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Abstract
Steerable networks, which process data with in-
trinsic symmetries, often use Fourier-based non-
linearities that require sampling from the entire
group, leading to a need for discretization in con-
tinuous groups. As the number of samples in-
creases, both performance and equivariance im-
prove, yet this also leads to higher computational
costs. To address this, we introduce an adaptive
sampling approach that dynamically adjusts the
sampling process to the symmetries in the data,
reducing the number of required group samples
and lowering the computational demands. We ex-
plore various implementations and their effects
on model performance, equivariance, and com-
putational efficiency. Our findings demonstrate
improved model performance, and a marginal in-
crease in memory efficiency.

1. Introduction
Symmetry processing holds a significant importance in deep
learning, since many real-world datasets inherently exhibit
symmetrical properties. Research in integrating equivari-
ance into deep architectures, such as steerable CNNs and
Group Convolutional Neural Networks (GCNNs), has be-
come a significant focus (Cohen & Welling, 2016a;b; Wor-
rall et al., 2016; Thomas et al., 2018; Weiler et al., 2018a).
While traditional CNNs offer translation equivariance, the
first GCNNs (Cohen & Welling, 2016a) extended this to
rotations and reflections, though limited to small discrete
groups like C4 and D4 due to computational limits.

Steerable CNNs, introduced by Cohen & Welling (2016b),
use steerable filters to achieve equivariance to larger groups
with reduced computational demands. In the design of steer-
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able CNNs, choosing the right activation function presents a
key challenge. While pointwise nonlinearities have proven
to be highly effective, they demand sampling from the entire
group, requiring some form of discretization for continuous
groups (Franzen & Wand, 2021; de Haan et al., 2021; Cesa
et al., 2022). This introduces a trade-off between compute
and performance: using more samples in the discretization
improves model stability and equivariance, yet it also raises
the computational and memory cost of the layer.
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Figure 1. Behaviour of sampled values from a translated feature
when using a fixed and an adaptive grid. Left column: the contin-
uous feature function as well as the location of the grid samples
(in colors). Right column: the measured values at the grid loca-
tions. When the function is shifted, the sampled values on the
fixed grid change; these samples can not accurately capture transla-
tions smaller than the grid resolution. Instead, the adaptive grid is
translated together with the input function, ensuring the measured
values are constant (compare columns of the same color in the first
and third row). Information about the phase is preserved by the
adaptive grid itself (note the colored grid points translates too).

In our work, we aim to improve the sampling process within
these pointwise non-linearities by using an adaptive grid
approach. Traditionally, group sampling is done on a fixed
grid, where samples are generated at model initialization
and then cached for use throughout the network. However,
our method dynamically adjusts the sampling grid to align
with the input data. More precisely, we propose predicting
the sampling grid from the input in an equivariant way:
this ensures that transformed versions of the same input
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are processed in the non-linear layers using accordingly
transformed versions of the same sampling grid. As proven
in Sec. 3.3, this guarantees that the activation layer is always
perfectly equivariant regardless of the number of samples
employed. Fig 1 provides an intuitive visualization of this
idea.

We present various implementations of the adaptive grid,
focusing on strategies to share it efficiently and reduce the
overall computational costs. Our empirical analysis ex-
amines how varying the number of samples, compared to
a fixed grid, affects model performance, equivariance er-
ror, and computational efficiency. Our findings indicate
improved model performance and a marginal increase in
memory efficiency. Lastly, we explore the limitations, com-
putational considerations, and potential advancements of
our approach.

2. Steerable Convolutional Neural Networks
Steerable Features In steerable CNNs, feature spaces are
defined as spaces of steerable feature fields f : Rn → Rdρ ,
which assigns a dρ-dimensional vector f(x) ∈ Rdρ to each
data point x ∈ Rn. These feature fields are associated
with a transformation law, which describes how they are
transformed by the action of the group G. The transforma-
tion law of a dρ-dimensional vector is defined by a group
representation ρ : G→ Rdρ×dρ :

[g.f ](x) := ρ(g)f(g−1.x) (1)

where ρ specifies how the dρ channels of each feature vec-
tor f(x) mix. In practice, the entire feature space can be
defined as the direct sum

⊕
i fi of multiple individual fea-

ture fields fi, which transforms according to the direct sum
representation ρ :=

⊕
i ρi, enabling each field to transform

independently of others.

An example of feature fields are scalar fields, which trans-
form according to the trivial representation ψ0(g) = 1. GC-
NNs are special cases of steerable CNNs using intermediate
features that transform according to the regular representa-
tion of G; see Sec. 3. Steerable CNNs generalize GCNNs
by allowing feature fields to transform according to more
complex geometric types. This is achieved by the steerable
kernel which satisfy the steerability constraint. Given the
feature fields with the input type ρin : G→ Rdin×din and the
output type ρout : G→ Rdout×dout , the G-steerable convolu-
tional kernel K : Rn → Rdout×din satisfies the steerability
constraint ∀g ∈ G, x ∈ Rn:

K(x) = ρout(g)K(g−1x)ρin(g)
−1. (2)

Any equivariant kernel can be described using a
G−steerable kernel basis, as detailed in Cesa et al. (2022).
For parametrization, these basis elements are combined with

learnable weights. Since each pair of ρin and ρout requires a
unique solution, the kernel constraint can be simplified by
breaking the input and output representation into simpler
and non-reducible components:

Irrep Decomposition Any orthogonal representation ρ :
G → Rdρ×dρ can be decomposed as a direct sum of
mutually orthogonal irreducible representations (irreps)
ρ(g) = QT (

⊕
i∈I ψi(g))Q, where ψi ∈ Ĝ is an irrep, Ĝ is

the set of irreps of the group G, I is an index set ranging
over Ĝ, and Q is the change of basis. The kernel constraint
solution for arbitrary ρin and ρout can be derived from the
irreps decompositions of the two representations, as detailed
by Weiler & Cesa (2019). A more comprehensive discussion
on irrep decomposition is presented in Section A.1.

In this work, we focus on convolutional networks operating
on point clouds and 3D voxel data, and the compact group
SO(3). We employ dense convolutions for 3D volumet-
ric voxels, where filters are applied across all input data.
For point clouds, we leverage message passing between
neighboring points to effectively extract features from the
unstructured data.

Nonlinear Layers In equivariant networks, nonlinear lay-
ers must also satisfy the equivariance constraint. While
the transformation law of most feature field types do not
commute with point-wise nonlinearities, pointwise nonlin-
earities acting on the norm of each field preserves their
rotational equivariance. This type of nonlinearity is called
Norm nonlinearity. Moreover, Gated nonlinearities, which
scales the norm of the feature fields using gated scalars, can
be considered as a form of norm nonlinearity. Lastly, Ten-
sor product nonlinearity combines feature vectors through
tensor operations, which inherently introduces polynomial
nonlinearities. Formal definitions of those nonlinear layers
are provided in Sec. B.

3. Reqular and Quotient Nonlinearities
Although norm and gated nonlinearities satisfy the equiv-
ariance constraint, it has been observed that they typically
under-perform compared to pointwise nonlinearities (Weiler
& Cesa, 2019). Unfortunately, while they are straight-
forward to implement for discrete groups, they require
some form of discretization when considering continuous
groups. de Haan et al. (2021) first employed pointwise
non-linearities for the 2D rotation groups by leveraging a
discretized Fourier transformation. Previously, Cohen et al.
(2018) used a similar idea to implement group convolution
networks over the 3D rotation group. In this section, we
delve in the theory behind this idea.
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Peter-Weyl : Orthonormal Basis of Matrix Coefficients
According to the Peter-Weyl theorem (Thm. 2), the matrix
coefficients of (complex) irreps of a compact group G, i.e.{√

dψψij(g) : G→ C | ψ ∈ Ĝ, 1 ≤ i, j ≤ dψ

}
(3)

form a complete orthonormal basis for the vector space
L2(G) of square-integrable functions over G, where dψ
is the dimensionality of the irrep ψ and

√
dψ is a scalar

factor to normalize the basis. This generalizes the classical
Fourier transform of periodic functions (corresponding to
G = SO(2) ∼= U(1)), where the notion of frequencies is
replaced by the irreducible representations Ĝ of the group
G. See Sec. A.1 for more details.

Assumption In this work we are mostly interested in the
group G = SO(3) and real valued functions. For this
reason, from now, we will assume only real valued represen-
tations (and irreps) and functions. The Peter-Weyl theorem
above requires some minor adaptations in this case for cer-
tain groups, but it still holds exactly for G = SO(3). See
Cesa et al. (2022) for a precise statement of the theorem in
this case and its implications for other groups. Moreover, as
common in the literature, we assume all representations to
be orthogonal, satisfying ρ(g−1) = ρ(g)−1 = ρ(g)T .

Fourier transform For convenience, the Fourier coeffi-
cients of a function f ∈ L2(G) are typically aggregated by
the irrep they belong to. Hence, the Fourier transform f̂ is
matrix-valued:

f̂(ψ) :=

∫
G

f(g)
√
dψψ(g)dg ∈ Rdψ×dψ (4)

for all ψ ∈ Ĝ. Similarly, the inverse Fourier transform is
defined as

f(g) =
∑
ψ∈Ĝ

√
dψTr(f̂(ψ)ψ(g)

T ) (5)

where Tr(ABT ) is the standard matrix (Frobenius) inner
product.

Regular representation The group G carries an orthog-
onal action on L2(G) by translating functions via g : f 7→
g.f , with [g.f ](h) := f(g−1h). This action is the regu-
lar representation ρ of the group; steerable CNNs employ-
ing regular representations as intermediate feature type are
equivalent to group convolution networks, hence the popu-
larity of this design choice. Unfortunately, this construction
is not practical when G is a continuous group since the
space L2(G) is infinite dimensional. The Fourier transform
just introduced provides an effective solution as bandlimited
functions in L2(G) can be represented by a finite number
of Fourier coefficients, i.e. a finite subset G̃ ⊂ Ĝ of the
group’s irreps.

Quotient representation A similar construction exists
when considering functions over a quotient space Q =
G/H := {gH|g ∈ G} (with H < G a subgroup) rather
than G itself. Recall that an element of Q is coset, i.e. an
equivalence class of elements of the form gH = {gh|h ∈
H}. A function f ∈ L2(Q) is then equivalent to a function
in L2(G) invariant under the right action of the subgroup
H , i.e. f(gh) = f(g) for all h ∈ H . In particular, this
subspace L2(Q) ⊂ L2(G) is typically spanned by a smaller
set of matrix coefficients than L2(G), providing a more
compact representation than the regular representation. A
standard example is given by spherical signals for Q =
S2 ∼= SO(3)/SO(2), which we will also use later in this
work. Because the regular representation is a special case
for Q = G/{e} ∼= G, we will often use Q to refer to
the underlying space on which functions are defined and
generally discuss quotient non-linearities. Moreover, since
the quotient space Q is not necessarily finite, the previous
considerations about bandlimiting the regular representation
apply for quotient representations too.

Finally, we note that this Fourier transform is precisely the
change of basis matrix which performs the irreps decompo-
sition described in Sec. 2 of the regular or quotient repre-
sentation. Indeed, the Fourier coefficients jointly transform
under a direct sum of irreps, in the same way each frequency
component in the Fourier transform of a periodic function
transforms independently when the function is translated.
This is an important aspect for our method, so we derive
this decomposition explicitly in Sec. 3.1.

Pointwise Non-Linearity via Fourier transform Repre-
senting an intermediate (bandlimited) regular or quotient
type feature by its Fourier coefficients requires an additional
step to incorporate pointwise non-linearities in the network.
This is done by composing the activation function σ with a
sampling step (via a discretized inverse Fourier transform,
or IFT) and a Fourier transform (FT):

f ′(x) = [FT ◦ σ ◦ IFT(f)] (x) (6)

where FT recovers the bandlimited coefficients of the output
function from a finite set of samples, while IFT specifi-
cally computes the value of the bandlimited function f(x)
at selected points in space Q. It is important to note that
this operation is only approximately equivariant and the
degree of equivariance mostly relies on the number N of
samples used and their distribution over the group. Uni-
form and well-spaced sampling in Q is necessary to ensure
accurate representation and generalization over the group
transformations. To create a sample set Γ ⊂ Q, it is pos-
sible to use elements from a discrete subgroup of G, or
alternatively distribute N points within Q by simulating a
particles repulsion system as proposed by Bekkers (2021)
and implemented in Cesa et al. (2022).
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3.1. Irreps Decomposition of Bandlimited Quotient
Representations

In this section, we give an explicit construction of the irreps
decomposition of a band-limited regular or quotient repre-
sentation. This is necessary for implementing them in the
framework of steerable CNNs, since solving the kernel con-
straint relies on the irreps decomposition of the intermediate
features.

As previously mentioned, for a quotient space Q = G/H ,
a function f ∈ L2(Q) ⊂ L2(G) is equivalent to a function
over G invariant with respect to right action by H . By
considering the Fourier transform Eq. 5 of f , we find that

f(gh) =
∑
ψ∈Ĝ

√
dψTr(f̂(ψ)ψ(h)

Tψ(g)T ) (7)

Hence, the function has the desired invariance only if
f̂(ψ)ψ(h)T = f̂(ψ) for any h ∈ H . Under a proper choice
of basis1 for ψ ∈ Ĝ, only certain columns of f̂(ψ) sat-
isfy this invariance; then, let Pψ ∈ Rdψ×qψ be a mask
matrix selecting only those qψ columns of ψ that are in-
variant. For notational convenience, we also assume that
f̂(ψ) ∈ Rdψ×qψ contains only these qψ invariant columns
(the other columns would contain only zero coefficients).
Then, we can express the function f as:

f(gh) =
∑
ψ∈Ĝ

√
dψTr(f̂(ψ)P

T
ψ ψ(gh)

T ) (8)

=
∑
ψ∈Ĝ

√
dψTr(f̂(ψ)P

T
ψ ψ(g)

T ). (9)

Next, using the following identities Tr(ABT ) =

vec(B)T vec(A) and vec(AB) = (
⊕d

i A)vec(B), where
d is the number of columns of B and

⊕d
i A is the direct

sum of d copies of A (i.e. stacked along the diagonal), we
write:

f(g) =
∑
ψ∈Ĝ

√
dψ

(( qψ⊕
ψ(g)

)
vec(Pψ)

)T
vec(f̂(ψ))

(10)

f(g) = δ̂T
⊕
ψ∈Ĝ

qψ⊕
ψ(g)T f̂ (11)

1This invariance constraint identifies the H-invariant sub-
representations of ψ. Indeed, the irrep ψ can be thought as a
representation of H via restriction. This representation is not nec-
essarily irreducible anymore but can be further reduced in a direct
sum of irreps of H . Check the discussion about induced represen-
tations in Cesa et al. (2022) for more details. For simplicity, here
we assume ψ is already expressed in a basis such that its restriction
to H already has an irreps direct sum structure. In this way, the
invariant components of f̂(ψ) corresponds to its columns which
are associated with a trivial representation of H .

with δ̂ =
⊕

ψ

⊕qψ
√
dψvec(Pψ) and f̂ =

⊕
ψ vec(f̂(ψ)),

where
⊕

concatenates vectors. In this formulation, δ̂ can
be interpreted as a vector with the Fourier coefficients of
an indicator function on the coset eH ∈ Q - i.e. δH(g) is
non-zero iff g ∈ H - or just a Dirac delta centered on the
origin e ∈ G in case of a regular representation. Eq. (11)
can be simplified further to

f(gi) = δ̂T ρ(gi)
T f̂ (12)

where ρ(gi)T =
⊕

ψ∈Ĝ
⊕qψ ψ(gi)

T .

In Eq. (12), ρ(gi) represents the action of group element gi
on the vector containing all Fourier coefficients f̂ . When
we use a finite subset of irreps G̃ ⊂ Ĝ, this vector is finite
dimensional and we refer to ρ as a band-limited quotient
(or regular) representation and we denote its size as F =∑

ψ∈G̃ dψ · qψ .

3.2. Activation Layer

In this section we construct the activation layer described in
Eq. 6 by leveraging a finite set of N samples Γ ⊂ Q. We
first group the terms Ai := ρ(gi)δ̂ in Eq. (12):

f(gi) = ATi f̂ (13)

Note that Ai := ρ(gi)δ̂ is the Fourier transform of an indi-
cator function centered on the coset giH ∈ Q. Hence, we
define the matrix A with a row Ai for each giH in the sam-
pling set Γ ⊂ Q. Conversely, the columns of A correspond
to the finite subset of irreps G̃ used for band-limiting. See
Fig. 2. Essentially, the matrix A carries out the discretized
Inverse Fourier Transform (IFT) of f̂ ; we refer to this matrix
as the sampling matrix, as it integrates the group sampling.

Figure 2. Discretized Inverse Fourier transform, where f̂ =⊕
ψ vec(f̂(ψ)) ∈ RF and Ai := ρ(gi)δ̂ ∈ RF . N is the number

of group samples, while F is the size of the representation. Each
row in A corresponds to a single group sample, while each column
corresponds to an irrep’s matrix coefficients.

Fourier and inverse Fourier transform are inverse operations;
as A implements the inverse Fourier transform, it suggests
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using its inverse to performing a discretized Fourier trans-
form. Because the activation function σ introduces small
high-frequency components in the function, we typically
rely on oversampling to control aliasing, i.e. N > F and,
therefore, we leverage the pseudo-inverse matrix A†, rather
than the matrix inverse. We provide more details on Fourier
and inverse Fourier transforms in Apx. A.2.

The activation layer in Eq. 6 can then be formulated using
the sampling matrix A as

f̂ ′ = A†σ(Af̂(x)) (14)

where f̂(x) is the input feature vector, and σ is a pointwise
nonlinearity such as ELU.

Recall that this operation is only approximately equivariant
due to the aliasing effect mentioned ealier. To improve the
equivariance of the nonlinearity layer, it’s crucial to increase
and uniformly distribute the number of group samples over
the space Q; however, as explored in Sec. 4, the computa-
tional cost of this operation scales with the number N of
samples.

3.3. Adaptive Sampling Matrix

In a typical architecture, a predefined number of samples
is stored for repeated use across the network. In this work,
we dynamically learn the sampling matrix as an equivariant
function A(x) of the model’s input x to ensure full equivari-
ance regardless of the number N of samples:

A(g.x) = A(x)ρ(g)T . (15)

This strategy reduces the need for extensive sampling, effec-
tively decreasing both the number of group samples N and
the dimensions of A, thereby can lower the overall compu-
tational complexity. Additionally, we expect this approach
to generate more expressive sampling matrices that can be
specifically tailored to each input’s salient directions.

In practice, we can generate the sampling matrix A using an
equivariant layer processing the model input or intermedi-
ate features, depending on the implementation choice. We
explore different strategies in Sec. 5.

Unfortunately, computing the pseudoinverse (as well as
the inverse) of a matrix can be computationally expensive
and difficult to backpropagate through, especially for large
matrices. However, if sufficiently many samples N are
used, the Peter-Weyl theorem ensures the columns of A
become orthogonal to each other. Assuming the columns
are sufficiently orthogonal, we can then approximate the
pseudoinverse as A(x)† ≈ 1

NA(x)
T , further improving the

computational efficiency. The final layer takes the form

f̃ =
1

N
A(x)Tσ(A(x)f̂(x)). (16)

If the sampling matrix is generated by an equivariant layer,
the nonlinear layer in Eq. 16 is fully equivariant regardless
of the number N of samples considered. We prove this
result in Apx. C.

4. Computational aspects

Assume an input feature field f̂ comprising c ρ-fields, i.e.
f̂(x) =

⊕c
i fi(x) ∈ RcF , where ρ is a quotient (or reg-

ular) representation of size F . Accordingly, the computa-
tional complexity for the inverse Fourier transform Af̂ and
the Fourier transform A†σ(Af̂) is O(cNF ), with N rep-
resenting the number of group samples. The pointwise
nonlinearity σ has a complexity of O(cN). For a data
sample containing m pixels / spatial samples, this yields
a total complexity for the nonlinear layer of O(mcNF ) +
O(mcN) + O(mcFN) = O(mcNF ), indicating that the
layer’s computational complexity scales with the number of
group samples N .

In the context of the convolutional layer, let k denote the
computational cost for a single convolution operation involv-
ing one input and one output channel, while m represents
the number of pixels / spatial samples in the input grid. For
a convolutional layer with c input and output channels, the
complexity becomes O(kmc2F 2). Then, the model has
overall complexity O(kmc2F 2) +O(mcNF ). Whenever
kcF >> N , the complexity is dominated by the convolu-
tion term O(kmc2F 2), making the impact of the number
of samples N less relevant, so we can not expect strong
improvements in the final runtime. However, because of
oversampling, N > F and, therefore, the intermediate acti-
vations of the non-linear layers are larger than the features
processed by the convolution layers and can increase the
overall memory requirements of the model. We study the
effect of oversampling and of adopting our method on mem-
ory usage in our experiments. Finally, in Sec. 8 we discuss
potential future research directions to employ our method
and benefit more from its reduced sampling rate.

5. Implementation
We can employ two main approaches to generate the sam-
pling matrixA. Either a unique set of sampling matrices can
be generated for each nonlinear layer in the network, or a set
of matrices can be generated only once, and it is processed
by all following nonlinear layers. In our implementation, we
focused on the latter approach to obtain more expressive A
and to increase computational efficiency. Empirical results
also showed that the latter approach indeed outperforms the
former in terms of efficiency.

Our approach generates a unique sampling matrix A for
each point in the point cloud or for each pixel in 3D voxels.
In both cases, the main architecture employs some form of
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Figure 3. Architecture for point cloud processing. In this architecture, blue blocks at the bottom represents the main branch which process
the point clouds and the gray blocks at the top correspond to sampling branch which generates the sampling matrix A and perform spatial
downsampling accordingly. Although it is not illustrated in the figure, each convolutional block, which comprises the convolutional layer,
batch normalization and the nonlinear layer, is followed by an equivariant MLP.

spatial downsampling. As the data is progressively down-
sampled through the layers, a compatible downsampling
technique should also be applied to the sampling matrices to
ensure their spatial resolution remains compatible with the
feature space. Regarding the point clouds, this downsam-
pling can be executed by simply indexing - i.e. retaining
only the sampling matrices of the points that remain after
downsampling. Alternatively, a convolutional layer can be
used for a smoother downsampling for both data types.

Furthermore, the sampling matrix can be generated using
either an equivariant MLP or an equivariant convolutional
layer. The main advantage of employing a convolutional
layer is its ability to utilize neighbouring information. While
downsampling through convolutional layers is often needed
for matrices generated by an equivariant MLP, it is not re-
quired for matrices produced by equivariant convolutional
layers. Fig. 3 illustrates the architecture for the point cloud
processing. The blue blocks at the bottom represent the
main branch in the network, while the gray blocks at the top
illustrates our approach, where the matrices are generated
by processing the intermediate feature and downsampled
through the network. In Sec. 7, we present the results from
the selected architectures that demonstrate the best perfor-
mance among various architectures. We also discuss the
practical design choices in Apx. E.

6. Related Work
Equivariant Neural Networks The concept of group
equivariance in convolutional networks was first introduced
by Cohen & Welling (2016a), showing how CNNs can adapt
to transformations like rotations and reflections. However,
scaling to larger groups introduces computational challenges
due to the need for extensive sampling. Steerable CNNs,
also developed by Cohen & Welling (2016b), address the
computational challenges by using the steerable kernels,

which improves the flexibility of the network and reduces
the computational overhead. Further exploration of steer-
able CNNs has been conducted in the 2D domain (Cohen &
Welling, 2016b; Weiler & Cesa, 2019; Worrall et al., 2016;
Weiler et al., 2018b), and their expansion into the 3D do-
main (Weiler et al., 2018a; Thomas et al., 2018; Esteves
et al., 2020; Cesa et al., 2022) has demonstrated significant
benefits in processing point clouds and graphs (Thomas
et al., 2018; Anderson et al., 2019; Poulenard & Guibas,
2021).

Equivariant Nonlinearities One of the challenges in de-
signing rotation equivariant networks is selecting appropri-
ate activation functions. To maintain equivariance, non-
linearities must commute with the rotation of equivariant
features, which cannot be achieved by conventional point-
wise nonlinearities. To address this, norm and gated nonlin-
earities have been introduced by Thomas et al. (2018) and
Weiler et al. (2018a), respectively, which apply to the norm
of equivariant features and preserve rotation commutativity,
but cannot capture directional information. An alternative
approach, as proposed in (Anderson et al., 2019; Kondor
et al., 2018), involves using tensor product operations on
equivariant features as a form of nonlinearity, which is fur-
ther discussed in (Kondor, 2018).

de Haan et al. (2021) introduce a nonlinearity built on
Fourier transformation, where they interpret the features
as Fourier coefficients of functions over the circle, which
we also discussed in Sec. 3. In a concurrent work, Franzen
& Wand (2021) propose a Fast Fourier Transform based
approach to apply conventional pointwise nonlinearities on
equivariant representations and obtain exact SO(2) equiv-
ariance for polynomial functions.

Adaptive Sampling for Steerable Networks In conven-
tional CNNs, convolutional operations are accompanied by
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downsampling methods such as pooling and strided con-
volutions. The fixed grid structure in downsampling meth-
ods can compromise the network’s ability to handle shifted
and rotated inputs, thereby disrupts the shift invariance and
equivariance (Azulay & Weiss, 2019; Zhang, 2019). To
address these limitations, Xu et al. (2021) introduced a new
subsampling method that uses input-dependent grids instead
of fixed ones, maintaining translation equivariance. Addi-
tionally, Chaman & Dokmanic (2021) proposed adaptive
polyphase sampling (APS) to dynamically select downsam-
pling grids. Building upon this, Rojas-Gomez et al. (2022)
improves APS by making this selection process learnable,
using neural networks. Kaba et al. (2023) took a different
approach by using equivariant networks to predict input
poses, allowing the network to revert inputs to a rotation in-
variant state for processing in non-equivariant models. Kim
et al. (2023) expanded on this by predicting a distribution
over possible poses, rather than a single pose.

In our study, we advance the concept of adaptive grids, pre-
viously applied in downsampling and canonicalization, by
integrating it into Fourier-based nonlinearities, more specif-
ically to the sampling process. Unlike the previous works
that largely focused on utilizing global grids for downsam-
pling or canonicalization, our approach takes a more local-
ized perspective, learning a sampling grid at each spatial
location.

7. Experiments
Methods that are explained in Sec 3.3 and in Sec. 5 are eval-
uated on two datasets, namely ModelNet10 (Wu et al., 2015)
and NoduleMNIST3D (Yang et al., 2023). ModelNet10 (Wu
et al., 2015) is a subset of the larger ModelNet40 which con-
tains synthetic object point clouds, while NoduleMNIST3D
(Yang et al., 2023) is a subset of the MedMNIST collec-
tion. All our implementations are based on the escnn library
(Cesa et al., 2022).

ModelNet10 In our analysis, we benchmarked our method
against the approach described in Poulenard & Guibas
(2021), which combines Tensor Field Networks (TFN)
(Thomas et al., 2018) with Fourier-based nonlinearities. In
this study, we developed a similar model consisting of three
convolutional blocks, each followed by a block of linear
layers. We refer to this model as the Base model. Fig. 4
presents the test accuracies of the Base model with various
nonlinearities. The figure demonstrates that the Base model
with Fourier-based nonlinearities outperforms the models
with other nonlinearities, such as norm and gated, provided
a sufficient number of group elements are sampled. Ad-
ditionally, the model with gated nonlinearity significantly
outperforms the model with norm nonlinearity. This out-
come is expected, since the gated nonlinearities are more

proficient at processing directional information than norm
nonlinearities. Furthermore, we have confirmed that the tra-
ditional PointNet++ framework lacks the capacity to handle
equivariance adequately.

Figure 4. Test accuracy on ModelNet10, with respect to the number
of group samples by model.

In our adaptive approach, we experimented with various
downsampling and matrix generation methods, while keep-
ing the main architecture consistent. We only included the
best-performing model, which is referred to as the Adaptive
MLP. Its architecture is depicted in Fig. 3. This model gen-
erates the sampling matrix through an equivariant MLP and
performs spatial downsampling using convolutional layers.
Fig 4 displays the performance of the models with different
nonlinear layers, based on the number of group samples.
Each model is trained three times, with three different pre-
determined seeds for initialization. Although the standard
deviations among the runs are quite small, they are visu-
alized in the figure. As shown, even with a single group
sample, our Adaptive MLP outperforms the Base model.
This improvement is attributed to its complete equivariance
and enhanced expressiveness, achieved by introducing a
tailored sampling matrix to each nonlinear layer.

Figure 5. Test accuracies vs. memory cost by model. Results are
computed on ModelNet10.

We can also observe the memory gain obtained by our ap-
proach in Fig. 5. Our Adaptive MLP with two group sam-
ples, located in the top left corner of the figure, outperforms
other models in both test accuracy and computational effi-
ciency. However, it is important to note that the computa-
tional gains are modest and do not increase proportionally

7
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with the number of group samples, as initially expected.
Further analysis reveals that this can be attributed to the
computational overhead in the convolutional layer, which
diminishes the improvements gained from the nonlinear
layer, making them less apparent in the overall model out-
put. We discuss the computational limitations in more detail
in Sec. 4.

NoduleMNIST3D We employ an equivariant architecture
with dense convolutions and Fourier-based nonlinearities as
a benchmark to evaluate the performance of our approach.
This model will be referred to as the Base model. For the
adaptive sampling approach, we have tried various imple-
mentations. Specifically, we examined three different meth-
ods for spatial downsampling of the sampling matrix.

Note that each model, with a specific number of group sam-
ples, is trained three times using different predetermined
initialization seeds. In the first approach, convolutional lay-
ers are employed to perform all downsampling, and this
model is referred to as Adaptive Conv. To further reduce
the computational cost, in our second implementation, we
replaced the convolutional layers performing downsampling
with average pooling layers. This model is referred to as
Adaptive Pooling. However, both Adaptive Conv and Adap-
tive Pooling were outperformed by the Base model in terms
of test accuracy and computational efficiency. Our further
analysis revealed that the memory overhead was primar-
ily caused by the first convolutional layer in the sampling
branch.

Figure 6. Test accuracy vs. memory cost by model. The results are
computed on NoduleMNIST3D datastet. Each model is trained
three times with three different predetermined seeds for initializa-
tion. Standard deviation among those runs are displayed in the
figure. The Base model is illustrated with transparency to display
the overlap in the plot.

This layer processes the initial intermediate features from
the main branch and returns the first set of generated sam-
pling matrices to the first activation layer (see Fig. 7). To ad-
dress this issue, we replaced the Fourier-based nonlinearity
in the first convolutional block with the norm nonlinearity,
and started generating the sampling matrix from the sec-
ond convolutional layer onwards. This implementation is

referred to as Adaptive Norm + Pooling in the figures. The
Adaptive Norm + Pooling model successfully resolved the
convolutional overhead issue, leading to improved computa-
tional efficiency.

In Fig. 6, we present the test accuracy and the memory
consumption for the different implementations. Adaptive
Conv and Adaptive Pooling, represented by green and indigo
points respectively, show lower test accuracies and higher
computational demands compared to the base model as seen
mainly on the right side of the figure. Conversely, Adaptive
Norm + Pooling (red points) successfully reduces computa-
tional demands while achieving comparable test accuracies
to the base model. It is important to note that the standard
deviation values for the Adaptive Norm + Pooling with a
smaller number of group samples are notably higher com-
pared to the other models, which suggests more variability
in their performance.

8. Discussion and Conclusion
In the previous sections, we presented the findings of our
empirical analysis. When applied to point cloud data, our
approach demonstrated improved classification accuracy
compared to models that did not incorporate our method,
demonstrating the benefits of maintaining exact equivari-
ance and leveraging a local adaptive sampling grid. We
also observed a marginal improvement in computational
cost. However, when applied to voxel data, which lack ex-
act symmetries due to discretization, our approach achieved
moderate computational efficiency and comparable classifi-
cation accuracy.

To better understand the limitations in computational effi-
ciency, we analyzed the computational costs of each network
layer using profiling tools. Our findings reveal that convolu-
tional layers have a significantly higher computational load
compared to nonlinear layers, particularly in point cloud pro-
cessing. The cost ratio between convolutional and nonlinear
layers varies throughout the network, with convolutional
layers being up to seven times more computationally de-
manding than nonlinear layers. This substantial difference
dominates the overall cost of the model, making the im-
provements in the nonlinear layers less noticeable in the
overall computational cost of the model.

Further Improvements and Future Work To address
the computational overhead in the convolutional layers, fu-
ture works could adopt different model designs which aim
to reduce the memory and computational overhead of convo-
lutional layers, making the benefits of our method more ob-
servable. For instance, MobileNetV2 (Sandler et al., 2019)
uses separable depthwise convolutions to significantly re-
duce computational load and could highlight the impact of
nonlinear layers. Similarly, implementing the full model

8
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from Poulenard & Guibas (2021), which uses entire MLPs
as pointwise activations, can introduce higher complexity
but benefit from a small and adaptive grid to manage com-
putational cost and reduce aliasing effects. Finally, another
promising alternative is the architecture from Knigge et al.
(2022), which leverages a separable group convolution.
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A. Mathematical Background
A.1. Peter-Weyl Theorem

In the context of harmonic analysis, Fourier transform decomposes a function into its frequency components. The Peter-Weyl
theorem can be considered as a generalization of the classical Fourier transform to the setting of compact topological groups.
Similar to the Fourier transform, the Peter-Weyl theorem decomposes certain functions on a compact group G into a series
of irreducible components.

Theorem 1: Peter-Weyl Theorem : Decomposition into orthogonal subspaces

Given a compact group G, the space of square-integrable functions on G, which is denoted by L2(G), can be expressed
as a direct sum of mutually orthogonal subspaces Vπ;

L2(G) =
⊕
π∈Ĝ

mj⊕
i=1

Vπ (17)

where Ĝ denotes the set of all equivalence classes of finite dimensional irreducible unitary representations of G, and
mj is the multiplicities of the corresponding subspace. Each subspace Vπ is isomorphic to the representation π, and
invariant under left and right translation by g ∈ G.

Note that this theorem only applies to the compact groups.

Intuitively, groups can be interpreted as rotations acting on geometric objects. In the context of compact groups 3, the matrix
coefficients of their representations can be interpreted as square-integrable functions defined on the group. This perspective
allows us to specifically redefine the decomposition of a unitary representation in terms of the group’s representations.

Definition 1: Decomposition into irreducible representations

Given ρ : G→ GL(V ) is a unitary representation of a compact group G over a field with characteristic zero, ρ can be
expressed as a direct sum of mutually orthogonal irreducible representations :

ρ(g) = QT

(⊕
i∈I

ψi(g)

)
Q (18)

where ψi ∈ Ĝ is an irrep, Ĝ is the set of irreps of the group G, I is an index set ranging over Ĝ, and Q ∈ GL(V ) is the
change of basis.

Note that Peter-Weyl theorem ensures that each irrep acts on an invariant subspace of V .

3A compact group is a group that is also a compact topological space, meaning it is both closed and bounded. Compact groups can be
infinite in terms of the number of elements, but have a finite size from a topological perspective. SO(3) is an example of compact groups.
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Theorem 2: Peter-Weyl : Orthonormal Basis

Let G be a compact group, ρ : G → GL(V ) a unitary representation, and L2(G) vector space of square-integrable
functions on G. Unitary representation ρ can be decomposed into irreps, ψ, as shown in Def. 1. Peter-Weyl Theorem
guarantees that there are distinct linear subspaces of L2(G), each corresponding to an irreducible representation that
transforms accordingly.

The matrix coefficients of the irrep ψ, denoted by ψij(g), form an orthonormal basis for each subspace Vψ, and they
satisfy the following orthonormality relations.

For infinite groups: ∫
G

ψ′
ij(g)ψkl(g) dg =

1

dψ
δψψ′δikδjl,

and for finite groups:
1

|G|
∑
g∈G

ψ′
ij(g)ψkl(g) =

1

dψ
δψψ′δikδjl

where dψ is the dimension of the irrep ψ.

If the vector space V is a complex space, the orthonormality condition implies that the matrix coefficients form a
complete orthonormal basis

{√
dψψij(g) : G→ C | ψ ∈ Ĝ, 1 ≤ i, j ≤ dψ

}
for complex square integrable functions

in L2(G).

In the case where the vector space is real V = Rn, conjugated representations ψlij(g) is replaced by ψlij . From now on,
we will assume vector spaces are of real type unless specified otherwise. It is important to note that for real irreps, some
coefficients may be redundant. However, since we are exclusively working with SO(3) in this study, this does not apply.
For more details on this setting, please refer to Cesa et al. (2022).

Overall, the Peter-Weyl theorem provides a method for parameterizing functions over a group, which is especially useful for
infinite groups.

A.2. Fourier and Inverse Fourier Transform

In the context of the Peter-Weyl theorem (Thm. 2), any square-integrable function on a compact groupG, denoted f : G→ R,
can be expanded as a series using the matrix coefficients of the group’s irreducible representations.

f(g) =
L∑
l=0

∑
ψl∈Ĝ

∑
m,n<dψ

wlmn ·
√
dψl ψ

l
mn(g) (19)

where l is the degree of the spherical harmonics, Ĝ is the set of all irreducible representations of G, dψ is the dimension of
irrep ψ : G→ R and the ψlmn(g) are the matrix coefficients of ψ. Coefficients wlmn parameterize the function f on this
basis, while

√
dψ ensures that the basis is normalized.

This expansion is analogous to a Fourier series, where sines and cosines are replaced by the matrix coefficients of irreps. In
this setting, coefficients wlmn serve as the Fourier coefficients, which can be formulated as

wlmn =

∫
G

f(g)ψlmn(g)dg.

where dg is the normalized Haar measure on the group G. Haar measure can briefly be defined as the prior probabilities for
compact groups of transformations, and it allows for the integration of functions over the group.
The projection onto the full set of entries of irrep ψ can be reformulated and referred to as the Fourier transform, as in Def
2.
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Definition 2: Fourier Transform

For the compact group G, let f : G→ R be the square-integrable functions on G, and ψ : G→ R be the irreps of G.
Fourier transform over the function f is formulated as follows for

infinite groups: f̂(ψ) =

∫
G

f(g)
√
dψψ(g)dg ∈ Rdψ×dψ (20)

finite groups: f̂(ψ) =
1

|G|
∑
g∈G

f(g)
√
dψψ(g) ∈ Rdψ×dψ (21)

where f̂(ψ) is the Fourier coefficients of the corresponding irrep ψ and
√
dψ is the dimension of the irrep ψ.

It is important to note that the Fourier transform exhibits the equivariance property with respect to the action of a group
element g ∈ G on a function f : G→ R:

ĝ · f(ψ) = ψ(g)f̂(ψ)

for any irreducible representation (irrep) ψ.

Regarding the expansion of the square-integrable functions on G, the function in Eq. (19) can be redefined in a more
compact form with the help of trace operation, which is defined as:

Tr(ATB) =
∑
m,n<d

AmnBmn ∈ R (22)

where A,B ∈ Rd×d. Since coefficients wlmn in Eq. (19) serves as Fourier coefficients, f̂(ψl) ∈ Rdψ×dψ can be defined as
the matrix containing the coefficients wlmn ∈ R. Given that, the Inverse Fourier Transform is defined.

Definition 3: Inverse Fourier Transform

Given group G and a function on G, f : G→ R, Inverse Fourier Transform can be defined as

f(g) =
∑
ψ∈Ĝ

√
dψ Tr(ψ(g)

T f̂(ψ)) (23)

where Ĝ is the set of irreps of the group G, f̂(ψ) is the Fourier coefficients of irrep ψ, and dψ is the dimension of the
corresponding irrep.

For the infinite groups, there exists infinite irreducible representations. We can still parameterize a function using the same
expression for the Inverse Fourier Transform (Def. 3), but only by taking the finite subset of the irreps, which is Ĝ ⊂ G̃,
into account in the computation. This finite subset is also referred to as bandlimited representations.

A.3. From Fourier Transform to the Regular Representation

The Peter-Weyl theorem and Fourier transform has a strong connection in terms of breaking down functions into their
irreducible components. In this section, this connection will be shown in a more formal sense, focusing on the decomposition
of the regular representation.

The inverse Fourier transform (Eq. (23)) is defined in the previous section. Transpose of an inner product of two matrices
can be defined in terms of vectorization of the matrices, as in Tr(ATB) = vec(A)T vec(B). Given this, the trace in the
inverse Fourier transform (Def. 3) can be rewritten as

Tr(ψ(gi)
T f̂(ψ)) = vec(ψ(gi))T vec(f̂(ψ)). (24)
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This makes the inverse Fourier transform (Eq. (23))

f(g) =
∑
ψ∈Ĝ

√
dψvec(ψ(g))T vec(f̂(ψ) (25)

The summation can be converted into the matrix notation with the help of direct sum. Fourier coefficients f̂(ψ) ∈ Rdψ×dψ ,
by stacking the columns of each f̂(ψ):

f =
⊕
ψ∈Ĝ

vec(f̂(ψ)) =

vec(f̂(ψ1))

vec(f̂(ψ2))
...

 . (26)

As stated before, Fourier coefficients has the equivariance property which can be expressed as ĝ · f(ψ) = ψ(g)f̂(ψ). Given
Eq. (26) and the equivariance property of the Fourier coefficients, vectorized function [g · f ] can be rewritten as:

⊕
ψ∈Ĝ

vec(ψ(g)f̂(ψ)) =
⊕
ψ∈Ĝ

( dψ⊕
ψ(g)

)
vec(f̂(ψ)) (27)

=
⊕
ψ∈Ĝ

( dψ⊕
ψ(g)

)
f. (28)

In simpler terms, the group G acts on the vector f with the following representation:

ρ(g) =
⊕
ψ∈Ĝ

dψ⊕
ψ(g). (29)

This means that ρ(g)f is the vector containing Fourier coefficients of the function [g · f ]. Representation ρ acts on a space
of functions over the group G. If G is finite, this representation is isomorphic (equivalent) to the regular representation
defined in Sec. 3. Given Q is the matrix that serves as a change of basis that performs Fourier transform, Q−1 is the matrix
that performs the inverse Fourier transform. This can be formulated as:

ρreg(g) = Q−1

(⊕
ψ∈Ĝ

dψ⊕
ψ(g)

)
Q. (30)

where dψ is the multiplicities of the corresponding irrep ψ, and also its dimension.

A.4. Quotient Representation

In Section 3.1, we investigated the inverse Fourier transform on groups, and defined the final equation as:

f(gi) = δ̂T ρ(gi)
T f̂ (31)

where ρ(gi) =
⊕

ψ∈Ĝ
⊕dψ ψ(g) for regular representation and ρ(gi) =

⊕
ψ∈Ĝ ψ(g) for quotient representation of

Q = SO(3)/SO(2). Recall that δ̂ =
⊕

ψ

⊕qψ
√
dψvec(Pψ) is interpreted as a vector with Fourier coefficients of a Dirac

delta function centred at identity, and f̂ =
⊕

ψ vec(f̂(ψ)) is a vector of Fourier coefficients of the irreps ψ.

For the quotient representation ρ with the quotient space Q = SO(3)/SO(2), multiplication in δ̂T ρ(gi)T in Eq. (31) results
in only the mid-column of each irrep ψ in ρ(gi). This can be illustrated as
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ρ(gi)δ̂ =



■ ψ0(gi)
■ ■ ■
■ ■ ■
■ ■ ■

ψ1(gi)

■ ■ ■ ■ ■
■ ■ ■ ■ ■
■ ■ ■ ■ ■
■ ■ ■ ■ ■
■ ■ ■ ■ ■

ψ2(gi)

. . .


︸ ︷︷ ︸

ρ(gi)=
⊕
ψ∈Ĝ ψ(gi)

·



√
dψ0
−√
dψ1
−
−
−√
dψ2
−
−
...


︸ ︷︷ ︸

δ̂

(32)

where l in ψl corresponds to the degree of spherical harmonics. Note that the blocks in δ̂ corresponds to the non-scaled
matrices

√
dψvec(Pψ) in Eq. (10).

Spherical harmonics are functions defined on the surface of a sphere that form an orthogonal basis for square-integrable
functions on the sphere. When used in equivariant kernel design, they extend the feature space onto this spherical
surface, allowing the kernel to capture more complex patterns. Spherical harmonics can also be described as functions
Ỹ lm : SO(3) → R on SO(3). and are considered as a special case of the Wigner D-matrices4. Specifically, the n = 0 order
within these matrices corresponds to spherical harmonics, suggesting that spherical harmonics can be represented as the
n = 0 column of a Wigner-D matrix, formulated as

Y lm(θ, ϕ) =
1√

2l + 1
Dl
m0(θ, ϕ, γ). (33)

This corresponds to Pψ selecting the columns of ψ which are H invariant in Eq. (10). The column, Dl
m0, consists of

functions that are invariant to rotations around a particular axis, indicating that spherical harmonics remain invariant
under such rotations. Consequently, focusing on the middle column of the Wigner-D matrices allows us to represent
rotation-equivariant features in a more computationally efficient manner, as it requires fewer channels to be stored, while
also maintaining efficiency (Bekkers et al., 2023). Eq. (32) illustrates how the middle column of the Wigner-D matrices are
extracted in inverse Fourier transform.

B. Nonlinear Layers
In equivariant networks, nonlinear layers must also satisfy the equivariance constraint. The nonlinearities discussed in this
section operate on each feature vector f(x) ∈ Rcin for all x ∈ Rn.

Norm Nonlinearity Point-wise nonlinearities acting on the norm of each field preserves the rotational equivariance, as
described in Worrall et al. (2016). Norm nonlinearity can be formulated as:

f(x) → σ (∥f(x)∥2)
f(x)

∥f(x)∥2
(34)

where σ represents the point-wise nonlinearity. In the case of σ being ReLU, a learnable bias b ∈ R+ can be introduced,
which makes σ (∥f(x)∥2) = ReLU(∥f(x)∥2 − b).

Gated Nonlinearity Weiler et al. (2018a) introduce gated nonlinearity, which can be considered as a special case of the
norm nonlinearity. Gated nonlinearities act on a feature vector f(x) by scaling its norm by a gating scalar that is computed
via a sigmoid nonlinearity 1

1+e−s(x) , where s is a scalar feature field. In this case, σ (∥f(x)∥2) in Eq. 34 can be reformulated
as ∥f(x)∥2 1

1+e−s(x) .

Tensor Product Nonlinearity Feature vectors f1(x) ∈ Rc1 and f2(x) ∈ Rc2 of arbitrary types ρ1 and ρ2 can be combined
to a tensor product feature (f1 ⊗ f2)(x) ∈ Rc1c2 . Product output transforms under the representation ρ1 ⊗ ρ2 : G →
GL(Rc1c2). Tensor product operation is nonlinear and equivariant, therefore it can be integrated into the equivariant network
without the need for any further nonlinearities. More details can be found in Kondor et al. (2018); Weiler et al. (2018a).

4Wigner D-matrices are unitary matrices representing irreducible representations of the groups SU(2) and SO(3)
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C. Equivariance of the Nonlinear Layer
In equivariant network architectures, the assumption is that the previous MLP and convolution layers are all equivariant,
satisfying f̂(g.x) = ρ(g)f̂(x). In our adaptive approach, the sampling matrix is generated through equivariant layers to
ensure full equivariance, meaning that it satisfies the constraint

A(g.x) = A(x)ρ(g)T . (35)

Given the equivariance of the previous layers and the sampling matrix A, equivariance of the activation layer can be shown
as:

f̂(g.x) =
1

N
A(g.x)Tσ(A(g.x)f̂(g.x)) (36)

f̂(g.x) =
1

N
(A(x)ρ(g)T )Tσ(A(x)ρ(g)T ρ(g)f̂(x)) (37)

f̂(g.x) = ρ(g)
1

N
A(x)Tσ(A(x)f̂(x)) (38)

f̂(g.x) = ρ(g)f̂(x) (39)

D. Orthogonality Metrics
In Section 3.3, we discussed the orthogonality of the sampling matrix, meaning that it satisfies the condition ATA =
AAT = NI , where N is the number of group samples. In this section, we will compute the deviation of the sampling
matrices from orthogonality using two metrics; ϵ1 in Eq. (40) and Eq. (48). Note that the representations in this section
are assumed to be quotient representations. Towards the end of this section, we briefly discuss how the metrics differ for
regular representations. The first metric ϵ1 is defined as

ϵ1 =
1

N

∑
i,j<N

|AAT − IN | (40)

where N is the number of group samples, and IN is the identity matrix of size N . To simplify, AAT can be visualized as

AAT =


ψ0(g0)δ̂0

■

ψ1(g0)δ̂1
■ ■ ■ · · ·

ψL(g0)δ̂L
■ ■ · · · ■

...
...

. . .
...

ψ0(gN )δ̂0
■

ψ1(gN )δ̂1
■ ■ ■ · · ·

ψL(gN )δ̂L
■ ■ · · · ■


︸ ︷︷ ︸

A ∈ RN×F

·


■ [ψ0(g0)δ̂0]

T · · · ■ [ψ0(gN )δ̂0]
T

■
■
■
[ψ1(g0)δ̂1]

T · · · ■
■
■
[ψ1(gN )δ̂1]

T

...
. . .

...
■
■...
■

[ψL(g0)δ̂L]
T · · ·

■
■...
■

[ψL(gN )δ̂L]
T


︸ ︷︷ ︸

AT ∈ RF×N

(41)

=
∑
ψ∈Ĝ


ψ(g0)δ̂ · [ψ(g0)δ̂]T

■ · · · ψ(g0)δ̂ · [ψ(gN )δ̂]T

■

... . . . ...
ψ(gN )δ̂ · [ψ(g0)δ̂]T

■ · · · ψ(gN )δ̂ · [ψ(gN )δ̂]T

■


︸ ︷︷ ︸

AAT ∈ RN×N

(42)

where F is the size of the representation ρ(gi)δ̂, which can be computed as F =
∑L
l=0 2l + 1 for SO(3), with degree up to

L. The matrices are formed in blocks to emphasize the multiplication between the corresponding representations. Each
square ■ in the matrix corresponds to a single matrix coefficient.
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Given the orthogonality of the compact group representations, ρ(g−1) = ρ(g)−1 = ρ(g)T , and the Peter-Weyl theorem
(Thm. 2), it is expected that the matrix product AAT yield an identity matrix. The ϵ1 quantifies the deviation of the
representations from the perfect orthogonality.

Moreover, ATA can be illustrated as

ATA =


■ [ψ0(g0)δ̂0]

T · · · ■ [ψ0(gN )δ̂0]
T

■
■
■
[ψ1(g0)δ̂1]

T · · · ■
■
■
[ψ1(gN )δ̂1]

T

...
. . .

...
■
■...
■

[ψL(g0)δ̂L]
T · · ·

■
■...
■

[ψL(gN )δ̂L]
T


︸ ︷︷ ︸

AT ∈ RF×N

·


ψ0(g0)δ̂0

■

ψ1(g0)δ̂1
■ ■ ■ · · ·

ψL(g0)δ̂L
■ ■ · · · ■

...
...

. . .
...

ψ0(gN )δ̂0
■

ψ1(gN )δ̂1
■ ■ ■ · · ·

ψL(gN )δ̂L
■ ■ · · · ■


︸ ︷︷ ︸

A ∈ RN×F

(43)

=
∑
g∈G


■ [ψ0(g)δ̂0]

Tψ0(g)δ̂0 · · · · · ·

... ■ ■ [ψ1(g)δ̂1]
Tψ1(g)δ̂1

■
· · ·

■
■...
■

[ψ0(g)δ̂0]
TψL(g)δ̂L

. . .
■ . . .

■


︸ ︷︷ ︸

ATA ∈ RF×F

(44)

Recall the orthogonality property of irreps in Peter-Weyl theorem (Thm. 2). The orthonormality condition for the ψlmn(g)
can be expressed as an integral over the group as in∫

SO(3)

ψlmn(g)ψ
l′

m′n′(g) dµ = δll′δmm′δnn′
1

2l + 1
(45)

and in the discretized form ∑
g∈G

ψlmn(g)ψ
l′

m′n′(g) =
|G|

2l + 1
δll′δmm′δnn′ (46)

where ψl is an irrep of SO(3) with degree l and with m,n matrix indices. |G| is a finite number of group samples from
SO(3).

Given Eq. (46), each square ( ■ ) in diagonal blocks
∑
g∈G[ψl(g)δ̂l]

Tψl(g)δ̂l (Eq. (44)) corresponds to |G|. Note that 2l+ 1

in Eq. (46) is cancelled with δ̂T δ̂ in the blocks (see δ̂ in Eq. (32)). This makes the ATA

ATA =

 |G|
|G|

. . .

 ∈ RF×F . (47)

To obtain the identity matrix, we can divide ATA by |G|.

ϵ2 =
1

F

∑
i,j<dρ

∣∣∣ 1

|G|
ATA− IF

∣∣∣ (48)

The value ϵ2 helps us understand how closely the learned group representations align with the principles of the Peter-Weyl
theorem.
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Normalization The concepts discussed so far applies if δ̂ is not normalized in any way. Models in Sec. 7 employ
normalization over the vector δ̂ as in

δ̂ 7→ δ̃ :=
δ̂

∥δ̂∥
. (49)

Normalization over the entire vector has no effect on ϵ1, since in AAT (Eq. (42)), each matrix coefficient has the entire δ̂.
However, in ATA (Eq. (44)), each matrix coefficient is associated with the respective segment of the kernel corresponding
to the degree l. Therefore, in the computation of the ϵ2 (Eq. (48)), each matrix coefficient can be multiplied by the norm of
the kernel to assess the orthogonality more accurately. As an alternative, different normalization methods can be applied.

Regular Representation Regular representation is defined as

ρreg(g) = Q−1

(⊕
ψ

dψ⊕
ψ(g)

)
Q.

where Q is the change of basis, dψ is the size and the multiplicities of the corresponding irrep ψ. This means that, in the
irreps decomposition, each irrep ψ is repeated as many times as its size. For regular representations, A ∈ RN×F matrix
takes a similar form, with the only difference being the repetition of the irreps, and the size F =

∑L
l=0(2l + 1)2.
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E. Practical Design Choices
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Figure 7. Architecture for voxel processing. The
branch on the left represents the main branch that pro-
cess the voxel data, while the branch on the right can
be referred to as the sampling branch. The sampling
block receives the first intermediate feature from the
main branch and returns the sampling matrixA to the
first nonlinear layer in the first convolutional block.
Each convolutional block comprises convolutional
layer, batch normalization and activation layer.

In Section 5, we cover the implementation details, and here, we discuss
various possible designs.

The implementation for voxel data is relatively straightforward by intro-
ducing convolutional layers for the generation and downsampling of the
sampling matrix. For the point cloud processing, we have tried various
implementation for the sampling branch by prioritizing the expressive-
ness and the computational efficiency. In both architectures, the sampling
matrix A can be generated by processing the model input directly or by
processing the first intermediate feature tensor, which corresponds to the
output of the first pair of convolution and normalization layer. It is impor-
tant to note that directly using the original input in an equivariant MLP
may introduce specific challenges. The linear map W , in an equivariant
MLP, is parameterized based on the Schur’s lemma, which states that the
irrep intertwiners5 are zero for non-isomorphic6 irreps. In other words,
if ρ1 and ρ2 are two non-isomorphic irreps, then any linear map W such
that Wρ1(g) = ρ2(g)W ∀g ∈ G must be the zero map. This property
ensures that the space of intertwiners between different irreps is trivial
unless the irreps are isomorphic. Model input is initially interpreted as
feature space with representations of frequency zero. This means that
W will be parametrized in a way that the input won’t be mapped to a
feature space with representations of higher frequencies, which results
in information loss and less expressive intermediate features. This issue
can be mitigated by the sampling branch processing the first intermediate
features instead of model input, since the first feature space is generated
by a convolutional layer which doesn’t have similar restrictions in the
parametrization.

Both point clouds and voxel data are downsampled through the convo-
lutional layers in the main branch of the architecture. As detailed in
(Sec. 5), the model generates a unique sampling matrix for each point
in the point clouds and each pixel in the voxel data. To ensure compat-
ibility between the feature map and the sampling matrices, we apply
subsampling to the sampling matrix. We can only employ convolutional
layers in the processing of voxel data, however for point clouds, the
simple approach would be to use indexing, where only the points that
are still in the feature space are kept for further processing. This might
result with the information loss since while the points are processed
by message passing in the downsampling in the main architecture, the
sampling matrix won’t go through any further processing. Therefore,
the expressiveness of the sampling matrices might decrease, particularly
in the case where it is generated by an MLP layer which discards the
neighbouring information.

We have implemented multiple architectures given the points discussed.
In Sec. 7, we only provide the results from the models that perform the
best.

5An intertwiner is a linear map between two group
representations that commutes with the group action,
preserving the structure of the representations.

6In group theory, an isomorphism is a bijective mapping
between two groups that preserves the group structure.
It respects the group operations and establishes a one-to-one
correspondence between the elements of the groups.
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F. Experimental settings
Here, we will outline the experimental settings and analyze the model results on two separate datasets. Additionally, we will
present the findings in terms of model equivariance, runtime, and the orthogonality of the sampling matrices.

Equivariance Due to the final invariant layer in the network, the entire network is expected to be invariant to rotations. To
investigate the impact of different nonlinear layers and the number of group samples on the degree of equivariance in each
model, we examined the relative equivariance error, which is defined as:

ϵg(f) =
∥f(x)− f(T (x))∥

max{∥f(x)∥, ∥f(T (x))∥}
(50)

where f is the network, T is the transformation of interest, which is SO(3) rotations in this work, and x is the model input.
It is important to note that this formulation computes the invariance error, since the numerator in the formulation corresponds
to invariance. However, we will refer to it as the equivariance error, to emphasize the degree of equivariance of the model
before the final invariant layer empirically.

Orthogonality Recall from Sec. 3.3 that our approach assumes the sampling matrix is orthogonal, satisfying AAT =
ATA = NI , where N is the number of group samples. In this section, we measure the deviation from orthogonality using
two metrics introduced in Sec. D. To compute the final ϵ1 and ϵ2 values (Eq. (51)), we calculate these metrics for each data
sample and average the results over the samples in the test set.

ϵ1 =
1

N

∑
i,j<N

(AAT − IN )

ϵ2 =
1

F

∑
i,j<dρ

(
1

|G|
(ATA)− IF

) (51)

In the context of matrix orthogonality, for a p × q matrix, if p < q, all rows can potentially be orthogonal and linearly
independent. Conversely, if p > q, not all rows can be orthogonal or independent due to dimensional constraints. In our
specific case, the sampling matrix A has the shape N × F , where N represents the number of group samples and F is the
size of the representations. This means that not all rows of A can be orthogonal to each other when the number of group
samples exceeds the size of the representations.

F.1. ModelNet10

Figure 8. Equivariance error based on the number of group samples.

To evaluate the model’s robustness to SO(3) rota-
tions, we generated a new set of training and test
set. The new training set is generated by expanding
the original ModelNet10 training set to three times
its original size by incorporating random SO(3) ro-
tations into the point clouds. This means that each
model is trained with potentially different datasets
containing the same point clouds but in different
orientations. The test set is also expanded to three
times its original size by introducing SO(3) ro-
tations to the point clouds in the original dataset.
However, the rotations for the test set are precom-
puted, ensuring consistency as all the models are evaluated on the same set. Training is conducted three times for each
model, using three different seeds consistently to initialize the models. Each model is trained for 70 epochs and the highest
test accuracy is reported in Fig 4. All models discussed in this section uses Fourier-based nonlinearity with quotient
representation.

Equivariance Equivariance error is computed by rotating a single data sample by every octahedron rotations and taking
the average of the errors with respect to each rotation. As seen in the Fig. 8, the equivariance improves as the number of
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samples increases. In our approach, as described in Sec. C, the network is designed to be fully equivariant. Consequently,
the equivariance error is zero, which is consistent with our results.

Figure 9. Inference runtime with respect to the number of group
samples for Base model (blue) and Adaptive MLP (yellow).

Runtimes The inference runtimes were obtained by av-
eraging the results of eleven epochs, excluding the highest
and lowest values among those runs. We also excluded
the first ten batches for the warm-up.

The Adaptive MLP generally exhibits longer inference
runtimes compared to the Base model, as reported in Fig.
9. The only exception is when the model is trained with
four samples. The increase in runtime for the adaptive
approach can be attributed to the higher number of pa-
rameters (see Table 1) and the additional computational
steps involved in generating the sampling matrices and
performing downsampling on them. Alternatively, using
just-in-time (JIT) compilation could improve the results, but we did not experiment with that.

Orthogonality In the conventional approach, there is a single sampling matrix generated and used throughout the network.
In our approach, Adaptive MLP generates a separate sampling matrix for each point in the point cloud, which enables
to capture local symmetries. In this work, we use quotient representations for Q = S2 ∼= SO(3)/SO(2) up to degree 3,
where F becomes equal to

∑3
l=0 2l + 1 = 16. This means that we can ideally achieve perfect orthogonality in terms of

row independence, making ϵ1 close to zero as long as N < 16. For ϵ2, the criteria for orthogonality is almost the opposite,
meaning that we can obtain a value close to zero for ϵ2 as long as N > 16. This is indeed the case within the base models,
as also shown in the first row of Fig. 10. Regarding the ϵ1, the values start to diverge around 8 samples, which is slightly
earlier than expected. A similar pattern is observed for ϵ2. Notably, ϵ2 values do not converge to zero, but to around 0.7.
This is due to normalization over the δ̂ in Eq. (49).

In our Adaptive MLP approach, we observe that even though we don’t enforce orthogonality to the matrices, the network
itself learns to create orthogonal sampling matrices. This is evident in both ϵ1 and ϵ2, which exhibit trends similar to those
in the Base model, as shown in Fig. 10. Here, Block 1, Block 2, and Block 3 correspond to the sampling branch, first
downsampling, and second downsampling blocks, respectively, as depicted in Fig. 3. ϵ’s are computed for the sampling
matrices processed in each one of those blocks. Additionally, from the second row onwards, there is a noticeable increase in
ϵ1 and in ϵ2 from Block 1 to Block 3, particularly when N > 16. This trend further suggests that the model is autonomously
learning orthogonality, without the need for external guidance. In terms of normalization applied to the sampling matrix,
we experimented different techniques. However, these techniques didn’t improve the model performance in terms of
classification accuracy. The most effective normalization was the one applied over the entire δ̂ in Eq. (49).
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Figure 10. Orthogonality metrics for Base model and Adaptive MLP. The first row presents the values obtained from the Base model with
respect to the number of group samples. Block 1, Block 2 and Block 3 refer to the sampling block, first downsampling block and the
second sampling block, respectively, in the architecture (Fig. 3). Metrics are computed for the sampling matrices computed in each of
those blocks, and presented on the second-to-last rows.

F.2. NoduleMNIST3D

MedMNIST3D (Yang et al., 2023) offers a collection of six biomedical image datasets, each containing 3D images
standardized to 28x28x28 pixels and annotated with relevant classification label. In this work, the experiments are conducted
on the MedMNIST3D Nodule dataset, which is a subset of the MedMNIST collection. This dataset is mainly designed for
binary classification, focusing on the presence of the lung nodules in 3D CT scans. To evaluate the models, we generated
rotated training, validation, and test sets. Rotating 3D voxels with random SO(3) rotations introduces several issues such as
interpolation artifacts due to misalignment with the original grid, and aliasing effects caused by the voxel grid’s discrete
nature. Furthermore, boundary effects at the grid edges can create artificial artifacts. To minimize the impact of those issues,
we only perform cubic rotations, which is a subgroup of SO(3), and we upsample each sample from 28 pixels to 29 pixels
in each dimension.

The training dataset is generated by applying random cubic rotations to each sample from the original training set, to ensure
variation in the training process. The validation set is expanded to three times the size of the original test set by applying
precomputed rotations. For the test set, we rotate each sample in the original test set with every cubic rotation, resulting in
a set of size twenty-four times the original. We also trained the each model for 100 epochs and choose the one with the

23



Adaptive Sampling for Continuous Group Equivariant Neural Networks

best validation set accuracy for testing. All results reported here are based on this test set performance. Furthermore, our
implementation uses Fourier based nonlinearity with ELU as the pointwise nonlinearity and with regular representations up
to degree 3. All the hyperparameters used in the experiments are presented in Sec. G.

Additionally, in our experiments, we follow the approach, where the first intermediate features are used by the sampling
branch to generate the sampling matrix. This approach is particularly effective since intermediate features, as opposed
to the original input, already contain extracted features, and provide more information for the sampling branch. The full
architecture of the model is illustrated in Fig. 7.

Figure 11. Equivariance with respect to the number of samples

Equivariance Equivariance error is computed by
applying all cubic rotations to a single Nodule data
sample and then averaging the equivariance error
over these operations. As shown in Fig. 11, while
the base model is not fully equivariant to rotations,
the degree of equivariance tends to align with the
number of group samples used, especially in mod-
els trained with sixteen or more samples. In con-
trast, our approach consistently ensures full equiv-
ariance, regardless of the implementation choice or
the number of group samples.

Figure 12. Inference runtime with respect to the number of group samples
by model.

Runtimes For consistency, each model was tested
on the same test set over eleven epochs, and we cal-
culated their average runtime, discarding the high-
est and lowest values from these runs. The results,
depicted in Fig. 12, represent the average runtime
across models initialized with different seeds.

Fig. 12 reveals that our approach, incorporating
extra layers into the architecture, typically results
in an increased runtime compared to the base model.
However, when the architecture’s first nonlinearity
is a norm nonlinearity, a shorter runtime is observed.
This decrease in runtime can be attributed to the
computationally less demanding nature of norm
nonlinearities compared to the Fourier-based nonlinearities and the reduced number of parameters in the model, as detailed
in Table 3.

Orthogonality Our approach generates a separate sampling matrix for each pixel in the voxel data. To minimize the
computational complexity and also to obtain a more representative matrix, we first computed the average of the sampling
matrices over the pixels for each sample and integrate the result into the nonlinear layer, to take a more global approach
and also to reduce the computational cost to a certain degree. However, the final performance was quite low in terms of
classification accuracy, therefore, we discard this implementation. In the computation of the final ϵ1 (Eq. (40)) and ϵ2 (Eq.
(48)) for each model, we compute the metrics for each pixel in the data sample and average the results over the spatial
dimensions, so that each data sample has a single ϵ1 and ϵ2 values. For the final results, we average each metric over the
samples in the test set.

In these experiments, we use regular representations up to and including degree 3, where F becomes equal to
∑3
l=0(2l +

1)2l+1 = 35 (see Eq. (30)). This means that we can ideally achieve perfect orthogonality in terms of row independence,
making ϵ1 close to zero as long as N < 35, and making ϵ2 close to zero as long as N > 35. This is indeed our observation,
as also shown in the first row of Fig. 13. However, in the figure, see that the values are actually around 0.8, and not around
zero. As previously noted in Sec. D, the normalization of the sampling matrix impacts the computation of ϵ2. Given that
the library by default normalizes across the entire vector of representations for each group sample, rather than on specific
segments of the kernel representation, it is anticipated that ϵ2 may deviate slightly from zero.

Similar to the results for ModelNet10, in our approach, the model demonstrates a tendency to approximate orthogonality
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in the sampling matrix, displaying a similar trend to the base model with respect to the number of group samples. The
trend is more evident in ϵ2, where adaptive models tends to have a narrower error margin than the base model. We also
experimented with various normalization methods for the sampling matrix. However, these modifications did not yield
improvements in model performance regarding test accuracy. In the models we present, normalization is applied across the
entire representation, similar to the approach used in the base model.

Additionally, it is important to note that while the base model was trained up to 128 group samples, we restricted our
adaptive models to a maximum of thirty-two group samples. This was due to GPU memory constraints in our server, as
models with higher number of group samples exceeded the available memory capacity.

Figure 13. Orthogonality metrics for the Base model and Adaptive models. The first row presents the values obtained from the Base model.
Block 1, Block 2, and Block 3 correspond to the sampling block, first downsampling, and the second downsampling block, respectively, in
the architecture Fig. 7.
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G. Hyperparameters
Architecture for Point Cloud Processing

Table 1. Number of Parameters (×104)
Number of Parameters (×104)

Model N1 N2 N4 N8 N16 N32 N64
Base model 93.97

Adaptive MLP 94.35 94.4 94.49 94.69 95.07 95.82 97.35

Table 2. Hyperparameters
Hyperparameter Value
batch size 12
set abstraction ratio 1 0.190
set abstraction radius 1 0.542
set abstraction ratio 2 0.380
set abstraction radius 2 0.188
set abstraction ratio 3 0.475
set abstraction radius 3 0.368
width1 0.494
width2 0.339
width3 0.290
width4 2.000
n rings 5
learning rate 0.0000087
weight decay 0.088
frequency 3
dropout 0.100
channels conv [16, 32, 64]
channels mlp [32, 64, 128]
activ Quotient
max num neighbors 64

Architecture for Voxel Data Processing

Table 3. Number of Parameters (×105)
Number of Parameters (×105)

Model N1 N2 N4 N8 N16 N32 N64
Base model 15.398

Adaptive Conv 15.4 15.43 15.5 15.8 17 21.7 -
Adaptive Pooling 15.4 15.4 15.4 15.4 15.46 15.51 -

Adaptive Norm + Pooling 14.72 14.73 14.85 14.78 14.83 14.9 15.17

Table 4. Hyperparameters
Parameter Value
batch size 32
learning rate 0.0001
activ FourierELU
frequency 2
channels [10, 20, 40, 60, 60, 60, 80]
kernel sizes [7, 5, 3, 3, 3, 1]
paddings [2, 2, 1, 2, 1, 0]
strides [1, 1, 2, 2, 1, 1]
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