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ABSTRACT

Conformal prediction is a statistically rigorous method for quantifying uncertainty
in models by having them output sets of predictions, with larger sets indicating
more uncertainty. However, prediction sets are not inherently actionable; many
applications require a single output to act on, not several. To overcome this lim-
itation, prediction sets can be provided to a human who then makes an informed
decision. In any such system it is crucial to ensure the fairness of outcomes across
protected groups, and researchers have proposed that Equalized Coverage be used
as the standard for fairness. By conducting experiments with human participants,
we demonstrate that providing prediction sets can lead to disparate impact in de-
cisions. Disquietingly, we find that providing sets that satisfy Equalized Coverage
actually increases disparate impact compared to marginal coverage. Instead of
equalizing coverage, we propose to equalize set sizes across groups which empir-
ically leads to lower disparate impact.

1 INTRODUCTION
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Figure 1: We measure the increase in accuracy
per-group from using prediction sets compared to
the control population without model assistance.
Disparate impact is the maximum difference of in-
creases between groups, and should be minimized
for fairness (Equation 7). Prediction sets do not
benefit all groups equally, while sets with Equal-
ized Coverage (Conditional) lead to the most un-
fair outcomes. Statistical analyses and signifi-
cance are presented in Section 6.

Conformal prediction (CP) (Vovk et al., 2005)
has emerged as one of the most promising
methods for uncertainty quantification in ma-
chine learning because of its wide applicabil-
ity, and statistical guarantees based on very few
assumptions. The main use of CP is to trans-
form heuristic notions of uncertainty into rigor-
ous ones through a calibration step. The output
of a conformalized model is a prediction set –
a set of likely outputs. To communicate uncer-
tainty, prediction sets are larger when the model
is more uncertain about the correct answer.

However, there is a clear drawback to a model
that outputs prediction sets. Models are com-
monly part of decision pipelines where input
data is converted into actions. For classifica-
tion, the possible actions are often mutually ex-
clusive, such that for a given observation we re-
quire a single action in response, not a set.

Still, there are many cases where decisions are not left to a model alone, but require a human in
the loop. For example, society does not yet use machine learning models to make most medical
diagnoses – we prefer human doctors for reasons of safety, accountability, and trust. Nevertheless,
there are ample opportunities for people like doctors to use machine learning tools to improve their
decisions. As uncertainty quantification is a crucial component for trust, it has been argued that CP
sets are a natural fit for such applications (Lu et al., 2022). Indeed, research has shown that providing
conformal sets to humans increases their accuracy on decision tasks (Straitouri & Gomez Rodriguez,
2024; Zhang et al., 2024; Cresswell et al., 2024; De Toni et al., 2024).

∗Equal Contribution

1



Published as a conference paper at ICLR 2025

Some of the same research pointed towards a troublesome trend. Cresswell et al. (2024) observed
that when conformal sets were given to humans, their accuracy generally increased compared to a
control population, but not always by the same amount across groups in the dataset. For some groups
accuracy even decreased. This is a major fairness concern. Were a doctor to use prediction sets to
assist with diagnoses, it would be unacceptable for some protected groups to have worse outcomes
with prediction sets than without.

The fairness of CP has been considered previously by Romano et al. (2020a) who focused on the
coverage guarantee that error rates will be no higher than a user-specified tolerance. However, CP
controls the error rate only on average across the entire data distribution, and may fluctuate between
groups within the distribution. Hence, Romano et al. (2020a) proposed a new fairness standard –
that all groups should have Equalized Coverage. Since then, researchers broadly have accepted that
equalizing coverage across groups is fair (Lu et al., 2022; Berk et al., 2023b; Ding et al., 2024).

In this work, we focus on the fairness of prediction sets used for human-in-the-loop decision
pipelines. Our aim is to provide the first scientific evidence as to the fairness of using CP sets
in practical settings. Through pre-registered, randomized controlled trials with human participants,
we find that prediction sets can lead to disparate impact – the increases in accuracy compared to the
control population are not equal across groups (Figure 1). This alone would be cause for concern,
but, distressingly, we further find evidence that applying Equalized Coverage leads to even more
unfair outcomes than marginal conformal sets. Hence, we expose a major discrepancy between how
fairness has been treated in the literature on CP, and fairness outcomes in practice. We advocate that
practitioners move away from Equalized Coverage and instead aim for Equalized Set Size, which
correlates strongly with reduced disparate impact.

2 BACKGROUND

We begin with background on CP and other set-predictors, and review relevant fairness notions. For
the sake of brevity, we only consider the setting of classification in our review and experiments.

2.1 CONFORMAL SET PREDICTORS

CP (Vovk et al., 2005; Shafer & Vovk, 2008) is one of the leading approaches to uncertainty quan-
tification in machine learning (Soize, 2017; Abdar et al., 2021), and is aligned with efforts to make
models more trustworthy. Other uncertainty quantification approaches often rely on strong assump-
tions which are unlikely to hold in practice (Gal & Ghahramani, 2016; Lakshminarayanan et al.,
2017), or require modifications to the model architecture (Neal, 2012). In contrast, CP applies to
black-box models, has no dependence on training data, is distribution free, is valid in finite samples,
and assumes only that test data is drawn from the same distribution as calibration data (Vovk et al.,
1999; Angelopoulos & Bates, 2021).

Let us consider inputs x ∈ X ⊂ RD associated with ground truth classes y ∈ Y = [m] where
[m] = {1, . . . ,m}, drawn jointly from a distribution (x, y) ∼ P. Given an arbitrary classifier
f : X → [0, 1]m with softmax outputs, CP creates a set-predictor (Grycko, 1993), denoted as
C : X → 2[m], with the hallmark property that the sets produced by C satisfy a coverage guarantee

P[y ∈ C(x)] ≥ 1− α, (1)

for an error rate α ∈ [0, 1] which can be chosen a priori by the user (Vovk et al., 1999).

CP achieves coverage by allowing the set size |C(x)| to vary depending on the model’s heuristic
confidence, e.g., the softmax outputs of f . Larger sets indicate greater model uncertainty about x.
To move from f to C, CP carries out a calibration step on a held-out dataset Dcal of ncal datapoints
drawn independently from P. First, one defines a conformal score function s : X × Y → R with
larger scores indicating worse agreement between x and y according to the heuristic uncertainty
notion, and then computes s on all datapoints (x, y) ∈ Dcal. After sorting the scores, one computes
the ⌈(n+1)(1−α)⌉

n quantile which we will denote q̂. With the calibration step done, CP sets can be
generated for a test datapoint xtest ∼ P as

Cq̂(xtest) := {y ∈ Y | s(xtest, y) < q̂}. (2)

For any classifier f and any score function s, the CP sets Cq̂ will provide 1−α coverage (Equation 1).
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While valid for any s, the usefulness of CP greatly depends on how s is designed as well as properties
of the model f including its accuracy and calibration (Guo et al., 2017). The research community
has taken great interest in devising score functions that produce sets with the smallest average size.
As long as coverage is maintained, small sets are viewed as more useful for applications including
human decisioning (Cresswell et al., 2024). Some of the most efficient score functions include APS
(Romano et al., 2020b), RAPS (Angelopoulos et al., 2021), and SAPS (Huang et al., 2024).

2.2 CONDITIONAL COVERAGE & MONDRIAN CONFORMAL PREDICTION

The coverage guarantee in Equation 1 is not totally satisfactory since it holds marginally across the
entire distribution P. Some subgroups within the distribution may receive lower coverage than 1−α,
for example minority groups which are less well represented in the training set of f leading to lower
model accuracy or worse calibration. Ideally, the coverage guarantee would hold for every subgroup
of the distribution, down to individual datapoints – so-called conditional coverage (Foygel Barber
et al., 2020), but unfortunately this has been proved impossible without distributional assumptions
(Vovk, 2012; Lei & Wasserman, 2013). A less strict, and actually attainable goal is group-wise
conditional coverage for a pre-specified grouping g : X → G = [ng], where each datapoint is
assigned to one of ng groups a ∈ G, and the coverage guarantee applies to each group separately as

P[y ∈ C(x) | g(x) = a] ≥ 1− α, ∀ a ∈ G. (3)

Group-wise conditional coverage can be achieved through Mondrian CP (Vovk et al., 2003; 2005),
which simply partitions Dcal by groups and performs CP as described in Subsection 2.1 on each
group independently. This method can suffer from high variance when ng is large, or individual
groups have scant representation in Dcal, as the effective size of each calibration set could become
too small (Angelopoulos & Bates, 2021). Methods to circumvent these issues have been explored
(Romano et al., 2020c; Gibbs et al., 2023; Ding et al., 2024).

2.3 NON-CONFORMAL SET PREDICTORS

Algorithm 1: Average-k set prediction
Input: Calibration dataset Dcal, classifier f ,

average set size k, test datapoint xtest.
Y ← [ ]
for (x, y) ∈ Dcal do

Y .extend(f(x)) // softmax
m← numClasses(Dcal)
p← 1− k/m
qk ← quantile(Y , p)
ytest ← f(xtest) // softmax
return ytest > qk

While CP is praised for its distribution-free coverage
guarantee, it is not the only way to generate high-
quality prediction sets (Chzhen et al., 2021). One other
method, average-k set prediction (Algorithm 1), op-
timizes for the lowest error rate given the constraint
E|C| = k, where k ∈ R+. Avg-k prediction relies on a
calibration step where a quantile qk of softmax scores is
chosen such that 1−k/m of the scores in the calibration
set are below qk. Then, prediction sets are formed as

Cqk(xtest) := {y ∈ Y | f(xtest)y > qk}. (4)

Optionally, labels y such that f(xtest)y = qk can be randomly added. The avg-k predictor has
optimal error rate under the average size constraint (Lorieul et al., 2021). Since k is allowed to
range over positive real values, a target coverage level 1−α can be set by computing qk for different
k on a calibration set, and evaluating the empirical coverage on a validation set as

1− α̂k =
1

nval

nval∑
i

1[yi ∈ Cqk(xi)]. (5)

While the avg-k predictor does not have all the features of conformal methods, it still quantifies the
uncertainty of f via variable size prediction sets where larger sets indicate greater uncertainty.

2.4 FAIRNESS OF SET PREDICTORS

In real-world applications of machine learning systems, ensuring fairness is of paramount impor-
tance, especially in highly regulated industries such as healthcare and financial services. The topic
of fairness is incredibly nuanced and cannot be distilled down into a simple set of rules or criteria
that should be followed in all cases. Still, it can be useful to delineate high-level approaches.

Two distinct concepts often guide regulatory frameworks: procedural and substantive fairness. Pro-
cedural fairness focuses on the integrity of the processes involved in developing models and ensures
that all subjects are treated in the same way (Grgić-Hlača et al., 2016). A simple example of proce-
dural fairness in machine learning is when group identifiers (and proxies thereof) are scrubbed from
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a dataset. Hence, any model trained on the remaining data cannot rely on group information at all –
so called fairness through unawareness (Zemel et al., 2013; Kusner et al., 2017).

In contrast, substantive fairness focuses on outcomes, aiming for equitable decisions even if groups
are not always treated the same (Dwork et al., 2012). Aligned notions include Equalized Odds and
Equalized Opportunity which explicitly use group identifiers to ensure that beneficial outcomes are
equally likely across groups (Hardt et al., 2016). Substantive fairness can be measured by computing
disparate impact for a given metric related to outcomes (Feldman et al., 2015; Esipova et al., 2023).
For our set predictors, the relevant metric is the accuracy of humans on a classification task, and
hence we consider the change in per-group accuracy when prediction sets are supplied to humans
compared to unassisted decisions,

δt,a := acct[x ∈ D | g(x) = a]− acccontrol[x ∈ D | g(x) = a], (6)
where t ∈ T denotes the treatment indicating which set prediction method was used. The disparate
impact of providing prediction sets can be written as

∆t := max
a,b∈G

(δt,a − δt,b), (7)

where the maximization is done over all pairs of groups. A treatment which has the same benefi-
cial effect on all groups achieves zero disparate impact and is substantively fair. When comparing
other quantities between groups, like coverage or set size, we use a similar ∆ notation although the
comparison is not with reference to a control treatment, e.g.

∆Cov := max
a,b∈G

(P[y ∈ C(x) | g(x) = a]− P[y ∈ C(x) | g(x) = b]) . (8)

The main definition of fairness used in the context of CP is Equalized Coverage (Romano et al.,
2020a) which says that all protected groups in the dataset should receive the same level of coverage.
Equalized Coverage, expressed formally as ∆Cov ≈ 0, is simply group-wise conditional coverage
(Subsection 2.2) over protected groups. Researchers have widely adopted the notion that equalizing
coverage is sufficient for ensuring fairness, e.g. Ding et al. (2024) state that with Equalized Cover-
age “prediction sets ... are effectively ‘fair’ with respect to all classes, even the less common ones”.
In our context it is clear that Equalized Coverage aligns with the concept of procedural fairness.
Coverage is not an outcome – it is a byproduct of how CP quantifies uncertainty about some under-
lying task. As we shall demonstrate, equalizing coverage does not translate into fair outcomes on
the underlying tasks, in fact it exacerbates disparate impact.

3 RELATED WORK

Investigations of the fairness of CP methods began with Equalized Coverage which has remained
the standard framework. Romano et al. (2020a) presented a case study where Mondrian CP achieved
Equalized Coverage on a medical dataset at the cost of an increased discrepancy between per-group
set sizes. Recently, Wang et al. (2024) proposed Equalized Opportunity of Coverage, which takes
account of the class label when equalizing coverage between groups. Since its focus is on coverage
and not actual outcomes, it still falls under the notion of procedural fairness.

Several works have applied CP to sensitive datasets where fairness considerations are necessary
(Lu et al., 2022; Kuchibhotla & Berk, 2023; Berk et al., 2023a). For instance, Lu et al. (2022)
discussed how conformal sets could assist medical doctors and specified Equalized Coverage as
a desirable prerequisite, although no experiments with doctors were conducted. Straitouri et al.
(2024) considered how restricting humans to choose their answer only from a prediction set can
cause harm. Other researchers aspired to make CP more fair, such as Liu et al. (2022) who applied
demographic parity to conformalized quantile regression (Romano et al., 2019), or Deng et al. (2023)
who generalized multicalibration (Hebert-Johnson et al., 2018) to conformal methods, and Zhou &
Sesia (2024) who adaptively identified under-covered groups and increased their set sizes to achieve
Equalized Coverage.

Researchers have also considered the fairness of uncertainty quantification methods beyond set-
predictors. Calibration is an essential prerequisite for uncertainty quantification which stands in
tension with fairness requirements (Pleiss et al., 2017). Ali et al. (2021) advocate that fairness
approaches should focus on errors from epistemic uncertainty, Kuzucu et al. (2023) identify that
models may appear fair according to point predictions while providing biased uncertainty estimates,
and Mehta et al. (2024) explore the impact of applying fairness methods on uncertainty estimates.
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Figure 2: Illustration of how unfairness can arise in CP. Given a data distribution P with groups of
differing difficulty, a model f may have inherent bias. Using marginal CP can translate to lower
coverage and larger sets for the harder group. To equalize coverage, conditional CP must increase
set sizes on the harder class, and reduce them on the easier class. Since human accuracy correlates
strongly with set size, not coverage, outcomes become more unfair with Equalized Coverage.

4 HYPOTHESES & METHOD

4.1 HYPOTHESES

Suppose f was trained on a dataset with some inherent bias, or that groups naturally vary in difficulty
such that f has different accuracy on two groups e and h (“easy” and “hard”). Marginal CP using
a sensible score function will tend to overcover examples from e and undercover examples from h.
To achieve group-wise conditional coverage instead of marginal, the coverage on e must decrease,
while the coverage on h increases. For a fixed model f and score function s, the only way to
increase coverage on h is to increase the number of classes added to prediction sets for h – in other
words, average set size must increase for h, and correspondingly decrease for e. If set sizes were
comparable across groups for marginal sets, then conditionally covered sets will tend to have more
unequal average set sizes across groups. Essentially, there is a tradeoff between equalizing coverage,
and equalizing set size.

On its own this tradeoff is not directly connected to the substantive fairness of using prediction
sets. However, it has been observed in previous studies that it is set size, not coverage, which
has the greatest influence on human accuracy, and therefore on outcomes (Cresswell et al., 2024).
Together, these facts imply that equalizing coverage will create more imbalanced set sizes which
will propagate into more biased human performance. The proposed mechanism by which equalizing
coverage with Mondrian (conditional) CP causes disparate impact is illustrated in Figure 2.

Based on the above discussion, we propose two hypotheses:

Hypothesis 1 Prediction sets supplied to human decision makers can cause disparate impact in the
human’s performance.

In particular, if a model has biased performance across groups, marginal CP will tend to produce
unequal set sizes which will in turn provide uneven utility to human decision makers.

Hypothesis 2 Prediction sets created with Mondrian CP to ensure Equalized Coverage will cause
greater disparate impact than marginal prediction sets.

The use of Mondrian CP or similar methods to equalize coverage will benefit groups that have higher
model accuracy more than groups with low accuracy, producing a Matthew effect where “the rich
get richer”, instead of a more equitable Robin Hood effect (Ganev et al., 2022).

The remainder of this paper investigates whether these hypotheses can be supported by data, along
with the claim that set size has greater influence on human accuracy than coverage.
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4.2 METHOD

We conduct randomized controlled trials with human subjects to discern the impact of various set
prediction methods on per-group accuracies, and measure potential disparate impacts. Our hypothe-
ses, experiments, and analysis plans were pre-registered.1 In each experiment, paid human vol-
unteers are asked to complete a challenging task and are provided prediction sets from a trained
machine learning model (or for the control, no assistance is given). The sets are constructed either
with marginal coverage guarantees (Equation 1), group-wise conditional coverage through Mon-
drian CP on a specified grouping (Equation 3), or via the avg-k method (Equation 4). In all cases
the same model is used, aiming for the same coverage level over Dcal. We call these four options
treatments, and refer to them as control, marginal, conditional, and avg-k.

We conduct independent experiments on three distinct tasks. For each task, N unique participants
are recruited and are randomly but evenly partitioned into the four treatments. During the experi-
ments we conduct M sequential trials, each where the participant is shown a datapoint from Dtest,
drawn i.i.d. from the same distribution as Dcal, along with a prediction set and a stated coverage
guarantee (except for the control). No other information from the model such as softmax scores is
given. The tasks are each designed as forced choices where participants must select one class y out
of all m available classes, and only one class is considered correct.

Given data collected in this way we can compute the accuracy improvements (Equation 6) and
disparate impact (Equation 7) for each treatment directly. However, this direct analysis would not
account for the design of the experimental method which could result in overconfident inferences
(Yarkoni, 2022). In particular, each participant provides multiple responses, participants may have
different inherent ability levels on their task, and samples drawn from Dtest can also have different
inherent difficulties. Hence, our formal statistical analysis models human performance on the tasks
using Generalized Estimating Equations (GEEs).2 GEEs can be seen as Generalized Linear Models
for clustered responses that take into account intra-participant response correlations (Liang & Zeger,
1986). Hence, GEEs are a suitable choice since each participant represents a cluster of responses.

Formally, we denote the response variable by correcti,j , indicating whether participant i selected
the correct label for trial j. Additionally, we consider the following covariates: (i) treati denoting
the treatment participant i is randomly assigned to; (ii) groupi,j which is the protected group for
trial j that participant i sees; and (iii) diffi,j , the marginal conformal set size of trial j shown to
participant i, which acts as a proxy for the inherent difficulty of that datapoint.

For each task, we fit GEEs to estimate a marginal model for the effect of treat on the participants
correct responses, controlling for group and diff covariates. The model can be expressed as

logit(E[correcti,j ]) ∼ treati × groupi,j + diffi,j , (9)

for i = 1, . . . , N and j = 1, . . . ,M , where logit(x) = log x
1−x , and the notation A × B indicates

an interaction between covariates A and B.

Alongside empirical estimates of the standard errors, it is straightforward to derive odds ratios (ORs)
from the GEE model. ORs allow us to estimate how much more likely a participant in treatment t
is to give the correct answer than if they were in the control, which is another way of expressing
the expected accuracy improvement due to t (c.f. Equation 6). For the sake of clarity, we give the
formal description below. Let pt,a := P̂(correct = 1 | treat = t, group = a) be the probability of
a correct answer under the GEE model, conditional on treatment and group. For treatment t, and for
every protected group a, the OR of t versus control is given by

ORt,a :=
pt,a/(1− pt,a)

pcontrol,a/(1− pcontrol,a)
. (10)

The interpretation of ORt,a is simple. For example, ORt,a = 1.4 means that for trials representing
group a, the odds for participants assigned to treatment t to give the correct answer are 40% higher
compared with participants assigned to the control treatment.

To assess the disparate impact caused by any treatment for Hypothesis 1, we can compare ORs
between groups. We define the ratio of ORs (RORs) for treatment t and groups a and b as

1The pre-registration is viewable at osf.io/75hm9.
2We use the GEE implementation from the statsmodels python package.
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RORt,a,b := ORt,a/ORt,b. When RORt,a,b ≈ 1, treatment t provides the same advantage
over the control for group a as it does for group b which is a fair outcome. Hence, a value of
RORt,a,b greater than 1 for some pair (a, b) indicates that t causes disparate impact, and so we
report the maximum ROR between pairs of groups as a descriptive statistic (c.f. Equation 7),

maxRORt := max
a,b∈G

RORt,a,b. (11)

Finally, to assess whether equalizing coverage increases unfairness for Hypothesis 2, we compare
maxRORMarg to maxRORCond. If the latter value exceeds the former, it indicates that equaliz-
ing coverage amplifies disparate impact relative to the marginal treatment.

5 EXPERIMENTS & EVALUATION

5.1 TASKS, DATASETS, AND MODELS

Using open-access datasets from the machine learning fairness literature, we created three tasks
where human decision makers could potentially take advantage of model assistance.

Image Classification Image classification is performed by humans daily in impactful settings, for
example by radiologists who view X-ray images from patients of all ages. For a similar setting we
used the FACET dataset (Gustafson et al., 2023) of images of people, labeled by their occupation
with grouping by age. We used the 20 most common classes and split the dataset into Dcal, Dcalval,
and Dtest stratified by class. The age annotations come in four pre-defined groups: Younger, Middle,
Older, and Unknown. We used CLIP ViT-L/14 (Radford et al., 2021) as a zero-shot classifier.

Text Classification Text classification is often used to organize large amounts of text data, for
instance in recruiting where gender bias can easily manifest. As a surrogate task, we employed the
BiosBias dataset (De-Arteaga et al., 2019) which contains personal biographies classified by occupa-
tion, and grouped by binary gender. We selected 10 of the most common occupations and then split
the dataset into Dtrain, Dval, Dcal, Dcalval, and Dtest, ensuring class balance. Dtrain and Dval were used
for classifier training, while the remaining splits were used for prediction set construction. For clas-
sification, we generated representations of the biographies using a pre-trained BERT model (Devlin
et al., 2019; Huggingface, 2024), then trained a linear classifier on these representations.

Audio Emotion Recognition Emotion recognition is performed naturally in human communica-
tion, but emotional expression can vary greatly between speakers of different genders. We utilized
audio recordings from the RAVDESS dataset (Livingstone & Russo, 2018) where female and male
actors convey 8 emotions using the same short phrases. We partitioned the dataset into Dcal, Dcalval,
and Dtest ensuring stratification by class (emotion) and group (binary gender), and used a fine-tuned
wav2vec2 model (Baevski et al., 2020; Fadel, 2023) for emotion classification.

Table 1: Model metrics on Dtest

Task Top-1 ∆Top-1 Method Cov. Size ∆Cov ∆Size

FACET
Avg-k 90.2 2.52 5.8 1.10

70.0 22.2 Marg. 89.7 2.62 11.4 0.75
Cond. 90.0 2.76 2.6 3.16

BiosBias
Avg-k 88.2 1.52 3.3 0.01

78.9 2.7 Marg. 89.8 1.69 2.7 0.03
Cond. 89.1 1.70 0.0 0.43

RAVDESS
Avg-k 91.4 1.97 2.8 0.12

71.1 7.8 Marg. 90.8 1.94 3.9 0.07
Cond. 91.4 2.01 0.6 0.71

For all three tasks, we aimed to compare
disparate impact between avg-k, marginal,
and conditional prediction sets with target
90% coverage. For greater diversity in
approaches to CP, FACET and RAVDESS
used the RAPS score function (Angelopou-
los et al., 2021), while BiosBias used SAPS
(Huang et al., 2024). The hyperparame-
ters of these score functions were tuned on
Dcalval with 50 iterations to minimize av-
erage set size using Optuna (Akiba et al.,
2019a). Then, each method used Dcal to
calibrate its threshold(s) for set prediction. Table 1 displays metrics computed on Dtest for the mod-
els used in each task, including the top-1 accuracy, and for each set prediction method the empirical
coverage and average set sizes. We note that all methods achieve coverage close to 90%, while con-
ditional CP tends to have larger set sizes due to its more stringent requirements. Also shown are the
maximum per-group differences in model accuracy, coverage, and set size defined as in Equation 8.
We note that conditional CP is the only method that achieves Equalized Coverage (∆Cov ≈ 0), but
at the cost of a larger difference in set sizes between groups.

Additional details on tasks, datasets, models, and set prediction methods are given in Appendix A.
Our code is available at github.com/layer6ai-labs/conformal-prediction-fairness.
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5.2 EXPERIMENT DESIGN

Figure 3: Main trial screen shown to partic-
ipants for FACET with marginal conformal
set treatment. The correct answer is given
only after the participant responds.

We created experiments and hosted them online
with participants recruited through Prolific (Prolific,
2024). To ensure high-quality data, participants
were trained on their specific task and given a fi-
nancial incentive to answer correctly. Each ex-
periment consisted of a task (FACET, BiosBias,
or RAVDESS), and a treatment (control, avg-k,
marginal, or conditional). We recruited 600 partic-
ipants (N = 200 per task, 50 per experiment), and
paid them on average 9.75 GBP per hour, totaling
1500 GBP for participant payment.

During each experiment, participants were first
shown a consent form detailing how their data would
be collected and used. Then, participants were intro-
duced to the task and trained on 20 practice trials
which were not used in our analysis. The testing
phase proceeded with M = 50 more trials, an ex-
ample of which is shown in Figure 3 for FACET, while detailed task descriptions can be found in
Appendix B. For each trial, participants were presented with a datapoint x along with all m class
labels and were asked to classify x. For the avg-k, marginal, and conditional treatments participants
were also shown a prediction set, accompanied by the expected coverage. There was no time limit
for responses, however for FACET the image x was only displayed for one second to increase task
difficulty. After the class was selected for each trial, the correct answer was revealed.

6 RESULTS

6.1 DISPARATE IMPACT MEASUREMENT IN HUMAN SUBJECT EXPERIMENTS

Figure 1 directly visualizes the data we collected, showing the disparate impact on accuracy ∆t

calculated as in Equation 7, treating each trial as an independent observation. We observe that
disparate impact is present for most tasks and treatments (∆t > 0), notably with the conditional
treatment consistently worse. As discussed in Subsection 4.2, each trial is not independent, so we
present Figure 1 only for intuition, and not as formal statistical analysis.

Instead, we applied the more rigorous statistical analysis with GEEs and present the results in Table 2
which shows the ORs of human accuracy for each task and treatment as compared to the control,
along with maximum RORs across groups. We interpret the findings in the context of our two
hypotheses from Subsection 4.1.

Hypothesis 1 supposes that biases from a model can propagate to humans using prediction sets as
an aid and result in disparate impact. Table 1 demonstrates that the models we used have some
biases across groups, with non-zero ∆Top-1 values, which translated to non-zero ∆Cov for the avg-k
and marginal sets. Conditional sets do equalize coverage (∆Cov ≈ 0), but at the cost of greater
discrepancies in set size, ∆Size. From Table 2 we see that in most cases prediction sets were useful
to participants versus the control (ORt,a > 1), supporting previous findings (e.g. Cresswell et al.
(2024)). However, it is clear that the beneficial effect is not experienced equally across groups. For
FACET, the Younger group had the highest model accuracy (Figure 5), and experienced the most
improvement across all treatments. The Older and Unknown groups having lower model accuracy
and minority representation (see Table 4 in Appendix A) saw less improvement, and even some harm
with conditional sets where human performance decreased (ORt,a < 1). Hence, all three treatments
caused disparate impact (maxRORt > 1). Similar results are seen for BiosBias. Even though the
model itself was much less biased (Table 1) and both Female and Male groups benefited when sets
were provided, the amount of benefit was not equally shared. Both FACET and BiosBias show
that providing prediction sets can cause disparate impact, in support of Hypothesis 1. RAVDESS
provides an example that disparate impact need not always occur. Again, both groups benefited from
each treatment, but for the avg-k and marginal treatments the increase actually was commensurate
across groups. For these two treatments the prediction sets did not have equal coverage, but did have
close to the same average set sizes across groups.
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Table 2: Summary statistics from the GEE models: ORt (Equation 10) where values greater than 1
indicate treatment t had a positive effect on human accuracy for group a, and the ⋆ and ⋄ superscripts
indicate significance at 5% and 10% levels respectively; maxRORt (Equation 11), where values
greater than 1 indicate disparate impact – treatment t benefited one group more than another.
Dataset Group ORAvg−k ORMarg ORCond maxRORAvg−k maxRORMarg maxRORCond

FACET

Younger 1.19 1.34⋄ 1.37⋆

1.11 1.26 1.51
Middle 1.12 1.20⋆ 1.19⋄

Older 1.17 1.08 0.91
Unknown 1.07 1.06 0.91

BiosBias
Female 1.91⋆ 1.46⋆ 1.91⋆

1.34 1.12 1.33
Male 1.42⋆ 1.63⋆ 1.44⋆

RAVDESS
Female 1.32⋆ 1.34⋆ 1.43⋆

1.02 1.01 1.28
Male 1.30⋆ 1.36⋆ 1.12

Hypothesis 2 proposes that equalizing coverage with the conditional treatment will cause more dis-
parate impact than the marginal treatment. Our data in Table 2 strongly supports this conclusion
where we find that the value of maxRORCond is consistently higher than maxRORMarg. Even
for RAVDESS where the marginal treatment did not show disparate impact, the conditional treat-
ment introduced noticeable bias.

6.2 INSIGHTS

Key factors impacting the fairness of human performance We aim to identify the factors con-
tributing to ∆t, disparate impact in accuracy improvement, as visualized in Figure 1. ∆t measures
the difference in accuracy improvement over the control group between the most and least improved
groups. To investigate this, we plot in Figure 4 the differences between these groups across four
key factors: coverage, adoption, average set size, and singleton frequency. Adoption measures the
fraction of answers participants selected from the prediction set, while the singleton frequency refers
to how often a singleton set was provided, both of which were identified by Cresswell et al. (2024)
as factors contributing to how helpful prediction sets are to humans. We note that the differences for
these four quantities can be negative because we select the max and min groups based on accuracy
improvement – they are not necessarily the max and min groups respectively for the four quantities.

It is clear that the conditional treatment achieves coverage differences that are closest to zero (Equal-
ized Coverage). However, this does not translate to lower ∆t. Instead, experiments with relatively
large (in magnitude) coverage difference, showed the most fair outcomes (e.g. RAVDESS-Marginal
where the best and worst groups saw coverage levels differ by 4 percentage points, but still had the
same accuracy). Additionally, there is no apparent correlation between coverage difference and ∆t

which implies coverage differences do not drive human accuracy outcomes. One might suppose
that if the participants relied on sets more for some groups than others, disparate impact could arise.
However, like for coverage, we see no strong correlation between the adoption difference and ∆t.
The experiment with the single most fair outcomes also had the largest adoption difference.

By contrast, we see strong correlation between set size differences and ∆t. The most fair outcomes
occur when set sizes are similar across all groups, as for RAVDESS-Marginal, or FACET-Avg-K.
The conditional treatment which increases set size differences in its effort to equalize coverage also
increases disparate impact. Similar to set size, there is also clear correlation between singleton fre-
quency and ∆t. Cresswell et al. (2024) observed that human accuracy on tasks was highest when the
model expressed certainty through singleton sets. Hence, groups with more singletons could expect
higher accuracy, so it is plausible that equalizing how often singletons occur would encourage fair
outcomes, which is what we observe. Users should be aware that group-conditional modifications
such as equalizing singleton frequency are susceptible to Yule effects (Ruggieri et al., 2024).

In summary, our results show that simply equalizing coverage, as is the aim of the conditional
treatment, is not an effective way to promote fair outcomes. Instead, focusing on Equalized Set Size
or Equalized Singleton Frequency could be more useful standards of fairness for set predictors.

The role of group difficulty in disparate impact Figure 5 illustrates accuracy on the FACET
dataset across different age groups for both the model and humans (control), and when broken down
by treatment. We observe that both the model and humans are consistent in which groups they
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find more or less difficult, with the model showing greater variance between groups. Providing
marginal or conditional prediction sets tends to improve human performance more for the group
the model had highest accuracy on (Younger), while offering less benefit—and in some cases even
worsening performance—for the lowest model accuracy group (Older). This analysis demonstrates
how prediction sets may contribute to disparate impact by disproportionately helping easy groups
and harming hard groups, widening the gap for outcomes.

7 CONCLUSIONS & LIMITATIONS

In this work we have presented the first experimental study on the fairness of conformal prediction
sets as a human decisioning aid. Our data runs contrary to the prevailing wisdom in the research
community – we find that equalizing coverage (Romano et al., 2020a) across groups actually in-
creases unfairness of outcomes. Based on these results, we instead recommend that practitioners
aim for Equalized Set Size or Equalized Singleton Frequency across protected groups, as both set
size and singleton frequency correlate much more strongly with outcomes than coverage does.

Still, any study, especially those involving humans, will have its limitations. While we recruited
600 unique participants and collected 30,000 individual responses, some of the statistical measures
in Table 2 did not achieve significance at the 5% level due to insufficient observations. This is a
consequence of the inherent imbalance between groups in the datasets we used, which is expected
to occur in real-world data, and is a crucial aspect for our discussions on fairness. In particular, the
FACET dataset was divided into four groups compared to only two for BiosBias and RAVDESS,
which means fewer examples from each FACET group were shown to participants, and hence our
conclusions have less statistical significance on them. The low significance on individual groups
is mitigated by the consistent results we see across three independent datasets, which when taken
together provide clear evidence for our hypotheses.

Additionally, our experiments only used classification tasks, whereas conformal prediction has also
been applied to regression (Romano et al., 2019), time-series (Stankeviciute et al., 2021), and natural
language tasks (Mohri & Hashimoto, 2024). Other instantiations of conformal prediction may be
susceptible to the same unfairness mechanism we proposed in Figure 2, where difficult groups tend
to be undercovered, requiring larger sets for Equalized Coverage which is a disadvantage, but this is
out-of-scope for our study.
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A IMPLEMENTATION DETAILS

Our code for curating datasets and performing calibration and set prediction is available at
github.com/layer6ai-labs/conformal-prediction-fairness. In this section we detail the
steps that were taken.

A.1 DATASET PRE-PROCESSING

High-level information for the calibration-validation, calibration, and test datasets are shown in
Table 3. The following sections provide a detailed explanation of the pre-processing steps applied
to each dataset. Dataset pre-processing and set prediction does not require extensive computing
resources. We used an Intel Xeon Silver 4114 CPU and TITAN V GPU, which took in total less
than 1 hour to process all three datasets.

Table 3: Dataset Information
Dataset |Dcalval| |Dcal| |Dtest| Total Classes Used Classes (m) Groups (ng)

FACET 1400 4000 1400 52 20 4
BiosBias 5000 10000 2000 28 10 2
RAVDESS 240 840 360 8 8 2

15

https://github.com/layer6ai-labs/conformal-prediction-fairness


Published as a conference paper at ICLR 2025

Table 4: FACET Group Counts

Group Dcalval Dcal Dtest

Younger 254 711 276
Middle 772 2144 729
Older 103 299 91
Unknown 271 846 304

Table 5: BiosBias Group Counts

Group Dcalval Dcal Dtest

Female 2424 4887 969
Male 2576 5113 1031

Table 6: RAVDESS Group Counts

Group Dcalval Dcal Dtest

Female 120 420 180
Male 120 420 180

FACET The FACET dataset (Gustafson et al., 2023) was created to investigate bias in image clas-
sification tasks, with images of people annotated by human labelers, and sensitive attributes includ-
ing perceived age, gender, and skin tone. We used the occupation annotations as class labels, and age
annotations for groups. Age groups are categorized as ‘Younger’ (perceived to be < 25 years old),
‘Middle’ (25 - 65), ‘Older’ (> 65), and ‘Unknown’. Preprocessing involved filtering for images con-
taining a single person and a single occupation label. Images were resized to 224 × 224 pixels and
center-cropped for consistency. We focused on the top m = 20 most common occupations which
were: [backpacker, boatman, computer user, craftsman, farmer, guard, guitarist, gymnast, hair-
dresser, horseman, laborer, lawman, motorcyclist, painter, repairman, seller, singer, skateboarder,
speaker, tennis player]. Since some of these labels are unintuitive, we clarified them for presentation
to participants by renaming them to: [Backpacker, Boatman, Computer User, Craftsman, Farmer,
Guard, Guitarist, Gymnast, Hairdresser, Horse Rider, Laborer, Officer, Motorcyclist, Painter, Re-
pairman, Salesperson, Singer, Skateboarder, Speaker, Tennis Player]. For conformal prediction,
the remaining dataset was split into 1400 calibration-validation samples, 4000 calibration samples,
and 1400 test samples, using stratified sampling to ensure balanced occupation representation across
subsets. Groups, however, were not stratified or balanced, and followed the natural distribution in
the dataset (see Table 4). The calibration-validation, calibration, and test sets were treated identi-
cally, making them i.i.d. for conformal prediction. FACET is released under a custom license that
allows it to be used “for the purposes of measuring or evaluating the robustness and algorithmic
fairness of AI and machine-learning vision models, and solely on a non-commercial and research
basis”.

BiosBias The BiosBias dataset (De-Arteaga et al., 2019) contains public biographies labeled by
occupation and annotated with binary gender groups. Biosbias created occupation labels automat-
ically by extracting information from the biographies. They also extracted likely binary gender
information from 3rd person pronoun use. We used occupations as class labels, with two groups,
“Female” and “Male”. To preprocess BiosBias data, we removed non-ASCII characters, URLs,
emails, phone numbers, and redundant punctuation, then truncated the biographies to 400 charac-
ters to limit variance due to vastly different text lengths. We generated text representations of each
biography using a pre-trained BERT model (Devlin et al., 2019), and trained a linear classifier to
predict occupations using a training set of 50,000 samples with a validation set of 5,000 samples
for manual hyperparameter selection and evaluation. From the original 28 occupations, we focused
on m = 10 of the most common: [Professor, Physician, Photographer, Journalist, Psychologist,
Teacher, Dentist, Surgeon, Painter, and Model]. These were not strictly the 10 most common occu-
pations since we found that the data quality of some occupations was noticably worse than others; for
example we excluded the textitNurse class because it contained hundreds of near-duplicate biogra-
phies. For conformal prediction, we used 5,000 calibration-validation samples, 10,000 calibration
samples, and 2,000 test samples, using stratified sampling to ensure balanced representation across
all occupations. Groups were not stratified, but were already roughly balanced in the dataset which
is reflected in our splits (Table 5). This method of splitting ensured the calibration and test sets could
be treated as i.i.d. for conformal prediction purposes. BiosBias is released under a MIT license.

RAVDESS For RAVDESS (Livingstone & Russo, 2018), a dataset of audio-visual recordings
where actors express emotions, we worked with 1,440 audio-only samples exhibiting m = 8 emo-
tions: [Happy, Angry, Calm, Fearful, Neutral, Disgust, Sad and Surprised]. The dataset contains
recordings from 24 actors, 12 female and 12 male, so we used emotion as the class label and gender
as the protected group. Each actor recorded 60 snippets of approximately 4 seconds in length each.
The 60 recordings are broken down as 2 re-recordings each of 2 intensities each of 2 statements
of 8 emotions. However, the “Neutral” emotion used only a single intensity. We split the dataset
into 240 for calibration-validation, 840 samples for calibration, and 360 for testing using stratified
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sampling over both emotion and gender. Given that each split was treated the same way they can
be considered i.i.d. for conformal prediction. To process the audio samples, we used a wav2Vec2
model Baevski et al. (2020) available on Huggingface (Fadel, 2023). We resampled each file to
16kHz as the base model was pre-trained on that frequency. For audio with multiple channels, we
changed it to mono by averaging channels. The model’s feature extractor then turned the raw audio
signals into feature vectors ready for the model to use, which were subsequently padded to ensure
consistent input length for batch processing by the model. RAVDESS is released under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International license.

A.2 CONFORMAL PREDICTION METHODS AND HYPERPARAMETERS

When generating conformal prediction sets for our human experiments, we aimed to diversify the
settings by testing two different score functions. This helps demonstrate that our hypotheses and
conclusions are not a result of using one particular score function. We chose two highly-performant
methods for our tasks:

RAPS Regularized Adaptive Prediction Sets (Angelopoulos et al., 2021) builds off of APS (Ro-
mano et al., 2020b) by penalizing the score for sets with more elements than a threshold kreg. In
addition RAPS uses temperature scaling on the model’s logits before the softmax layer with value T ,
and a weight λ on the regularization term. First, RAPS defines ρx(y) =

∑M
y′=1 f(x)y′1[f(x)y′ >

f(x)y] as the total probability mass of the labels which have higher softmax values than y for input
x, and ox(y) = |{y′ ∈ Y | f(x)y′ ≥ f(x)y}| as the ordinal ranking of y among all labels, again
based on softmax values. RAPS constructs prediction sets as

Cq̂(x) = {y | ρx(y) + u · f(x)y + λ(ox(y)− kreg)
+ ≤ q̂}. (12)

where u ∼ U [0, 1] is a uniform random variable. Here, the score function s(x, y) has three terms that
use the probability mass of classes more likely than y, the probability of y with a random weighting,
and a regularization term that penalizes adding more than kreg classes.

SAPS Sorted Adaptive Prediction Sets (Huang et al., 2024) is a more recent procedure that aims to
produce compact prediction sets with better conditional coverage compared to other methods. SAPS
has one primary hyperparameter, λ, which governs the weight given to the ranking information.
As with RAPS, a temperature hyperparameter T is optimized to scale logits before applying the
softmax. SAPS discards all probability values except the maximum softmax probability, while
preserving the ranking of the labels. The score function is defined as

s(x, y) =

{
u · f(x)y, if ox(y) = 1,

max f(x) + λ(ox(y)− 2 + u), otherwise,
(13)

where u ∼ U [0, 1] is again a uniform random variable. This score function minimizes the effect of
unreliable small softmax values while retaining enough ranking information to adjust the prediction
set size based on instance difficulty.

Hyperparameter Tuning For prediction set construction, we used three splits of the data:
calibration-validation Dcalval, calibration Dcal, and test Dtest. Dcalval was employed for hyperpa-
rameter tuning, Dcal was used to calculate conformal thresholds with the tuned hyperparameters,
and finally Dtest was used to generate the prediction sets used in our human experiments. Table 7
presents the final hyperparameters after automated tuning.

For hyperparameter optimization with CP methods we employed Bayesian optimization via the Op-
tuna library (Akiba et al., 2019b), utilizing the TPESampler for efficient search over 50 iterations
aiming to minimize average set size. Specifically, for each parameter setting, the conformal thresh-
old q̂ was determined using Dcal, then prediction sets were generated on Dcalval where their average
size was computed. For Mondrian CP, within every iteration of tuning the same hyperparameter
settings were used on each group.

Tuning for avg-k is necessarily different because the main hyperparameter k is the target average
set size. Hence, instead of tuning for minimal average set size which would be trivial, we tuned k to
achieve the desired 90% coverage rate, matching the CP methods. k was adjusted through a binary
search by computing the threshold qk on Dcal, then generating sets on Dcalval and evaluating their
empirical coverage. We refined the average set size k through binary search up to five decimal points
of precision to ensure that the coverage on Dcalval closely matched the predefined target coverage.
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Table 7: Hyperparameter Settings for Each Dataset After Tuning
Marginal Conditional

Dataset Score Function T λ kreg T λ kreg

FACET RAPS 0.32 0.17 4 0.38 0.46 4
BiosBias SAPS 0.53 0.21 - 0.53 0.26 -
RAVDESS RAPS 0.26 10.49 3 0.20 0.43 3

B HUMAN SUBJECT EXPERIMENTS

In this section we give complete details on our experiments involving humans which extends the
descriptions in Section 4 and Section 5.

Participant Recruitment We designed our human subject experiments using PsychoPy (Peirce
et al., 2019) and made them available on Pavlovia (Pavlovia, 2024). Participant recruitment was
conducted through Prolific (Prolific, 2024). We required participants volunteering for the study
to be fluent in English, the language we used throughout the experiments, and to use a desktop
or laptop computer, but otherwise did not filter candidates on any criteria. In total, 600 unique
participants were recruited, and each was randomly assigned to a single (task, treatment) pair, of
which there were 12 in total for 50 participants each. Hence, each experiment involved a disjoint
set of participants. Participants were paid according to the platform guidelines enforced by Prolific
– participants were given a flat rate for completing their assigned experiment calculated based on
the median completion time of their cohort. We also offered participants bonus pay in the amount
of 0.01 GBP for every correct answer they gave on the 50 test trials, which incentivizes high quality
answers. On average, participants received pay at a rate of 9.75 GBP/hour which totaled 1500 GBP
in participant renumeration across all tests.

Across the experiments, 599 participants gave consent for their demographic data to be collected
and shared in aggregate, while one participant withdrew their consent. As shown in Table 8, the
study population is fairly balanced in terms of gender. Participants in the study represented various
age groups and ethnicities, with more being in their 20s and identifying as White respectively.

Table 8: Demographics of Participants
Group # Participants

Age group

< 20 31
20-29 324
30-39 144
40-49 64
50-59 26
≥ 60 10
Unknown 1

Gender
Female 287
Male 311
Unknown 2

Ethnicity

White 346
Black 179
Mixed 34
Asian 23
Other 15
Unknown 3

Experiment Details Our experimental design follows that of Cresswell et al. (2024). An overview
of the screens that were presented to participants is shown in Figure 7 using the BiosBias task with
marginal treatment as an example. We will now walk through the progression of these screens,
describing the test. For each experiment, participants were first shown a consent form detailing what
data we were collecting, how we intended to use it, and how long we would retain it. Participants
who did not consent could remove themselves from the study rather than proceeding. To limit
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risks to participants, we did not collect any personally identifiable information like name, birth date,
or address. As noted above, some demographic information had been provided by participants to
the Prolific platform, and nearly all participants consented to us obtaining this information. We
determined that there were no risks to participants taking the study that needed to be disclosed.

We proceeded to present participants with instructions about how to take the test and about the
classification task they would be performing. We provided one labeled example datapoint from each
class for participants to familiarize themselves with, and then conducted 20 practice trials that used
the same format as the real test trials. For example, the main trial screen for BiosBias is shown in
Figure 7, while Figure 3 shows FACET, and Figure 6 shows the RAVDESS task. The practice phase
was for training participants to ensure they would achieve high accuracy on the real test trials, so we
did not use data collected on the practice trials. Example and practice datapoints were sourced from
Dtest, and were not reused for the real test trials. After the practice trials, 50 test trials were given,
and the data collected here comprises what we used for analysis. For each task we randomly sampled
sets of 50 datapoints from Dtest without replacement using one of 10 fixed seeds. Each participant
was shown one of these random sets. The use of only 10 seeds was intentional so that multiple
participants across treatments would see the same datapoints. Since datapoints can have different
inherent difficulty, using the same examples across treatments reduces variance from random data
selection. Overlap between the examples shown to different participants also allows us to better
model their inherent skill using our GEE analysis.

The main trial screens all show a participant one datapoint x, and all classes Y as options. Partic-
ipants had unlimited time to select one class, after which the correct answer was shown following
previous studies in machine learning (Stein et al., 2023). Providing answers after each trial has been
shown to increase the quality of collected data (Mitra et al., 2015) and allows the participant to con-
tinually optimize their decision strategy. This is desirable, as we want participants to give the most
accurate answers possible, even if their strategy evolves over the course of the test.

Figure 6: Main trial screen shown to participants for RAVDESS with marginal conformal set treat-
ment. When the screen was first displayed, the audio recording was played, with the model sug-
gestions appearing and ability to enter a response activated after the recording completed (roughly
4 seconds). Participants were able to replay the recording as many times as needed. The correct
answer was shown after the participant responded.
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Figure 7: Screens displayed to participants during our experiment using marginal conformal sets
on BiosBias, with a similar template for other experiments. The seventh panel (left to right, top
to bottom) shows an example of how the practice and test trials appear, with the correct answer
displayed after the participant entered their response. The fourth panel was not shown to Control
group as they were not given suggestions from the model during the trials.
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