[
esSn ≥ esa

]
≤

E
[
esSn

]
esa

= (1− s)−ne−sa.

With a = n
1−s , we have that

P
[
µ̂n
µ
≥ 1

1− s

]
= P [Sn ≥ a] ≤ exp

(
−n
(

s

1− s
+ log(1− s)

))
= e−nψ+(s).
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For the lower tail, we use the fact that x→ e−sx is decreasing to get that

P [Sn ≤ a] = P
[
e−sSn ≥ e−sa

]
≤

E
[
e−sSn

]
e−sa

= (1 + s)−nesa.

Using a = n
1+s , gives that

P
[
µ̂n
µ
≤ 1

1 + s

]
≤ e−nψ−(s).

Now, we show that for any s ∈ (0, 1/2), we have that ψ+(s) ≥ s2

6 and ψ−(s) ≥ s2

6 . For ψ+, define
h+(s) = ψ+(s)− s2/6. Then, note that

h′+(s) =
s

(1− s)2
− s

3
= s

(
1

(1− s)2
− 1

3

)
≥ 2s

3
≥ 0.

Since h+(0) = 0 and h′+ ≥ 0 we have that h+(s) ≥ 0. For ψ−, we have that

ψ−(s) = log(1+s)− s

1 + s
≥
(
s− s2

2

)
−
(
s− s2

1 + s

)
= s2

(
1

1 + s
− 1

2

)
=
s2(1− s)
2(1 + s)

≥ s2

6
,

where the first inequality is due to the fact that log(1 + s) ≥ s − s2

2 for s ∈ (0, 1) and the last
inequality uses the fact that s ≤ 1/2. We now complete the proof by picking a summable sequence
δn. Namely, pick δn = δ

n(n+1) and note that
∑
n≥1 δn = δ. At time n ≥ 1, pick

rδ(n) := min

{
1

2
,

√
6

n
log

(
2

δn

)}
= min

{
1

2
,

√
6

n
log

(
2n(n+ 1)

δ

)}
.

Our previous analysis, then gives that

P [µ /∈ [µ̂n(1− rδ(n)), µ̂n(1 + rδ(n))]] ≤ δn.

Hence, by the union bound, we have that

P [∃n ≥ 1 : µ /∈ [µ̂n(1− rδ(n)), µ̂n(1 + rδ(n))]] ≤
∞∑
n=1

δn = δ,

which completes the proof.

Note that the anytime-valid upper confidence bound on the mean 1/λ given by Theorem 15 can be
computed just from the observed rewards. Hence, it applies to every distribution in our distribution
family F . With Lemma 15 in hand, we can now prove Theorem 6, which gives an anytime-valid
upper confidence bound on the fair-cap value for the family of Exponential distributions.

Proof. (of Theorem 6) Let c > 0 be the sampling cost and F be the class of Exponential distribution
with parameter λ ∈ (0, 1

c·e ]. Fix a distribution Dλ ∈ F . Let τ = τ(D, c) be the fair-cap value and
µ = 1

λ be the mean of Dλ. Finally, let δ ∈ (0, 1) and consider the iid sequence v1, v2, · · · ∼ Dλ.

By Lemma 15, we have that

P [∀n ≥ 1 : µ ∈ [µ̂n(1− rδ(n)), µ̂n(1 + rδ(n))] ≥ 1− δ.

From Lemma14, we know that for the exponential distribution, its cap value is a monotonic in 1
λ .

Hence, with probability 1− δ, we have that

P
[
∀n ≥ 1 : τ ∈

[
µ̂n(1− rδ(n)) log

(
µ̂n(1− rδ(n))

c

)
, µ̂n(1 + rδ(n)) log

(
µ̂n(1 + rδ(n))

c

)]]
≥ 1−δ.

Take τ+δ (n, v1:n) := µ̂n(1 + rδ(n)) log
(
µ̂n(1+rδ(n))

c

)
. To complete the proof, it suffices to upper

bound the difference

µ̂n(1 + rδ(n)) log

(
µ̂n(1 + rδ(n))

c

)
− µ̂n(1− rδ(n)) log

(
µ̂n(1− rδ(n))

c

)
.
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Consider the function g(µ) = µ log(µ/c). Then, by the Mean Value Theorem and the fact that
g′(µ) = 1 + log

(
µ
c

)
, we have that

g(µ̂n(1 + rδ(n)))− g(µ̂n(1− rδ(n))) ≤
(
1 + log

(
µ̂n(1 + rδ(n))

c

))
(2µ̂nrδ(n))

≤
(
1 + log

(
µ̂n(1 + rδ(n))

c

))(
2rδ(n)µ

1− rδ(n)

)
≤
(
1 + log

(
µ(1 + rδ(n))

c(1− rδ(n))

))(
2rδ(n)µ

1− rδ(n)

)
.

Recall that rδ(n) ≤ 1
2 by definition. Hence,(

1 + log

(
µ(1 + rδ(n))

c(1− rδ(n))

))(
2rδ(n)µ

1− rδ(n)

)
≤
(
3 + log

(µ
c

))
(4rδ(n)µ)

= 4rδ(n) · τ ·

(
1 +

3

log
(
µ
c

))
≤ 16rδ(n) · τ,

where the last inequality follows from the assumption that µ ≥ e · c. Hence, altogether, we can take

σδ,τ (n) = 16rδ(n) · τ,
which completes the proof.

Finally, we use Theorem 5 to bound the sub-optimality gap for UCB Pandora’s Box algorithm for
the family F of Exponential distributions.

Proof. (of Corollary 7) Let F be the class of Exponential distribution with parameter λ ∈ (0, 1
c·e ].

Fix a distribution Dλ ∈ F . Let τ = τ(D, c) be the fair-cap value and let δ ∈ (0, 1).

Define

S :=

∞∑
n=1

σδ,τ (n)(1− Fλ(τ)) · (Fn−1
λ (τ + σδ,τ (n))− Fn−1

λ (τ))

By the Mean Value Theorem and the fact that the PDF f is monotonically decreasing, we have that
for some b ∈ (τ, τ + σδ,τ (n)),

Fn−1
λ (τ + σδ,τ (n))− Fn−1

λ (τ) = σδ,τ (n) · (n− 1) · Fn−2
λ (b) · fλ(b)

≤ σδ,τ (n) · (n− 1) · Fn−2
λ (τ + σδ,τ (n)) · fλ(τ).

Plugging this back in gives that

S ≤
∞∑
n=1

σδ,τ (n) · (1− Fλ(τ)) · σδ,τ (n) · (n− 1) · Fn−2
λ (τ + σδ,τ (n)) · f(τ)

=

∞∑
n=1

σδ,τ (n)
2 · (1− Fλ(τ)) · (n− 1) · Fn−2

λ (τ + σδ,τ (n)) · fλ(τ)

=

∞∑
n=1

256 · τ2rδ(n)2 · e−λτ · (n− 1) · (1− e−λ(τ+σδ,τ (n)))n−2 · λ · e−λτ

Now, observe that rδ(n)2 ≤ C log(n/δ)
n for some universal constant C. Hence,

S ≤ 256 · Cτ2λ
e2λτ

∞∑
n=1

log(n/δ) · (1− e−λ(τ+16τ ·rδ(n)))n−2.

It suffices to upper bound
∞∑
n=1

log(n/δ) · (1− e−λ(τ+16τ ·rδ(n)))n−2.
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Define A := e−λτ and qn := 1− e−λ(τ+16τ ·rδ(n)). Then, observe that

qn = 1−Ae−16λτ ·rδ(n).

We want to find the smallest N such that for all n ≥ N , we get

16λτ · rδ(n) ≤ log 2.

Substituting the definition of rδ(n) and solving for n gives that we need to set

N ≥ Θ
(
λ2τ2 log(1/δ)

)
.

For this choice of N , we have that for all n ≥ N ,

e−16λτ ·rδ(n) ≥ 1

2
=⇒ qn ≤ 1− A

2
.

Thus, for all n ≥ N , we have that

qn−2
n ≤

(
1− A

2

)n−2

.

Now, split the infinite sum
∞∑
n=1

log(n/δ)·(1−e−λ(τ+16τ ·rδ(n)))n−2 =

∞∑
n=1

log(n/δ)·qn−2
n =

∑
n<N

log(n/δ)·qn−2
n +

∑
n>N

log(n/δ)·qn−2
n .

We can trivially bound ∑
n<N

log(n/δ) · qn−2
n ≤ N log(N/δ).

As for the second sum, we claim that∑
n>N

log(n/δ)·qn−2
n ≤

∞∑
n=1

log(n/δ)

(
1− A

2

)n−2

≤ O
(
log(2/δA)

A

)
= O

(
λτ · eλτ · log(1/δ)

)
To see why the second inequality is true, let q := 1− A

2 . Then,
∞∑
n=1

log(n/δ)

(
1− A

2

)n−2

=
1

q2

∞∑
n=1

log(n/δ)qn.

We will focus on bounding
∑
n log(n/δ)q

n. Define pn = (1− q)qn−1. Note that pn is the PMF of
a geometric distribution p with parameter 1− q. Then,

∞∑
n=1

log(n/δ)qn =
q

1− q
∑
n≥1

pn log(n/δ) =
q

1− q
En∼p [log(n/δ)] .

By Jensen’s inequality and the fact that log(x/δ) is concave, we have that

En∼p [log(n/δ)] ≤ log (En∼p [n/δ]) = log

(
1

δ(1− q)

)
.

Hence, we have that
∞∑
n=1

log(n/δ)qn ≤ q

1− q
log

(
1

δ(1− q)

)
and

1

q2

∞∑
n=1

log(n/δ)qn ≤ 1

q(1− q)
log

(
1

δ(1− q)

)
.

Since A ≤ 1, we have that q ≥ 1
2 , thus,

1

q2

∞∑
n=1

log(n/δ)qn ≤ 2

(1− q)
log

(
1

δ(1− q)

)
.
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Plugging in q = 1− A
2 completes the claim that

∞∑
n=1

log(n/δ)

(
1− A

2

)n−2

≤ O
(
log(2/δA)

A

)
= O

(
λτ · eλτ · log(1/δ)

)
,

where the last equality follows from the definition of A. Now, returning to the original proof, we
have that

∞∑
n=1

log(n/δ) · (1− e−λ(τ+16τ ·rδ(n)))n−2 ≤ Õδ,τ,λ(λ2τ2) + Õδ
(
λτ · eλτ

)
.

Multiplying by the outer factor gives that

S ≤ 256 · Cτ2λ
e2λτ

(
Õδ,τ,λ(λ

2τ2) +O
(
λτ · eλτ

))
= Õδ

(
λ3τ4

e2λτ
+
λ2τ3

eλτ

)
= Õδ

(
λ2τ3

eλτ

(
1 +

λτ

eλτ

))
= Õδ

(
λ2τ3

eλτ

)
= Õδ

(
(λτ)3

λ · eλτ

)
= Õδ

(
1

λ

)
The third fifth equality follows from the fact that x

ex = O(1) and x4

ex = O(1) respectively. This
completes the proof.

F ADDITIONAL EXPERIMENTAL RESULTS

This appendix provides comprehensive experimental results across all datasets, language models,
and reward models. While Section 5 focused on representative examples, here we present the com-
plete evaluation demonstrating the consistency and robustness of our adaptive approach.

F.1 EXPERIMENT 1: PROFIT PERFORMANCE ACROSS ALL CONFIGURATIONS

We evaluate how consistently our adaptive algorithm matches optimal non-adaptive performance
across diverse settings. The profit performance ratio is defined as:

Profit Performance Ratio =
Profit of Adaptive Best-of-N

Profit of Best Non-adaptive Best-of-N

where profit equals utility minus total generation cost. A ratio near 1.0 indicates the adaptive algo-
rithm matches the best possible non-adaptive strategy without requiring hyperparameter tuning.

The results, shown in Figure 5 for the AlpacaFarm and HH-RLHF datasets with RM-Mistral-7B and
FsfairX-LLaMA3-RM-v0.1, confirm the adaptive algorithm’s strength.

The adaptive algorithm outperforms most of the time even the best-tuned generator dependent non-
adaptive strategy. This implies that its dynamic behavior is more profitable than any fixed, one-size-
fits-all approach.

F.2 EXPERIMENT 2: WIN RATE ANALYSIS ACROSS CONFIGURATIONS

We compare head-to-head performance when adaptive and non-adaptive algorithms use identical
computation budgets.

Figure 6 reveals consistent patterns across all settings:
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Figure 5: Profit performance ratios for four LLM generators across varying cost/utility ratios. Each
panel represents a different dataset-reward model combination, with four cost/utility scenarios per
panel. Higher ratios indicate better profit efficiency relative to best non-adaptive algorithm.

• Budget scaling: The adaptive algorithm’s advantage grows with the available budget. Its
win rate increases from around 50% (at chance) with minimal resources to over 54% when
the budget exceeds 100 samples.

• Model consistency: The win rate trends are remarkably consistent across different models.
This demonstrates that the algorithm’s effectiveness is not tied to a specific model.

• Dataset effects: Similarly, the performance curves hold steady across different datasets,
proving the algorithm is robust to variations in input data and prompt styles.

This consistent advantage across diverse models, datasets, and budgets validates our central hypoth-
esis: the adaptive algorithm succeeds by exploiting the unique reward distribution of each prompt,
rather than relying on a specific setup.

F.3 EXPERIMENT 3: EFFICIENCY GAINS AT TARGET QUALITY LEVELS

This experiment quantifies the computational efficiency of our adaptive algorithm. We measure how
many fewer samples it needs than a non-adaptive approach to reach the same quality, defined by the
acceptance rate.
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Figure 6: Performance evaluation of adaptive versus non-adaptive generation under matched com-
putational budgets. Each row corresponds to a unique reward model-dataset configuration. Left pan-
els present win rates computed from 100 sample permutations where adaptive algorithms compete
against non-adaptive baselines. Right panels show mean sample counts (identical for both strategies
due to budget matching) averaged over the same 100 permutations. Both metrics are plotted against
cost (log scale, 10−5 to 10−2) and represent median values across all evaluation prompts.
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Figure 7 demonstrates two critical findings:

Right panels (Target vs Achieved Rates): The adaptive algorithm effectively follows the desired
quality targets. While a small gap exists between the target and achieved acceptance rates, the graphs
confirm that our algorithm reliably adjusts its behavior to closely approximate the specified quality
level across all configurations.

Left panels (Compute Savings): The algorithm delivers significant efficiency gains, with savings
that peak when targeting high levels of quality. The trend is as follows:

• Savings increase from 10% at a moderate quality target (0.70 acceptance rate) to a peak of
∼ 30% for near-optimal targets (0.90+ acceptance rate).

• However, savings decrease as the target approaches 100%. This is because the extreme
quality requirement forces the adaptive algorithm to use its maximum sample budget, caus-
ing its behavior to converge with the non-adaptive baseline. Importantly, even in this sce-
nario, it never performs worse.

This peak in savings at high (but not perfect) quality levels demonstrates the algorithm’s core
strength: its ability to recognize when a near-optimal response has been found and stop genera-
tion early. In contrast, non-adaptive methods must always continue sampling to maintain the same
quality guarantee.

Efficiency gains increase monotonically with target quality:

• Roughly 10% savings at 0.70 acceptance rate (moderate quality)
• Roughly 20% savings at 0.80 acceptance rate (good quality)
• Roughly 30% savings at 0.90+ acceptance rate (near-optimal quality)
• When 100% acceptance rate is targeted, our experimental setup suffers from maximum

sample size leading that adaptive algorithm becomes closer to non-adaptive one. This
explains decrease on save ratio as we get close to 100% target acceptance rate though it
never performs worse than non-adaptive algorithm with same computation budget.

The increasing savings at higher quality levels reflect the adaptive algorithm’s ability to recognize
when it has likely found a near-optimal response, while non-adaptive methods must continue sam-
pling to maintain guarantees.

F.4 CROSS-DATASET AND CROSS-MODEL INSIGHTS

A cross-experimental analysis of our results reveals three consistent and noteworthy findings:

• Robustness Across Configurations: The performance metrics and advantages of the adap-
tive algorithm remained consistent across all 1,600 unique generation profiles. This demon-
strates that the approach generalizes effectively and is not over-fit to specific model-dataset
pairings.

• Positive Scaling with Budget: The superiority of the prompt-adaptive algorithm becomes
more pronounced as the number of candidate generations increases, indicating that its ad-
vantages scale positively with a larger computational budget.

• Reward Model Independence: The performance trends were congruent for both the RM-
Mistral-7B and FsfairX-LLaMA3-RM-v0.1 reward models. This suggests that the benefits
of the adaptive strategy are independent of the specific reward function employed.
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Figure 7: Computational savings from adaptive generation while maintaining acceptance rate equiv-
alence. Each row presents a unique reward model-dataset pairing. Left panels quantify the save
ratio—the fraction of samples eliminated by adaptive algorithms compared to non-adaptive meth-
ods when both achieve identical average acceptance rates. Specifically, for each target acceptance
rate, the adaptive algorithm yields an actual acceptance rate, and the non-adaptive sample count is
calibrated to match this actual rate. Right panels show the relationship between target and actual
acceptance rates for the adaptive algorithm, illustrating calibration behavior. Save ratios are aver-
aged over 100 generation stream permutations, with all metrics indexed by target acceptance rate
(0.6–1.0) and aggregated via median across 100 test prompts.
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