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ABSTRACT

We present GenBot, a generative robotic agent that automatically learns diverse
robotic skills at scale via generative simulation. GenBot leverages the latest ad-
vancements in foundation and generative models. Instead of directly using or
adapting these models to produce policies or low-level actions, we advocate for a
generative scheme, which uses these models to automatically generate diversified
tasks, scenes, and training supervisions, thereby scaling up robotic skill learn-
ing with minimal human supervision. Our approach equips a robotic agent with
a self-guided propose-generate-learn cycle: the agent first proposes interesting
tasks and skills to develop, and then generates simulation environments by popu-
lating pertinent objects and assets with proper spatial configurations. Afterwards,
the agent decomposes the proposed high-level task into sub-tasks, selects the op-
timal learning approach (reinforcement learning, motion planning, or trajectory
optimization), generates required training supervision, and then learns policies to
acquire the proposed skill. Our fully generative pipeline can be queried repeatedly,
producing an endless stream of skill demonstrations associated with diverse tasks
and environments. Our code will be made publicly available upon publication.
For extensive qualitative results and videos, please refer to our project site1.

1 INTRODUCTION

This work is motivated by a long-standing and challenging goal in robotics research: empowering
robots with a diverse set of skills, enabling them to operate in various non-factory settings and per-
form a broad range of tasks for humans. Recent years have witnessed impressive progress in teach-
ing robots various complex skills: from deformable object and fluid manipulation (Lin et al., 2022;
Weng et al., 2022; Xu et al., 2023; Xian et al., 2023), to dynamic and dexterous skills such as ob-
ject tossing (Zeng et al., 2020), in-hand re-orientation (Chen et al., 2022), soccer playing (Haarnoja
et al., 2023) and even robot parkour (Zhuang et al., 2023). However, these skills still remain com-
partmentalized, have relatively short horizons, and necessitate human-designed task descriptions
and training supervision. Notably, due to the expensive and laborious nature of real-world data col-
lection, many of these skills are trained in simulations with appropriate domain randomization and
then deployed to real-world (Xu et al., 2023; Zhuang et al., 2023; Chen et al., 2022).

Indeed, simulation environments have become a crucial driving force behind diverse robotic skill
learning (Lin et al., 2022; Song et al., 2023; Zhuang et al., 2023). Compared to exploration and data
collection in the real-world, skill learning in simulations offers several advantages: 1) simulated
environments provide access to privileged low-level states and unlimited exploration opportunities;
2) simulation supports massively parallel computation, enabling significantly faster data collection
without reliance on considerable investment in robotic hardware and human labor; 3) exploration in
simulation allows robots to develop closed-loop policies and error-recovery capabilities, while real-
world demonstrations typically offer only expert trajectories. However, robot learning in simulations
also presents its own limitations: while exploration and practicing in simulated environments are
cost-effective, constructing these environments requires significant labor effort, demanding tedious
steps including designing tasks, selecting relevant and semantically meaningful assets, generating
plausible scene layouts and configurations, and crafting training supervisions such as reward or loss
functions (James et al., 2020; Srivastava et al., 2022; Gu et al., 2023; Li et al., 2023a). The onerous

1https://generativesimulation.github.io/
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Figure 1: GenBot is a robotic agent that generates tasks and environments, and acquire skills automatically.
Here we show 25 example tasks generated and corresponding skills learned by GenBot.

task of creating these components and constructing individualized simulation settings of each one of
the countless tasks encountered in our daily life is an overwhelming challenge, which significantly
constrains the scalability of robotic skill learning even in simulated worlds.

In light of this, we propose a new paradigm termed Generative Simulation, marrying the advance-
ments in simulated robotic skill learning and the latest progress in foundation and generative models.
Leveraging the generative capabilities of state-of-the-art foundation models, Generative Simulation
aims to generate information for all the stages needed for diverse robotic skill learning in simulation:
from high-level task and skill proposals, to task-dependent scene descriptions, assets selections and
generations, policy learning choices, and training supervisions. Thanks to the comprehensive knowl-
edge encoded in latest foundation models, scene and task data generated this way have potentials to
closely resemble the distribution of real-world scenarios. In addition, these models can further pro-
vide decomposed low-level sub-tasks, which can be seamlessly handled by domain-specific policy
learning approaches, thereby producing closed-loop demonstrations for various skills and scenarios.

A distinct advantage of our proposed paradigm lies in the strategic design of what modes of knowl-
edge to extract from contemporary foundation models. These models have demonstrated impressive
capabilities across various modalities (Touvron et al., 2023; Driess et al., 2023; OpenAI, 2023; Rom-
bach et al., 2022; Girdhar et al., 2023; Kang et al., 2023), giving rise to autonomous agents capable
of using a range of tools and solving a variety of tasks in the virtual realm (Surı́s et al., 2023; Yang
et al., 2023; Shen et al., 2023). However, due to the absence of training data pertaining to dynamics,
actuations, and physical interactions, these models are yet to fully grasp understandings of what’s
essential for robots to effectively execute physical actions and interact with the surrounding envi-
ronments – from discerning the precise joint torque needed for stable locomotion, to high-frequency
finger motor commands needed for dexterous manipulation tasks such as rolling a dough. In contrast
to recent efforts that employ these foundation models such as Large Language Models (LLMs) for
directly yielding policies or low-level actions (Liang et al., 2022; Huang et al., 2023b; Wang et al.,
2023b), we advocate for a scheme that extracts information that falls neatly within the capabilities
and modalities of these models - object semantics, object affordances, common-sense knowledge
to identify valuable learning tasks, etc. We use these knowledge to construct environmental play-
grounds, and then resort to additional help from physics-grounded simulations, for robots to develop
understandings of physical interactions and acquire diverse skills.

In this paper, we present GenBot, an initial realization of our proposed paradigm. GenBot is a gener-
ative robotic agent that self-proposes skills to learn, generates scene components and configurations
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in simulation, labels the tasks with natural language descriptions, and designs proper training super-
visions for subsequent skill learning. Our experiments show that GenBot can deliver a continuous
stream of diversified skill demonstrations, spanning tasks including rigid and articulated object ma-
nipulation, deformable object manipulation, as well as legged locomotion skills (see Figure 1). The
diversity of tasks and skills generated by GenBot surpasses previous human-created robotic skill
learning datasets, with minimal human involvement needed beyond several prompt designs and in-
context examples. Our work attempts to extract the extensive and versatile knowledge embedded
in large-scale models and transfer them to the field of robotics, making a step towards automated
large-scale robotic skill training and generalizable robotic systems.

2 RELATED WORK

Robotic skill learning in simulations Various physics-based simulation platforms have been de-
veloped in the past to accelerate robotics research (Liu & Negrut, 2021). These include rigid-body
simulators (Coumans & Bai, 2016; Todorov et al., 2012; Xiang et al., 2020; Bousmalis et al., 2023),
deformable object simulators (Macklin et al., 2014; Lin et al., 2020; Xu et al., 2023; Heiden et al.,
2021), and environments supporting multi-material and their couplings with robots (Xian et al.,
2023; Gan et al., 2021; Gu et al., 2023). Such simulation platforms have been heavily employed in
the robotics community for learning diverse skills, including deformable object manipulation (Lin
et al., 2022; Weng et al., 2022; Wang et al., 2023c), object cutting (Heiden et al., 2021; Xu et al.,
2023), fluid manipulation (Seita et al., 2023; Xian et al., 2023), as well as highly dynamic and com-
plex skills such as in-hand re-orientation (Chen et al., 2022; Akkaya et al., 2019), object tossing
(Zeng et al., 2020), acrobatic flight (Kaufmann et al., 2020; Loquercio et al., 2021; Song et al.,
2023), locomotion for legged robots (Cheng et al., 2023; Zhuang et al., 2023; Radosavovic et al.,
2023) and soft robots (Wang et al., 2023a).

Scaling up simulation environments Apart from building physics engines and simulators, a large
body of prior work targeted at building large-scale simulation benchmarks, providing platforms for
scalable skill learning and standardized benchmarking (Li et al., 2023a; Lin et al., 2020; Xian et al.,
2023; Yu et al., 2020; James et al., 2020; Mu et al., 2021; Gu et al., 2023; Srivastava et al., 2022;
Majumdar et al., 2023; Bousmalis et al., 2023). Notably, most of these prior simulation bench-
marks or skill learning environments are manually built with human labeling. Another line of works
attempts to scale up tasks and environments using procedural generation, and generate demonstra-
tions with Task and Motion Planning (TAMP) (Jiang et al., 2023; Dalal et al., 2023; McDonald
& Hadfield-Menell, 2021; Murali et al., 2023; Migimatsu & Bohg, 2019; Toussaint, 2015). These
methods primarily build on top of manually-defined rules and planning domains, limiting the diver-
sity of the generated environments and skills to relatively simple pick-and-place tasks (Dalal et al.,
2023; McDonald & Hadfield-Menell, 2021). Contrary to these works, we extract the common sense
knowledge embedded in foundation models such as LLMs, and use them for generating meaningful
tasks, relevant scenes, and skill training supervisions, leading to more diverse and plausible skills.

Foundation and generative models for robotics Following the advancement in foundation and
generative models in domains of imagery (Poole et al., 2022; Liu et al., 2023c; Melas-Kyriazi et al.,
2023), language (Touvron et al., 2023; Driess et al., 2023; OpenAI, 2023), and other modalities (Liu
et al., 2023a; Girdhar et al., 2023; Huang et al., 2023a), a line of works investigate how to use these
large-scale models for robotics research, via approaches such as code generation (Wu et al., 2023;
Liang et al., 2022), data augmentation (Yu et al., 2023a), visual imagination for skill execution (Du
et al., 2023), sub-task planning (Ahn et al., 2022; Huang et al., 2022; Lin et al., 2023), concept
generalization of learned skills (Brohan et al., 2023), outputting low-level control actions (Wang
et al., 2023b), and goal specification (Kapelyukh et al., 2023; Jiang et al., 2023). More related to
ours are recent methods using LLMs for reward generation (Yu et al., 2023b), and sub-task and
trajectory generation (Ha et al., 2023). In contrast to them, our proposed system aims at a fully
automated pipeline that self-proposes new tasks, generate environments and yields diverse skills.

3 GENBOT

GenBot is an automated pipeline that utilizes the embedded common sense and generative capabili-
ties of the latest foundation models (OpenAI, 2022; Taori et al., 2023) for automatic task, scene, and
training supervision generation, leading to diverse robotic skill learning at scale. We illustrate the
whole pipeline in Figure 2, composed of several integral stages: Task Proposal, Scene Generation,
Training Supervision Generation, and Skill Learning. We detail each of them in the following.
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Figure 2: GenBot consists of the following stages: A) task proposal, B) scene generation, C) training supervi-
sion generation, and D) skill learning with generated information.

3.1 TASK PROPOSAL

GenBot starts with generating meaningful and diverse tasks for robots to learn. We initialize the
system with a specific robot type and an object randomly sampled from a pre-defined pool. The
provided robot and sampled object information are then used as input to an LLM to perform task
proposal. This initialization step serves as a seeding stage, providing a basis upon which the LLM
can condition and subsequently reason and extrapolate to generate a variety of tasks, taking into
account both robot capability and object affordances. Apart from object-based initialization, another
choice is to employ example-based initialization, where we initialize the query with a provided robot
and several example tasks sampled from a list of pre-defined tasks (See Appendix F). For tasks
involving legged robots, we prompt the LLM with only example-based seeding.

We use GPT-4 (OpenAI, 2023) as the LLM to query in our current pipeline, but this backend can
be upgraded once better models are available. In the following, we explain details of GenBot in
the context of a robotic arm (e.g., Franka) and tasks generated pertain to object manipulation, using
object-based initialization. In this case, the objects used for initialization are sampled from a prede-
fined list including common articulated and non-articulated objects in household scenarios such as
oven, microwave, dispenser, laptop, dishwasher, etc., extracted from PartNetMobility (Xiang et al.,
2020) and RLBench (James et al., 2020). The common sense and reasoning capability embedded in
LLMs like GPT-4 allow them to produce meaningful tasks considering the object affordances and
how they can be interacted with. We instantiate a prompt for task proposal containing the following
information: 1) the category of the sampled object, 2) its articulation tree derived from its URDF
file, and 3) semantic annotations of the links in the object’s articulation, e.g., which link corresponds
to the door in a sampled microwave. These information are all provided by the PartNetMobility
dataset. Additionally, we include an example input-output pair in the prompt. We feed the prompt to
GPT-4 to obtain a number of semantically meaningful tasks that can be performed with the sampled
object, where each task consists of 1) task name, 2) a natural language description of the task, 3)
other additional objects needed for performing the proposed task and 4) joints/links of the sampled
articulated object relevant to the task.

As a concrete example, given a sampled articulated object being a microwave, where joint 0
is a revolute joint connecting its door, and joint 1 is another revolute joint controlling a knob of
the timer, GPT-4 would return a task named as “heat up a bowl of soup”, with a task description of
“The robot arm places a bowl of soup inside the microwave, closes the door and sets the microwave
timer for an appropriate heating duration”, additional objects needed for the generated task such as
“A bowl of soup”, and task-relevant joints and links including joint 0 (for opening the microwave
door), joint 1 (for setting the timer), link 0 (the door), and link 1 (the timer knob). For de-
tailed prompts and example responses, please refer to Appendix F. Note that for cases where we
sample non-articulated objects or use example-based initialization, the sampled objects and exam-
ples are provided only as a hint for task proposal, and the generated tasks will not be tied to them. By
repeatedly querying with different sampled objects and examples, we can generate a diverse range
of manipulation and locomotion tasks, concerning the relevant object affordances when needed.
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3.2 SCENE GENERATION

Once a task proposal is obtained, GenBot then generates a corresponding scene for solving the task
by populating the environment with a number of relevant and necessary objects (assets). As shown
in Figure 2 (B), generating a corresponding scene requires obtaining information for 4 different
components: a) relevant assets to be used, b) asset sizes, c) initial asset configurations and d)
initial scene configuration. We explain details in the following.

• Relevant assets
– Obtaining asset queries In the previous stage of task proposal, we obtained a list of relevant

assets needed for the proposed task. To further increase the complexity and diversity of the
generated scenes while resembling object distributions of real-world scenarios, we query GPT-
4 to return a number of additional queries for objects that are semantically relevant to the task.
For example (Figure 1), for the task “Open storage, put the toy inside and close it”, the generated
scene involves additionally a living room mat, a table-top lamp, a book, and an office chair.

– Obtaining asset meshes Once we have the queries (names) of the assets needed for the scene,
we now need to obtain the actual meshes of the assets, where the generated queries for relevant
objects (i.e. their language descriptions) are used to search in an existing database (Deitke et al.,
2023). Specifically, we use Objaverse (Deitke et al., 2023), a large-scale dataset containing over
800k object assets (3d meshes, textures, and etc.) as the main database to retrieve k objects that
matches the asset queries. Due to noises in asset annotations and the extreme diversity of objects
in Objaverse (e.g. many of the assets are not common household objects), object retrieved this
way potentially are not suitable for the proposed task. We further use vision-language models
(VLM) to verify the retrieved assets and filter out the undesired ones. For more details for the
retrival and verification process, see Appendix B. In practice, we found objects retrieved this
way work well for rigid object manipulation tasks. For soft-body manipulation tasks, in order
to obtain a more consistent and controllable target shape for the soft-body under manipulation,
we ask GPT-4 to come up with desired target shape, and resort to a text-to-image followed by
image-to-mesh generation pipeline to generate the needed mesh. We use Midjourney (Midjour-
ney, 2022) as our text-to-image generative model, and Zero-1-to-3 (Liu et al., 2023b) as our
image-to-mesh generative model. See more details of the generation pipeline in Appendix E.

• Asset size Assets from Objaverse (Deitke et al., 2022) or PartNetMobility (Xiang et al., 2020)
are usually not of physically plausible sizes. To account for this, we query GPT-4 to generate the
sizes of the assets such that: 1) the sizes should match real-world object sizes; 2) the relative sizes
between objects allow a plausible solution for solving the task, e.g., for the task of “putting a book
into the drawer”, the size of the drawer should be larger than the book.

• Initial asset configuration For certain tasks, the articulated object should be initialized with valid
states for the robot to learn the skill. For example, for the task of “close the window”, the window
should be initialized in an open state; similarly, for the task of “opening the door”, the door should
be initially closed. Again, we query GPT-4 to set the initial configurations of these articulated
objects, specified in joint angles.

• Scene configuration Spatial configuration specifying the location and relevant poses of each asset
in the scene is crucial for both producing plausible environments and allowing valid skill learning.
E.g., for the task of “retrieving a document from the safe”, the document needs to be initialized
inside the safe; for the task of “removing the knife from the chopping board”, the knife needs to
be initially placed on the chopping board. GenBot queries GPT-4 to generate such special spatial
relationships with the task description as the input, and also instructs GPT-4 to place objects in a
collision-free manner.

With the generated scene components and their corresponding configurations, we populate the scene
accordingly. See Figure 1 for a collection of example scenes and tasks generated by GenBot.

3.3 TRAINING SUPERVISION GENERATION

To acquire the skill for solving the proposed task, supervisions for skill learning are needed. To
facilitate the learning process, GenBot first queries GPT-4 to plan and decompose the generated
task, which can be long-horizon, into shorter-horizon sub-tasks. Our key hypothesis is, when the
task is decomposed into sufficiently short-horizon sub-tasks, each sub-task can be reliably solved by
existing algorithms such as reinforcement learning (Schulman et al., 2017; Haarnoja et al., 2018),
motion planning (Karaman & Frazzoli, 2011), or trajectory optimization (Kalakrishnan et al., 2011).
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After the decomposition, GenBot then queries GPT-4 to choose a proper algorithm for solving each
sub-task. There are three different types of learning algorithms integrated into GenBot: reinforce-
ment learning, gradient-based trajectory optimization, and action primitive with motion planning.
Each of these is suited for different tasks, e.g., gradient-based trajectory optimization is more suit-
able for learning fine-grained manipulation tasks involving soft bodies such as shaping a dough into
a target shape (Xu et al., 2023; Lin et al., 2022); action primitives coupled with motion planning are
more reliable in solving the task such as approaching a target object via a collision-free path; rein-
forcement learning better suits tasks that are contact rich and involving continuous interaction with
other scene components, e.g., legged locomotion, or when the required actions cannot be simply pa-
rameterized by discrete end-effector poses, e.g., turning the knob of an oven. We provide examples
and let GPT-4 choose online which learning algorithm to use conditioned on the generated sub-task.
We consider action primitives including grasping, approaching and releasing a target object. Since
parallel jaw gripper can be limited when grasping objects with diverse sizes, we consider a robotic
manipulator equipped with a suction cup to simplify object grasping. The grasping and approaching
primitives are implemented as follows: we first randomly sample a point on the target object or
link, compute a gripper pose that aligns with the normal of the sampled point, and then use motion
planning to find a collision-free path to reach the target gripper pose. After the pose is reached, we
keep moving along the normal direction until there contact is made with the target object.

For sub-tasks to be learned using RL or trajectory optimization, we prompt GPT-4 to write the corre-
sponding reward functions with a few in-context examples. For object manipulation and locomotion
tasks, the reward functions are based on the low-level simulation states which GPT-4 can query via
a provided list of APIs. We further ask GPT-4 to suggest the action space for the learning algo-
rithm, e.g., delta-translation of the end-effector, or the target location for the end-effector to move
to. Delta-translation is more suitable for tasks involving local movements, e.g., opening a door after
it has been grasped; for tasks that transfer an object to a different location, directly specifying the
target as the action space eases the learning. For soft body manipulation tasks, the reward has a fixed
form specified as the earth-mover distance between the current and target shape of the soft body.

3.4 SKILL LEARNING

Once we obtained all the required information for the proposed task, including scene components
and configurations, task decompositions, and training supervisions for the decomposed sub-tasks,
we are able to construct the scene in simulation for the robot to learn the required skills for complet-
ing the task. For long-horizon tasks that involve multiple sub-tasks, we adopt a simple scheme of
learning each sub-task sequentially: for each sub-task, we run the learning algorithm N = 8 times
and use the end state with the highest reward as the initial state for the next sub-task.

4 EXPERIMENTS

GenBot is an automated pipeline that can be queried endlessly, and generate a continuous stream of
skill demonstrations for diverse tasks. In our experiments, we aim to answer the following questions:

• Task Diversity: How diverse are the tasks proposed by GenBot robotic skill learning?
• Scene Validity: Does GenBot generate valid simulation environments?
• Training Supervision Validity: Does GenBot generate correct task decomposition and training

supervisions for the task that will induce intended robot skills?
• Skill Learning: Does integrating different learning algorithms in GenBot improve the success

rate of learning a skill? What is the overall sucess rate for skil learning?
• System: Combining all the automated stages, can the whole system produce diverse and mean-

ingful robotic skills?

4.1 EXPERIMENTAL SETUP

Our proposed system is generic and agnostic to specific simulation platforms. However, since we
consider a wide range of task categories ranging from rigid dynamics to soft body simulation, and
also consider skill learning methods such as gradient-based trajectory optimization which neces-
sitates a differentiable simulation platform, we used Genesis for deploying GenBot, a simulation
platform for robot learning with diverse materials and fully differentiable2. For skill learning, we

2Genesis is still under development and not yet available to the public. We build our system on top of an
internal version, made accessible to us thanks to the courtesy of the development team.
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use SAC (Haarnoja et al., 2018) as the RL algorithm. The policy and Q networks are both Multi-
layer Perceptrons (MLP) of size [256, 256, 256], trained with a learning rate of 3e − 4. For each
sub-task, we train with 1M environment steps. We use BIT∗ (Gammell et al., 2015) as the motion
planning algorithm, and Adam Kingma & Ba (2014) for gradient-based trajectory optimization for
soft body manipulation tasks. More implementation details can be found in Appendix A.

4.2 EVALUATION METRICS AND BASELINES

We use the following metrics and baselines for evaluating our system: Task Diversity The diversity
of the generated tasks can be measured in many aspects, such as the semantic meanings of the tasks,
scene configurations of the generated simulation environments, the appearances and geometries of
the retrieved object assets, and the robot actions required to perform the task. For semantic meanings
of the tasks, we perform quantitative evaluations by computing the Self-BLEU and the embedding
similarity (Zhu et al., 2018) on the generated task descriptions, where lower scores indicate better
diversity. In addition to the semantics, we also compare the diversity of the generated tasks in
the image space, measured by the embedding similarity of the rendered images of the scenes at
the initial state. We compare to established benchmarks, including RLBench (James et al., 2020),
Maniskill2 (Gu et al., 2023), Meta-World (Yu et al., 2020), and Behavior-100 (Srivastava et al.,
2022). For object assets and robot actions, we evaluate GenBot qualitatively using the generated
simulation environments and visualizations of learned robot skills.

Scene Validity To verify that the retrieved objects match the requirements of the task, we compute
the BLIP-2 scores (Li et al., 2023b) between rendered images of the retrieved objects in the simula-
tion scene, and the text descriptions of the objects. We compare with two ablations of our system.
A) No object verification: we do not use a VLM to verify the retrieved object, and just retrieve
objects based on text matching. B) No size verification: we do not use object sizes outputted by
GPT-4; instead, we use the default size of the asset as provided in Objaverse or PartNetMobility.
We also perform human verification of the generated scenes by asking a human evaluator whether
the generated scene aligns with the task descriptions, and if the scene configurations and retrieved
objects are correct for the task.

Training Supervision Validity We perform qualitative evaluations on this by presenting images and
videos of the learned skills using the generated decomposition and training supervisions. We also
perform human verification by asking a human expert to manually inspect whether the generated
decompositions and reward functions would achieve the task.

Skill Learning Performance We compare to an ablation where we remove the options of using
motion planning-based primitive, and rely purely on reinforcement learning to learn the skills on 12
articulated object manipulation tasks. Given a task, we run each method with 4 different seeds, and
report the mean and std of the task return (we manually verified that the reward functions generated
by GPT-4 are correct for the evaluated tasks). Due to the randomness in the skill learning process
(sampling is used in the motion planning-based action primitive, and RL inherently has randomness
during exploration and training), we also provide quantitative analysis on the skill learning suc-
cess rate, i.e., given a generated task with correct training supervisions, if we run the skill learning
pipeline for multiple times, how many of the runs would succeed in learning the skill. The success
in learning a skill is determined by a human evaluator watching the video of the learned policy.

System We perform qualitative evaluations of the whole system, by providing videos of over 100
learned skills on our websites. In the paper, we show snapshots of representative skills. We also
provide the list of generated tasks along with task statistics (e.g., average number of substep decom-
positions) in Appendix D.1 , and analysis on failure cases of the system in Appendix D.3.

4.3 RESULTS

Task Diversity The quantitative evaluation results are presented in Table 1. We compare to a version
of GenBot where a total of 106 tasks are generated. As shown, for diversity measured by task
descriptions, GenBot achieves the lowest Self-BLEU and embedding similarity compared to all
previous benchmarks. GenBot also achieves the lowest scene image embedding similarity. This
demonstrates that GenBot can generate a set of tasks whose semantic and visual diversity matches
or surpasses prior manually crafted skill learning benchmarks and datasets. We also provide the
full list of generated tasks, including the task name and task descriptions, as qualitative evaluations
of the task semantics diversity in Appendix D.1, and encourage the reader to refer to our project
website for visualizations of the generated tasks to access the scene and robot motion diversity.
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GenBot Behavior-100 RLbench MetaWorld Maniskill2

Number of Tasks 106 100 106 50 20
Task Description Self-BLEU ↓ 0.284 0.299 0.317 0.322 0.674

Task Description Embedding Similarity (SentenceBert) ↓ 0.165 0.210 0.200 0.263 0.194
Scene Image Embedding Similarity (ViT) ↓ 0.193 0.389 0.375 0.517 0.332

Scene Image Embedding Similarity (CLIP) ↓ 0.762 0.833 0.864 0.867 0.828

Table 1: Task diversity comparison. GenBot can generate an unbounded number of tasks when queried
repeatedly; we compare to a version with 106 tasks so the number of tasks is similar to those in prior work.

Close the door

Grasp the safe door Open the safe door Retrieve the gold bar Move it to the table Grasp the door again Close the door Rotate the knob to lock

Approach the door Open the door Grasp the soup Put it in the microwave Grasp the timer knob Turn the knob to set timer

“Put the toy into the storage”

Open the door Grasp the toy Move the toy inside

“Move the toy car out of the box”

Open the box Retrieve the toy car Move it out of the box Release the toy car

“Retrieve a gold bar from the safe”

“Heat up a bowl of soup using the microwave”

T

T

TT

Figure 3: Snapshots of the learned skills on 4 example long-horizon tasks.

Scene Validity Figure 4 shows the BLIP-2 score of all compared methods on 7 example generated
tasks. As shown, removing the size verification leads to drastic decrease in BLIP-2 score. This is
expected as the default asset sizes from Objaverse and PartNetMobility can be drastically different
from plausible real-world sizes. The ablation “No object verification” also has lower BLIP-2 score,
and with a larger variances, indicating our verification step improves object selection validity. The
results demonstrate the importance of using both object and size verification in GenBot. Through
manual inspection of the generated 155 tasks (full list in Appendix D.1), we find 13 failures due
to incorrect scene generation. The failures can be categorized into 1) limited asset functionality,
where GenBot generates tasks that require functionalities the retrieved assets do not support, e.g.,
loading paper into a printer asset which do not have a movable tray. 2) GPT-4 has incorrect semantic
understanding of articulated object’s joint state, e.g., for tasks such as of opening the window, the
corresponding joint angle needs to be initialized to a value such that the asset is in the “closed” state.
However, the mapping between the joint angle values and the “closed” state is unique for each asset,
and since GPT-4 has no such information, it sets wrong values of the joint angle, leading to incorrect
initialization of the assets for the task. 3) Too delicate spatial relationship and unmatched assets.
Some generated tasks require very fine-grained spatial relationships between objects, e.g., loading
staples into stapler. However, randomly sampled stapler and staples from Objaverse or PartNet-
Mobility do not match with each other in size or shape for the task. Appendix D.3 provides more
detailed analysis on the failure cases and some possible ways to address them.

Training Supervision Validity Figure 3 demonstrates the skills learned with the generated train-
ing supervisions from GenBot, i.e., the task decompositions and reward functions, on 4 example
long-horizon tasks. As shown, the robot successfully learns skills to complete the corresponding
tasks, suggesting that the automatically generated training supervisions are effective in deriving
meaningful and useful skills. We also manually inspected the generated decompositions and reward
functions, and found 6 failure cases in the 155 generated tasks. The errors can be categorized into 1)
referring to undefined variables; 2) reward does not encode the intended behavior. Examples include
incorrect semantic understanding of articulated object state, e.g., the task is to fold the chair, yet the
generated reward actually encourages unfolding the chair due to misunderstanding of the mapping
between joint angle values and object state. We also find it hard to generate correct rewards for con-
tinuous motions such as “moving robotic hand back-and-forth”, or “knock the door”. The reward
generation component can be further improved by incorporating environment feedback into the sys-
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Figure 4: We compare the BLIP-2 score of ablations of GenBot on 7 tasks. Both ablations achieve lower
scores, showing the importance of both object and size verification.

Figure 5: For generated articulated object manipulation tasks, the return decreases drastically if the option of
motion planning based action primitive is removed and only RL is used for skill learning.
tem (Ma et al., 2023), which we leave as future work. More details of the failure case for training
supervision generation can be found in Appendix D.3.

Skill Learning We evaluate on 12 tasks that involve interactions with articulated objects. The
results are presented in Figure 5. We find that allowing learning algorithm selection is beneficial for
achieving higher performance for completing the tasks. When the option of motion planning based
action primitive is removed and only RL is used, the skill learning completely fails for most tasks.
We test the success rate of our skill learning pipeline on a subset of 50 generated object manipulation
tasks, and achieve an average success rate of 0.745, i.e., if we run the skill learning pipeline for 4
times, 3 of the runs will successfully learn the skill. Success rates on each of the 51 tasks can be
found in Appendix D.2. Please see our website for videos of the learned skills on these 51 tasks.

System Figure 1 and 3 visualize some of the generated tasks and learned skills from GenBot. As
shown in Figure 1, GenBot can generate diverse tasks for skill learning spanning from rigid/artic-
ulated object manipulation, locomotion, and soft body manipulation. Figure 3 further shows that
GenBot is able to deliver long-horizon manipulation skills with reasonable decompositions. For ex-
tensive qualitative results of proposed tasks and learned skills, please refer to our project site. For a
list of generated tasks, their statistics, and analysis on failure cases, please refer to Appendix D.

5 CONCLUSION & LIMITATIONS

We introduced GenBot, a generative agent that automatically proposes and learns diverse robotic
skills at scale via generative simulation. GenBot utilizes the latest advancements in foundation mod-
els to automatically generate diverse tasks, scenes, and training supervisions in simulation, making
a foundational step towards scalable robotic skill learning in simulation, while requiring minimal
human supervision once deployed. Our system is a fully generative pipeline that can be queried
endlessly, producing a large number of skill demonstrations associated with diverse tasks and envi-
ronments. GenBot is agnostic to the backend foundation models, and can be upgraded continuously
using latest models when available. Our current system still has several limitations: 1) Large scale
verification of learned skills is still a challenge in the current pipeline, which could potentially be
addressed by using better multi-modal foundation models in the future. 2) Our paradigm is intrin-
sically constrained by a sim-to-real gap when it comes to real-world deployment. However, with
the latest and rapid advancement in physically accurate simulation, as well as techniques such as
domain randomization and realistic sensory signal rendering, we expect the sim-to-real gap to be
narrowed further in the coming future.
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A IMPLEMENTATION DETAILS

For reinforcement learning, we use SAC (Haarnoja et al., 2018) as the RL algorithm. For both rigid
object manipulation and locomotion tasks, the observation space is the low-level state of the objects
and robot in the task. The policy and Q networks used in SAC are both Multi-layer Perceptrons
(MLP) of size [256, 256, 256]. We use a learning rate of 3e − 4 for the actor, the critic, and the
entropy regularizer. The horizon of all manipulation tasks are 100, with a frameskip of 2, and the
horizon for all locomotion tasks are 150, with a frameskip of 4. The action of the RL policy is 6d:
where the first 3 elements determines the translation, either as delta translation or target location
(suggested by GPT-4), and the second 3 elements determines the delta rotation, expressed as delta-
axis angle in the gripper’s local frame. For each sub-task, we train with 1M environment steps.

For action primitives, we use BIT∗ (Gammell et al., 2015) implemented in the Open Motion Planning
Library (OMPL) Sucan et al. (2012) as the motion planning algorithm. For the grasping and the
approaching primitive, we first sample a surface point on the target object or link, then compute a
gripper pose that aligns the gripper y axis with the normal of the sampled point. The pre-contact
gripper pose is set to be 0.03m above the surface point along the normal direction. Motion planning
is then used to find a collision-free path to reach the target gripper pose. After the target gripper
pose is reached, we keep moving the gripper along the normal until contact is made.

For soft body manipulation tasks, we use Adam Kingma & Ba (2014) for gradient-based trajectory
optimization. We run trajectory optimization for 300 gradient steps. We use a learning rate of 0.05
for the optimizer. The horizons of all manipulation tasks are either 150 or 200. We use Earth Mover’s
distance between object’s current and target shape as the cost function for trajectory optimization.

For querying GPT-4, we used a temperature between 0.8− 1.0 for task proposal to ensure diversity
in the generated tasks. For all other stages of GenBot, we use temperature values between 0 − 0.3
to ensure more robust responses from GPT-4.

Collision resolving in scene generation When the LLM generate the initial pose of the objects, it
resorts to its basic spatial understanding and tries to place the objects in different locations. We use
this as the initialization, and check potential collisions in the initial scene configuration. For any
detected collision, we detect the collision vertex of the objects in contact and push their center of
mass away to resolve collision.

B DETAILS FOR ASSET RETRIEVAL AND VERIFICATION

For each object in Objaverse, we obtain a list of language descriptions of it by combining the default
annotations and a more cleaned version of annotations from (Luo et al., 2023). Given the language
description of the asset we want to retrieve, we use Sentence-Bert (Reimers & Gurevych, 2019)
to get the embedding of the description, and retrieve k objects from Objaverse whose language
embeddings are the most similar to the language embedding of the target asset. Due to noises in the
object annotations, there can be significant discrepancies between the actual asset and the intended
target, even when the similarity score in the language embedding space is high. To resolve this,
we further leverage a vision-language model (VLM) to verify the retrieved assets and filter out the
undesired ones. Specifically, we input an image of the retrieved object to the VLM model, and
ask the VLM to caption it. The caption, together with the description of the desired asset and the
description of the task, are fed back into GPT-4 to verify if the retrieved asset is appropriate to be
used in the proposed task. Since the diverse range of assets from Objaverse is inherently challenging
for existing pre-trained models, in order to improve the robustness of our system, we use both Bard
(Google, 2022) and BLIP-2 (Li et al., 2023b), to cross verify the validity of the retrieved asset, and
adopt the asset only when the captions from both of them are deemed suitable for the task.

C ALGORITHM OF THE GENBOT PIPELINE

Here we present a summarized algorithm for the whole pipeline use by GenBot in Algorithm 1.
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Algorithm 1: Pipeline of GenBot
input : Large Language Model L, Asset dataset D
output: Generated task name, scene configurations, training supervisions, and learned skills
// Task Proposal

1 robot, object = Sample()
2 tasks = LLM task proposal(robot, object)
3 for each task do

// Scene Generation
4 assets,poses = LLM asset query(task)
5 for each relevant asset do

// retrieve asset from asset dataset D (e.g., Objaverse)
6 asset = retrieve(D)
7 size = LLM query size(asset)
8 if asset is articulated then
9 init config = LLM query config(asset)

10 end
11 end

// Populate the simulation scene
12 scene = populate(assets, sizes,poses, init config)

// Training Supervision Generation
13 subtasks, training supervision = LLM generate(task, assets)

// Skill Learning
14 skill = train(subtask, training supervision)
15 end
16 return A set of tasks along with the simulation scenes, training supervisions, and learned skills

D GENERATED TASKS, STATISTICS, AND ANALYSIS

D.1 LIST OF TASKS AND STATISTICS

Table 2 provides the list of tasks that are generated using GenBot at the time of submission. We note
that GenBot can be constantly queried to generate more tasks.

Figure 6 shows the distribution of number of substeps for the generated tasks. As shown, most tasks
are short-horizon and can be solved within 4 substeps. Longer-horizon tasks require 8 and up to 10
substeps to solve. The average number of substeps for all tasks is 3.13. Figure 6 also presents the
distribution of substeps that are solved using specifically RL or motion planning based primitives.
Please refer to the caption of the figure for more details.

Table 2: List of generated tasks.

Task name Task description # of substeps # of RL sub-
steps

# of primitive
substeps

Rotate Laptop Screen The robot arm rotates the laptop screen to a
certain angle for better view

2 1 1

Move Laptop The robot arm lifts and moves the laptop to a
new location

3 2 1

Close Laptop Lid The robotic arm will close the laptop lid 2 1 1
Open Laptop Lid The robotic arm will open the laptop lid 2 1 1
Pack Item In Suitcase The robot arm places an item .for example, a

folded shirt. inside the suitcase
4 2 2

Extend Suitcase Handle The robotic arm will extend the suitcases han-
dle in order to pull or push the suitcase

2 1 1

Pull Suitcase on Wheels The robot arm extends the suitcase handle,
grips it in a way to let the suitcase stand on
its wheels and pulls it

3 2 1

Lift Suitcase The robotic arm will lift the suitcase by its
handle

2 1 1

Partially Close Window The robotic arm partially closes one of the
slider translation windows

2 1 1

Continued on next page
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Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-
steps

# of primitive
substeps

Open Window Halfway The robotic arm will open one of the slider
translation windows halfway to let fresh air in

2 1 1

Fully Open Window The robotic arm will open both of the slider
translation windows to their full extent for
maximum ventilation

4 2 2

Close Window The robotic arm closes both slider translation
windows

4 2 2

Open and Close Toilet Lid The robot arm will interact with the hinge lid
of the toilet to first open it and then close it

4 2 2

Open and Close Toilet Pump
Lid

The robot arm will interact with the slider
pump lid to first open it and then close it

3 2 1

Flush the Toilet The robotic arm will interact with the hinge
lever of the toilet to flush it

3 1 2

Set Clock Time The robotic arm adjusts the hinge hands of the
clock to set the desired time

6 2 4

Move Clock Ahead for Day-
light Saving

The robotic arm moves the clock hands ahead
by 1 hour to adjust for daylight saving

2 1 1

Move Clock Back at End of
Daylight Saving

The robot arm moves the clock hands back by
1 hour to adjust to the end of daylight saving

2 1 1

close the oven door The robot arm needs to close the oven door
after use This task involves moving towards
the oven door and applying force to close it

2 1 1

Extend Display Screen The robotic arm will extend the slider transla-
tion screen to enlarge the display

2 1 1

Retract Display Screen The robotic arm will retract the slider transla-
tion screen to make the display smaller

2 1 1

Adjust Display Angle The robotic arm adjusts the display base link
to change the viewing angle

2 1 1

Rotate Display Base The robotic arm will rotate the display base to
point the display to a different direction

2 1 1

Rinse a Plate The robot arm holds a plate under the spout,
turns on the faucet to rinse the plate, then turns
off the faucet

8 3 5

Turn On Faucet The robotic arm operates the hinge switch of
the faucet in order for water to flow from the
spout

2 1 1

Wash Hands The robot arm acts as if its washing hands to
demonstrate good hygiene

8 4 4

Fill a Glass of Water The robot arm first turns on the faucet, waits
for a glass to fill, then turns off the faucet

5 3 2

Fold Chair The robotic arm will fold the chair to save
room or for easy carrying

3 1 2

Position Chair for Seating The robotic arm positions the unfolded chair
in a desired location for a person to sit

3 1 2

Unfold Chair The robotic arm will unfold the folding chair
to make it suitable for sitting

3 1 2

Lift Chair The robotic arm lifts the chair from the ground
to place it into another location

4 2 2

Staple Papers The robot arm gathers a few loose sheets of
paper and uses the stapler to staple them to-
gether

6 2 4

Close Stapler Lid The robot arm closes the lid of the stapler after
it has been opened

2 1 1

Open Stapler Lid The robotic arm will open the lid of the stapler 2 1 1
Load Staples into Stapler The robot arm inserts new staples into the sta-

pler
6 3 3

Turn On the Printer The robot arm pushes the slider button to turn
on the printer

2 1 1

Load Paper into Printer The robot arm loads paper into the printer via
the input tray, typically located on the printer
body

2 1 1

Print a Document The robot interacts with the printer to print a
document The robot arm first places a docu-
ment on the printer, then moves the button to
initiate the print

4 2 2

Stop a Printer The robot arm stops a printer by moving the
slider button to the stop position

2 1 1

Fill Kettle with Water The robot arm opens the kettle lid, holds a wa-
ter jug to fill the kettle with water, and then
closes the lid

6 3 3

Pour Water from Kettle The robot arm holds the kettle handle, tilts the
kettle to pour water into a cup

4 2 2

Open Kettle Lid The robotic arm will open the kettle lid 2 1 1
Lift Kettle by Handle The robotic arm will lift the kettle by its han-

dle
2 1 1

Continued on next page
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Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-
steps

# of primitive
substeps

close the drawer of the table The robot arm will close the drawer of the ta-
ble

2 1 1

Close Door The robotic arm will close the door 2 1 1
Knock On Door The robotic arm will knock on the door in a

typical way a human would
3 3 0

Partially Open Door Open the door partially for ventilation or for
casual conversation without fully opening it

2 1 1

Open Door The robotic arm will open the door 2 1 1
Open Partial Box Lid The robotic arm will partially open the box lid

based on certain degree, to demonstrate kine-
matic control

2 1 1

Store an Object Inside Box The robot arm places a small object inside the
box and closes the lid

6 3 3

Open Box Lid The robotic arm will open the box lid 2 1 1
Retrieve an Object From Box The robot arm opens the box lid, takes a small

object from the box, and then closes the lid
6 3 3

Push Drawer In After retrieving an item from the drawer, the
robot arm slides the drawer back into the box

2 1 1

Close Box Lid The robotic arm closes the lid of the box 2 1 1
Pull Drawer Out The robotic arm uses the prismatic joint to

slide the drawer out from the box
2 1 1

Making Coffee The robot arm opens the lid of the container,
places coffee grounds inside, then closes the
lid and starts the brewing process by adjusting
the knob

8 4 4

Turning On Coffee Machine The robotic arm will adjust the hinge knob on
the coffee machine to the on setting

2 1 1

Change Cleaning Cycle Robot changes the cleaning cycle of the dish-
washer by interacting with one of the slider
buttons

2 1 1

Open Dishwasher Door The robotic arm will open the dishwasher
door

2 1 1

Load Dishwasher Robot arm places a plate inside the dish-
washer

6 3 3

Press Start Button The robot will press the start button on the
dishwasher to begin the washing cycle

3 1 2

Close Dispenser Lid After filling or extracting contents, the robotic
arm will close the lid of the dispenser

2 1 1

Extract Contents The robot arm will open the dispenser lid and
proceed to extract the contents inside the dis-
penser

6 3 3

Open Dispenser Lid The robotic arm will open the lid of the dis-
penser

2 1 1

Fill Dispenser The robotic arm opens the dispenser lid and
then pours the desired content into the dis-
penser

5 3 2

Rotate Fan Rotor The robotic arm will apply a force to the rotor
of the fan, causing it to rotate

3 1 2

Change Fan Direction The robotic arm will change the direction of
the fan by physically moving the entire fan

2 1 1

Position Fan To Cool Off a
Room

The robot arm moves the fan to a location in
order to cool off a specific area in a room

2 1 1

Turn Off Water Faucet The robotic arm will rotate the switch of the
faucet to cut off the water supply

2 1 1

Angle Laptop Screen The robot positions the laptop screen to a de-
sired angle for better visibility

2 1 1

Opening Refrigerator Door The robotic arm will open one of the refriger-
ator doors

2 1 1

Opening Both Refrigerator
Doors

The robotic arm opens both the refrigerator
doors one after the other

4 2 2

Load item into the refrigerator The robotic arm will open one of the refriger-
ator doors, place an item inside, and close the
door

6 3 3

Retrieving an item from the re-
frigerator

The robotic arm will open one of the refriger-
ator doors, retrieve an item, and then close the
door

6 3 3

Dispose Toilet Paper into Toi-
let

A robotic arm picks up a piece of toilet paper
and disposes of it in the toilet by dropping it
in and then closing the lid

10 3 7

Close Trashcan Lid The robotic arm will close the trashcans lid 2 1 1
Open Trashcan Lid The robotic arm will open the trashcans lid 2 1 1
Move the Trashcan The robot arm pushes the trashcan from one

place to another
2 1 1

Change Lamp Direction The robotic arm will alter the lamp’s light di-
rection by manipulating the lamps head

2 1 1

Continued on next page
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Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-
steps

# of primitive
substeps

Rotate Lamp Base The robot arm will rotate the lamp base to ad-
just the lamps general orientation

2 1 1

Adjust Lamp Position The robotic arm will adjust the position of the
lamp using its hinge rotation bars, enabling
the robot to direct the lamps light to a specific
area

6 3 3

Change Lamp Direction The robotic arm will alter the lamp’s light di-
rection by manipulating the lamps head

2 1 1

Close Drawer The robotic arm will push the drawer closed 2 1 1
Retrieve Object from Drawer The robot arm opens the drawer, retrieves an

object from inside, and then closes the drawer
6 3 3

Open Drawer The robotic arm will pull the drawer open 2 1 1
Store Object in Table Drawer The robot arm puts an item, like a book, into

a drawer in the table
6 3 3

Throw Trash Away The robotic arm places an item of trash inside
the trash can

7 3 4

Insert New Trash Bag The robotic arm inserts a new trash bag into
the trash can

5 3 2

Check Contents of the Pot The robot arm slides the lid of the pot to check
the contents inside the pot

3 1 2

Stir Contents in Pot The robot arm removes the lid of the pot and
stirs the pots contents with a stirring spoon

4 2 2

Remove Pot Lid The robotic arm will slide the lid of the pot
aside

3 1 2

Select Washing Cycle The robotic arm will push one of the wash-
ing machines slider buttons to select a wash-
ing cycle

2 1 1

Load Clothes Into Washing
Machine

The robot arm opens the washing machine
door and places clothes inside

4 2 2

Adjust Washing Settings The robot arm rotates a knob to adjust wash-
ing settings such as temperature or spin speed

2 1 1

Open Washing Machine Door The robotic arm will open the washing ma-
chine door

2 1 1

Move Door Slightly Open The robotic arm opens the door slightly to
allow for some air circulation without fully
opening it

3 1 2

Deliver an Object The robot arm holds an object, opens the door,
passes through, then closes the door behind
it This represents the robot arm delivering an
object from one room to another

8 3 5

Find Door Position The robot arm would touch different parts of
the door to find its initial position It is use-
ful to know the initial position for actions like
opening or closing

4 2 2

Regulate Coffee Strength The robot arm rotates a knob to adjust the
strength of the coffee

2 1 1

Insert Portafilter The robot arm inserts the portafilter into the
coffee machine

3 2 1

Adjust Machine Settings The robot arm adjusts a knob to alter machine
settings

2 1 1

Pull Lever to Start Coffee
Brewing

The robot arm pulls a lever to start the brewing
process of the coffee machine

2 1 1

Steam Milk The robot operates a lever to steam milk for
the coffee

3 2 1

Unload Dishes from Dish-
washer

The robot arm retrieves clean dishes from the
dishwasher

6 3 3

Start Dishwasher Cycle The robot arm turns the dishwasher knob to
start the washing cycle

2 1 1

Open Dishwasher Door The robotic arm will open the dishwasher
door for placing or removing dishes

2 1 1

Straighten Display Screen The robotic arm will straighten the display
screen if it has been tilted or rotated

3 1 2

Tilt Display Screen The robotic arm will tilt the display screen to
adjust viewing angle

3 1 2

Position Display Screen The robotic arm will move the display screen
to a desired location

2 1 1

Orient Globe Towards Specific
Country

The robot arm rotates the globe such that a
specific country on the globes surface faces
the viewer

2 1 1

Rotate Globe Horizontally The robotic arm will rotate the globe horizon-
tally to display various continents and coun-
tries on its surface

2 1 1

Spin Globe Gently for Leisure The robot arm spins the globe gently, as a re-
laxing activity or a playful interaction

2 1 1

Continued on next page

19



Under review as a conference paper at ICLR 2024

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-
steps

# of primitive
substeps

Adjust Lamp Height The robot arm will adjust the height of the
lamp by manipulating the rotation bars

6 3 3

Turn On Lamp The robotic arm turns on the lamp by pressing
the toggle button

3 1 2

Set Soup Bowl in Microwave The robot arm will set a bowl of soup on the
microwaves rotation tray and set the timer

7 3 4

Rotate Power Knob The robotic arm rotates the power know to set
the heating power level

2 1 1

Press Microwave Button The robot arm slides the microwave button 3 1 2
Set Timer The robotic arm rotates the timer knob to set

the duration for heating
2 1 1

Open Microwave Door The robotic arm will open the microwave door 2 1 1
Open Oven Door The robot arm is programmed to open the

door of the oven
2 1 1

Adjust Oven Timer The robot arm is to manipulate one of the
ovens hinge knobs to set an appropriate timer

2 1 1

Set Oven Temperature The robot arm is to adjust another knob to set
the appropriate temperature for cooking

2 1 1

Set Oven Function The robot arm needs to adjust another knob to
set the desired oven function – for example,
circulating air, grilling or bottom heat

2 1 1

Open Fridges Freezer Door The robot arm opens the freezer compartment
door of the refrigerator

2 1 1

Move Cart Forward The robotic arm will push the cart forward 2 1 1
Turn Cart The robotic arm will turn the cart to change its

direction
2 1 1

Load Object onto Cart The robot arm places an object onto the cart 3 1 2
Unload Object from Cart The robot arm takes an object off from the cart 3 1 2
Adjust Chair Height The robotic arm will adjust the height of the

chair by interacting with the knob
2 1 1

Move Chair The robot arm will move the chair using the
wheels

2 1 1

Rotate Chair The robot arm rotates the chair to a desired
direction

2 1 1

Tilt Chair Seat The robot arm tilts the chair seat to a desired
angle

2 1 1

Open Eyeglasses The robotic arm will unfold the legs of the
eyeglasses

4 2 2

Place Eyeglasses on Table The robot arm picks up the eyeglasses and
places them on a table

3 1 2

Store an Item in Safe The robot arm opens the safe, places an item
inside, and then closes and locks the safe

8 4 4

Turn Safe Knob The robotic arm will turn one of the safes
knobs to unlock it

2 1 1

Retrieve an Item from Safe The robot arm unlocks the safe, opens the
door, retrieves an item from inside, and then
closes and locks the safe

8 4 4

Open Safe Door The robotic arm will open the safe door 2 1 1
Open Trashcan Lid The robotic arm will open the lid of the trash-

can
2 1 1

Open Dispenser Lid The robotic arm will open the lid of the dis-
penser

2 1 1

Turn On Water Faucet The robotic arm will rotate the switch of the
faucet to turn on the water

2 1 1

Open Laptop The robotic arm opens the unfolded state of
the laptops screen

2 1 1

Open Toilet Lid The robotic arm will carefully open the lid of
the toilet

2 1 1

Close Dispenser Lid The robotic arm will close the dispenser lid
after use

2 1 1

Close Table Drawer The robotic arm will close the open drawer on
the table

2 1 1

Open Trash Can The robotic arm will open the trash can lid 2 1 1
Close Toilet Lid The robotic arm will put down the lid of the

toilet
3 1 2

Open Door The robotic arm will open the door by rotating
the hinge

2 1 1

Turn Off Faucet The robotic arm turns off the faucet by rotat-
ing one of the hinge switches

2 1 1

Close Window The robotic arm will close the window to pre-
serve indoor temperature

2 1 1

Open Box The robot arm opens the box by manipulating
the hinge lid

2 1 1

Continued on next page
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Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-
steps

# of primitive
substeps

Rotate Clock Hands Rotate the minute and hour hands of the clock
with the robotic arm, simulating the passing
of time

4 2 2

Unfold the Chair The robotic arm will unfold the chair to pre-
pare it for use

4 2 2

Open Kettle Lid The robot arm lifts the kettle lid 2 1 1

D.2 SKILL LEARNING SUCCESS RATE

We present the detailed skill learning success rate in Table 3. The average skill learning success rate
is 0.745.

Table 3: Skill learning success rate.

Task name Task description Skill Learning Success Rate

Rotate Laptop Screen The robot arm rotates the laptop screen to a
certain angle for better view

1.0

Extend Suitcase Handle The robotic arm will extend the suitcases han-
dle in order to pull or push the suitcase

1.0

Open Window Halfway The robotic arm will open one of the slider
translation windows halfway to let fresh air in

1.0

Flush the Toilet The robotic arm will interact with the hinge
lever of the toilet to flush it

0.67

Move Clock Ahead for Day-
light Saving

The robotic arm moves the clock hands ahead
by 1 hour to adjust for daylight saving

0.38

close the oven door The robot arm needs to close the oven door
after use This task involves moving towards
the oven door and applying force to close it

0.83

Open Trashcan Lid The robotic arm will open the lid of the trash-
can

1.0

Extend Display Screen The robotic arm will extend the slider transla-
tion screen to enlarge the display

1.0

Turn On Faucet The robotic arm operates the hinge switch of
the faucet in order for water to flow from the
spout

0.83

Unfold Chair The robotic arm will unfold the folding chair
to make it suitable for sitting

0.5

Open Stapler Lid The robotic arm will open the lid of the stapler 0.5
Turn On the Printer The robot arm pushes the slider button to turn

on the printer
1.0

Lift Kettle by Handle The robotic arm will lift the kettle by its han-
dle

0.83

close the drawer of the table The robot arm will close the drawer of the ta-
ble

0.75

Close Door The robotic arm will close the door 0.5
Open Partial Box Lid The robotic arm will partially open the box lid

based on certain degree, to demonstrate kine-
matic control

0.83

Pull Drawer Out The robotic arm uses the prismatic joint to
slide the drawer out from the box

0.67

Turning On Coffee Machine The robotic arm will adjust the hinge knob on
the coffee machine to the on setting

0.5

Press Start Button The robot will press the start button on the
dishwasher to begin the washing cycle

1.0

Close Dispenser Lid After filling or extracting contents, the robotic
arm will close the lid of the dispenser

0.25

Open Dispenser Lid The robotic arm will open the lid of the dis-
penser

0.0

Rotate Fan Rotor The robotic arm will apply a force to the rotor
of the fan, causing it to rotate

1.0

Turn On Water Faucet The robotic arm will rotate the switch of the
faucet to turn on the water

1.0

Open Laptop The robotic arm opens the unfolded state of
the laptops screen

0.8

Opening Both Refrigerator
Doors

The robotic arm opens both the refrigerator
doors one after the other

0.8

Open Toilet Lid The robotic arm will carefully open the lid of
the toilet

1.0

Close Trashcan Lid The robotic arm will close the trashcans lid 0.33
Change Lamp Direction The robotic arm will alter the lamp’s light di-

rection by manipulating the lamps head
1.0

Continued on next page
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Table 3 continued from previous page

Task name Task description Skill Learning Success Rate
Partially Close Window The robotic arm partially closes one of the

slider translation windows
0.5

Close Dispenser Lid The robotic arm will close the dispenser lid
after use

1.0

Open Drawer The robotic arm will pull the drawer open 0.75
Close Table Drawer The robotic arm will close the open drawer on

the table
0.75

Open Trash Can The robotic arm will open the trash can lid 1.0
Remove Pot Lid The robotic arm will slide the lid of the pot

aside
1.0

Close Toilet Lid The robotic arm will put down the lid of the
toilet

1.0

Open Washing Machine Door The robotic arm will open the washing ma-
chine door

1.0

Move Door Slightly Open The robotic arm opens the door slightly to
allow for some air circulation without fully
opening it

0.67

Open Door The robotic arm will open the door by rotating
the hinge

0.5

Turn Off Faucet The robotic arm turns off the faucet by rotat-
ing one of the hinge switches

0.67

Close Window The robotic arm will close the window to pre-
serve indoor temperature

0.8

Open Box The robot arm opens the box by manipulating
the hinge lid

0.8

Rotate Clock Hands Rotate the minute and hour hands of the clock
with the robotic arm, simulating the passing
of time

0.4

Pull Lever to Start Coffee
Brewing

The robot arm pulls a lever to start the brewing
process of the coffee machine

1.0

Open Dishwasher Door The robotic arm will open the dishwasher
door for placing or removing dishes

0.6

Tilt Display Screen The robotic arm will tilt the display screen to
adjust viewing angle

0.6

Unfold the Chair The robotic arm will unfold the chair to pre-
pare it for use

1.0

Rotate Globe Horizontally The robotic arm will rotate the globe horizon-
tally to display various continents and coun-
tries on its surface

1.0

Turn On Lamp The robotic arm turns on the lamp by pressing
the toggle button

0.25

Open Kettle Lid The robot arm lifts the kettle lid 0.75
Open Microwave Door The robotic arm will open the microwave door 0.25

D.3 ANALYSIS ON FAILURE CASE

Through manual inspection on the 155 generated tasks in Table 2, we find in total 19 failure cases,
due to either error in the generated scene or the generated training supervisions. Table 4 provides
a detailed analysis on the failure cases. Some of these failures can be addressed with additional
checks, e.g., using a vision language model to verify the joint angle values and the initial joint state
of the asset, while others (generate assets with required functionalities, or pair of matched assets)
might require more fundamental research to address.

Table 4: Failure case analysis

Task name Task description Failure case

Pack Item In Suitcase The robot arm places an item .for example, a
folded shirt. inside the suitcase

Limited asset functionality: the suitcase cannot be opened.

Open Window Halfway The robotic arm will open one of the slider
translation windows halfway to let fresh air in

Incorrect semantic understanding of articulated object state:
setting both joint angles to 0 make the window opened al-
ready

Correct Clock Time The robotic arm corrects the time displayed
on the clock based on the standard time

Generated reward refers to undefined variables ”standard
time”

Wash Hands The robot arm acts as if its washing hands to
demonstrate good hygiene

Reward error in one of the substeps: moving hands back and
forth

Fold Chair The robotic arm will fold the chair to save
room or for easy carrying

Wrong reward due to incorrect understanding of the joint
state of articulated object. The reward actually encourages
unfolding the chair

Continued on next page
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Table 4 continued from previous page

Task name Task description Failure case
Unfold Chair The robotic arm will unfold the folding chair

to make it suitable for sitting
Wrong reward due to incorrect understanding of the joint
state of articulated object. The reward actually encourages
folding the chair

Staple Papers The robot arm gathers a few loose sheets of
paper and uses the stapler to staple them to-
gether

Too delicate initial spatial relationship – the task requires the
sheet of paper to be initialized into the stapler, which is hard
for a random stapler and a sheet of paper sampled from Part-
NetMobility / Objaverse

Load Staples into Stapler The robot arm inserts new staples into the sta-
pler

Asset mismatch: randomly sampled stapler and staple won’t
easily match each other

Load Paper into Printer The robot arm loads paper into the printer via
the input tray, typically located on the printer
body

Limited asset functionality: the printer cannot really be
loaded with paper

Print a Document The robot interacts with the printer to print a
document The robot arm first places a docu-
ment on the printer, then moves the button to
initiate the print

Limited asset functionality: the printer cannot really be
loaded with paper

Fill Kettle with Water The robot arm opens the kettle lid, holds a wa-
ter jug to fill the kettle with water, and then
closes the lid

Limited asset functionality: the kettle lid cannot be really
moved away from the kettle body

Pour Water from Kettle The robot arm holds the kettle handle, tilts the
kettle to pour water into a cup

Limited asset functionality: the kettle lid cannot be really
moved away from the kettle body

Knock On Door The robotic arm will knock on the door in a
typical way a human would

Reward error: not really correct reward function for the
knocking motion.

Making Coffee The robot arm opens the lid of the container,
places coffee grounds inside, then closes the
lid and starts the brewing process by adjusting
the knob

Limited asset functionality: the coffeemachine lid cannot re-
ally be moved away from the body

Extract Contents The robot arm will open the dispenser lid and
proceed to extract the contents inside the dis-
penser

Limited asset functionality: the lid of the dispenser canont be
removed from the body to enable the pouring motion.

Fill Dispenser The robotic arm opens the dispenser lid and
then pours the desired content into the dis-
penser

Limited asset functionality: the lid of the dispenser canont be
removed from the body to enable the pouring motion.

Stir Contents in Pot The robot arm removes the lid of the pot and
stirs the pots contents with a stirring spoon

Limited asset functionality: the lid cannot really be removed
from the pod

Deliver an Object The robot arm holds an object, opens the door,
passes through, then closes the door behind
it This represents the robot arm delivering an
object from one room to another

Reward error for delivering an object through the door

Open Eyeglasses The robotic arm will unfold the legs of the
eyeglasses

Incorrect semantic understanding of the object joint state.
Setting the joint angle to 0 actually make the eyeglass already
unfolded.

E ASSET GENERATION RESULTS

We provide more details on our text-to-3D asset generation pipeline here. This asset generation
pipeline is majorly used for generating goal meshes for deformable object manipulation tasks. It
works as follows. First, given the text descriptions of the object, we use Midjourney (Midjourney,
2022) to generate a 2D image of it. We prompt Midjourney to generate the image with white
background, in either front view or top-down view, as images in these formats are more suitable
inputs for the following text-to-3D generation models. Midjourney usually generates 4 images in
a batch, and a random image is chosen as input for the following image-to-3d model. Then, the
generated image and text descriptions are used as input to zero-1-to-3 (Liu et al., 2023b), an image
to mesh generative model. The generated mesh is then refined using Deep Marching Tetrahedra
(DMTet) (Shen et al., 2021). Figure 5 shows some example results.

F PROMPTS

Pre-defined tasks for example-based initialization of GenBot (non-articulated object manipu-
lation tasks).
"""
Task: stack two blocks, with the larger one at the bottom.
Object: A small block, and a large block.
""",

"""
Taks: Put the broccoli on the grill pan
Objects: a broccoli, a grill pan
""",
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image of bagel mesh of bagel image of croissant mesh of croissant

image of rope mesh of rope image of cylinder dough mesh of cylinder dough

image of baguette mesh of baguette image of mooncake mesh of mooncake

image of dumpling mesh of dumpling image of meat mesh of meat

Table 5: Example generated images and meshes from our text-to-image-to-3d pipeline.

24



Under review as a conference paper at ICLR 2024

Figure 6: Left: The distribution of number of substeps for the generated tasks. The average number
of substeps is 3.13. Middle: The distribution of number of substeps that need to be solved using
RL for the generated tasks. The average number of RL substeps is 1.5. Right: The distribution of
number of substeps that need to be solved using motion planning based primitives for the generated
tasks. The average number of such kind of substeps is 1.63. Regarding duration for solving the
task: if the task’s subgoals can all be solved via planning, typically each task can be solved within
10 minutes. If certain subgoals require RL to solve, it usually takes around 2-3 hours for each RL-
necessary step, and the total duration thus depends on both the number and nature of the subtasks.
Taking these into account, a task typically takes 4-5 hours on average. This is done using 8 threads
of a CPU running at 2.5Ghz, meaning that each single node in a cluster with a 32-core (64 threads)
CPU could run 8 jobs in parallel at the same time. We have added these into Appendix D.1.

"""
Task: Put 1 mug on the cup holder
Objects: A mug, a mug tree holder
""",

"""
Task: Pick up the hanger and place it on the clothing rack
Objects: a cloth hanger, a clothing rack
""",

"""
Task: Put 1 book into the bookshelf
Objects: a book, a bookshelf
""",

"""
Taks: Put the knife on the chopping board
Objects: a kitchen knife, a board
""",

"""
Task: Put a old toy in bin
Objects: A old toy, a rubbish bin
""",

"""
Task: Place the dishes and cutlery on the table in preparation for a meal
Objects: a dish plate, a fork, a spoon, a steak knife
""",

"""
Task: Stack one cup on top of the other
Objects: Two same cups
""",

"""
Task: Remove the green pepper from the weighing scales and place it on the floor
Objects: A green pepper, a weighing scale
""",

"""
Task: Put the apple on the weighing scale to weigh it
Objects: An apple, a weighing scale
""",

Pre-defined tasks for example-based initialization of GenBot (locomotion tasks).
"""
Skill: flip rightwards
Reward:
‘‘‘python
def _compute_reward(self):

# we first get some information of the quadruped/humanoid robot.
# COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the

quadruped/humanoid.
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COM_pos, COM_quat = get_robot_pose(self)
# COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.
COM_vel, COM_ang = get_robot_velocity(self)

# face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.
# face direction points from the center of mass towards the face direction of the quadruped/humanoid.
# side direction points from the center of mass towards the side body direction of the quadruped/humanoid.
# up direction points from the center of mass towards up, i.e., the negative direction of the gravity.
# gravity direction is [0, 0, -1].
# when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis,

and the up of the robot is along the z axis.
face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

target_side = np.array([0, 1, 0]) # maintain initial side direction during flip
target_ang = np.array([50, 0, 0.0]) # spin around x axis to do the rightwards flip, since x is the face

direction of the robot.

alpha_ang = 1.0
alpha_side = 1.0

r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)
r_side = - alpha_side * np.linalg.norm(side_dir - target_side)
r += r_ang + r_side

# there is a default energy term that penalizes the robot for consuming too much energy. This should be
included for all skill.

r_energy = get_energy_reward(self)
return r + r_energy

‘‘‘
""",

"""
Skill: jump backward
Reward:
‘‘‘python
def _compute_reward(self):

# we first get some information of the quadruped/humanoid.
# COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the

quadruped/humanoid.
COM_pos, COM_quat = get_robot_pose(self)
# COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.
COM_vel, COM_ang = get_robot_velocity(self)

# face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.
# face direction points from the center of mass towards the face direction of the quadruped/humanoid.
# side direction points from the center of mass towards the side body direction of the quadruped/humanoid.
# up direction points from the center of mass towards up, i.e., the negative direction of the gravity.
# gravity direction is [0, 0, -1].
# when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis,

and the up of the robot is along the z axis.
face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

if self.time_step <= 30: # first a few steps the robot are jumping
target_height = 5.0

else: # then it should not jump
target_height = 0.0

target_v = np.array([-5.0, 0, 0.0]) # jump backwards
target_up = np.array([0, 0, 1]) # maintain up direction
target_face = np.array([1, 0, 0]) # maintain initial face direction
target_side = np.array([0, 1, 0]) # maintain initial side direction
target_ang = np.array([0, 0, 0.0]) # don’t let the robot spin

alpha_vel = 5.0
alpha_ang = 1.0
alpha_face = 1.0
alpha_up = 1.0
alpha_side = 1.0
alpha_height = 10.0

r_vel = - alpha_vel * np.linalg.norm(COM_vel - target_v)
r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)
r_face = - alpha_face * np.linalg.norm(face_dir - target_face)
r_up = - alpha_up * np.linalg.norm(up_dir - target_up)
r_side = - alpha_side * np.linalg.norm(side_dir - target_side)
r_height = - alpha_height * np.linalg.norm(COM_pos[2] - target_height)
r = r_vel + r_ang + r_face + r_up + r_side + r_height

# there is a default energy term that penalizes the robot for consuming too much energy. This should be
included for all skill.

r_energy = get_energy_reward(self)
return r + r_energy

‘‘‘
""",

"""
Skill: walk forward
Reward:
‘‘‘python
def _compute_reward(self):

# we first get some information of the quadruped/humanoid.
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# COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the
quadruped/humanoid.

COM_pos, COM_quat = get_robot_pose(self)
# COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.
COM_vel, COM_ang = get_robot_velocity(self)

# face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.
# face direction points from the center of mass towards the face direction of the quadruped/humanoid.
# side direction points from the center of mass towards the side body direction of the quadruped/humanoid.
# up direction points from the center of mass towards up, i.e., the negative direction of the gravity.
# gravity direction is [0, 0, -1].
# when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis,

and the up of the robot is along the z axis.
face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

target_v = np.array([1.0, 0, 0]) # since the robot faces along x axis initially, for walking forward, the
target velocity would just be [1, 0, 0]

target_height = self.COM_init_pos[2] # we want the robot to keep the original height when walkin, so it
does not fall down.

target_face = np.array([1, 0, 0]) # the target_face keeps the robot facing forward.
target_side = np.array([0, 1, 0]) # for walking forward, the side direction does not really matter.
target_up = np.array([0, 0, 1]) # the target_up keeps the robot standing up.
target_ang = np.array([0, 0, 0]) # for walking forward, the angular velocity does not really matter.

alpha_vel = 1.0
alpha_height = 1.0
alpha_face = 1.0
alpha_side = 0.0
alpha_up = 1.0
alpha_ang = 0.0

r_vel = - alpha_vel * np.linalg.norm(COM_vel - target_v)
r_height = - alpha_height * np.linalg.norm(COM_pos[2] - target_height)
r_face = - alpha_face * np.linalg.norm(face_dir - target_face)
r_side = - alpha_side * np.linalg.norm(side_dir - target_side)
r_up = - alpha_up * np.linalg.norm(up_dir - target_up)
r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)
r = r_vel + r_height + r_face + r_side + r_up + r_ang

# there is a default energy term that penalizes the robot for consuming too much energy. This should be
included for all skill.

r_energy = get_energy_reward(self)
return r + r_energy

‘‘‘
""",

In the following, we show all prompts used for generating an articulated object manipulation task
using GenBot.

Task Proposal prompt. We show an example where the sampled object is a trashcan for object
manipulation task generation.
I will give you an articulated object, with its articulation tree and semantics. Your goal is to imagine some

tasks that a robotic arm can perform with this articulated object in household scenarios. You can think
of the robotic arm as a Franka Panda robot. The task will be built in a simulator for the robot to learn
it.

Focus on manipulation or interaction with the object itself. Sometimes the object will have functions, e.g., a
microwave can be used to heat food, in these cases, feel free to include other objects that are needed

for the task.
Please do not think of tasks that try to assemble or disassemble the object. Do not think of tasks that aim to

clean the object or check its functionality.

For each task you imagined, please write in the following format:
Task name: the name of the task.
Description: some basic descriptions of the tasks.
Additional Objects: Additional objects other than the provided articulated object required for completing the

task.
Links: Links of the articulated objects that are required to perform the task.
- Link 1: reasons why this link is needed for the task
- Link 2: reasons why this link is needed for the task
- ...
Joints: Joints of the articulated objects that are required to perform the task.
- Joint 1: reasons why this joint is needed for the task
- Joint 2: reasons why this joint is needed for the task
- ...

Example Input:

‘‘‘Oven articulation tree
links:
base
link_0
link_1
link_2
link_3
link_4
link_5
link_6
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link_7

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_7 child_link: link_0
joint_name: joint_1 joint_type: continuous parent_link: link_7 child_link: link_1
joint_name: joint_2 joint_type: continuous parent_link: link_7 child_link: link_2
joint_name: joint_3 joint_type: continuous parent_link: link_7 child_link: link_3
joint_name: joint_4 joint_type: continuous parent_link: link_7 child_link: link_4
joint_name: joint_5 joint_type: continuous parent_link: link_7 child_link: link_5
joint_name: joint_6 joint_type: continuous parent_link: link_7 child_link: link_6
joint_name: joint_7 joint_type: fixed parent_link: base child_link: link_7
‘‘‘

‘‘‘Oven semantics
link_0 hinge door
link_1 hinge knob
link_2 hinge knob
link_3 hinge knob
link_4 hinge knob
link_5 hinge knob
link_6 hinge knob
link_7 heavy oven_body
‘‘‘

Example output:

Task Name: Open Oven Door
Description: The robotic arm will open the oven door.
Additional Objects: None
Links:
- link_0: from the semantics, this is the door of the oven. The robot needs to approach this door in order to

open it.
Joints:
- joint_0: from the articulation tree, this is the revolute joint that connects link_0. Therefore, the robot

needs to actuate this joint for opening the door.

Task Name: Adjust Oven Temperature
Description: The robotic arm will turn one of the oven’s hinge knobs to set a desired temperature.
Additional Objects: None
Links:
- link_1: the robot needs to approach link_1, which is assumed to be the temperature knob, to rotate it to set

the temperature.
Joints:
- joint_1: joint_1 connects link_1 from the articulation tree. The robot needs to actuate it to rotate link_1

to the desired temperature.

Task Name: Heat a hamburger Inside Oven
Description: The robot arm places a hamburger inside the oven, and sets the oven temperature to be appropriate

for heating the hamburger.
Additional Objects: hamburger
Links:
- link_0: link_0 is the oven door from the semantics. The robot needs to open the door in order to put the

hamburger inside the oven.
link_1: the robot needs to approach link_1, which is the temperature knob, to rotate it to set the desired

temperature.
Joints:
- joint_0: from the articulation tree, this is the revolute joint that connects link_0 (the door). Therefore,

the robot needs to actuate this joint for opening the door.
- joint_1: from the articulation tree, joint_1 connects link_1, which is the temperature knob. The robot needs

to actuate it to rotate link_1 to the desired temperature.

Task Name: Set Oven Timer
Description: The robot arm turns a timer knob to set cooking time for the food.
Additional Objects: None.
Links:
- link_2: link_2 is assumed to be the knob for controlling the cooking time. The robot needs to approach

link_2 to set the cooking time.
Joints:
- joint_2: from the articulation tree, joint_2 connects link_2. The robot needs to actuate joint_2 to rotate

link_2 to the desired position, setting the oven timer.

Can you do the same for the following object:

‘‘‘TrashCan articulation tree
links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘
‘‘‘TrashCan semantics
link_0 hinge door
link_1 free trashcan_body

‘‘‘
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An example response from GPT-4:
Task Name: Open Trash Can
Description: The robotic arm will open the trash can lid.
Additional Objects: None
Links:
- link_0: This link represents the lid of the trash can, based on the sematics. The robot needs to approach

this lid to open it.
Joints:
- joint_0: The joint_0 in the articulation tree connects link_0 (the lid). Thus, the robot needs to actuate

this joint to open the lid.

Task Name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can.
Additional Objects: A pile of trash
Links:
- link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away

the trash.
Joints:
- joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

Scene Generation Prompt. Following the above example, we show the scene generation prompt
for the task “Throw Trash Away”.
I need you to describe the initial scene configuration for a given task in the following format, using a yaml

file. This yaml file will help build the task in a simulator. The task is for a mobile Franka panda
robotic arm to learn a manipulation skill in the simulator. The Franka panda arm is mounted on a floor,
at location (1, 1, 0). It can move freely on the floor. The z axis is the gravity axis.

The format is as follows:
‘‘‘yaml
- use_table: whether the task requires using a table. This should be decided based on common sense. If a table

is used, its location will be fixed at (0, 0, 0). The height of the table will be 0.6m. Usually, if the
objects invovled in the task are usually placed on a table (not directly on the ground), then the task

requires using a table.
# for each object involved in the task, we need to specify the following fields for it.
- type: mesh
name: name of the object, so it can be referred to in the simulator
size: describe the scale of the object mesh using 1 number in meters. The scale should match real everyday

objects. E.g., an apple is of scale 0.08m. You can think of the scale to be the longest dimension of
the object.

lang: this should be a language description of the mesh. The language should be a concise description of the
obejct, such that the language description can be used to search an existing database of objects to

find the object.
path: this can be a string showing the path to the mesh of the object.
on_table: whether the object needs to be placed on the table (if there is a table needed for the task). This

should be based on common sense and the requirement of the task. E.g., a microwave is usually placed
on the table.

center: the location of the object center. If there isn’t a table needed for the task or the object does not
need to be on the table, this center should be expressed in the world coordinate system. If there is

a table in the task and the object needs to be placed on the table, this center should be expressed in
terms of the table coordinate, where (0, 0, 0) is the lower corner of the table, and (1, 1, 1) is the
higher corner of the table. In either case, you should try to specify a location such that there is

no collision between objects.
‘‘‘

An example input includes the task names, task descriptions, and objects involved in the task. I will also
provide with you the articulation tree and semantics of the articulated object.

This can be useful for knowing what parts are already in the articulated object, and thus you do not need to
repeat those parts as separate objects in the yaml file.

Your task includes two parts:
1. Output the yaml configuration of the task.
2. Sometimes, the task description / objects involved will refer to generic/placeholder objects, e.g., to

place an "item" into the drawer, and to heat "food" in the microwave. In the generated yaml config, you
should change these placeholder objects to be concrete objects in the lang field, e.g., change "item" to
be a toy or a pencil, and "food" to be a hamburger, a bowl of soup, etc.

Example input:
Task Name: Insert Bread Slice
Description: The robotic arm will insert a bread slice into the toaster.
Objects involved: Toaster, bread slice. Only the objects specified here should be included in the yaml file.

‘‘‘Toaster articulation tree
links:
base
link_0
link_1
link_2
link_3
link_4
link_5

joints:
joint_name: joint_0 joint_type: continuous parent_link: link_5 child_link: link_0
joint_name: joint_1 joint_type: prismatic parent_link: link_5 child_link: link_1
joint_name: joint_2 joint_type: prismatic parent_link: link_5 child_link: link_2
joint_name: joint_3 joint_type: prismatic parent_link: link_5 child_link: link_3
joint_name: joint_4 joint_type: prismatic parent_link: link_5 child_link: link_4
joint_name: joint_5 joint_type: fixed parent_link: base child_link: link_5
‘‘‘
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‘‘‘Toaster semantics
link_0 hinge knob
link_1 slider slider
link_2 slider button
link_3 slider button
link_4 slider button
link_5 free toaster_body
‘‘‘

An example output:
‘‘‘yaml
- use_table: True ### Toaster and bread are usually put on a table.
- type: mesh
name: "Toaster"
on_table: True # Toasters are usually put on a table.
center: (0.1, 0.1, 0) # Remember that when an object is placed on the table, the center is expressed in the

table coordinate, where (0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table.
Here we put the toaster near the lower corner of the table.

size: 0.35 # the size of a toaster is roughly 0.35m
lang: "a common toaster"
path: "toaster.urdf"

- type: mesh
name: "bread slice"
on_table: True # Bread is usually placed on the table as well.
center: (0.8, 0.7, 0) # Remember that when an object is placed on the table, the center is expressed in the

table coordinate, where (0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table.
Here we put the bread slice near the higher corner of the table.

size: 0.1 # common size of a bread slice
lang: "a slice of bread"
Path: "bread_slice.obj"

‘‘‘

Another example input:
Task Name: Removing Lid From Pot
Description: The robotic arm will remove the lid from the pot.
Objects involved: KitchenPot. Only the objects specified here should be included in the yaml file.

‘‘‘KitchenPot articulation tree
links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: prismatic parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1
‘‘‘

‘‘‘KitchenPot semantics
link_0 slider lid
link_1 free pot_body
‘‘‘
Output:
‘‘‘yaml
- use_table: True # A kitchen pot is usually placed on the table.
- type: mesh
name: "KitchenPot"
on_table: True # kitchen pots are usually placed on a table.
center: (0.3, 0.6, 0) # Remember that when an object is placed on the table, the center is expressed in the

table coordinate, where (0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table.
Here we put the kitchen pot just at a random location on the table.

size: 0.28 # the size of a common kitchen pot is roughly 0.28m
lang: "a common kitchen pot"
path: "kitchen_pot.urdf"

‘‘‘
Note in this example, the kitchen pot already has a lid from the semantics file. Therefore, you do not need to

include a separate lid in the yaml file.

One more example input:
Task Name: Heat a hamburger in the oven.
Description: The robotic arm will put a hamburger in the oven and use the oven to heat it.
Objects involved: A hamburger, an oven. Only the objects here should be included in the yaml file.

‘‘‘Oven articulation tree
links:
base
link_0
link_1
link_2
link_3
link_4
link_5
link_6
link_7

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_7 child_link: link_0
joint_name: joint_1 joint_type: continuous parent_link: link_7 child_link: link_1
joint_name: joint_2 joint_type: continuous parent_link: link_7 child_link: link_2
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joint_name: joint_3 joint_type: continuous parent_link: link_7 child_link: link_3
joint_name: joint_4 joint_type: continuous parent_link: link_7 child_link: link_4
joint_name: joint_5 joint_type: continuous parent_link: link_7 child_link: link_5
joint_name: joint_6 joint_type: continuous parent_link: link_7 child_link: link_6
joint_name: joint_7 joint_type: fixed parent_link: base child_link: link_7
‘‘‘

‘‘‘Oven semantics
link_0 hinge door
link_1 hinge knob
link_2 hinge knob
link_3 hinge knob
link_4 hinge knob
link_5 hinge knob
link_6 hinge knob
link_7 heavy oven_body
‘‘‘

Output:
‘‘‘yaml
- use_table: True # Although an oven is usually just placed on the ground, a hamburger is usually placed on

the table.
- type: mesh
name: "Oven"
on_table: False # An oven is usually just placed on the floor.
center: (1.0, 0, 0) # Remember that when not on a table, the center is expressed in the world coordinate.

Since the robot is at (1, 1, 0) and the table is at (0, 0, 0), we place the oven at (1.8, 2, 0) to
avoid collision with the table and the robot.

size: 0.9 # the size of an oven is roughly 0.9m
lang: "a common oven"
path: "oven.urdf"

- type: mesh
name: "hamburger"
on_table: True # a hamburger is usually placed on the table.
center: (0.2, 0.4, 0) # Remember that when an object is placed on the table, the center is expressed in the

table coordinate, where (0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table.
Here we put the hamburger just at a random location on the table.

size: 0.1 # common hamburgers’ diameters are 10 cm.
lang: "a common hamburger"
path: "hamburger.obj"

‘‘‘

Rules:
- You do not need to include the robot in the yaml file.
- The yaml file should only include the objects listed in "Objects involved".
- Sometimes, the task description / objects involved will refer to generic/placeholder objects, e.g., to place

an "item" into the drawer, and to heat "food" in the microwave. In the generated yaml config, you
should change these placeholder objects to be concrete objects in the lang field, e.g., change "item" to
be a toy or a pencil, and "food" to be a hamburger, a bowl of soup, etc.

Can you do this for the following task:
Task Name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can
Objects involved: TrashCan, A pile of trash

‘‘‘TrashCan articulation tree
links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘
‘‘‘TrashCan semantics
link_0 hinge door
link_1 free trashcan_body

‘‘‘

An example response from GPT-4:

Output:
‘‘‘yaml
- use_table: False # Trash cans are usually placed on the floor.
- type: mesh
name: "TrashCan"
on_table: False # Trash cans are usually placed on the floor.
center: (1.5, 1.5, 0) # Remember that when not on a table, the center is expressed in the world coordinate.

Since the robot is at (1, 1, 0) and the table is at (0, 0, 0), we place the trash can at (1.5, 1.5, 0)
to avoid collision with the table and the robot.

size: 0.6 # the size of a common trash can is roughly 0.6m
lang: "a common trash can"
path: "trashcan.urdf"

- type: mesh
name: "Trash"
on_table: True # Trash is usually picked up from a table or the floor. Here we assume it’s on the table.
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center: (0.5, 0.5, 0) # Remember that when an object is placed on the table, the center is expressed in the
table coordinate, where (0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table.
Here we put the trash in the middle of the table.

size: 0.1 # common size of a pile of trash
lang: "a pile of paper waste" # Note here, we changed the generic/placeholder "pile of trash" object to be a

more concrete object: a pile of paper waste.
path: "paper_waste.obj"

‘‘‘

More relevant assets prompt.
Given a task, which is for a mobile Franka panda robotic arm to learn a manipulation skill in the simulator,

your goal is to add more objects into the task scene such that the scene looks more realistic. The
Franka panda arm is mounted on a floor, at location (1, 1, 0). It can move freely on the floor. The z
axis is the gravity axis.

The input to you includes the following:
Task name, task description, the essential objects involved in the task, and a config describing the current

task scene, which contains only the essential objects needed for the task. The config is a yaml file in
the following format:

‘‘‘yaml
- use_table: whether the task requires using a table. This should be decided based on common sense. If a table

is used, its location will be fixed at (0, 0, 0). The height of the table will be 0.6m.
# for each object involved in the task, we need to specify the following fields for it.
- type: mesh
name: name of the object, so it can be referred to in the simulator
size: describe the scale of the object mesh using 1 number in meters. The scale should match real everyday

objects. E.g., an apple is of scale 0.08m. You can think of the scale to be the longest dimension of
the object.

lang: this should be a language description of the mesh. The language should be a bit detailed, such that
the language description can be used to search an existing database of objects to find the object.

path: this can be a string showing the path to the mesh of the object.
on_table: whether the object needs to be placed on the table (if there is a table needed for the task). This

should be based on common sense and the requirement of the task.
center: the location of the object center. If there isn’t a table needed for the task or the object does not

need to be on the table, this center should be expressed in the world coordinate system. If there is
a table in the task and the object needs to be placed on the table, this center should be expressed in
terms of the table coordinate, where (0, 0, 0) is the lower corner of the table, and (1, 1, 1) is the
higher corner of the table. In either case, you should try to specify a location such that there is

no collision between objects.
‘‘‘

Your task is to think about what other distractor objects can be added into the scene to make the scene more
complex and realistic for the robot to learn the task. These distractor objects are not necessary for
the task itself, but their existence makes the scene look more interesting and complex. You should
output the distractor objects using the same format as the input yaml file. You should try to put these
distractor objects at locations such that they d o n t collide with objects already in the scene.

Here is one example:

Input:

Task name: Heat up a bowl of soup in the microwave
Task description: The robot will grab the soup and move it into the microwave, and then set the temperature to

heat it.
Objects involved: Microwave, a bowl of soup
Config:
‘‘‘yaml
- use_table: true
- center: (0.3, 0.7, 0)

lang: A standard microwave with a turntable and digital timer
name: Microwave
on_table: true
path: microwave.urdf
size: 0.6
type: urdf

- center: (0.2, 0.2, 0)
lang: A ceramic bowl full of soup
name: Bowl of Soup
on_table: true
path: bowl_soup.obj
size: 0.15
type: mesh

‘‘‘

Output:
‘‘‘yaml
- name: plate # a plate is a common object placed when there is microwave and bowl of soup, in a kitchen setup
lang: a common kitchen plate
on_table: True
center: (0.8, 0.8, 0)
type: mesh
path: "plate.obj"
size: 0.15 # a plate is usually of scale 0.15m

- name: sponge # a sponge is a common object placed when there is microwave and bowl of soup, in a kitchen
setup

lang: a common sponge
on_table: True
center: (0.5, 0.2, 0)
type: mesh
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path: "sponge.obj"
size: 0.1 # a sponge is usually of scale 0.1m

- name: Oven # a oven is a common object placed when there is microwave and bowl of soup, in a kitchen setup
lang: a kitchen oven
on_table: False # an oven is usually a standalone object on the floor
center: (1.8, 0.5, 0) # remember robot is at (1, 1, 0) and table is at (0, 0, 0). So the oven is placed at

(1.8, 0.5, 0) in the world coordinate system to avoid collision with other objects.
type: mesh
path: "oven.obj"
size: 0.8 # an oven is usually of scale 0.8m

‘‘‘

Can you do it for the following task:
Task name: Throw Trash Away
Task description: The robotic arm places an item of trash inside the trash can
Initial config:
‘‘‘yaml
- use_table: false
- center: (1.5, 1.5, 0)
lang: a common trash can
name: TrashCan
on_table: false
path: trashcan.urdf
size: 0.6
type: urdf

- center: (0.5, 0.5, 0)
lang: a pile of paper waste
name: Trash
on_table: true
path: paper_waste.obj
size: 0.05
type: mesh

‘‘‘

An example response from GPT-4:
Sure, here is the output for the given task:

‘‘‘yaml
- name: broom # a broom is a common object found near a trash can
lang: a common broom
on_table: False
center: (2, 1.5, 0)
type: mesh
path: "broom.obj"
size: 1.2 # a broom is usually of scale 1.2m

- name: dustpan # a dustpan is a common object found near a trash can
lang: a common dustpan
on_table: False
center: (2, 2, 0)
type: mesh
path: "dustpan.obj"
size: 0.3 # a dustpan is usually of scale 0.3m

- name: recycling_bin # a recycling bin is a common object found near a trash can
lang: a common recycling bin
on_table: False
center: (1, 2, 0)
type: mesh
path: "recycling_bin.obj"
size: 0.6 # a recycling bin is usually of scale 0.6m

- name: soda_can # a soda can is a common object found near a trash can
lang: a common soda can
on_table: True
center: (0.7, 0.7, 0)
type: mesh
path: "soda_can.obj"
size: 0.1 # a soda can is usually of scale 0.1m

‘‘‘

Asset size adjustment prompt. For each object used in the scene, we query GPT-4 to correct its
size such that the size matches the real-world size. We continue the above example of throw trash
away.
A robotic arm is trying to manipulate some objects to learn corresponding skills in a simulator. However, the

size of the objects might be wrong. Your task is to adjust the size of the objects, such that they match
each other when interact with each other; and the size should also match what is commonly seen in

everyday life, in household scenarios.

Now I will give you the name of the task, the object and their sizes, please correct any unreasonable sizes.

Objects are represented using a mesh file, you can think of size as the longest dimension of the object.

I will write in the following format:
‘‘‘
Task: task description
obj1, mesh, size
obj2, mesh, size
‘‘‘
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Please reply in the following format:
explanations of why some size is not reasonable.
‘‘‘yaml
obj1, mesh, corrected_size
obj2, mesh, corrected_radius
‘‘‘

Here is an example:
Input:
‘‘‘
Task: The robotic arm lowers the toilet seat from an up position to a down position
Toilet, mesh, 0.2
‘‘‘

Output:
A toilet is usually 0.6 - 0.8m in its back height, so the size is not reasonable -- it is a bit too small.

Below is the corrected size.
‘‘‘yaml
Toilet, mesh, 0.7
‘‘‘

Another example:
Input:
‘‘‘
Task: Fill a cup with water under the faucet
Faucet, mesh, 0.25
Cup, mesh, 0.3
‘‘‘

Output:
The size of the faucet makes senes. However, the size of the cup is too large for 2 reasons: it does not match

the size of tha faucet for getting water under the faucet; and it is not a common size of cup in
everyday life. Below is the corrected size.

‘‘‘yaml
Faucet, mesh, 0.25
Cup, mesh, 0.12
‘‘‘

One more example to show that even if no change is needed, you should still reply with the same size.
Input:
‘‘‘
Task: Open Table Drawer The robotic arm will open a table drawer
table, mesh, 0.8
‘‘‘

Output:
The size of the table is reasonable, so no change is needed.
‘‘‘yaml
table, mesh, 0.8
‘‘‘
This is also a good example to show that sometimes, the task description might include two objects, e.g., a

table and a drawer, yet there is only one object size provided (here the table). This is not an error,
but that the other object is part of the provided object, i.e., here the drawer is part of the table. It
’s fine, you should then just reply with the corrected size of the object provided, here, the table, in
such cases.

‘‘‘
Task: Throw Trash Away The robotic arm places an item of trash inside the trash can
trashcan, mesh, 0.6
trash, mesh, 0.1
‘‘‘

An example response from GPT-4:
The size of the trashcan is reasonable as it is a common size for a household trashcan. However, the size of

the trash is a bit too large. Trash items are usually smaller to fit inside the trashcan. Below is the
corrected size.

‘‘‘yaml
trashcan, mesh, 0.6
trash, mesh, 0.05
‘‘‘

For scene generation, we also need to specify the asset configuration, and any special scene config-
uration.

Adjusting articulated object joint prompt. We continue the example of throwing the trash away.
Your goal is to set the joint angles of some articulated objects to the right value in the initial state,

given a task. The task is for a robot arm to learn the corresponding skills to manipulate the
articulated object.

The input to you will include the task name, a short description of the task, the articulation tree of the
articulated object, a semantic file of the articulated object, the links and joints of the articulated
objects that will be involved in the task, and the substeps for doing the task.

You should output for each joint involved in the task, what joint value it should be set to. You should output
a number in the range [0, 1], where 0 corresponds to the lower limit of that joint angle, and 1
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corresponds to the upper limit of the joint angle. You can also output a string of "random", which
indicates to sample the joint angle within the range.

By default, the joints in an object are set to their lower joint limits. You can assume that the lower joint
limit corresponds to the natural state of the articulated object. E.g., for a door’s hinge joint, 0
means it is closed, and 1 means it is open. For a lever, 0 means it is unpushed, and 1 means it is
pushed to the limit.

Here is an example:

Input:
Task Name: Close the door
Description: The robot arm will close the door after it was opened.

‘‘‘door articulation tree
links:
base
link_0
link_1
link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1
joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2
‘‘‘

‘‘‘door semantics
link_0 hinge rotation_door
link_1 static door_frame
link_2 hinge rotation_door
‘‘‘

Links:
- link_0: link_0 is the door. This is the part of the door assembly that the robot needs to interact with.
Joints:
- joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot

needs to actuate this joint cautiously to ensure the door is closed.

substeps:
approach the door
close the door

Output:
The goal is for the robot arm to learn to close the door after it is opened. Therefore, the door needs to be

initially opened, thus, we are setting its value to 1, which corresponds to the upper joint limit.
‘‘‘joint values
joint_0: 1
‘‘‘

Another example:
Task Name: Turn Off Faucet
Description: The robotic arm will turn the faucet off by manipulating the switch

‘‘‘Faucet articulation tree
links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0
joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1
‘‘‘

‘‘‘Faucet semantics
link_0 static faucet_base
link_1 hinge switch
‘‘‘

Links:
- link_0: link_0 is the door. This is the part of the door assembly that the robot needs to interact with.
Joints:
- joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot

needs to actuate this joint cautiously to ensure the door is closed.

substeps:
grasp the faucet switch
turn off the faucet

Output:
For the robot to learn to turn off the faucet, it cannot be already off initially. Therefore, joint_1 should

be set to its upper joint limit, or any value that is more than half of the joint range, e.g., 0.8.
‘‘‘joint value
joint_1: 0.8
‘‘‘

One more example:
Task Name: Store an item inside the Drawer
Description: The robot arm picks up an item and places it inside the drawer of the storage furniture
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‘‘‘StorageFurniture articulation tree
links:
base
link_0
link_1
link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1
joint_name: joint_2 joint_type: prismatic parent_link: link_1 child_link: link_2
‘‘‘

‘‘‘StorageFurniture semantics
link_0 hinge rotation_door
link_1 heavy furniture_body
link_2 slider drawer
‘‘‘

Links:
- link_2: link_2 is the drawer link from the semantics. The robot needs to open this drawer to place the item

inside.
Joints:
- joint_2: joint_2, from the articulation tree, connects to link_2 (the drawer). Thus, the robot would need to

actuate this joint to open the drawer to store the item.

substeps:
grasp the drawer
open the drawer
grasp the item
put the item into the drawer
grasp the drawer again
close the drawer
release the grasp

Output:
This task involves putting one item into the drawer of the storage furniture. As noted in the substeps, the

robot needs to first open the drawer, put the item in, and then close it. Since the articulated object
is initialized with the lower joint limit, i.e., the drawer is initially closed, it aligns with the task
where the robot needs to first learn to open the drawer. Therefore, no particular joint angle needs to

be set, and we just output None.

‘‘‘joint value
None
‘‘‘

Can you do it for the following task:

Task Name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can

‘‘‘TrashCan articulation tree
links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics
link_0 hinge door
link_1 free trashcan_body

‘‘‘

Links:
link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away

the trash.

Joints:
joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

substeps:
grasp the trash can lid
open the trash can lid
grasp the trash
put the trash into the trash can
release the trash
grasp the trash can lid again
close the trash can lid

An example output from GPT-4:
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Output:
The task involves the robot learning to throw trash away. The robot needs to learn to open the trash can lid,

throw the trash in, and then close the lid. Therefore, we need to set the initial joint angle such that
the trash can lid is not already open. We can set joint_0 to its lower limit, which corresponds to the
trash can lid being closed.

‘‘‘joint value
joint_0: 0
‘‘‘

Special spatial relationship prompt. We keep the “Throw away trash” example.
Your goal is to output any special spatial relationships certain objects should have in the initial state,

given a task. The task is for a robot arm to learn the corresponding skills in household scenarios.

The input to you will include
the task name,
a short description of the task,
objects involved in the task,
substeps for performing the task,
If there is an articulated object involved in the task, the articulation tree of the articulated object, the

semantic file of the articulated object, and the links and joints of the articulated objects that will
be involved in the task.

We have the following spatial relationships:
on, obj_A, obj_B: object A is on top of object B, e.g., a fork on the table.
in, obj_A, obj_B: object A is inside object B, e.g., a gold ring in the safe.
in, obj_A, obj_B, link_name: object A is inside the link with link_name of object B. For example, a table

might have two drawers, represented with link_0, and link_1, and in(pen, table, link_0) would be that a
pen is inside one of the drawers that corresponds to link_0.

Given the input to you, you should output any needed spatial relationships of the involved objects.

Here are some examples:

Input:
Task Name:Fetch Item from Refrigerator
Description: The robotic arm will open a refrigerator door and reach inside to grab an item and then close the

door.
Objects involved: refrigerator, item

‘‘‘refrigerator articulation tree
links:
base
link_0
link_1
link_2

joints:
joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0
joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1
joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2
‘‘‘

‘‘‘refrigerator semantics
link_0 heavy refrigerator_body
link_1 hinge door
link_2 hinge door
‘‘‘

Links:
link_1: The robot needs to approach and open this link, which represents one of the refrigerator doors, to

reach for the item inside.
Joints:
joint_1: This joint connects link_1, representing one of the doors. The robot needs to actuate this joint to

open the door, reach for the item, and close the door.

substeps:
grasp the refrigerator door
open the refrigerator door
grasp the item
move the item out of the refrigerator
grasp the refrigerator door again
close the refrigerator door

Output:
The goal is for the robot arm to learn to retrieve an item from the refrigerator. Therefore, the item needs to

be initially inside the refrigerator. From the refrigerator semantics we know that link_0 is the body
of the refrigerator, therefore we should have a spatial relationship as the following:

‘‘‘spatial relationship
In, item, refrigerator, link_0
‘‘‘

Another example:
Task Name: Turn Off Faucet
Description: The robotic arm will turn the faucet off by manipulating the switch
Objects involved: faucet

‘‘‘Faucet articulation tree
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links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0
joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1
‘‘‘

‘‘‘Faucet semantics
link_0 static faucet_base
link_1 hinge switch
‘‘‘

Links:
link_0: link_0 is the door. This is the part of the door assembly that the robot needs to interact with.
Joints:
joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot

needs to actuate this joint cautiously to ensure the door is closed.

substeps:
grasp the faucet switch
turn off the faucet

Output:
There is only 1 object involved in the task, thus no special spatial relationships are required.
‘‘‘spatial relationship
None
‘‘‘

One more example:
Task Name: Store an item inside the Drawer
Description: The robot arm picks up an item and places it inside the drawer of the storage furniture.
Objects involved: storage furniture, item

‘‘‘StorageFurniture articulation tree
links:
base
link_0
link_1
link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1
joint_name: joint_2 joint_type: prismatic parent_link: link_1 child_link: link_2
‘‘‘

‘‘‘StorageFurniture semantics
link_0 hinge rotation_door
link_1 heavy furniture_body
link_2 slider drawer
‘‘‘

Links:
link_2: link_2 is the drawer link from the semantics. The robot needs to open this drawer to place the item

inside.
Joints:
joint_2: joint_2, from the articulation tree, connects to link_2 (the drawer). Thus, the robot would need to

actuate this joint to open the drawer to store the item.

substeps:
grasp the drawer
open the drawer
grasp the item
put the item into the drawer
grasp the drawer again
close the drawer
release the grasp

Output:
This task involves putting one item into the drawer of the storage furniture. The item should initially be

outside of the drawer, such that the robot can learn to put it into the drawer. Therefore, no special
relationships of in or on are needed. Therefore, no special spatial relationships are needed.

‘‘‘spatial relationship
None
‘‘‘

Can you do it for the following task:

Task Name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can
Objects involved: TrashCan, Trash

‘‘‘TrashCan articulation tree
links:
base
link_0
link_1
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joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics
link_0 hinge door
link_1 free trashcan_body

‘‘‘

Links:
link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away

the trash.

Joints:
joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

substeps:
grasp the trash can lid
open the trash can lid
grasp the trash
put the trash into the trash can
release the trash
grasp the trash can lid again
close the trash can lid

An example output from GPT-4:
Output:
The task involves the robot arm placing an item of trash into the trash can. Initially, the trash should not

be inside the trash can, so the robot can learn to put it in. Therefore, no special spatial
relationships are needed.

‘‘‘spatial relationship
None
‘‘‘

Training supervision prompt.
A robotic arm is trying to solve some household object manipulation tasks to learn corresponding skills in a

simulator.

We will provide with you the task description, the initial scene configurations of the task, which contains
the objects in the task and certain information about them.

Your goal is to decompose the task into executable sub-steps for the robot, and for each substep, you should
either call a primitive action that the robot can execute, or design a reward function for the robot to
learn, to complete the substep.

For each substep, you should also write a function that checks whether the substep has been successfully
completed.

Common substeps include moving towards a location, grasping an object, and interacting with the joint of an
articulated object.

An example task:

Task Name: Fetch item from refrigerator
Description: The robotic arm will open a refrigerator door reach inside to grab an item, place it on the table

, and then close the door
Initial config:
‘‘‘yaml
- use_table: true
- center: (1.2, 0, 0)

lang: a common two-door refrigerator
name: Refrigerator
on_table: false
path: refrigerator.urdf
size: 1.8
type: urdf

- center: (1.2, 0, 0.5)
lang: a can of soda
name: Item
on_table: false
path: soda_can.obj
size: 0.2
type: mesh

‘‘‘

I will also give you the articulation tree and semantics file of the articulated object in the task. Such
information will be useful for writing the reward function/the primitive actions, for example, when the
reward requires accessing the joint value of a joint in the articulated object, or the position of a
link in the articulated object, or when the primitive needs to access a name of the object.

‘‘‘Refrigerator articulation tree
links:
base
link_0
link_1
link_2
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joints:
joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0
joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1
joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2
‘‘‘

‘‘‘Refrigerator semantics
link_0 heavy refrigerator_body
link_1 hinge door
link_2 hinge door
‘‘‘

I will also give you the links and joints of the articulated object that will be used for completing the task:

Links:
link_1: This link is one of the refrigerator doors, which the robot neesd to reach for the item inside.
Joints:
joint_1: This joint connects link_1, representing one of the doors. The robot needs to actuate this joint to

open the door, reach for the item, and close the door.

For each substep, you should decide whether the substep can be achieved by using the provided list of
primitives. If not, you should then write a reward function for the robot to learn to perform this
substep.

If you choose to write a reward function for the substep, you should also specify the action space of the
robot when learning this reward function.

There are 2 options for the action space: "delta-translation", where the action is the delta translation of
the robot end-effector, suited for local movements; and "normalized-direct-translation", where the
action specifies the target location the robot should move to, suited for moving to a target location.

For each substep, you should also write a condition that checks whether the substep has been successfully
completed.

Here is a list of primitives the robot can do. The robot is equipped with a suction gripper, which makes it
easy for the robot to grasp an object or a link on an object.

grasp_object(self, object_name): the robot arm will grasp the object specified by the argument object name.
grasp_object_link(self, object_name, link_name): some object like an articulated object is composed of

multiple links. The robot will grasp a link with link_name on the object with object_name.
release_grasp(self): the robot will release the grasped object.
approach_object(self, object_name): this function is similar to grasp_object, except that the robot only

approaches the object, without grasping it.
approach_object_link(self, object_name, link_name): this function is similar to grasp_object_link, except that

the robot only approaches the object’s link, without grasping it.
Note that all primitives will return a tuple (rgbs, final_state) which represents the rgb images of the

execution process and the final state of the execution process.
You should always call the primitive in the following format:
rgbs, final_state = some_primitive_function(self, arg1, ..., argn)

Here is a list of helper functions that you can use for designing the reward function or the success condition
:

get_position(self, object_name): get the position of center of mass of object with object_name.
get_orientation(self, object_name): get the orientation of an object with object_name.
detect(self, object_name, object_part): detect the position of a part in object. E.g., the opening of a

toaster, or the handle of a door.
get_joint_state(self, object_name, joint_name): get the joint angle value of a joint in an object.
get_joint_limit(self, object_name, joint_name): get the lower and upper joint angle limit of a joint in an

object, returned as a 2-element tuple.
get_link_state(self, object_name, link_name): get the position of the center of mass of the link of an object.
get_eef_pos(self): returns the position, orientation of the robot end-effector as a list.
get_bounding_box(self, object_name): get the axis-aligned bounding box of an object. It returns the min and

max xyz coordinate of the bounding box.
get_bounding_box_link(self, object_name, link_name): get the axis-aligned bounding box of the link of an

object. It returns the min and max xyz coordinate of the bounding box.
in_bbox(self, pos, bbox_min, bbox_max): check if pos is within the bounding box with the lowest corner at

bbox_min and the highest corner at bbox_max.
get_grasped_object_name(self): return the name of the grasped object. If no object is grasped by the robot,

return None. The name is automatically converted to the lower case.
get_grasped_object_and_link_name(self): return a tuple, the first is the name of the grasped object, and the

second is the name of the grasped link. If no object is grasped by the robot, return (None, None). The
name is automatically converted to the lower case.

gripper_close_to_object(self, object_name): return true if the robot gripper is close enough to the object
specified by object_name, otherwise false.

gripper_close_to_object_link(self, object_name, link_name): return true if the robot gripper is close enough
to the object link, otherwise false.

You can assume that for objects, the lower joint limit corresponds to their natural state, e.g., a box is
closed with the lid joint being 0, and a lever is unpushed when the joint angle is 0.

For the above task "Fetch item from refrigerator", it can be decomposed into the following substeps,
primitives, and reward functions:

substep 1: grasp the refrigerator door
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Refrigerator", "link_1")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "Refrigerator".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 2: open the refrigerator door
‘‘‘reward
def _compute_reward(self):

# this reward encourages the end-effector to stay near door to grasp it.
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eef_pos = get_eef_pos(self)[0]
door_pos = get_link_state(self, "Refrigerator", "link_1")
reward_near = -np.linalg.norm(eef_pos - door_pos)

# Get the joint state of the door. We know from the semantics and the articulation tree that joint_1
connects link_1 and is the joint that controls the rotation of the door.

joint_angle = get_joint_state(self, "Refrigerator", "joint_1")
# The reward is the negative distance between the current joint angle and the joint angle when the door is

fully open (upper limit).
joint_limit_low, joint_limit_high = get_joint_limit(self, "Refrigerator", "joint_1")
target_joint_angle = joint_limit_high
diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘
In the last substep the robot already grasps the door, thus only local movements are needed to open it.

substep 3: grasp the item
‘‘‘primitive

rgbs, final_state = grasp_object(self, "Item")
success = get_grasped_object_name(self) == "Item".lower()

‘‘‘

substep 4: move the item out of the refrigerator
‘‘‘reward
def _compute_reward(self):

# Get the current item position
item_position = get_position(self, "Item")

# The first reward encourages the end-effector to stay near the item
eef_pos = get_eef_pos(self)[0]
reward_near = -np.linalg.norm(eef_pos - item_position)

# The reward is to encourage the robot to grasp the item and move the item to be on the table.
# The goal is not to just move the soda can to be at a random location out of the refrigerator. Instead,

we need to place it somewhere on the table.
# This is important for moving an object out of a container style of task.
table_bbox_low, table_bbox_high = get_bounding_box(self, "init_table") # the table is referred to as "

init_table" in the simulator.
table_bbox_range = table_bbox_high - table_bbox_low

# target location is to put the item at a random location on the table
target_location = np.zeros(3)
target_location[0] = table_bbox_low[0] + 0.2 * table_bbox_range[0] # 0.2 is a random chosen number, any

number in [0, 1] should work
target_location[1] = table_bbox_low[1] + 0.3 * table_bbox_range[1] # 0.3 is a random chosen number, any

number in [0, 1] should work
target_location[2] = table_bbox_high[2] # the height should be the table height
diff = np.linalg.norm(item_position - target_location)
reward_distance = -diff

reward = reward_near + 5 * reward_distance

success = diff < 0.06

return reward, success
‘‘‘

‘‘‘action space
normalized-direct-translation
‘‘‘
Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: grasp the refrigerator door again
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Refrigerator", "link_1")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "Refrigerator".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 6: close the refrigerator door
‘‘‘reward
def _compute_reward(self):

# this reward encourages the end-effector to stay near door
eef_pos = get_eef_pos(self)[0]
door_pos = get_link_state(self, "Refrigerator", "link_1")
reward_near = -np.linalg.norm(eef_pos - door_pos)

# Get the joint state of the door. The semantics and the articulation tree show that joint_1 connects
link_1 and is the joint that controls the rotation of the door.

joint_angle = get_joint_state(self, "Refrigerator", "joint_1")
# The reward encourages the robot to make joint angle of the door to be the lower limit to clost it.
joint_limit_low, joint_limit_high = get_joint_limit(self, "Refrigerator", "joint_1")
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target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘

I will give some more examples of decomposing the task. Reply yes if you understand the goal.

=====================================

Yes, I understand the goal. Please proceed with the next example.

=====================================

Another example:

Task Name: Set oven temperature
Description: The robotic arm will turn the knob of an oven to set a desired temperature.
Initial config:
‘‘‘yaml
- use_table: false
- center: (1, 0, 0) # when an object is not on the table, the center specifies its location in the world

coordinate.
lang: a freestanding oven
name: oven
on_table: false
path: oven.urdf
size: 0.85
type: urdf

‘‘‘

‘‘‘Oven articulation tree:
links:
base
link_0
link_1
link_2
link_3
link_4

joints:
joint_name: joint_0 joint_type: continuous parent_link: link_4 child_link: link_0
joint_name: joint_1 joint_type: continuous parent_link: link_4 child_link: link_1
joint_name: joint_2 joint_type: continuous parent_link: link_4 child_link: link_2
joint_name: joint_3 joint_type: continuous parent_link: link_4 child_link: link_3
joint_name: joint_4 joint_type: fixed parent_link: base child_link: link_4
‘‘‘

‘‘‘Oven semantics
link_0 hinge knob
link_1 hinge knob
link_2 hinge knob
link_3 hinge knob
link_4 heavy oven_body
‘‘‘

Links:
link_0: We know from the semantics that link_0 is a hinge knob. It is assumed to be the knob that controls the

temperature of the oven. The robot needs to actuate this knob to set the temperature of the oven.

Joints:
joint_0: from the articulation tree, joint_0 connects link_0 and is a continuous joint. Therefore, the robot

needs to actuate joint_0 to turn link_0, which is the knob.

This task can be decomposed as follows:

substep 1: grasp the temperature knob
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "oven", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "oven".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: turn the temperature knob to set a desired temperature
‘‘‘reward
def _compute_reward(self):

# This reward encourages the end-effector to stay near the knob to grasp it.
eef_pos = get_eef_pos(self)[0]
knob_pos = get_link_state(self, "oven", "link_0")
reward_near = -np.linalg.norm(eef_pos - knob_pos)

joint_angle = get_joint_state(self, "oven", "joint_0")
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joint_limit_low, joint_limit_high = get_joint_limit(self, "oven", "joint_0")
desired_temperature = joint_limit_low + (joint_limit_high - joint_limit_low) / 3 # We assume the target

desired temperature is one third of the joint angle. It can also be 1/3, or other values between
joint_limit_low and joint_limit_high.

# The reward is the negative distance between the current joint angle and the joint angle of the desired
temperature.

diff = np.abs(joint_angle - desired_temperature)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘

I will provide more examples in the following messages. Please reply yes if you understand the goal.

=====================================

Yes, I understand the goal. Please proceed with the next example.

=====================================

Here is another example:

Task Name: Put a toy car inside a box
Description: The robotic arm will open a box, grasp the toy car and put it inside the box.
Initial config:
‘‘‘yaml
- use_table: True
- center: (0.2, 0.3, 0)

on_table: True
lang: a box
name: box
size: 0.25
type: urdf

- center: (0.1, 0.6, 0)
on_table: True
lang: a toy car
name: toy_car
size: 0.1
type: mesh

‘‘‘

‘‘‘box articulation tree
links:
base
link_0
link_1
link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_2 child_link: link_0
joint_name: joint_1 joint_type: revolute parent_link: link_2 child_link: link_1
joint_name: joint_2 joint_type: fixed parent_link: base child_link: link_2
‘‘‘

‘‘‘box semantics
link_0 hinge rotation_lid
link_1 hinge rotation_lid
link_2 free box_body
‘‘‘

Links:
link_0: To fully open the box, the robot needs to open both box lids. We know from the semantics that link_0

is one of the lids.
link_1: To fully open the box, the robot needs to open both box lids. We know from the semantics that link_1

is another lid.
Joints:
joint_0: from the articulation tree, joint_0 connects link_0 and is a hinge joint. Thus, the robot needs to

actuate joint_0 to open link_0, which is the lid of the box.
joint_1: from the articulation tree, joint_1 connects link_1 and is a hinge joint. Thus, the robot needs to

actuate joint_1 to open link_1, which is the lid of the box.

This task can be decomposed as follows:

substep 1: grasp the first lid of the box
‘‘‘primitive

# The semantics shows that link_0 and link_1 are the lid links.
rgbs, final_state = grasp_object_link(self, "box", "link_0")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "box".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: open the first lid of the box
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‘‘‘reward
def _compute_reward(self):

# This reward encourages the end-effector to stay near the lid to grasp it.
eef_pos = get_eef_pos(self)[0]
lid_pos = get_link_state(self, "box", "link_0")
reward_near = -np.linalg.norm(eef_pos - lid_pos)

# Get the joint state of the first lid. The semantics and the articulation tree show that joint_0 connects
link_0 and is the joint that controls the rotation of the first lid link_0.

joint_angle = get_joint_state(self, "box", "joint_0")
# The reward is the negative distance between the current joint angle and the joint angle when the lid is

fully open (upper limit).
joint_limit_low, joint_limit_high = get_joint_limit(self, "box", "joint_0")
target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘

substep 3: grasp the second lid of the box
‘‘‘primitive

# We know from the semantics that link_0 and link_1 are the lid links.
rgbs, final_state = grasp_object_link(self, "box", "link_1")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "box".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 4: open the second lid of the box
‘‘‘reward
def _compute_reward(self):

# This reward encourages the end-effector to stay near the lid to grasp it.
eef_pos = get_eef_pos(self)[0]
lid_pos = get_link_state(self, "box", "link_1")
reward_near = -np.linalg.norm(eef_pos - lid_pos)

# Get the joint state of the second lid. The semantics and the articulation tree show that joint_1
connects link_1 and is the joint that controls the rotation of the second lid link_1.

joint_angle = get_joint_state(self, "box", "joint_1")
# The reward is the negative distance between the current joint angle and the joint angle when the lid is

fully open (upper limit).
joint_limit_low, joint_limit_high = get_joint_limit(self, "box", "joint_1")
target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)
return reward, success

‘‘‘

‘‘‘action space
delta-translation
‘‘‘

substep 5: grasp the toy car
‘‘‘primitive

rgbs, final_state = grasp_object(self, "toy_car")
success = get_grasped_object_name(self) == "toy_car".lower()

‘‘‘

substep 6: put the toy car into the box
‘‘‘reward
def _compute_reward(self):

# Get the current car position
car_position = get_position(self, "toy_car")

# This reward encourages the end-effector to stay near the car to grasp it.
eef_pos = get_eef_pos(self)[0]
reward_near = -np.linalg.norm(eef_pos - car_position)

# Get the box body bounding box
min_aabb, max_aabb = get_bounding_box_link(self, "box", "link_4") # from the semantics, link_4 is the body

of the box.
diff = np.array(max_aabb) - np.array(min_aabb)
min_aabb = np.array(min_aabb) + 0.05 * diff # shrink the bounding box a bit
max_aabb = np.array(max_aabb) - 0.05 * diff
center = (np.array(max_aabb) + np.array(min_aabb)) / 2

# another reward is one if the car is inside the box bounding box
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reward_in = 0
if in_bbox(self, car_position, min_aabb, max_aabb): reward_in += 1

# another reward is to encourage the robot to move the car to be near the box
# we need this to give a dense reward signal for the robot to learn to perform this task.
reward_reaching = -np.linalg.norm(center - car_position)

# The task is considered to be successful if the car is inside the box bounding box
success = in_bbox(self, car_position, min_aabb, max_aabb)

# We give more weight to reward_in, which is the major goal of the task.
reward = 5 * reward_in + reward_reaching + reward_near
return reward, success

‘‘‘

‘‘‘action space
normalized-direct-translation
‘‘‘
Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

Please decompose the following task into substeps. For each substep, write a primitive/a reward function,
write the success checking function, and the action space if the reward is used.

The primitives you can call for the robot to execute:
grasp_object(self, object_name): the robot arm will grasp the object specified by the argument object name.
grasp_object_link(self, object_name, link_name): some object like an articulated object is composed of

multiple links. The robot will grasp a link with link_name on the object with object_name.
release_grasp(self): the robot will release the grasped object.
approach_object(self, object_name): this function is similar to grasp_object, except that the robot only

approaches the object, without grasping it.
approach_object_link(self, object_name, link_name): this function is similar to grasp_object_link, except that

the robot only approaches the object’s link, without grasping it.
Note that all primitives will return a tuple (rgbs, final_state) which represents the rgb images of the

execution process and the final state of the execution process.
You should always call the primitive in the following format:
rgbs, final_state = some_primitive_function(self, arg1, ..., argn)

The APIs you can use for writing the reward function/success checking function:
get_position(self, object_name): get the position of center of mass of object with object_name.
get_orientation(self, object_name): get the orientation of an object with object_name.
get_joint_state(self, object_name, joint_name): get the joint angle value of a joint in an object.
get_joint_limit(self, object_name, joint_name): get the lower and upper joint angle limit of a joint in an

object, returned as a 2-element tuple.
get_link_state(self, object_name, link_name): get the position of the center of mass of the link of an object.
get_eef_pos(self): returns the position, orientation of the robot end-effector as a list.
get_bounding_box(self, object_name): get the axis-aligned bounding box of an object. It returns the min and

max xyz coordinate of the bounding box.
get_bounding_box_link(self, object_name, link_name): get the axis-aligned bounding box of the link of an

object. It returns the min and max xyz coordinate of the bounding box.
in_bbox(self, pos, bbox_min, bbox_max): check if pos is within the bounding box with the lowest corner at

bbox_min and the highest corner at bbox_max.
get_grasped_object_name(self): return the name of the grasped object. If no object is grasped by the robot,

return None. The name is automatically converted to the lower case.
get_grasped_object_and_link_name(self): return a tuple, the first is the name of the grasped object, and the

second is the name of the grasped link. If no object is grasped by the robot, return (None, None). The
name is automatically converted to the lower case.

gripper_close_to_object(self, object_name): return true if the robot gripper is close enough to the object
specified by object_name, otherwise false.

gripper_close_to_object_link(self, object_name, link_name): return true if the robot gripper is close enough
to the object link, otherwise false.

The action space you can use for learning with the reward: delta-translation is better suited for small
movements, and normalized-direct-translation is better suited for directly specifying the target
location of the robot end-effector.

You can assume that for objects, the lower joint limit corresponds to their natural state, e.g., a box is
closed with the lid joint being 0, and a lever is unpushed when the joint angle is 0.

Task name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can
Initial config:
‘‘‘yaml
- use_table: false
- center: (1.5, 1.5, 0)
lang: a common trash can
name: TrashCan
on_table: false
path: trashcan.urdf
reward_asset_path: ’102187’
size: 0.6
type: urdf

- center: (0.5, 0.5, 0)
lang: a pile of paper waste
name: Trash
on_table: true
path: paper_waste.obj
size: 0.05
type: mesh

‘‘‘
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‘‘‘TrashCan articulation tree
links:
base
link_0
link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics
link_0 hinge door
link_1 free trashcan_body

‘‘‘

Links:
link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away

the trash.
Joints:
joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

An example response for the above task “Throw the trash away”:
This task can be decomposed into the following substeps:

substep 1: grasp the trash can lid
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "TrashCan", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "TrashCan".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: open the trash can lid
‘‘‘reward
def _compute_reward(self):

# This reward encourages the end-effector to stay near the lid to grasp it.
eef_pos = get_eef_pos(self)[0]
lid_pos = get_link_state(self, "TrashCan", "link_0")
reward_near = -np.linalg.norm(eef_pos - lid_pos)

# Get the joint state of the lid. The semantics and the articulation tree show that joint_0 connects
link_0 and is the joint that controls the rotation of the lid.

joint_angle = get_joint_state(self, "TrashCan", "joint_0")
# The reward is the negative distance between the current joint angle and the joint angle when the lid is

fully open (upper limit).
joint_limit_low, joint_limit_high = get_joint_limit(self, "TrashCan", "joint_0")
target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘

substep 3: grasp the trash
‘‘‘primitive

rgbs, final_state = grasp_object(self, "Trash")
success = get_grasped_object_name(self) == "Trash".lower()

‘‘‘

substep 4: put the trash into the trash can
‘‘‘reward
def _compute_reward(self):

# Get the current trash position
trash_position = get_position(self, "Trash")

# This reward encourages the end-effector to stay near the trash to grasp it.
eef_pos = get_eef_pos(self)[0]
reward_near = -np.linalg.norm(eef_pos - trash_position)

# Get the trash can body bounding box
min_aabb, max_aabb = get_bounding_box_link(self, "TrashCan", "link_1") # from the semantics, link_1 is the

body of the trash can.
diff = np.array(max_aabb) - np.array(min_aabb)
min_aabb = np.array(min_aabb) + 0.05 * diff # shrink the bounding box a bit
max_aabb = np.array(max_aabb) - 0.05 * diff
center = (np.array(max_aabb) + np.array(min_aabb)) / 2

# another reward is one if the trash is inside the trash can bounding box
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reward_in = 0
if in_bbox(self, trash_position, min_aabb, max_aabb): reward_in += 1

# another reward is to encourage the robot to move the trash to be near the trash can
# we need this to give a dense reward signal for the robot to learn to perform this task.
reward_reaching = -np.linalg.norm(center - trash_position)

# The task is considered to be successful if the trash is inside the trash can bounding box
success = in_bbox(self, trash_position, min_aabb, max_aabb)

# We give more weight to reward_in, which is the major goal of the task.
reward = 5 * reward_in + reward_reaching + reward_near
return reward, success

‘‘‘

‘‘‘action space
normalized-direct-translation
‘‘‘
Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: release the trash
‘‘‘primitive

rgbs, final_state = release_grasp(self)
success = get_grasped_object_name(self) == None

‘‘‘

substep 6: grasp the trash can lid again
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "TrashCan", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "TrashCan".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 7: close the trash can lid
‘‘‘reward
def _compute_reward(self):

# This reward encourages the end-effector to stay near the lid
eef_pos = get_eef_pos(self)[0]
lid_pos = get_link_state(self, "TrashCan", "link_0")
reward_near = -np.linalg.norm(eef_pos - lid_pos)

# Get the joint state of the lid. The semantics and the articulation tree show that joint_0 connects
link_0 and is the joint that controls the rotation of the lid.

joint_angle = get_joint_state(self, "TrashCan", "joint_0")
# The reward encourages the robot to make joint angle of the lid to be the lower limit to close it.
joint_limit_low, joint_limit_high = get_joint_limit(self, "TrashCan", "joint_0")
target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)
reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘

Another example of heating up a bowl of soup in the microwave:
This task can be decomposed as follows:

substep 1: grasp the microwave door
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Microwave", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "Microwave".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: open the microwave door
‘‘‘reward
def _compute_reward(self):

# Get the joint state of the door. We know from the semantics and the articulation tree that joint_0
connects link_0 and is the joint that controls the rotation of the door.

joint_angle = get_joint_state(self, "Microwave", "joint_0")
# The reward is the negative distance between the current joint angle and the joint angle when the door is

fully open (upper limit).
joint_limit_low, joint_limit_high = get_joint_limit(self, "Microwave", "joint_0")
target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward = -diff

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘
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‘‘‘action space
delta-translation
‘‘‘
Here from the last substep the robot already grasps the microwave door, thus only local movements are needed

to open the door.

substep 3: grasp the bowl of soup
‘‘‘primitive

rgbs, final_state = grasp_object(self, "Bowl of soup")
success = get_grasped_object_name(self) == "Bowl of soup".lower()

‘‘‘

substep 4: put the bowl of soup into the microwave
‘‘‘reward
def _compute_reward(self):

# Get the current soup position
soup_position = get_position(self, "Bowl of soup")

# Get the microwave body bounding box
min_aabb, max_aabb = get_bounding_box_link(self, "Microwave", "link_3") # from the semantics, link_3 is

the body of the microwave.
diff = np.array(max_aabb) - np.array(min_aabb)
min_aabb = np.array(min_aabb) + 0.05 * diff # shrink the bounding box a bit
max_aabb = np.array(max_aabb) - 0.05 * diff
center = (np.array(max_aabb) + np.array(min_aabb)) / 2

# First reward is one if the soup is inside the microwave bounding box
reward_in = 0
if in_bbox(self, soup_position, min_aabb, max_aabb): reward_in += 1

# Second reward is to encourage the robot to grasp the soup and move the soup to be near the microwave
# we need this to give a dense reward signal for the robot to learn to perform this task.
reward_reaching = -np.linalg.norm(center - soup_position)

# The task is considered to be successful if the soup is inside the microwave bounding box
success = in_bbox(self, soup_position, min_aabb, max_aabb)

# We give more weight to the first reward which is putting the soup into the microwave.
reward = 5 * reward_in + reward_reaching
return reward, success

‘‘‘

‘‘‘action space
normalized-direct-translation
‘‘‘
Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: grasp the microwave door again
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Microwave", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "Microwave".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 6: close the microwave door
‘‘‘reward
def _compute_reward(self):

# Get the joint state of the door. We know from the semantics and the articulation tree that joint_0
connects link_0 and is the joint that controls the rotation of the door.

joint_angle = get_joint_state(self, "Microwave", "joint_0")
# The reward is the negative distance between the current joint angle and the joint angle when the door is

fully closed (lower limit).
joint_limit_low, joint_limit_high = get_joint_limit(self, "Microwave", "joint_0")
target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)
reward = -diff

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘
Here from the last substep the robot already grasps the microwave door, thus only local movements are needed

to close the door.

substep 7: grasp the microwave timer knob
‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Microwave", "link_1")
grasped_object, grasped_link = get_grasped_object_and_link_name(self)
success = (grasped_object == "Microwave".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 8: turn the microwave timer knob to set a desired heating time
‘‘‘reward
def _compute_reward(self):

# Get the joint state of the timer knob. We know from the semantics and the articulation tree that joint_1
connects link_1 and is the joint that controls the timer knob.

48



Under review as a conference paper at ICLR 2024

joint_angle = get_joint_state(self, "Microwave", "joint_1")

joint_limit_low, joint_limit_high = get_joint_limit(self, "Microwave", "joint_1")
desired_time = joint_limit_low + (joint_limit_high - joint_limit_low) / 2 # We assume the target desired

time is half of the joint angle. It can also be one third, or other values between joint_limit_low
and joint_limit_high.

# The reward is the negative distance between the current joint angle and the joint angle of the desired
time.

diff = np.abs(joint_angle - desired_time)
reward = -diff

# if the difference is small enough, we consider it a success. Here the threshold value is determined as a
ratio of the joint angle range.

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success
‘‘‘

‘‘‘action space
delta-translation
‘‘‘
Since the robot already gras

Here unfortunately we exceeded the 8k token limit of GPT-4. But the main body of the task decom-
positions have been finished, and the response is still good to be used.
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