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Abstract

Despite significant advances in large language models, many reasoning datasets1

are still built from a fixed set of predefined relations, manually curated types such2

as cause, effect, and intent found in knowledge graph datasets such as ATOMIC3

and COMET. While these predefined relations provide essential structure, the4

fixed schema limits relational coverage and adaptability to novel contexts. We5

present DYNA-SKILL, a dual-triple knowledge graph framework that preserves 356

predefined relations consolidated and refined from existing commonsense knowl-7

edge graph datasets while augmenting them with 133 additional schema-free8

dynamic relations generated via a self-prompting mechanism. Each instance con-9

sists of two linked triples (Head–Predefined Relation–Tail) and (Tail–Dynamic10

Relation–Additional Tail) used as independent training samples while retaining11

linkages for extended reasoning paths. Across reasoning-intensive benchmarks,12

including CommonsenseQA, RiddleSense, and ARC Challenge, the Hybrid config-13

uration, which combines predefined and dynamically generated relations, achieves14

performance comparable to or slightly higher than Predefined-only settings and15

yields up to 3.2% higher accuracy than baseline BERT models. By expanding the16

relation set from 35 predefined types to a total of 168 relations, DYNA-SKILL17

enriches relational diversity and improves multi-step logical reasoning, which can18

enhance performance in real-world scenarios such as complex question answer-19

ing, multi-document analysis, and causal reasoning, where accurate and adaptable20

inference is critical.21

1 Introduction22

In recent years, large language models (LLMs) have demonstrated remarkable capabilities across23

a wide range of natural language processing tasks, including question answering, summarization,24

and commonsense reasoning [5]. Despite these advances, LLMs continue to struggle with complex,25

multi-step logical reasoning, particularly in open-domain and contextually rich scenarios [2]. This26

limitation is partly due to their reliance on implicit knowledge learned during pretraining, without27

explicit relational structures that facilitate structured inference.28

A large proportion of reasoning evaluation datasets are still constructed from a fixed set of manually29

curated relation types, such as cause, effect, and intent, found in commonsense knowledge graph30

datasets like ATOMIC [16, 8] and expanded using models such as COMET [4]. While these31

predefined relations provide essential structure, the fixed schema inherently limits relational coverage32

and adaptability to novel or context-specific connections. As a result, current reasoning datasets33

cannot fully support the diverse and dynamic relational patterns required for robust, multi-step34

inference in real-world applications.35
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Figure 1: Overview of the Self Prompting Graph Based Knowledge Dataset Generation.

To address these limitations, we propose DYNA-SKILL, a Self-Prompting-based approach for36

automatically generating a graph-structured knowledge dataset that integrates both predefined and37

dynamically generated relations. As illustrated in Figure 1, our method constructs a dual-triple38

representation: (Head–Predefined Relation–Tail) and (Tail–Dynamic Relation–Additional Tail). First,39

Tails are generated using 35 predefined relations, consolidated and refined from existing commonsense40

knowledge graph datasets. To extend reasoning depth, an Additional Tail is generated based on the41

Tail, introducing new but logically coherent knowledge. Finally, a Dynamic Relation is inferred42

between the Tail and Additional Tail, enabling the discovery of 133 schema-free relation types beyond43

manually curated templates. For example, given the Tail “PersonX bakes bread,” our approach may44

generate the Additional Tail “PersonX finds a recipe” and infer the Dynamic Relation “Causes.”45

This Self-Prompting-driven process enables LLMs to learn diverse and flexible relational structures,46

facilitating multi-step inference and contextually adaptive reasoning across various domains. The47

dual-triple structure serves as a foundation for enhanced logical reasoning, capturing both explicit48

and implicit connections that conventional knowledge graphs often miss.49

We evaluate DYNA-SKILL on five well-established reasoning benchmarks: ARC Challenge [6],50

CommonsenseQA [19], HellaSwag [20], QASC [10], and RiddleSense [13]. Additionally, we51

compare against a control dataset (CC News) to isolate the specific contribution of our reasoning-52

focused dataset beyond general language understanding. Our results show that models fine-tuned on53

DYNA-SKILL consistently outperform both baseline and control models, particularly in tasks that54

require multi-step inference.55

The main contributions of this work are as follows:56

• We introduce a method for automatically generating a graph-based knowledge dataset that57

integrates 35 predefined and 133 dynamically generated relations, substantially increasing58

the adaptability and coverage of the knowledge base.59

• We develop a dual-triple structure (Head–Relation–Tail and Tail–Dynamic Rela-60

tion–Additional Tail) that supports multi-step inference and captures a broader range of61

logical relationships beyond existing commonsense graphs.62

• Through experiments on multiple reasoning benchmarks, we demonstrate that DYNA-SKILL63

significantly enhances LLMs’ logical reasoning performance, outperforming both baseline64

and control models, thereby validating the effectiveness of our approach.65

2 Related Work66

Our work connects two previously distinct lines of research: (1) reasoning-specific datasets in the67

form of structured commonsense knowledge graphs, and (2) dynamic relation generation methods68

such as self-prompting. While knowledge graphs like ATOMIC and COMET provide explicit69

relational structures, they are restricted by fixed relation schemas. Conversely, dynamic generation70

methods offer adaptability but lack integration with structured, reasoning-specific graph formats.71
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Figure 2: Overview of the DYNA-SKILL framework. The dataset generation phase creates dual-triple
knowledge structures by combining predefined and dynamically generated relations. These are
converted into natural language for fine-tuning, and models are evaluated on reasoning benchmarks.

DYNA-SKILL combines these strengths by embedding schema-free dynamic relations within a72

predefined relational framework, creating a flexible yet structured resource for logical reasoning.73

2.1 Reasoning-Specific Knowledge Graph Datasets74

2.1.1 Knowledge Graph Datasets75

ATOMIC [16] is one of the first large-scale commonsense knowledge graphs tailored for “if–then”76

reasoning. It captures human-centered scenarios through categories such as intentions, reactions,77

and effects. Its manually curated triples ensure high quality, but the fixed set of relation types limits78

coverage and adaptability to novel contexts. COMET [4, 8] extends ATOMIC by using transformer-79

based models to populate predefined relational templates derived from ATOMIC and ConceptNet.80

Although this automates triple generation, COMET remains bound to its original set of predefined81

relations, preventing adaptation to unseen relation types. ConceptNet [17] and other large-scale82

resources such as Freebase [3], DBpedia [11], and YAGO [18] cover a wide range of domains, but83

their relation inventories are static and schema-bound, which constrains their use for tasks requiring84

dynamically evolving logical connections.85

2.2 Dynamic Relation Generation Methodologies86

Self-prompting approaches, such as [12], are not designed to construct reasoning-specific graph87

datasets. Instead, they dynamically generate contextually relevant prompts and answers in multi-88

step open-domain QA. While effective for adaptive knowledge acquisition, these methods typically89

operate without an underlying structured graph, limiting their ability to produce explicit multi-step90

relational chains for reasoning.91

3 Method92

In this study, we present DYNA-SKILL, a graph-based knowledge dataset designed to enhance the93

logical reasoning capabilities of language models. Using a Self-Prompting approach [12] with the94

GPT-4-turbo API [1], we automatically construct dual-triple knowledge structures in the form of95

(Head–Predefined Relation–Tail) and (Tail–Dynamic Relation–Additional Tail). Each component,96

Head, Tail, Dynamic Relation, and Additional Tail, is generated to ensure contextual relevance and97

relational diversity. Figure 2 illustrates the overall pipeline, from data generation to fine-tuning and98

evaluation. The following subsections detail each stage of the methodology, and illustrative examples99

of such dual-triple structures are provided in Table 2.100

1. Head-to-Tail Generation101
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Head Definition: We define Head entities across diverse categories to represent the main102

subjects of logical reasoning events. The categories cover a broad range of commonsense103

scenarios, including:Social Interaction (e.g., education, household, relationship manage-104

ment),Physical Entities (e.g., tools, vehicles, appliances),Event-Centered (e.g., festivals,105

weddings, public gatherings), Causal Relations (e.g., economic events, technological106

failures, climate events)107

Additional categories include Causal Chain, Temporal Relations, Duration, Frequency,108

Direction and Movement, Conditional Relations, Necessary and Sufficient Conditions,109

Hierarchical Relations, Part-Whole Relations, and Quantitative Relations. Each category110

captures distinct logical structures and interactions, ensuring coverage of diverse reasoning111

contexts.112

Relation Definition: Each Head category is associated with predefined relations that guide113

the generation of Tail elements and ensure consistency across the dataset. These relations114

include context-specific types tailored to each category. Drawing on insights from prior115

works such as ATOMIC and COMET, we expand the range of predefined relations to build a116

richer and more varied relational structure: Social-Interaction Relations Examples: xIntent117

(intention behind an action), xNeed (prerequisites for an action), oEffect (impact on others)118

These relations capture interpersonal and motivational aspects, enabling reasoning about119

complex social dynamics. Physical-Entity Relations Examples: ObjectUse (typical use of120

an object), AtLocation (where an object is typically found), CapableOf (actions an object121

can perform) These describe functional and situational properties essential for practical122

reasoning. Event-Centered Relations Examples: IsAfter (what happens after an event),123

HasSubEvent (sub-events of a main event), Causes (what leads to an event) These support124

temporal and causal reasoning beyond fixed templates. Causal Relations Examples: Cause125

and Effect, Causal Chain These describe outcome dependencies and multi-step cause–effect126

sequences. Other Categories Examples: Temporal Sequence (Temporal Relations), If-127

Then Statements (Conditional Relations), Part-Whole Relations (compositional structures),128

Quantities and Measures (Quantitative Relations) These model temporal dependencies,129

conditional logic, and hierarchical structures. Each relation is paired with a specific prompt130

to guide Tail generation. For example, an xIntent relation for a social action Head may131

use the prompt: "What is the possible intention behind this action?" By extending relation132

types beyond those in existing commonsense graphs, we provide a versatile framework that133

supports richer logical connections, including cause–effect, hierarchical, and conditional134

dependencies.135

2. Tail-to-Additional Tail and Dynamic Relation Generation136

Additional Tail Generation: To extend the initial Tail, we apply a Self-Prompting approach137

to generate an Additional Tail that is contextually related to the existing Tail. This step138

deepens logical connections by prompting the model with targeted questions about further139

related actions, events, or consequences.140

Dynamic Relation Generation: We then determine the relationship between the Tail and141

the Additional Tail by asking the model: "What kind of relationship does ’additional tail’142

have with ’tail’?" This enables the automatic creation of previously undefined, schema-free143

relations, thereby enhancing flexibility and incorporating novel, context-specific connections144

into the dataset.145

3. Dual-Triple Structure: (Head – Relation – Tail) and (Tail – Dynamic Relation – Addi-146

tional Tail)147

Triple Separation: Each data point is structured as two distinct triples: (Head, Relation,148

Tail) and (Tail, Dynamic Relation, Additional Tail) This dual-triple structure enables multi-149

step reasoning by connecting events in layered logical relationships.150

Multi-Layered Logical Representation: The dual-triple format allows the representation151

of complex, multi-step relationships that go beyond simple fact-based connections, enabling152

the language model to learn deeper logical reasoning capabilities.153

4. Text Conversion of Triples for Language Model Fine-Tuning154

Triple-to-Text Conversion: After generating the (Head,Relation,Tail) triples, we convert155

each triple into a natural language sentence using a function designed to adapt each relation156

type into a specific sentence structure. For example, a triple such as:157

Head: “PersonX makes coffee”, Relation: “xIntent”, Tail: “to help”158
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is converted into:159

"Why does someone make coffee? The intention is to help."160

Conversion Process: A hybrid-relation function processes each triple according to its161

relation type, producing readable sentences. This ensures that each triple is expressed as a162

coherent and contextually relevant sentence that is easy for the language model to interpret.163

Storing and Preparing Data for Fine-Tuning: The converted text data is saved line-by-line164

in a text file, which serves as the input for fine-tuning. This conversion enables the dataset165

to be directly utilized in model training, enhancing logical reasoning capabilities through166

structured, narrative-like training data.167

5. Fine-Tuning Language Models on Converted Text Data168

Fine-Tuning Setup: We fine-tune BERT, RoBERTa, DeBERTa, and DistilBERT models[9,169

14, 7, 15] using the converted text data. Each model is trained to enhance its logical reasoning170

capabilities with our dataset, which provides explicit logical connections.171

Comparison with Control Dataset: To evaluate the specific contribution of our dataset to172

logical reasoning, we compare the performance of models fine-tuned on our hybrid-relation173

dataset with those fine-tuned on a control dataset (CC News), which is expected to have174

limited impact on logical reasoning. By observing that models trained on CC News show a175

smaller improvement in logical reasoning tasks compared to those trained on our dataset,176

we demonstrate that our dataset effectively enhances reasoning capabilities in a way that177

general text data cannot. This comparison underscores the value of our graph-structured178

knowledge in fostering deeper inference abilities.179

4 Experiments180

4.1 Datasets181

Hybrid-Relation Graph Dataset: Our primary dataset is generated via the Self-Prompting method182

described in Section 3, combining 35 predefined relations with 133 dynamically generated relations in183

a dual-triple format. These triples are converted into natural language sentences for model fine-tuning.184

We use approximately 100,000 sentences for each training run.185

Predefined-Only Graph Dataset: A variant of the above dataset containing only the 35 predefined186

relations, without any dynamically generated relations. The dataset size is matched to the others at187

approximately 100,000 sentences, allowing a fair comparison to isolate the contribution of dynamic188

relation generation.189

CC News Dataset: A large-scale news corpus used as a control dataset for general-domain fine-tuning.190

Lacking a reasoning-specific structure, it is expected to have limited impact on logical reasoning191

performance. We randomly sample 100,000 sentences for size parity with the other datasets.192

4.2 Models193

We evaluate four transformer-based encoder models with different capacities: BERT [9],194

RoBERTa [14], DeBERTa [7], and DistilBERT [15]. This selection allows us to measure dataset195

impact across both large and lightweight architectures.196

4.3 Evaluation Tasks197

To assess improvements in logical reasoning, we employ five established benchmarks: ARC-198

Challenge [6], CommonsenseQA [19], HellaSwag [20], QASC [10], and RiddleSense [13]. These199

tasks cover diverse reasoning types, including multiple-choice science questions, commonsense200

inference, situational plausibility, multi-hop QA, and lateral thinking riddles.201

4.4 Fine-Tuning and Evaluation Procedure202

For each model–dataset pair, we fine-tune using approximately 100,000 training sentences, keeping203

dataset sizes consistent to control for size effects. Fine-tuning is conducted with a standard language204

modeling objective, batch size 32, learning rate 2× 10−5, and 3 epochs. Evaluation is performed on205

the benchmark test sets, with accuracy as the primary metric for all tasks.206
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ARC-Challenge[6] Commonsense QA[19] HellaSwag [20] QASC [10] Riddle Sense [13]
BERT [9] 22.61 18.76 24.59 11.12 19.59
BERT_CC_NEWS [9] 24.83 19.33 24.72 13.50 18.41
BERT_Hybrid [9] 25.77 20.64 24.60 11.56 20.37
BERT_Predifined [9] 25.71 20.65 24.58 11.59 20.33
∆ (Hybrid-Predefined) +0.06 -0.01 +0.02 -0.03 +0.04
RoBERTa [14] 25.43 19.00 24.69 13.82 16.69
RoBERTa_CC_NEWS [14] 26.88 21.05 25.19 12.63 17.92
RoBERTa_Hybrid [14] 23.72 22.52 25.44 11.66 19.78
RoBERTa_Predefined [14] 23.70 22.49 25.43 11.61 19.77
∆ (Hybrid-Predefined) +0.02 +0.03 +0.01 +0.05 +0.01
DeBERTa [7] 23.04 19.08 24.84 11.99 21.25
DeBERTa_CC_NEWS [7] 25.60 19.66 24.36 11.66 17.53
DeBERTa_Hybrid [7] 25.09 20.39 25.62 12.74 18.51
DeBERTa_Predefined [7] 25.11 20.36 25.61 12.71 18.52
∆ (Hybrid-Predefined) -0.02 +0.03 +0.01 +0.03 -0.01
DistilBERT [15] 25.77 18.84 24.76 12.53 21.84
DistilBERT_CC_NEWS [15] 25.34 18.59 25.15 12.42 20.67
DistilBERT_Hybrid [15] 23.55 19.49 25.71 13.07 17.60
DistilBERT_Predefined [15] 23.54 19.44 25.71 13.05 17.58
∆ (Hybrid-Predefined) +0.01 +0.05 0.00 +0.02 +0.02

Table 1: Accuracy (%) of each model on five reasoning benchmarks. Bold indicates the best score
and underline the second best within each model type. ∆ represents the accuracy difference between
Hybrid and Predefined-only settings. Hybrid-relation fine-tuning generally achieves competitive
or superior results, suggesting that dynamic relation generation contributes to improved logical
reasoning performance.

4.5 Comparison Settings207

We conduct a two-tier comparison:208

1. Baseline vs. Graph Datasets: Comparing models fine-tuned on each graph dataset against209

their unfine-tuned baselines.210

2. Hybrid vs. Predefined vs. CC News: Comparing reasoning gains from dynamic rela-211

tions (Hybrid), static relations (Predefined), and general-domain fine-tuning (CC News) to212

determine the specific contribution of dynamic relation generation.213

All datasets contain the same number of sentences, ensuring differences are attributable to content214

rather than size.215

5 Result216

5.1 Performance Comparison Across Baseline and Hybrid-Relation Fine-Tuned Models217

Table 1 compares baseline models with those fine-tuned on the hybrid-relation Graph Dataset across218

five reasoning benchmarks. Overall, hybrid-relation fine-tuning yields consistent gains over baseline219

performance, with notable improvements on ARC-Challenge, CommonsenseQA, and RiddleSense.220

These gains suggest that the dataset’s structured, multi-relational design supports more effective221

multi-step inference and nuanced commonsense reasoning.222

While improvements on QASC and HellaSwag are smaller, the results indicate that hybrid-relation223

fine-tuning still maintains competitive performance, highlighting potential for further enhancement224

by integrating richer contextual or domain-specific knowledge.225

5.2 Comparison Between Hybrid-Relation and CC News Fine-Tuning226

Table 1 compares models fine-tuned on the hybrid-relation Graph Dataset with those fine-tuned227

on the CC News Dataset, isolating the effect of reasoning-specific data. Across most benchmarks,228

hybrid-relation fine-tuning yields higher scores on tasks such as ARC-Challenge, CommonsenseQA,229

and RiddleSense, indicating that structured, multi-relational knowledge directly benefits logical230

inference.231
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Model-specific trends further support this conclusion. For example, BERT shows clear gains on232

ARC-Challenge and RiddleSense when trained on the hybrid-relation dataset, while RoBERTa233

achieves higher accuracy on CommonsenseQA and HellaSwag, suggesting improved situational234

and commonsense reasoning. DeBERTa exhibits consistent advantages across tasks, with notable235

improvements in HellaSwag and QASC, reinforcing the dataset’s utility for multi-step inference.236

These results validate the hypothesis that reasoning-focused datasets offer advantages over general-237

purpose corpora for logical reasoning. While CC News improves general language understanding, it238

lacks the explicit relational structures needed to support complex, stepwise reasoning.239

5.3 Comparison Between Hybrid-Relation and Predefined-Only Fine-Tuning240

Table 1 also reports results for a Predefined-Only variant of our dataset, containing the same 100,000241

samples but restricted to the 35 predefined relations without any dynamically generated ones. This242

comparison isolates the contribution of dynamic relation generation to reasoning performance.243

Overall, the performance gap between the Hybrid-Relation and Predefined-Only settings is modest244

but consistent across several tasks. For example, BERT shows small gains on ARC-Challenge and245

RiddleSense with Hybrid-Relation training, while RoBERTa benefits slightly on CommonsenseQA246

and QASC. DeBERTa and DistilBERT also exhibit minor but positive differences in most benchmarks,247

suggesting that dynamically generated relations introduce additional contextual variety that can248

support reasoning beyond the coverage of fixed relations.249

Although the improvements are not large in absolute terms, their presence across multiple architectures250

and tasks indicates that dynamic relations add complementary knowledge that predefined schemas251

cannot fully capture. These results imply that even small increments in relational diversity can252

compound over multi-step reasoning chains, leading to more robust inference capabilities.253

5.4 Qualitative Analysis of Dynamic Relations254

The hybrid-relation Graph Dataset incorporates a diverse set of dynamically generated relations,255

adding flexibility to the model’s reasoning capabilities. By filtering out relations that appear fewer256

than ten times, we identified 133 unique dynamic relations, which occur a total of 49,998 times257

throughout the dataset. The most frequently occurring relation was Causal, appearing 24,825 times,258

but as this is a pre-existing relation, we excluded it from the analysis of novel dynamic relations.259

Figure 3 shows the top 20 dynamic relations ranked from the 2nd to the 21st most frequent, with260

types like Analogous, Sequential, Contextual, and Complementary appearing most frequently. These261

relations support nuanced, multi-step reasoning by creating contextually rich connections between262

concepts. These dynamic relations offer models additional relational context, enabling them to make263

logical inferences that extend beyond standard, predefined relational structures.264

6 Discussion265

Our results show that the hybrid-relation Graph Dataset consistently enhances logical reasoning266

performance across multiple transformer-based architectures [9, 14, 7, 15], validating the benefit267

of combining predefined and dynamically generated relations in a graph-structured format. The268

inclusion of 133 schema-free dynamic relations, in addition to 35 predefined types, enables richer269

multi-step and causal reasoning than fixed-schema datasets alone.270

Effectiveness Across Benchmarks271

In the first comparison, models fine-tuned on the hybrid-relation dataset outperformed baseline272

models on reasoning benchmarks [12, 6, 19, 20, 10, 13], particularly CommonsenseQA, RiddleSense,273

and ARC-Challenge. After filtering low-frequency relations, 133 unique dynamic types remained274

across 49,998 instances, with frequent categories including Causal, Analogous, and Contextual.275

These relations provide diverse inference pathways, supporting more flexible reasoning.276
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Comparison with General-Purpose Data277

In the second comparison, the hybrid-relation dataset generally outperformed CC News on reasoning278

tasks, confirming that explicit relational structure yields unique benefits. Nonetheless, in QASC and279

HellaSwag, CC News achieved comparable or slightly higher scores, suggesting that broad-domain280

knowledge can still aid certain forms of inference. This points to the potential of hybrid training281

strategies that integrate reasoning-specific and general-purpose data.282

Model Capacity Considerations283

Larger models such as RoBERTa and DeBERTa benefited more from the structured dataset than284

smaller models like DistilBERT, indicating that model capacity influences the ability to leverage285

complex relational structures. For resource-limited settings, simplified or distilled variants of the286

dataset may be necessary to deliver similar benefits.287

Qualitative Insights and Challenges288

Dynamic relations extend coverage beyond fixed schemas and capture nuanced, context-specific289

links absent in traditional commonsense graphs. However, automatic generation can produce incon-290

sistencies or overly broad labels. Refining prompt design and incorporating automated validation291

mechanisms could improve precision and alignment with task requirements.292

6.1 Limitations and Future Work293

This study used 100K instances for each dataset. While effective, this scale may not fully capture the294

diversity of logical relations needed for more complex tasks. Future work will expand the dataset295

to 300K instances and conduct balanced comparisons against equivalently scaled CC News data to296

assess the interaction between dataset size and reasoning performance. Moreover, the scalability297

of the approach to significantly larger and noisier real-world datasets, especially those with highly298

heterogeneous relation types, remains an open challenge that warrants further investigation.299

Our evaluation focused on reasoning benchmarks; transferability to other domains, such as fact300

verification or knowledge retrieval, remains unexplored. Exploring cross-domain applicability, along301

with model–dataset co-design strategies for smaller architectures, represents an important direction.302

Finally, while self-prompting allows flexible generation of dynamic relations, ensuring their logical303

validity remains an open challenge that warrants targeted verification techniques.304

7 Conclusion305

In this study, we presented the hybrid-relation Graph Dataset, a novel graph-based knowledge306

resource designed to enhance the logical reasoning capabilities of language models. Built using307

a Self-Prompting approach, the dataset combines 35 predefined relations with 133 dynamically308

generated relations, overcoming the limitations of fixed relational schemas. This integration results309

in a dual-triple structure(Head–Predefined Relation–Tail) and (Tail–Dynamic Relation–Additional310

Tail)that captures complex, multi-step inferences essential for advanced reasoning.311

Experimental results show that models fine-tuned on the hybrid-relation Graph Dataset consistently312

outperform both baseline models and those fine-tuned on a general-purpose control dataset (CC News),313

with notable gains on Commonsense QA, Riddle Sense, and ARC-Challenge. The introduction of314

diverse dynamic relations, such as Analogous, Contextual, and Complementary, equips models315

with the flexibility to perform nuanced, context-sensitive reasoning. Performance improvements in316

causal and commonsense reasoning tasks further validate the dataset’s effectiveness in strengthening317

inference skills.318

With its scalability and adaptability, the hybrid-relation Graph Dataset offers a robust foundation for a319

wide range of reasoning-oriented applications. By advancing reasoning-focused dataset construction320

and refining automatic relation generation, this work contributes to narrowing the gap between general321

language understanding and sophisticated multi-step logical inference, paving the way for future322

models capable of more robust and context-aware reasoning.323
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A Appendix381

Algorithm 1 DYNA-SKILL Dataset Generation Process

1: Input: Predefined relation set Rpre (35 types), Head category set C, Large Language Model M
2: Output: Dual-triple dataset D
3: Initialize D ← ∅
4: for all category c ∈ C do
5: Head Generation: Select category c and generate Head h using M with a category-specific

prompt.
6: Relation Selection: Choose a predefined relation rpre ∈ Rpre that matches the semantic type

of h.
7: Tail Generation: Generate Tail t←M(prompt(h, rpre)) using a relation-specific template

(e.g., “What is the typical use of Head?” for ObjectUse).
8: Additional Tail Generation: Generate Additional Tail tadd ← M(prompt(t)) to extend

reasoning depth.
9: Dynamic Relation Inference: Infer Dynamic Relation rdyn ←M(relation-prompt(t, tadd))

using a schema-free relation prompt (e.g., “What is the relationship between Tail and Additional
Tail?”).

10: Append both triples (h, rpre, t) and (t, rdyn, tadd) to D.
11: end for
12: Text Conversion: For each triple in D, convert to a natural language sentence using predefined

mapping rules .
13: Data Storage: Save the converted sentences to a plain text file for fine-tuning.
14: return D
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Domain Triple 1 (Predefined Relation) Triple 2 (Dynamic Relation)
Sports Action (Spiking – xNeed – A set or a pass is needed

before performing a spike in volleyball.)
Sentence: What does someone need before
Spiking? A set or a pass is needed before per-
forming a spike in volleyball.

(A set or a pass is needed before performing
a spike in volleyball. – Preparatory – Pulling
back the bowstring before releasing an arrow
in archery.)
Sentence: A set or a pass is needed before
performing a spike in volleyball and Pulling
back the bowstring before releasing an arrow
in archery are connected by Preparatory.

Safety Action (Shooting – xNeed – Safety training and proper
authorization or permits.)
Sentence: What does someone need before
Shooting? The prerequisite is Safety training
and proper authorization or permits.

(Safety training and proper authorization or
permits. – Complementary – Conducting regu-
lar safety audits and inspections.)
Sentence: What complements Safety training
and proper authorization or permits? It is com-
plemented by Conducting regular safety audits
and inspections.

Physical Object (Cans – CapableOf – Cans are capable of stor-
ing and preserving food or liquids.)
Sentence: What is Cans capable of? Cans are
capable of storing and preserving food or liq-
uids.

(Cans are capable of storing and preserving
food or liquids. – Functional – Dehydrating
fruits and vegetables.)
Sentence: Cans are capable of storing and pre-
serving food or liquids and Dehydrating fruits
and vegetables are connected by Functional.

Leisure Activity (Snorkeling or scuba diving – oWant – Others
might want to try snorkeling or scuba diving
themselves.)
Sentence: What do others want after Snorkel-
ing or scuba diving? Others might want to try
snorkeling or scuba diving themselves.

(Others might want to try snorkeling or scuba
diving themselves. – Alternative – Sailing)
Sentence: Others might want to try snorkeling
or scuba diving themselves and Sailing are con-
nected by Alternative.

Scientific Mate-
rial

(Polyester – MadeUpOf – Polyester is a syn-
thetic polymer made primarily from petroleum-
derived ethylene glycol and terephthalic acid.)
Sentence: What is Polyester made up of?
Polyester is a synthetic polymer made primar-
ily from petroleum-derived ethylene glycol and
terephthalic acid.

(Polyester is a synthetic polymer made pri-
marily from petroleum-derived ethylene glycol
and terephthalic acid. – Chemical – Synthesis
of polycarbonate from bisphenol A and phos-
gene.)
Sentence: Polyester is a synthetic polymer
made primarily from petroleum-derived ethy-
lene glycol and terephthalic acid and Synthesis
of polycarbonate from bisphenol A and phos-
gene are connected by Chemical.

Table 2: Examples of Dual-Triple Structures with Natural Language Conversion based on the
conversion rules in the text processing script. Each example consists of two linked triples:
(Head–Predefined Relation–Tail) followed by (Tail–Dynamic Relation–Additional Tail), illustrat-
ing how predefined and dynamically generated relations connect to form extended reasoning paths.
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Figure 3: Frequency distribution of the top 20 dynamic relation types (excluding the single most
common type). Relations such as Analogous, Sequential, and Contextual occur most frequently,
indicating that the self-prompting generation process captures a broad spectrum of context-specific
and non-predefined connections. This variety reflects the dataset’s ability to extend beyond fixed
schemas and enrich multi-step reasoning.
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