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Abstract

In recent years, many studies have utilized cardiac magnetic resonance imaging
(cMRI) to define image-derived phenotypes (IDPs) relating to heart structure and
function for genome-wide association studies (GWAS). These IDPs are tradition-
ally defined manually from volume, strain, and geometric parameters. Here we
introduce an unsupervised learning approach that extracts spatiotemporal represen-
tations from cMRI videos in a large human cohort of ∼68,000 subjects from the UK
BioBank. The resulting representations can be used to predict age and manually
crafted IDPs accurately. We further use these representations to define IDPs to
capture both known and potential novel genetic associations. Our work suggests
that unsupervised learning can be used to extract rich, unbiased information from
medical videos with applications to genetic discovery.

1 Introduction

Time-series cMRI is a commonly used diagnostic tool that captures heart dynamics in high spatial
and temporal resolution. A long-standing goal in cardiovascular research is to define features in
cMRI scans that capture cardiovascular functions (like muscle contraction, heart rhythm, and blood
flow) which influence cardiac health, then combine those features with genetic data in large human
cohorts to identify genes implicated in cardiovascular disease.

Prior works have developed methods to extract manually defined IDPs like ejection fraction [2] and
strain rate [39] from cMRI. Multiple studies have conducted GWAS using these traits, identifying
key genetic markers of cardiovascular health [29, 30, 1, 22]. These IDPs are easily defined and
interpretable, but only provide a narrow view of the underlying complex structure of the heart.
Others have predicted patients’ “cardiovascular age” using pre-defined cMRI measurements, and
then compared it to chronological age to obtain a “delta-age” phenotype [33]. Compared to manually
defined IDPs, “delta-age” captures many signals into a composite measure of cardiovascular health,
but still doesn’t capture all the underlying biological variation visible in cMRI.

More recent studies have used unsupervised learning to extract novel phenotypes from imaging in
large human cohorts, e.g. brain and cardiac MRI [27, 6, 26]. In these cases, a self-supervised model
was trained on organ images or 3D meshes, then individual latent feature activations (e.g. from an
autoencoder bottleneck) were used as novel IDPs for GWAS. These IDPs can capture subtle signals
that supervised methods miss, but no principled ways were proposed to turn the representations
into IDPs. In the cardiac MRI case, where we have videos rather than static images, existing
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representation-based IDPs also do not consider temporal dynamics or strain maps, which provide
useful signals for characterizing cardiovascular disease.

Here, we apply unsupervised representation learning on time-series cardiac MRI from the UK
BioBank (N∼68,000 subjects) using video masked auto-encoders [42]. We train models on multiple
types of cMRI videos as well as their deformation fields (similar to optical flow maps), then fuse the
resulting representations to maximally capture the spatiotemporal dynamics. We assess the utility
of these representations using prediction of age and cardiac indices as a benchmark. We cluster the
representations of each subject and identify clusters enriched for cardiovascular disease. Finally, we
derive IDPs using delta-age and subject-to-cluster similarity, then perform GWAS, revealing genes
associated with cardiovascular health, including both established and potentially novel hits. The
overall approach is outlined in Figure 1.

2 Spatiotemporal Representation Learning on Cardiac Videos
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Figure 1: Overview of spatiotemporal modeling for genetic discovery. (A) We obtain cMRI
videos for ∼68,000 subjects and calculate deformation fields corresponding to heart motion. We
train a VideoMAE model (encoder E, decoder D), then unmasked videos are passed to the frozen
encoder to obtain spatiotemporal patch representations, which are average-pooled to get a single
video-level representation Z. We can augment the representation by combining latent features from
multiple input signals (e.g. images plus deformation fields). (B) We use the representations for
multiple downstream tasks - predicting age and cardiac function, clustering subjects (which reveals
subpopulations associated with cardiovascular disease risk), and extracting representation-derived
phenotypes for GWAS (which could enable the discovery of novel genetic targets).

2.1 Cardiac MRI Videos

We use data from the UK BioBank, a large prospective cohort with genotyping, EHR info, and deep
phenotyping of 500k subjects from the UK [7]. A subset were imaged using multiple modalities
including cardiac MRI [28]; at this time roughly ∼68k subjects have cMRI imaging available. Several
types of cMRI imaging were collected; in this study we use the long axis 4-chamber (LA) and short
axis (SA) scans. The LA-4ch scans capture a 2D video of a slice of the heart that includes a cross-
section of all 4 chambers (left and right ventricles, left and right atria). The SA scans capture a 3D
volumetric video that fully covers the left and right ventricles, but excludes the atria. These two scans
have orthogonal imaging planes and different trade-offs, with the LA scans covering a larger field
of view (FOV) but only at a 2D slice, while the SA scans are pseudo-3D but have a smaller FOV
[11]. In our experiments, we assess the value of representations derived from both scan types. All
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videos contain a fixed number of frames corresponding to a single heartbeat, with the first frame
representing the end-diastole (ED) phase corresponding to maximum filling of the ventricles.

2.2 Temporal Deformation Fields

To identify salient motion features, we generated temporal deformation maps for each video as an
additional input to our representation models, inspired by two-stream models that incorporate optical
flow signals for video recognition [36]. The deformation maps are obtained by registering each frame
of the video to the first frame (end-diastole), using VoxelMorph [3].

Formally, let vi,t ∈ RH×W represent frame t of video i. We estimate a deformation field that
aligns frame 0 to frame t via a spatial transformer module [14]. The deformation field consists of a
displacement vector (∆x,∆y) at each pixel coordinate. We take the L2 norm of the displacement
vector at each coordinate to flatten the deformation field to a 2D “magnitude image” di,t ∈ RH×W .

To predict the deformation fields, we first trained a VoxelMorph U-Net model following the general
strategy and hyperparameters used in [3]. As input, we randomly sample pairs of video frames
(vi,0,vi,t) and train the model to minimize mean-squared-error with a L2 regularization term on the
deformation field magnitude. Given the trained model, we run inference on the entire cohort. At
inference time, we compute the deformation magnitude di,t for each video frame t, then concatenate
into a single video di with the same dimensions as the original video of pixel intensities vi. This
deformation video captures dynamics in heart morphology that complement the original pixel
intensities.

2.3 Self-Supervised Video Representation Learning

To extract a low-dimensional representation that captures spatiotemporal dynamics in the videos
and deformation fields, we train a self-supervised model based on VideoMAEv2, which has shown
excellent performance as a pre-training task for downstream video classification [42]. The model
tokenizes a video of shape H ×W × T into a sequence of N spatiotemporal patch tokens of shape
H ′×W ′×T ′, embeds them into latent vectors of dimension D, then passes them through a sequence
of vision transformer layers. During training, some tokens are randomly masked (using tube masking
to mask the same patches across time), then a decoder learns to reconstruct the masked video tokens
by minimising mean-squared-error loss. During inference, we pass the full (unmasked) video vi
through the encoder to obtain a sequence of spatiotemporal patch embeddings zi,1, ...zi,N which are
average-pooled to get a single video-level embedding zi ∈ RD.

We train four VideoMAEv2 models, one each for long axis videos, long axis deformation fields, short
axis videos, and short axis deformation fields. We then run inference to obtain four sets of embeddings
corresponding to each of the four modalities. Since the model is designed for 2D videos, the short
axis models are trained on randomly sampled 2D axial slices from underlying 3D volumes, and the
inference is run on all z-slices followed by average-pooling so we always get an output embedding
of the same dimension D. We can further combine information from multiple representations by
concatenating their latent dimensions. For example, we can combine the embeddings of videos and
deformation fields from the same modality, or combine across modalities (short and long axis). Note
that we use the same datasets for training and inference, since the reconstruction objective using in
training is not directly connected to any downstream evaluation tasks; this is a common setup in
representation-based target discovery [6].

2.4 Benchmarking Video Representations

To evaluate the predictive power of the learned embeddings, we construct a benchmark task consisting
of predicting age and cardiac function parameters via linear regression. Age is a good benchmark due
to its strong association with cardiovascular health [23]. Cardiac parameters measured from cMRI
are also strong predictors of heart function; for example, left ventricular ejection fraction (LVEF) is
used in the diagnosis of heart failure with reduced ejection fraction (HFrEF). Critically, we choose
cardiac parameters that are calculated from image features across multiple timepoints of the cardiac
cycle. For example, ejection fractions (EF) are calculated by comparing the maximum and minimium
volumes over time for a particular cardiac chamber. Likewise strain parameters like circumferential
strain (CS) and longitudinal strain (LS) assess the contractility of the myocardial wall over time
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across different axes. Thus, we hypothesize that models which can better capture spatiotemporal
dynamics will do better at predicting these parameters.

3 Deriving Phenotypes from Representations

To test the utility of our embeddings for target discovery, we explored several ways to extract
phenotypes from learned representations, which we term RDPs (representation-derived phenotypes).

3.1 Delta Age

First, we compute cardiovascular delta-age in a manner similar to previous work [33], but using video
embeddings rather than manually-crafted IDPs as the input variables. In brief, we first train a linear
model to obtain weights w and bias b that predict subjects’ chronological age from their embedding:

PredictedAgei = wTzi + b

We then subtract predicted from chronological age to get a raw delta-age. This raw delta-age value is
still correlated with age, so we perform a correction by linear regressing true age from raw delta-age
to obtain weight α and bias β, then subtract this prediction to get an unbiased delta-age phenotype:

DeltaAgei = PredictedAgei − (α · ChronologicalAgei + β)

This delta-age phenotype captures the extent to which a subject’s predicted age differs from their
chronological age, based on features from our spatiotemporal embeddings. Similar formulations of
delta-age in the literature have been linked to a variety of health outcomes [33, 37].

3.2 Clustering

Second, we cluster the subjects based on their embeddings to identify subpopulations with different
heart characteristics. We hypothesize that some of these clusters will be enriched (either positively
or negatively) for cardiovascular diseases. Instead of using a subject’s cluster label as a categorical
phenotype (which does not account for the complex hierarchical relationships between clusters and
subjects), we derive a continuous phenotype based on subject-to-cluster similarity.

Formally, given an assignment of each subject i to a cluster Ck (where k ∈ {1...K}), we compute the
mean embedding of each cluster:

ck =
1

|Ck|
∑
i∈Ck

zi

then compute the cosine similarity of each subject-level embedding to the cluster means, resulting in
K phenotypes representing similarity of each subject i to each cluster k:

ClusterSimilarityk,i = CosineSimilarity(ck, zi)

This gives us K independent phenotypes, each one representing similarity to a prototypical heart
embedding of a particular subpopulation inferred from clustering.

4 Experiments

4.1 Dataset Preprocessing

From the raw LA and SA videos, we first segmented the left + right ventricles and atria using a
segmentation model described previously [2]. We then resampled the videos to a consistent spatial
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resolution, cropped them to a fixed pixel dimension and normalized the pixel intensities to the range
[0, 1]. We then compute temporal deformation maps for both LA and SA scans (as described in
Section 2.2), by training a VoxelMorph model with default settings [3] on a subset of 512 subjects,
then inferring on the whole cohort. Finally, we crop the videos and deformation maps using the
bounding box of the segmentation mask, resize to 128x128 pixels, and mask the videos to the
foreground pixels to emphasize the signal within the heart substructures. The temporal dimension is
always 50 frames representing one full cardiac cycle, and is not altered. After postprocessing, we
have 64,293 subjects with LA scans and 63,562 with SA scans, but for benchmarking tasks we only
use the intersecting subset to maintain a fixed sample size.

4.2 Predicting Age and Cardiac Parameters

We benchmark and compare embeddings by linear probing on biologically meaningful parameters -
patient age (which correlates strongly with cardiovascular health) and cardiac function indices such
as ejection fractions and strain rates (which relate to cardiac dynamics). We obtain these parameters
from published UKBB data fields. For age, use the patient age at the imaging visit, which is available
for all 63,562 subjects in our benchmark cohort. For cardiac function parameters, we use published
values [2], which are only available for 34,929 subjects in our cohort. We split the subjects into
75% training and 25% test. Note that the size of the training and test sets is larger for age prediction
than cardiac parameter prediction, due to the differing number of available labels. For each target
variable and input embedding, we train a ridge regression model using 5-fold cross validation (trying
regularization strengths between 1...104) to predict the parameter on the train set. The resulting
models are run on the test sets and the R2 values compared across embedding types.

Table 1: Evaluation of age and cardiac parameter prediction (R2 on the test set) across input data
modalities using VideoMAEv2. “SA/LA Concat“ denotes combining video and deformation fields
within short / long axis views respectively; “All Concat“ denotes combining all 4 inputs. LVEF
= left ventricular ejection fraction, RVEF = right ventricular ejection fraction, LAEF = left atrial
ejection fraction, RAEF = right atrial ejection fraction, LVCO = left ventricular cardiac output, LVRS
= left ventricular radial strain, LVCS = left ventricular circumferential strain, LVLS = left ventricular
longitudinal strain.

Embedding
Inputs Age LVEF RVEF LAEF RAEF LVCO LVRS LVCS LVLS

LA Video 0.648 0.574 0.586 0.673 0.691 0.583 0.618 0.704 0.669
LA Deform 0.632 0.557 0.553 0.641 0.659 0.643 0.596 0.683 0.663
SA Video 0.713 0.822 0.795 0.484 0.388 0.845 0.783 0.892 0.497
SA Deform 0.698 0.745 0.738 0.475 0.404 0.810 0.767 0.863 0.487
LA Concat 0.681 0.583 0.593 0.678 0.705 0.666 0.630 0.712 0.711
SA Concat 0.750 0.835 0.820 0.504 0.422 0.868 0.812 0.904 0.515
All Concat 0.773 0.827 0.810 0.692 0.709 0.867 0.810 0.900 0.732

In Table 1, we evaluate representations from each modality (long axis, short axis), signal type (image,
deformation) as well as hybrid representations from concatenating the latent dimensions. We use a
fixed set of hyperparameters based on default settings from the VideoMAEv2 paper: ViT-base model
architecture, patch size 8, sampling rate 3, and mask ratio 90%.

We find that the SA-derived representations do better on indices that are traditionally derived from
SA scans (LVEF, RVEF, LVCO, LVRS, LVCS) and vice versa for LA (LAEF, RAEF, LVLS).
Concatenating raw videos and deformation fields within each modality is always beneficial for
performance. Finally, concatenating across views (SA, LA) is only beneficial for some metrics but
not others. With this in mind, in our downstream analysis we concatenate the long axis image +
deformations into one representation, and likewise for short axis, but do not mix short and long axis
views.

4.3 Model Ablations

In Table 2, we conduct ablation studies by training multiple VideoMAEv2 models with different
hyperparameters, focusing on one input modality (long-axis videos). For comparison, we also
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Table 2: Evaluation of age and cardiac parameter prediction (R2 on the test set) across models and
hyperparameter settings, using long axis video embeddings as input. I-MAE = Image-MAE, V-MAE
= VideoMAE. ResNet50 was trained on ImageNet classification; all other models were trained on
cardiac videos in a self-supervised manner. See Table 1 for abbreviations. The row in italics denotes
the model settings that were used for our other analyses; note that these settings don’t correspond to
the absolute best performance, but the difference with best-performing settings is marginal.

Model Arch Model
Size

Patch
Size

Sample
Rate

Mask
Ratio Age LVEF LVCO LVCS LVLS

ResNet50 - - - - 0.352 0.229 0.310 0.346 0.281
I-MAE base 8 - 75 0.506 0.374 0.494 0.495 0.446
V-MAEv2 small 8 3 90 0.591 0.549 0.498 0.673 0.640
V-MAEv2 base 8 2 90 0.641 0.571 0.584 0.698 0.669
V-MAEv2 base 8 3 75 0.651 0.575 0.586 0.706 0.679
V-MAEv2 base 8 3 90 0.648 0.574 0.583 0.704 0.669
V-MAEv2 base 16 3 90 0.605 0.552 0.484 0.679 0.635
V-MAEv2 base 8 6 90 0.635 0.566 0.572 0.692 0.669
V-MAEv2 base 8 3 95 0.626 0.567 0.576 0.696 0.663
V-MAEv2 large 8 3 90 0.657 0.581 0.600 0.707 0.677

train a conventional ImageMAE model [13] on the same inputs, treating each timeframe as an
independent image. The ImageMAE uses a comparable architecture to our VideoMAE “base” model
(same encoder and decoder dimensions, depth and number of heads). As an additional baseline
not trained on cardiac videos, we include ResNet50 [12] pretrained on ImageNet classification [9],
with weights obtained from the torchvision package, using the activations of the last layer as an
embedding. For these static image models, each 2D frame is encoded separately and the embeddings
are average-pooled across time.

We expect the ResNet50 model to extract general texture features, but nothing specific to cardiac MRI
(since it was trained on natural images). Conversely, we expect ImageMAE to capture cardiac-specific
texture (since it is trained on our dataset), but to lack explicit modeling of temporal dependencies.
Accordingly, we see that ResNet50 performs worst, and static MAE performs better but does not
meet the performance of any VideoMAE model (even ViT-small) across almost all benchmark tasks.

For VideoMAE models, going from a “small” to “base” ViT architecture yields substantial improve-
ment, while going from “base” to “large” gives marginal improvement at the cost of much longer
training time. Likewise increasing patch size from 8 to 16 leads to a performance drop. Sample
rate denotes how many video frames are skipped when sampling; reducing from 6 to 3 improves
performance slightly, but further reducing to 2 does not. Finally, increasing the mask ratio to 95%
slightly harms performance and reducing it to 75% slightly improves performance.

4.4 Clustering Analysis

In Figure 2, we visualize both short and long axis embeddings from the whole cohort using UMAP
[17], overlaying the labels from Leiden clustering [40].

Prior to clustering, we first remove confounding effects from the embeddings by regressing out the
effects of age, sex and BMI using linear regression, as implemented in the scanpy package [45].
Then we run nearest neighbor connectivity (using cosine distance metric) and Leiden clustering. The
resulting number of clusters K is determined automatically.

We find that there are some clear outlier clusters in the long axis embeddings, while the short axis
clusters are less separated. We hypothesize that the long axis embeddings (which derive from a single
cross-sectional slice of both atria and ventricles) may encode more population-level variation than
the short axis embeddings (which are averaged over many slices, some of which only cover a small
portion of ventricular morphology, and don’t cover atria at all). We therefore focus on long axis
embeddings in the subsequent analysis.
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Long Axis Short Axis

Figure 2: UMAP and clustering of long axis and short axis embeddings. Long axis shows more
separation of outlier clusters, which we subsequently interrogate with PheWAS and GWAS.

4.5 Phenome-Wide Association Studies

We conduct phenome-wide association studies (PheWAS) on the derived RDPs to better understand
their associations with traditional phenotypes. For simplicity, we restrict the set of traditional
phenotypes to ICD-10 codes reported in the UK BioBank, which roughly correspond to diagnoses
of medical conditions. Following the general approach of the PHESANT package [20], we first
preprocess each RDP by regressing out the effect of sex, age, BMI and imaging center, then applying
a rank-inverse normal transform so that the RDP follows a normal distribution. Then, for each
combination of RDP and ICD-10 code, we perform logistic regression to obtain an effect size and
p-value indicating the strength of the association between the RDP and ICD-10 code.

Figure 3: Example volcano plots from ICD-10 PheWAS to identify diseases associated with embed-
ding similarity RDPs for two clusters identified as outliers in the long-axis embeddings (see Figure 2).
The RDPs show strong association with cardiovascular disease, suggesting that the representations
extract biologically meaningful signal. Dashed line corresponds to Bonferroni-corrected significance
threshold.

Figure 3 shows example PheWAS results from long-axis cluster RDPs (Section 3.2) corresponding to
two outlier clusters seen in Figure 2. Several clusters are highly enriched for phenotypes related to
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cardiometabolic disease, including heart failure, myocardial infarction, atrial fibrillation, coronary
atherosclerosis, mitral valve disorders, high cholesterol, high blood pressure, left bundle branch block,
angina and type 2 diabetes. Moreover there are distinct enrichments in multiple clusters, suggesting
multiple subtypes for diseases like heart failure. Full results are reported in the appendix.

4.6 Genome-Wide Association Studies

We run genome-wide association studies (GWAS) on each RDP to identify genetic associations with
latent spatiotemporal features in cMRI videos, using the UKBB genotyping data described in [7]. We
follow the genotype imputation, filtering and QC procedure described in [15]. We use the GWAS
implementation in regenie [16], adjusting for sex, age, age2, imaging center, genotyping array and
top 10 genetic principal components. After applying subject-level filtering from [15], we are left
with N=62,605 subjects. We filter variants using simple peak detection with a minimum genomic
distance of 30 between neighboring peaks. As this is a proof-of-concept analysis, we do not perform
LD-score regression or fine-mapping, but acknowledge their importance for further validation of
the genetic associations. We then use variant-to-gene annotations from OpenTargets [25] to identify
the most likely gene associated with each variant. We report all hits with a p-value below the base
genome-wide significance threshold for the number of SNPs being tested. Since we are testing
multiple phenotypes, we also report a Bonferroni-adjusted p-value threshold, but note that this may
be overly conservative given potential correlations between phenotypes.

Figure 4: Manhattan plots of delta-age and cluster-mean similarities for 3 example clusters derived
from long axis embeddings. For clarity, we only label peak hits for each gene where −log10(p) >= 9.
Dashed line corresponds to genome-wide significance threshold.

Here, we focus on results from the long-axis RDPs (based on combined video + deformation
embeddings). A larger list of hits from both long and short axis phenotypes are listed in the appendix.
Some example Manhattan plots are shown in Figure 4. In total we find 146 significant genes using
the base genome-wide significance threshold of p <= 5.0× 10−8. However, note that we are testing
18 phenotypes (1 delta-age + 17 clustering); with the Bonferroni-adjusted value of p <= 2.8× 10−9,
there are 74 significant genes. We examine some of the more significant and interesting hits below.
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4.6.1 GWAS Results for Delta Age

Several top delta-age hits are related to TTN, which controls myocardial contractility and is strongly
associated with dilated cardiomyopathy [43]. It has also been associated with atrial fibrillation
[32] and left ventricular parameters [29]. Nearby hits that are assigned to FKBP7 and PRKRA by
OpenTargets, but also linked to TTN, have been linked to musculoskeletal wound healing phenotypes
[5] and hypertrophic cardiomyopathy [19]. GOSR2, CDKN1A, ADPRHL1 and LSM3 have all been
linked to phenotypes like QRS duration [31], PR interval [24] and electrocardiogram morphology
[41]. MECOM is associated with hypertension and blood pressure phenotypes [4]. HTR7 has no
reported association with cardiovascular disease, but encodes a 5-HT serotonin receptor which is able
to control cardiac contraction and may have a role in arrhythmias [21]. We also reproduce several
of the top genes reported in prior studies of delta-age [33], including TTN and PI15. We also find a
variant assigned to TMEM270 which is proximal to ELN (another gene reported in that study).

4.6.2 GWAS Results Derived by Clustering

Our clustering hits capture established associations with cardiovascular disease, like PITX2 (atrial
fibrillation [32]) and SYNPO2L (atrial fibrillation [8] and heart failure [34]). Likewise variants in
FADS1 and TMEM258 have been linked to high-density lipoprotein, red cell distribution width, and
blood lipid levels in general [4]. CCDC141 is proximal to TTN and has been associated with pulse
pressure [38]. ADAMTS6 has been reported in studies of cardiac conduction [31] and is an emerging
gene of interest [18]. Variants assigned to CWC27 and CENPK have less cardiovascular evidence
but are proximal to ADAMTS6. ADAMTS18 may play a role in maintaining haemostatic balance
and could be connected to atrial fibrillation and thrombus [44]. EFEMP1 has been associated with
maximum left atrial volume, a potential marker of diastolic dysfunction [39], and the encoded protein
is also linked to adverse outcomes in heart failure [10]. Finally, GMDS and RARRES1 do not have
much evidence linking to cardiovascular disease, suggesting a need for further exploration.

5 Discussion

Representation learning on large biomedical imaging datasets enables the discovery of new biologi-
cally relevant features in an unsupervised and unbiased manner. When combined with genetic data,
this approach shows great promise for target identification. Timeseries cMRI captures spatiotemporal
dynamics, which are essential for characterizing cardiovascular diseases due to their inherently
temporal nature. Though previous work used representations from static short axis heart meshes
to identify targets [6], and other works have trained a VideoMAE on long axis videos for cardiac
function prediction [35], we are the first to our knowledge to use VideoMAE representations for target
discovery, as well as first to incorporate complete cMRI videos combined with their deformation
fields, from multiple cardiac views, to better encode the underlying dynamics of heart function.

Our benchmarking experiments suggest that video representations can capture age and cardiac param-
eters with high coefficient of determination. The ability to predict measures of cardiac dynamics (like
ejection fraction) suggests that the representations encode spatiotemporal information. Deformation
field magnitude is overall almost as good as pixel-space information when used as an input to the
representation models, and there is a small but consistent benefit to concatenating the representations.
Further, VideoMAE performs better than regular MAE or a pretrained ResNet, suggesting that
self-supervised video modeling outperforms static image modeling. Future work could explore more
sophisticated methods for fusing pixel-space and deformation fields, as well as improved modeling of
temporal dynamics in the representations (rather than averaging over time frames).

Clustering the representations reveals enrichment of cardiovascular phenotypes in specific clusters.
Our analysis is limited to ICD-10 codes, which are based on billing codes and generally under-estimate
the true disease prevalence, so exploration of other phenotypes would be valuable. Clustering based
on image-derived representations could enable subtyping of diseases and discovering at-risk patients.

Our GWAS on RDPs (delta-age and subject-to-cluster similarity) captures genes with known asso-
ciations to cardiomyopathy (TTN), atrial fibrillation (PITX2, SYNPO2L), cardiac conduction (e.g.
GOSR2, CDKN1A) and other cardiovascular phenotypes. We also find genes with less established
connection to cardiovascular disease (e.g. HTR7, RARRES1, GMDS) which suggest further study.
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While prediction benchmarks, PheWAS and GWAS are a useful starting point for validating our
representations, further work is needed to define proper benchmarks for evaluating the expressiveness
of representation models trained on large human cohorts.
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A Appendix / supplemental material

A.1 Comparison to Prior Work on Age Prediction

As another benchmark, we compare our age prediction model to prior work that predicted cardio-
vascular age from manually defined cMRI phenotypes [33]. Their analysis is performed on a subset
of 5063 “healthy” participants from the UK BioBank imaging cohort. They define “healthy” as the
absence of cardiovascular, metabolic or respiratory disease (as defined by presence of disease codes
or self-reported illness) with BMI under 30. They then split the data into 80% train / 20% test and
trained a gradient boosting model from a series of manually extracted IDPs. Although we do not
have access to the list of subjects they used for the train/test split, we followed their data filtering
procedure to define a comparable set of 5063 “healthy” participants split into 80% train / 20% test,
then trained a ridge regression model from our combined long + short axis embeddings (as described
in Section 4.2). Results are reported in Table S1; although the test sets are not exactly comparable,
our model shows significantly better performance, further validating our approach.

Table S1: Comparison of age prediction from cMRI features on a healthy subcohort. MAE = mean
absolute error.

Age Prediction Model Test R2 Test MAE
Shah et al. 2023 0.49 4.21
Ours 0.63 3.65

A.2 PheWAS Hits

Tables S2 and S3 list the top ICD-10 disease code hits for RDPs derived from long axis and short
axis (respectively). For each ICD-10 code, we count the number of RDPs (delta age + K cluster
similarities) with a significance of p <= 0.05/635 (applying a Bonferroni correction for the number
of ICD-10 codes are being tested). We report the most significant RDP association and the total
number of significant associations.

A.3 GWAS Hits

Tables S4 and S5 list the top gene hits for RDPs derived from long axis and short axis (respectively).
Similiar to the PheWAS results, for each gene we count the number of RDPs (delta age + K cluster
similarities) with a significance of p <= 5.0× 10−8 (applying a Bonferroni correction based on the
number of variants being tested). We report the lead variant, most significant RDP association, and
the total number of significant associations.
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Table S2: Top 50 aggregated PheWAS hits for representation-derived phenotypes from long-axis
scans, in descending order of significance.

ICD-10 Code Name Max -log10(p) Most Sig
RDP

# Sig
RDPs

Coronary atherosclerosis 234.591 cluster16 13
Other chronic ischemic heart disease unspecified 160.224 cluster16 12
Angina pectoris 158.675 cluster16 12
Myocardial infarction 145.149 cluster16 11
Left bundle branch block 144.128 cluster12 7
Heart failure NOS 106.491 cluster16 16
Hypercholesterolemia 66.711 cluster16 12
Mitral valve disease 60.536 cluster11 13
Nonrheumatic mitral valve disorders 59.261 cluster11 13
Unstable angina intermediate coronary syndrome 56.568 cluster16 9
Other forms of chronic heart disease 53.874 cluster12 10
Cardiomegaly 47.382 cluster11 13
Atrial fibrillation and flutter 40.643 cluster11 8
Primaryintrinsic cardiomyopathies 35.020 cluster12 7
Congestive heart failure CHF NOS 34.297 cluster11 11
Disease of tricuspid valve 31.507 cluster11 10
Other mental disorder 30.315 cluster16 8
Complications of cardiacvascular device implant and graft 30.195 cluster16 4
Diaphragmatic hernia 28.810 cluster6 4
Hyperlipidemia 25.090 cluster16 7
Nonrheumatic aortic valve disorders 24.460 cluster12 4
Nonspecific chest pain 22.158 cluster16 4
Congenital anomalies of great vessels 21.951 cluster12 3
Circulatory disease NEC 21.933 cluster11 6
Cardiac pacemaker in situ 21.198 cluster16 6
Tobacco use disorder 20.796 cluster6 9
Obesity 20.770 cluster13 6
Type 2 diabetes 20.078 cluster16 10
Rheumatic disease of the heart valves 19.691 cluster16 8
Other specified cardiac dysrhythmias 18.839 cluster11 9
Other acute and subacute forms of ischemic heart disease 18.694 cluster16 3
Asthma 18.274 cluster2 8
First degree AV block 18.247 cluster11 5
Paroxysmal supraventricular tachycardia 17.720 cluster11 4
Chronic renal failure CKD 17.522 cluster16 6
Aortic valve disease 16.727 cluster12 5
Acute renal failure 16.475 cluster16 7
Chronic airway obstruction 15.344 cluster8 11
Cardiac arrest 13.046 cluster16 5
Atrioventricular block complete 12.909 cluster12 5
Peripheral vascular disease unspecified 12.360 cluster16 3
Hemoptysis 11.935 cluster16 5
GERD 11.431 cluster6 4
Aneurysm and dissection of heart 11.031 cluster12 6
Reflux esophagitis 10.888 cluster7 4
Occlusion and stenosis of precerebral arteries 10.626 cluster16 3
Pericarditis 10.425 cluster16 3
Premature beats 10.296 cluster11 3
Occlusion of cerebral arteries 9.644 cluster11 6
Other anemias 9.524 cluster12 2
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Table S3: Top 50 aggregated PheWAS hits for representation-derived phenotypes from short-axis
scans, in descending order of significance.

ICD-10 Code Name Max -log10(p) Most Sig
RDP

# Sig
RDPs

Coronary atherosclerosis 61.241 cluster10 7
Heart failure NOS 53.007 cluster9 5
Other chronic ischemic heart disease unspecified 48.865 cluster10 6
Myocardial infarction 43.924 cluster10 5
Left bundle branch block 42.007 cluster10 2
Hypercholesterolemia 34.905 cluster10 10
Type 2 diabetes 34.259 delta_age 8
Angina pectoris 33.614 cluster10 8
Mitral valve disease 32.618 cluster9 4
Nonrheumatic mitral valve disorders 32.040 cluster9 4
Other mental disorder 23.308 delta_age 6
Tobacco use disorder 23.015 delta_age 7
Congestive heart failure CHF NOS 22.467 cluster9 3
Primaryintrinsic cardiomyopathies 21.931 cluster9 2
Other forms of chronic heart disease 21.915 cluster10 5
Chronic airway obstruction 21.380 delta_age 7
Disease of tricuspid valve 20.297 cluster9 2
Obesity 19.619 cluster2 4
Cardiomegaly 18.697 cluster9 5
First degree AV block 18.216 cluster9 2
Diverticulosis 13.833 delta_age 6
Diaphragmatic hernia 13.735 delta_age 3
Right bundle branch block 13.671 cluster9 2
Circulatory disease NEC 12.938 cluster9 3
Atrial fibrillation and flutter 12.455 cluster9 1
Hyposmolality andor hyponatremia 11.922 delta_age 1
Nonspecific chest pain 11.711 delta_age 3
Other specified cardiac dysrhythmias 11.208 cluster9 2
Unstable angina intermediate coronary syndrome 10.714 cluster10 4
Rheumatic disease of the heart valves 10.366 cluster9 3
Emphysema 9.841 delta_age 5
Hyperlipidemia 9.619 cluster10 4
Acute renal failure 9.388 cluster10 2
Congenital anomalies of great vessels 8.775 cluster6 3
Complications of cardiacvascular device implant and graft 8.700 cluster10 2
Hypopotassemia 8.644 cluster10 1
Type 1 diabetes 8.445 delta_age 1
Nonrheumatic aortic valve disorders 7.939 cluster6 3
Septicemia 7.737 delta_age 1
Cardiac pacemaker in situ 7.366 cluster10 1
GERD 7.328 delta_age 2
Atrioventricular block complete 7.285 cluster9 1
Bundle branch block 7.257 cluster9 1
Hemoptysis 7.187 delta_age 2
Obstructive chronic bronchitis 7.006 delta_age 6
Cardiac arrest 6.890 cluster9 1
Sepsis 6.869 delta_age 1
Alcoholrelated disorders 6.452 delta_age 2
Premature beats 6.446 cluster9 1
Other acute and subacute forms of ischemic heart disease 6.233 cluster10 2
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Table S4: Top 50 aggregated GWAS hits for representation-derived phenotypes from long-axis scans,
in descending order of significance.

Gene Name Lead Variant Max -log10(p) # Significant
RDPs

Most Significant
RDP

TTN rs2042995 47.328 4 delta_age
FKBP7 rs1001238 45.229 3 delta_age
PRKRA rs2253324 24.008 1 delta_age
PITX2 rs4611994 21.857 4 cluster11
GOSR2 rs17608766 17.731 1 delta_age
EFEMP1 rs59985551 16.749 3 cluster13
MECOM rs9850919 16.685 1 delta_age
CWC27 rs2278353 16.201 6 cluster0
CCDC141 rs17362588 15.792 4 cluster4
CENPK rs1309553 15.781 4 cluster0
GMDS rs767102318 15.7078 5 cluster1
RARRES1 rs12637678 15.358 4 cluster13
CDKN1A rs113578873 15.1916 1 delta_age
ADAMTS6 rs4700662 15.0322 4 cluster1
HTR7 rs10748555 15.0027 2 delta_age
TMEM270 rs370616120 14.8768 1 delta_age
FADS1 rs174566 14.4253 1 cluster3
RPRML rs145153053 14.2427 1 delta_age
TMEM258 rs174533 13.9727 1 cluster3
SYNPO2L rs60632610 13.7004 1 cluster11
PLEC rs11786896 13.1577 4 cluster11
PI15 rs2732010 13.0876 1 delta_age
FADS2 rs97384 12.917 1 cluster3
CRIP1 rs55633823 12.7888 2 cluster0
WNT3 rs75230966 12.7247 1 delta_age
ADAMTS18 rs17689197 12.6626 3 cluster13
CCDC91 rs143823594 12.6286 4 cluster12
FAM241A rs11376680 12.5597 3 cluster0
NUDT7 rs62043885 12.3228 3 cluster13
CPED1 rs3801387 12.2871 4 cluster1
ADPRHL1 rs76382172 11.8723 1 delta_age
TIFA rs326847 11.7791 3 cluster0
RSRC1 rs73164066 11.6457 3 cluster13
CASQ2 rs10157905 11.6026 1 cluster11
HHIP rs1512288 11.5656 2 cluster3
FUT11 rs11000771 11.2002 1 cluster11
LSM3 rs13061705 11.1621 1 delta_age
ZFPM1 rs12595858 11.0858 2 cluster4
NDST2 rs4746151 11.0666 1 cluster11
COL8A1 rs114796243 10.8133 3 cluster5
LMCD1 rs165177 10.6812 3 cluster0
TBX3 rs5801092 10.6752 3 cluster1
NPR3 rs13154066 10.6182 1 delta_age
CMSS1 rs12488245 10.5618 2 cluster6
CRIM1 rs4670549 10.5224 1 delta_age
TRIOBP rs62236745 10.4527 1 cluster16
C7orf25 rs13234512 10.3517 2 cluster1
LRRC37A2 rs3874943 10.3187 1 delta_age
SLC6A6 rs10865722 10.2497 1 delta_age
KCNJ2 rs2285569 10.235 1 cluster6
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Table S5: Top 50 aggregated GWAS hits for representation-derived phenotypes from short-axis scans,
in descending order of significance.

Gene Name Lead Variant Max -log10(p) Num Significant
RDPs

Most Significant
RDP

TTN rs2042995 31.6562 1 delta_age
FKBP7 rs2042996 31.3298 1 delta_age
LIMK1 rs113395463 23.1973 1 delta_age
PI15 rs6472877 19.593 1 delta_age
NUDT7 rs62043885 16.1109 3 cluster8
ADAMTS18 rs17689197 15.9459 3 cluster8
RARRES1 rs1714518 14.5289 1 cluster8
GOSR2 rs17608766 14.0096 1 delta_age
WRNIP1 rs4355649 13.1031 1 cluster3
ADPRHL1 rs76382172 12.9088 1 delta_age
PITX2 rs6843082 12.4039 1 cluster9
TMEM270 rs79344387 12.1143 1 delta_age
NPR3 rs13154066 12.0771 1 delta_age
RPRML rs117953218 11.9735 1 delta_age
MECOM rs34585560 10.8959 1 delta_age
FBXO32 rs7006122 10.6356 1 delta_age
LRRC37A rs2532351 10.621 1 delta_age
WNT3 rs8069437 10.5871 1 delta_age
FAM241A rs1903403 10.5165 4 cluster8
SMG6 rs903160 10.4007 1 delta_age
SESTD1 rs10930844 10.3843 1 delta_age
RSRC1 rs73164066 10.3262 1 cluster8
TRIB2 rs6727552 10.2328 4 cluster3
HTR7 rs10748555 9.9881 1 delta_age
LSM3 rs11715111 9.87709 1 delta_age
KANSL1 rs7225002 9.8478 1 delta_age
CWC27 rs540834152 9.76052 5 cluster5
MAPT rs5820605 9.73052 1 delta_age
TIFA rs326847 9.59493 2 cluster8
CENPK rs1309558 9.4822 3 cluster5
HDGFL1 rs13211463 9.4656 1 delta_age
CCDC141 rs373251994 9.37475 1 delta_age
CDCA2 rs11985475 9.02453 1 delta_age
TRIOBP rs62236745 8.85557 1 cluster10
GMDS rs2761236 8.83456 5 cluster8
GORAB rs59452262 8.79816 1 cluster1
SRR rs11371517 8.71519 1 delta_age
MON1B rs62046461 8.66593 1 cluster8
NMB rs8033343 8.62444 1 cluster6
SLC6A6 rs10865722 8.60522 1 delta_age
CPS1 rs1047891 8.59287 1 delta_age
CFTR rs10235008 8.58544 1 cluster10
WNT2 rs73211959 8.49328 1 cluster10
CBR4 rs12644874 8.42726 2 cluster0
WT1 rs10835891 8.41244 1 cluster5
PNPT1 rs77045491 8.29785 1 cluster4
EFEMP1 rs1346786 8.29432 2 cluster2
SOX5 rs137913153 8.28827 1 cluster9
MLF1 rs10154978 8.26661 1 cluster8
ZEB2 rs12996668 8.2329 1 cluster10
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and intro focus on three claims: (1) we train a representation
learning model on cardiac MRI videos, (2) we use the representations to predict age and
cardiac parameters accurately, and (3) we can define IDPs to capture genetic associations.
(1) is addressed by methods description in Section 2, (2) is addressed by experiments in
Sections 4.2-4.3 and (3) is addressed by methods in Section 3 and experiments in Section
4.6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the discussion, we acknowledge that future work needs to be done to
explore other spatiotemporal modeling methods and benchmarking strategies. Moreover,
we acknowledge that further study of GWAS hits is needed. We include ablations in Section
4.3 to test our assumptions around modeling choices.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have theoretical results or proofs. We have formulas describing
our representation derived phenotypes (Section 3), but these do not depend on theoretical
assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In our experiments we describe the dataset, preprocessing, model hyperparam-
eters, packages and settings used for downstream analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Data from UK BioBank is regulated and cannot be shared publicly. Our code
is not released but we link to the relevant papers for the model architectures we use, and
mention packages used for downstream analysis.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe hyperparameters (or indicate default settings for existing methods
that have them) and describe our data splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: We report p-values for the PheWAS and GWAS results (and provide references
to the methods used, which include a description of assumptions and how these p-values
are calculated). We also note wherever multiple hypotheses are tested and how significance
thresholds are adjusted accordingly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We do not provide this info but we provide references for the underlying
methods that were used for any compute-intensive steps (data preprocessing, VoxelMorph,
VideoMAE, PheWAS, GWAS); the references go into more detail on compute requirements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As part of an approved UK BioBank research application, we conform to all
requirements for analysis of data from human subjects research (data privacy, consent, etc).
Beyond that, we do not foresee any risks that require mitigation.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We introduce a method for identifying targets for treatment of diseases, which
we believe could have a positive impact, which is mentioned in the paper. We do not believe
there are negative societal impacts specific to our work (other than the general risks of all
biological research).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We acknowledge our UK BioBank research application and provide references
for any models used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We analyze data from human subjects (UK BioBank), but did not acquire the
data ourselves. More details from UK BioBank (ethics, protocol, etc) can be found here.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: IRB approval is through our UK BioBank research application (#18448).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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