
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KRAMABENCH: A BENCHMARK FOR AI SYSTEMS ON
DATA INTENSIVE TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Discovering insights from a real-world data lake potentially containing unclean,
semi-structured, and unstructured data requires a variety of data processing tasks,
ranging from extraction and cleaning to integration, analysis, and modeling. This
process often also demands domain knowledge and project-specific insight. While
AI models have shown remarkable results in reasoning and code generation, their
abilities to design and execute complex pipelines that solve these data-lake-to-
insight challenges remain unclear. We introduce KRAMABENCH1 which consists
of 104 manually curated and solved challenges spanning 1700 files, 24 data sources,
and 6 domains. KRAMABENCH focuses on testing the end-to-end capabilities of
AI systems to solve challenges which require automated orchestration of different
data tasks. KRAMABENCH also features a comprehensive evaluation framework
assessing the pipeline design and individual data task implementation abilities of AI
systems. Evaluating 8 LLMs with our single-agent reference framework DS-Guru,
alongside open- and closed-source agentic systems, we find that while current
single-agent systems may handle isolated data-science tasks and generate plausible
draft pipelines, they struggle with producing working end-to-end pipelines. On
KRAMABENCH, the best system reaches only 50% end-to-end accuracy in the
full data-lake setting. Even with perfect retrieval, the accuracy tops out at 59%.
Leading LLMs can identify up to 42% of important data tasks but can only fully
implement 20% of individual data tasks.

1 INTRODUCTION

The goal of data science is to obtain insights from raw data. A data science workflow typically
involves manually selecting data and designing pipelines that perform data wrangling, conduct data
analyses, and extract findings, among other data tasks. These workflows (Figure 1) are expected to
handle noisy, domain-specific data and scale to data lakes with tens to thousands of files, necessitating
multi-step, data-dependent reasoning and coordination across data tasks (Guo et al., 2024; Shankar
et al., 2025).

Task: According to the
Consumer Sentinel
Network, what is the total
amount of money defrauded
in 2024, summing over all
payment methods? Give an
integer in millions of dollars.

Consumer
Sentinel
Network is
an agency
that…

Data
discovery

Table
Extraction

Data
Cleaning

5435 million

Municipalities

Albany, NY

…

Fraud by Municipalities

Municipality Fraud Type

Albany, NY Identity Theft

Txn Payee Payment Method

001 Alice Card

002 Bob Credit Card

* These transactions are from
2024.

Data Lake

Figure 1: One of the tasks of KRAMABENCH based on a real data lake of 136 files in the legal
discovery domain. Data file sample snippets are simplified.

1Assets available at https://anonymous.4open.science/r/Kramabench-7D6D/

1

https://anonymous.4open.science/r/Kramabench-7D6D/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparing existing benchmarks. (– indicates partial satisfaction, e.g., not for all tasks)

Benchmarks DS-10
00

Lai
et

al.
(20

23
)

ARCADE

Yin
et

al.
(20

23
)

DA-C
od

e

Hua
ng

et
al.

(20
24

)

Data
SciB

en
ch

Zha
ng

et
al.

(20
25

a)

DSBen
ch

Jin
g et

al.
(20

25
)

BLADE

Gu et
al.

(20
24

)

Scie
nc

eA
ge

ntB
en

ch

Che
n et

al.
(20

25
)

Ours

DS Tasks
Data discovery ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔
Multi-file integration ✗ ✔ ✔ ✗ ✔ ✗ ✗ ✔
Data cleaning ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔
Data preparation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Data analysis ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Modeling ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Abilities tested
Data semantics ✗ ✗ ✗ ✗ – – ✗ ✔
Domain knowledge ✗ ✗ ✗ ✗ ✗ ✔ ✔ ✔
Multi-step reasoning ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Evaluation
Implementation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Pipeline design ✗ ✗ ✗ ✗ – – ✗ ✔
End-to-end ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✔

While recent research has advanced individual components of these workflows such as code genera-
tion (Nam et al., 2024; Wang & Chen, 2023), tool use (Qin et al., 2024b;a), and natural language
question answering (Zhang et al., 2024b; Pu et al., 2023), the challenge of designing and executing
complete end-to-end data science pipelines remains underexplored.

Progress towards practical data-to-insight systems has been hindered by the lack of benchmarks that
reflect the real-world complexity of these workflows. Existing benchmarks focus on isolated steps,
such as code generation from fine-grained prompts (Lai et al., 2023; Zhang et al., 2025a; Huang
et al., 2024; Yin et al., 2023), text-to-SQL (Lei et al., 2025; Zhang et al., 2024a), and modeling
using curated input (Gu et al., 2024; Mitchener et al., 2025; Chen et al., 2025). We list these works
in Table 1 and discuss more in Section 5. While immensely useful, these benchmarks do not capture
the heterogeneity of data tasks and the accompanying reasoning demands of real-world data science
involving large, domain-specific, and unclean input datasets.

To bridge this gap, we introduce KRAMABENCH 2 3, a benchmark designed to evaluate LLM-based
systems on complex end-to-end data science pipelines. KRAMABENCH consists of 104 tasks drawn
from 1700 real-world files across 24 sources in 6 domains. All tasks are manually curated from fresh,
domain-specific sources and paired with expert reference solutions grounded in accessible data. Each
task is specified in natural language and requires systems to discover relevant data, perform data
wrangling such as cleaning and normalization, and implement statistical or computational analyses to
produce insights. To study public data’s leakage into LLM training, we obscured the input of 20% of
tasks through replacing real-world identifiers and numeric data with synthetic ones without changing
the task structure. We hold them out for evaluation to prevent them from being trained on.

For each task, we provide reference sub-tasks that a system capable of solving the end-to-end task
should be able to solve. Sub-tasks are also annotated with ground truth results and text descriptors.
These assets facilitate our comprehensive evaluation framework with three settings. (1) The most
important end-to-end automation setting assesses the ability to solve tasks without a human in the
loop. (2) The pipeline design setting assesses the ability to reason and identify key components
towards a successful pipeline design. (3) The individual task implementation setting assesses the
ability to act on fine-grained descriptions of individual sub-tasks in a correct pipeline.

We evaluated KRAMABENCH across eight models, along with three different configurations of
DS-Guru and three other existing agentic systems (Hugging Face, 2025; OpenAI, 2025; Google,
2025). We conducted extensive ablations studies and failure analyses, taking advantage of our
comprehensive evaluation framework and obscured inputs.

Through KRAMABENCH, we observed multiple insights about where LLM systems are successful:
(1) Agentic control flow is helpful with KRAMABENCH’s challenges: a canonical single-agent system
(smolagents-single) that iteratively search, plan, and repair achieve 47.23% end-to-end accuracy,

2We substantially improved upon an earlier version of this work.
3The name KramaBench is a reference to the "Vinyasa Krama" practice of Yoga

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

outperforming the strongest configurations of DS-Guru (22% overall), which uses a structured
control flow. (2) a canonical multi-agent system (smolagents-reflexion, Shinn et al. (2023)) using
an evaluator agent and reflections achieves 50.64% end-to-end accuracy. The mild improvement
(+3.41%) indicates ample space for research on data-intensive agentic systems.(3) LLM systems can
reason at a coarse level about the data operations required by a successful workflow and generate
plausible pipelines, achieving 42% on pipeline design.

Our analyses also reveal some persistent challenges: (1) Retrieval from a data lake is problematic, but
not the dominating obstacle. Supplying only the gold files improves overall accuracy by only 9-10%
across systems using different retrieval mechanisms. (2) Weaknesses in fine-grained data-dependent
reasoning cause models to fail. Systems even fail most of the time at implementing individual simple
sub-tasks, capping at 19.75% when evaluated under the individual task implementation described
above. (3) Agents often fail to achieve a holistic understanding of the data lake. We observe that the
agents often overly rely on their prior knowledge (12%-16% performance fluctuation on obscured
inputs), or assume clarifications will be given from a user (22% of failures).

2 THE DESIGN OF KRAMABENCH

Tasks in KRAMABENCH are based on real-world data science challenges from six domains: archeol-
ogy, astronomy, biomedical research, environmental science, legal insight discovery, and wildfire
prevention. Each domain is associated with a data lake containing raw files in structured, semi-
structured, or unstructured formats from multiple sources. Each task is a natural language description
of a domain-specific data science problem. The goal of a system under test is to design and execute
an end-to-end pipeline that takes the entire domain data lake as input and produces the correct output.
In addition to the target answer, KRAMABENCH provides the ground truth solution both in code
and in annotated sub-tasks: natural language descriptions of smaller building-block operations that
are essential elements within a full solution along with a prompt and their target answers. These
finer-grained references enable the evaluations of pipeline design and individual task implementation.

2.1 TASK DESIGN AND VALIDATION

Figure 2: Workflow for task design and validation in KRAMABENCH, detailing the curation,
validation, and functional decomposition to ensure quality and consistency across tasks.

To curate tasks, we started with published studies and reports that (1) contain quantitative or graphical
findings produced by data analysis, (2) are based on complete and publicly accessible datasets, and
(3) require complex multi-step pipelines involving heterogeneous and noisy inputs. Grounding onto
these studies and reports ensures that our tasks reflect real-world data science pipelines. We followed
a 4-step workflow involving tight validations and repeated verifications of reference solutions to
ensure the quality of tasks, reference solutions, and fine-grained annotations. We summarize the
process in Figure 2.

Step 1: Task Curation. For each study or report, we reproduced its important findings using the
associated datasets, transforming these findings into problem statements. Within the same domain,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Detailed breakdown of per-domain tasks
in KRAMABENCH. Hard tasks require multiple
files or pipelines with more than three steps.

Domain # Tasks (sub-) %Hard Tasks # Files (size)
Archeology 12 (71) 50.00% 5 (7.5MB)
Astronomy 12 (68) 50.00% 1556 (486MB)
Biomedical 9 (38) 66.66% 7 (175MB)
Environment 20 (148) 70.00% 37 (31MB)
Legal 30 (188) 53.33% 136 (1.3MB)
Wildfire 21 (120) 71.42% 23 (1GB)

Total 104 (633) 60.58% 1764 (1.7GB)

Table 3: Answer type and example questions.
Type Metric score
String (exact) Accuracy (0/1)

String (approximate) ParaPluie paraphrase (0/1)

Numeric (exact) Accuracy (0/1)

Numeric (approximate) 1/(1 + RAE) (0-1)

List (exact) F1 score (0-1)

List (approximate) F1 score (if match > 0.9)

more tasks similar to the real-world ones are curated via integrating different data sources. The
creator of each task supplies a concrete implementation of the pipeline.

Step 2: Cross-Contributor Validation. For each task, a different second contributor independently
attempts to develop a solution. A third contributor compares the solution with the one in Step 1.,
resolves ambiguities in the problem statement, and checks in a reference pipeline. The execution time
of the reference pipeline is also recorded.

Step 3: Key Functionality Identification. A data science problem can have multiple valid solution
pipelines. However, certain data processing steps must exist in any correct pipeline. A simple
example would be "identifying the column containing the temperature to be Temp". We draft a list of
these key functionalities for each task using the reference pipeline via instruction-tuning GPT-o3 and
manually polish the outputs to make sure the description of these sub-tasks do not depend on specific
implementation choices. The semi-automation scripts are available at our repository.

Step 4: Sub-task Curation. We transform each sub-task description into a prompt via instruction
tuning a local instance of Gemma3-27b and manual inspection. The example in Step 3 would be
transformed to "which column contains the temperature information"? The target answers to each
sub-task are manually verified using the reference pipeline.

Table 2 reports the statistics and difficulty distributions of the 6 domains and their tasks. We provide
more detailed descriptions and an example of tasks, key functionalities, and sub-tasks in Appendix E.

2.2 EVALUATION MECHANISM

As discussed in Section 1, KRAMABENCH evaluates systems on three capabilities. In Figure 3, we
provide an overview of these 3 areas. Our primary focus is (1) end-to-end automation.

(1) End-to-end Automation. For each task, the system output is given a score in [0, 1] based on the
reference target answer. The scoring schemes for each possible answer type address fuzzy matches
and are discussed in Table 3. The string approximation metric uses the method introduced in (Lemesle
et al., 2025). Our validation study (details in Subsection G.2) for this LLM-as-a-judge method shows
84% agreement between human annotators and the LLM. Given a domain workload W consisting of
numerous tasks T ′s, the total score of a system F for W is MeanT∈W score(F(T)). The score of F
for the entire benchmark suite is analogous.

Results under the following two less-automated evaluation settings provide insights into why a system
may succeed or fail in the end-to-end automation setting and the abilities of a system to assist with a
human-in-the-loop. Figure 8 describes the mapping of the following tasks.

(2) Pipeline Design. For each task, we assess the system generated pipeline using the key functionali-
ties that any correct pipeline needs to contain in some form (from Step 3 of Subsection 2.1). We score
the system with the fraction of key functionalities covered in the pipeline produced by the system.
Coverage is evaluated via LLM-as-a-judge following the method in Tong & Zhang (2024) using the
description obtained in Step 3.

(3) Sub-task Evaluation. We provide systems with the problem statements for sub-tasks and compare
system outputs to human-curated target answers (as in Step 4 of Subsection 2.1) using the same
scoring approach as in end-to-end evaluation. Full technical details of these evaluations are provided
in Appendix G.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Overview of KRAMABENCH’s evaluation process.

2.3 REFERENCE IMPLEMENTATION

We introduce DS-Guru (Figure 4), a lightweight framework that serves as minimal scaffolding to
enable a single out-of-the-box LLM to attempt the data science challenges in KRAMABENCH.
DS-Guru has three variants. No-context: The LLM is invoked one-shot with the problem description
and the names and paths of the files from the data lake, without any file contents. One-shot: The LLM
is invoked one-shot with the problem description and sample snippets from each data file. Few-shot:
The LLM is first invoked once with the task description and sample snippets, then re-invoked few-shot
with execution results and error messages from the pipeline it implemented in the previous shot. With
all variants, DS-Guru instructs the LLM to decompose the task into simpler tasks before attempting
to implement each task provide the concrete pipeline implementation along with the answer.

Figure 4: DS-Guru, a lightweight framework that scaffolds out-of-the-box LLMs with multiple
variants to tackle KRAMABENCH.

DS-Guru succinctly addresses where out-of-the-box LLMs struggle with KRAMABENCH. (1)
Realistic data lakes exceed LLM context windows. DS-Guru uses budgeted, type-annotated one-pass
sampling (OPS) retrieval to make this step tractable. (2) Many data science tasks require many
different data operations. DS-Guru uses chain-of-thought prompting (Wei et al., 2022) to encourage
decomposition before code synthesis. (3) Code running on real-world uncurated data are subject to
more sporadic errors compared to code for well-structured tasks. DS-Guru’s multi-shot approach
(Press et al., 2023) can help LLMs recover from such errors. More details on DS-Guru in Appendix B.

3 EXPERIMENTAL SETUP

We accessed all LLMs in different systems via OpenAI and Together APIs; pipelines generated by
systems are executed locally.

DS-Guru: We combine each of the three variants (as in Subsection 2.3) of DS-Guru with six
LLMs: GPT-o3, GPT-4o, Claude-3.5-Sonnet, Llama3.3, Deepseek-R1-70B, and Qwen2.5-Coder-
32B (OpenAI, 2025; 2024; Anthropic, 2024; Meta AI, 2025; DeepSeek-AI et al., 2025; Hui et al.,
2024), totaling to 18 concrete DS-Guru implementations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

smolagents Deep Research (smolagents DR): We use Hugging Face smolagents (Hugging Face,
2025) to evaluate deep research-style agentic systems on our benchmark under both single-agent and
multi-agent settings. On the single agent setting (smolagents-single DR), smolagent’s
official single-agent deep research implementation using code actions (git), we report results with
four different LLMs as the LLM: GPT-o3, GPT-4o, Claude-3.5-Sonnet, and Claude-3.7-Sonnet.

For the multi-agent setting, we implemented two representative architectures also using
smolagents: (1) smolagents-reflexion (Shinn et al., 2023) which follows an
actor → evaluator → reflection agent loop. (2) smolagents-pdt which follows a Planner and
Task Decomposer → Tool Executor workflow (PDT), inspired by Fan et al. (2025). We provide more
details in Appendix C. We view these systems representative of open-source “deep research” projects
(e.g., Alibaba’s Academy (2025)).

Closed-Source Deep Research Systems: OpenAI Deep Research (OpenAI DR, OpenAI (2025))
and Gemini Pro-2.5 Agentic Mode (Gemini Agentic) (Google DeepMind, 2025; Google, 2025)
were evaluated manually through their web interfaces under the end-to-end automation setting. We
made best efforts instructing them not to search online. However, this restriction was not enforceable.

Table 4: Comparison of different mechanisms across systems.
Systems Retrieval mechanisms Input modes Control flow Internet Access
DS-Guru One-Pass Sampling (OPS) Full, Trimmed, Oracle Structured loops Off
smolagents-single DR Agentic retrieval Full, Trimmed, Oracle Agentic loops Off
smolagents-reflexion DR Agentic retrieval Full, Trimmed, Oracle Multi-agent Off
smolagents-pdt DR Agentic retrieval Full, Trimmed, Oracle Multi-agent Off
OpenAI DR Agentic retrieval Trimmed, Oracle* Agentic loops On
Gemini Agentic Agentic retrieval Trimmed, Oracle* Agentic loops On

Human Baseline. We conducted a small-scale human study in which 9 data-science practitioners
solved KRAMABENCH under the same conditions and requirements as LLM systems under test in
the end-to-end, full input setting. Details can be found in Appendix F.

We evaluated six different systems, which differ in four important ways.

Retrieval Mechanisms. DS-Guru employs One-Pass Sampling (OPS) retrieval: a budgeted, type-
annotated sample of each file in the data lake (schema summaries + a small row sample) is provided to
the LLM once. OPS scales with data lake size but constrains the LLM’s direct interaction to sampled
views. DR systems employ agentic retrieval: the LLM plans the retrieval and issues file system tool
calls to iteratively read, filter, and revisit sources, offering richer interaction but at a higher cost.

Input Modes. Full: ideally, the entire input lake is available to the system’s retriever. Oracle: only the
gold files are provided (no discovery), isolating non-retrieval failures (planning, reasoning, execution).
Trimmed: to respect practical constraints, most notably the UI limit of ≤10 file uploads imposed by
the closed-source DR systems, we supply the gold files plus a random subset of distractors up to the
limit, testing discovery under budget. Oracle*: for tasks where the gold set itself exceeds 10 files, we
include the task by randomly sampling 10 gold files for upload.

Control flow describes whether a system has fully structured loops or an agentic workflow where
agents decide the future courses of actions. Internet access describes whether systems have web
search capabilities.

Cost of evaluation. For DS-Guru (few-shot, GPT-o3), evaluating end-to-end answers, pipeline
design, and sub-task implementation took 4,501, 116,805, and 10,358 tokens respectively.

4 RESULTS AND TAKEAWAYS

Table 5 shows the performance of the systems under the Full, Oracle, and Trimmed input mode. We
report only top-performing configurations here and present full results in Appendix A.

Agentic control flows drive the largest performance gains on KRAMABENCH. smolagents DR
(Claude-3-7, max agentic iterations is 20) consistently outperforms DS-Guru across all domains
(Table 9), reaching 50% overall score compared to the best DS-Guru variant (few-shot, GPT-o3;
22.08%). The DS-Guru (few-shot), which enables the LLM to catch implementation errors only
moderately improves over DS-Guru (one-shot, GPT-o3), with 1.28% overall improvement. Our

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 5: Results by domain for KRAMABENCH on DS-Guru and smolagents DR variations under
three settings.

System Models Domains
Archeology Astronomy Biomedical Environment Legal Wildfire Overall

Full Input Mode
Human baseline 66.67% 54.55% 100.00% 81.91% 74.19% 58.00% 71.07%

DS-Guru
no-context

GPT-o3 25% 1.73% 3.50% 1.35% 3.35% 24.87% 9.64%
GPT-4o 0.00% 1.41% 1.98% 0.45% 1.46% 1.45% 1.62%

Claude-3-5 16.67% 1.62% 2.87% 1.17% 7.33% 13.63% 7.45%

DS-Guru
one-shot

GPT-o3 25% 3.00% 8.63% 7.66% 19.15% 45.95% 20.80%
GPT-4o 8.33% 1.40% 9.38% 2.60% 2.74% 19.39% 7.61%

Claude-3-5 0.00% 4.15% 2.15% 6.21% 6.68% 34.99% 10.85%

DS-Guru
few-shot

GPT-o3 25% 3.53% 8.95% 19.6% 13.89% 50.73% 22.08%
GPT-4o 16.67% 2.76% 8.97% 2.60% 2.80% 17.18% 8.28%

Claude-3-5 16.67% 1.52% 1.96% 11.21% 7.01% 39.16% 14.35%

smolagents-single DR

GPT-o3 41.67% 16.67% 33.33% 50% 50% 38.1% 41.36%
GPT-4o 33.33% 0.00% 11.11% 35% 40% 38.1% 30.77%

Claude-3-5 33.33% 0.00% 22.22% 60% 46.67% 52.38% 41.35%
Claude-3-7 33.33% 18.60% 20.14% 60.64% 48.13% 59.67% 47.23%

smolagents-reflexion DR Claude-3-7 41.67% 5.97% 42.32% 59.05% 59.27% 60.26% 50.64%
GPTo3 16.67% 13.44% 15.26% 3.04% 14.25% 29.25% 14.69%

smolagents-pdt DR Claude-3-7 25.00% 10.08% 2.22% 6.00% 10.22% 36.98% 15.92%
GPTo3 16.67% 2.46% 4.13% 0.68% 6.87% 26.50% 10.17%

Oracle Input Mode

DS-Guru
no-context

GPT-o3 17.83% 12.93% 19.48% 19.17% 9.94% 16.13% 14.93%
GPT-4o 15.09% 9.15% 12.16% 11.26% 8.88% 7.15% 10.05%

Claude-3-5 16.52% 10.63% 9.87% 12.51% 9.80% 0.00% 11.63%

DS-Guru
one-shot

GPT-o3 23.90% 21.14% 18.29% 28.48% 18.49% 25.08% 22.85%
GPT-4o 14.26% 10.58% 9.38% 20.37% 10.96% 19.21% 14.86%

Claude-3-5 17.07% 10.24% 9.44% 22.27% 11.47% 17.93% 15.48%

DS-Guru
few-shot

GPT-o3 27.78% 23.22% 19.56% 33.67% 35.14% 32.53% 31.92%
GPT-4o 18.97% 19.29% 12.51% 27.14% 25.23% 26.07% 23.60%

Claude-3-5 16.24% 14.02% 14.80% 33.83% 26.36% 25.02% 24.22%

smolagents-single DR

GPT-o3 41.67% 25% 44.44% 45% 44.83% 47.62% 44.45%
GPT-4o 25% 25% 22.22% 20% 56.67% 38.1% 39%

Claude-3-5 16.67% 25% 33.33% 25% 66.66% 66.66% 47%
Claude-3-7 41.67% 33.33% 77.78% 80% 63.33% 71.43% 59%

smolagents-pdt DR GPTo3 16.67% 0.40% 2.22% 2.66% 11.12% 29.00% 11.96%
Trimmed Input Mode

DS-Guru few-shot GPT-o3 25.00% 3.17% 2.71% 17.02% 16.25% 49.42% 21.78%
smolagents-single DR Claude-3-7 33.33% 33.33% 44.44% 65% 63.33% 66.67% 57.85%

OpenAI DR GPT-o3-dr 40% 33.33% 44.45% 61.67% 50% 67.28% 52.18%
Gemini Agentic Gemini-2.5-Pro 25% 16.67% 33.33% 25% 13.33% 24.87% 18.48%

detailed studies increased few-shot to 20 iterations yet still showed minor improvements (Appendix
Table 13). This indicates that despite the heterogeneity of data operations, the core challenges are
not isolated data operation implementation issues, but instead are to (1) explore and fix the design
choices of the end-to-end pipeline; (2) iteratively understand the data and schema in a large data lake.
Smolagent DR’s agentic control flow helps address these challenges. Note that in the Trimmed setting
(max 10 files per call), OpenAI DR reaches 52.18% overall, partly due to its web search capability.
We refer the reader to Appendix F for detailed analysis of the human baseline.

In terms of cost, smolagents DR (Claude-3-7) averages 6.10 minutes per task—faster than OpenAI
DR (10.35) but more than 10× slower than DS-Guru few-shot (0.76).

4.1 ABLATION STUDIES

Retrieval Mechanisms. Using Oracle input for DS-Guru improves the performance for the overall
dataset across all domains and LLMs (by 9.98% on average and up to 20%) except for GPT-o3,
Claude-3.5, and DeepSeek-R1 on wildfire (Table 5). These results under the design of DS-Guru show
that supplying samples of the gold files can lead to more successful pipelines. We also studied the
sensitivity of OPS against the sample size from each file. Table 6 shows that the performance of the
system does not meaningfully increase with larger samples.

The benefits of the Oracle in smolagents DR shows the same trend (improvements of around 10%),
suggesting that agentic retrieval is not qualitatively closer to perfect retrieval than OPS in terms of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

file extraction. Even with the Oracle input, the agentic smolagents DR with out-of-the-box LLMs still
struggle to solve a lot of the tasks (59% overall with Claude-3.7). These results point to weaknesses
in data-dependent reasoning (e.g., pipeline design), in addition to extracting the right files.

Table 6: DS-Guru (few-shot, 5 iterations, GPT-o3): performance and cost across rows sampled.
Rows Sampled 10 50 100 150
Overall Performance (%) 22.89 24.68 23.36 22.58
Tokens (Mean) 14,077.2 37,592.3 64,548.9 92,116.1

Table 7: End-to-end scores of various systems under obscured vs oracle inputs over the same tasks.
Note that we sampled a subset of legal and wildfire respectively to curate obscured inputs for.

System Models Combined Legal Wildfire
Full Oracle Obscured Full Oracle Obscured Full Oracle Obscured

DS-Guru
no-context

GPT-o3 12.54% 10.72% 11.15% 5.08% 6.45% 9.46% 20.00% 15.00% 13.07%
GPT-4o 7.19% 2.52% 8.60% 4.37% 5.04% 9.83% 10.00% 0.002% 7.21%

Claude-3-5 8.50% 4.85% 9.93% 6.99% 4.64% 11.30% 10.00% 0.00% 8.37%

DS-Guru
one-shot

GPT-o3 12.73% 26.98% 8.99% 15.47% 24.89% 11.62% 10.00% 29.08% 5.99%
GPT-4o 26.03% 27.45% 11.15% 12.06% 14.89% 10.27% 40.00% 40.00% 12.16%

Claude-3-5 19.56% 18.82% 6.11% 5.03% 8.56% 7.35% 34.08% 29.07% 4.70%

DS-Guru
few-shot

GPT-o3 7.08% 44.74% 20.40% 4.18% 40.41% 20.29% 10.00% 49.08% 20.52%
GPT-4o 21.92% 34.21% 11.90% 8.85% 28.41% 15.47% 35.00% 40.00% 7.82%

Claude-3-5 25.06% 23.02% 13.46% 6.04% 16.98% 12.18% 44.08% 29.07% 14.92%

Smolagents-single DR
GPT-o3 40% 45% 20% 50% 30% 30% 30% 60% 10%
GPT-4o 50% 40% 30% 50% 40% 30% 50% 40% 30%

Claude-3-5 55% 60% 30% 40% 50% 20% 70% 70% 40%

Data Leakage. To study to what extent different systems are solving tasks via external knowledge
present in previous knowledge data instead of producing a reliable data pipeline, we manually curated
obscured inputs for 20% of tasks in KRAMABENCH, where some data fields are changed such
that a correct pipeline would still produce a correct solution, but a system relying on memorization
cannot. For example, in a query spanning multiple locations, the real place names may be swapped
for fictional ones, i.e., Los Angeles might be changed to “La-La Land."

For both smolagents-single DR and DS-Guru few-shot, the performance under the obscured input
is 12-16% lower compared to the oracle input (Table 7). Interestingly, compared to Full input,
Obscured input improved the performance for DS-Guru but significantly degraded smolagent for the
legal workload. These observations and the stark difference between the Full and Obscured input
performances on wildfire suggest two distinctive plausible explanations for our observations: (1)
Prior knowledge could discourage attempts at data-dependent reasoning. (2) Prior knowledge could
be serving as an unintended reward signal in agentic data-dependent reasoning, which possibly can
either improve or reduce the performance of the system.

Cross-domain Accuracy Difference The per-domain accuracy of the best performing system
(smolagents-reflexion DR) in KRAMABENCH varies as much as 33.33% on Astronomy and 80%
on Environment. Our analysis of system traces show that the primary source of these cross-domain
accuracy differences is the differences in the types of data task challenges that each domain emphasize
on. We discuss this in more detail in Subsection D.1.

Diversity of Abilities Required from LLM Agents. Tested independently, both pipeline design
(+19.50% GPT-o3) and sub-task implementation (+5.39% GPT-4o) substantially outperformed end-
to-end automation. In addition, we observe that LLMs also have varying capability profiles: GPT-o3

Table 8: Lower automation settings evaluation results for KRAMABENCH on 18 methods.
Models

Variant Automation setting GPT-o3 GPT-4o Claude-3.5 Llama3-3Instruct DeepSeek-R1 Qwen2-5Coder

DS-GURU
no-context

End-to-end automation 9.64% 1.62% 7.45% 1.19% 3.14% 3.72%
Pipeline Design 40.60% 30.83% 31.06% 26.74% 18.94% 27.35%

Sub-task Implementation 12.95% 9.27% 10.65% 8.28% 12.08% 7.52%

DS-GURU
one-shot

End-to-end automation 20.80% 7.61% 10.85% 4.81% 6.35% 6.43%
Pipeline Design 42.14% 19.75% 25.49% 19.24% 10.60% 22.19%

Sub-task Implementation 17.24% 11.42% 10.12% 7.83% 11.37% 10.38%

DS-GURU
few-shot

End-to-end automation 22.08% 8.28% 14.35% 4.48% 6.35% 9.98%
Pipeline Design 41.58% 16.67% 29.46% 16.83% 6.44% 14.65%

Sub-task Implementation 19.75% 13.67% 16.14% 8.87% 10.89% 12.09%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

is strong at high-level pipeline design (42%) but weak at implementing those pipelines (20%);
interestingly, it scores higher on end-to-end automation (22%) than on some implementation tasks.
DeepSeek-R1 exhibits the opposite pattern (6.5% on pipeline design vs 11% on implementation).
These patterns provide strong evidence that single-agent approaches are insufficiently reliable for
real-world data science, as success depends on multiple heterogeneous skills, such as robust parsing
of noisy inputs, query parsing and planning, identifying and performing data-cleaning/ transformation,
coding, and iterative debugging.

4.2 DEEPER DIVE: FAILURE ANALYSIS

In this subsection, we closely study two tasks requiring two distinct reasoning capabilities from
LLM agents: (1) fine-grained data-dependent reasoning. (2) holistic understanding of a potentially
domain-specific data lake.

Challenge 1: Fine-grained data-dependent reasoning.

Figure 5: Data snippets for study cases. Multiple water testing entries for each location may exist.

environment-q17: What is the seasonal bacteria exceedance rate of Chatham’s Bucks Creek Beach
in the June, July, Aug of 2016? Impute missing values with median of the month in non-missing years.

To solve this query, a correct pipeline must analyze the data present in both files in Figure 5. DS-Guru
uses OPS sampling, which may not see or realize the "M" buried in the data and deduce that "M"
stands for missing values. Although few-shot prompting enables the agent to see relevant errors, the
lack of an explicit agentic control flow results in the LLM not connecting the execution errors to these
fine-grained data observations. By contrast, on every agentic iteration, smolagents DR conjectures
what the important data are to look at next to ensure the correctness of the pipeline it has drafted.
This conjecture guides its tool call-enabled retrieval step. It subsequently analyzes the tool call and
pipeline execution results before the next iteration. This explicit retrieve-revise-repeat pattern tightly
couples error feedbacks with data retrieval, which helps address the fine-grained data-dependent
reasoning challenge and leads to working end-to-end pipelines.

Challenge 2: Holistic understanding of the input data and prior knowledge.

environment-q16: How many beaches remained safe to swimming from 2002 to 2023 inclusive?

environment-q16-3: How many beaches are there?

environment-q16-3 is an example sub-task for environment-q16, which also uses files in Figure 5. To
solve the full task reliably, a system should be able to identify all beaches to start with. environment-
q16-3 prompts the system to carryout this identification and verifies the result.

The challenge with beach identification is that the "Beach Name" column encodes both the beach
and sampling location. Cliff Pond (DCR) @ Main refers to the Main (street) sampling location of
the Cliff Pond beach (Figure 5). Facing many near-duplicate files in the data lake, systems do not
have a clear global schema or geographical domain knowledge that they could use to understand
this encoding scheme. As a result, both DS-Guru and smolagents DR failed on this sub-task, despite
smolagents DR’s agentic control flow. This case highlights the need to incorporate prior knowledge
and discover clarifications about under-specified conventions from the data (Mao et al., 2019).

Towards this end, we analyzed the traces of DS-Guru (few-shot, GPT-o3 & Claude 3.5) with the
agentic system diagnosis framework proposed in Cemri et al. (2025). Respectively 24% (GPT-o3)
and 43% (Claude 3.5) of all 104 tasks suffer from "failure to ask for clarification" and thus were
not solved correctly. However, KRAMABENCH expects that a human expert could solve the tasks

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

without additional clarifications by exploring and understanding the data. In this example, a human
could decipher the beach name conventions with common U.S. geographical knowledge. Reasoning
models currently lack similar capabilities to gain holistic understandings of the input data and fail to
incorporate prior knowledge.

5 RELATED WORK

LLM-Powered Agentic Systems. There is a large and fast-growing literature on LLM-powered
AI systems. These systems take on vastly different designs, such as vanilla LLM calls to frontier
pre-trained reasoning models (OpenAI et al., 2024; DeepSeek-AI et al., 2025; Zhong et al., 2024),
retrieval-augmented generation (Lewis et al., 2020), agentic workflow systems (Zhang et al., 2025b),
chain-of-thought and iterative calls (Wei et al., 2022; Press et al., 2023), reflections (Ji et al., 2023)
and task-time verifications (Tang et al., 2024a), structured knowledge representations (Jiang et al.,
2024; Su et al., 2025; Wang et al., 2025), and data processing centric systems (Liu et al., 2024;
Patel et al., 2025; Shankar et al., 2024). Recent work applies these techniques to data science tasks.
For example, DocWrangler (Shankar et al., 2025) is an integrated development environment that
helps the user optimize LLM prompts to construct data processing programs. DSAgent (Guo et al.,
2024) is a framework that uses LLMs to understand user needs and build data science pipelines.
Evaporate (Arora et al., 2023) helps users transform data into queryable tables. AutoPrep (Fan et al.,
2025) constructs a data preparation program over a single table for a given question. Despite the
progress, evaluating agent performance in real-world end-to-end setting remains a challenge.

Evaluations of LLM-Powered Agentic Systems. Benchmarks for question answering (QA) have
shifted toward evaluating agentic solutions. These benchmarks require iterative retrieval, query
parsing, planning, tool use, and temporal awareness. Recent works include FanOutQA (Zhu et al.,
2024), MultiHop-RAG (Tang & Yang, 2024), CRAG (Yang et al., 2024), BrowseComp (Wei et al.,
2025), which test end-to-end retrieval systems, MEQA (Li et al., 2024) for multi-hop reasoning
with explanation chains, and MINTQA (He et al., 2024) for scaffolding long knowledge. These
tasks differ from data science tasks, as they only require information retrieval and joins, but no
data-intensive processing. Benchmarks such as DS-1000 (Lai et al., 2023), DA-Code (Huang et al.,
2024), ARCADE (Yin et al., 2023), DataSciBench (Zhang et al., 2025a), DSEval (Zhang et al., 2024c)
focus instead on implementing detailed instructions in general programming languages, specifically
in data science tasks, differentiating themselves from other benchmarks like SWE-Bench (Jimenez
et al., 2024), ML-Bench (Tang et al., 2024b), BigCodeBench (Zhuo et al., 2025). More recently,
new benchmarks such as DSBench (Jing et al., 2025) and BLADE (Gu et al., 2024) have started to
evaluate the ability to create an implementation plan. Benchmarks like ScienceAgentBench (Chen
et al., 2025) and BixBench (Mitchener et al., 2025) evaluate using domain knowledge. Although such
benchmarks assess specific capabilities, they fall short of capturing the full complexity of real-world
data science pipelines.

6 CONCLUSION

KRAMABENCH evaluates the capabilities of systems to generate data science pipelines over a
data lake consisting of heterogeneous, unclean input. Our comprehensive experiments using 8
LLMs across 4 different agentic systems with KRAMABENCH reveals although current systems
are equipped with useful techniques such as agentic control flow and generic coding abilities,
they are still far from solving real-world data science problems. Our analyses highlight several
underexplored challenges such as effective retrieval, data-dependent reasoning, plan revision, and
robust prior/domain knowledge integration as meaningful research directions towards practical
automated data science systems.

ETHICS STATEMENT

We acknowledge the limitations of KRAMABENCH regarding its scope, language, and cultural biases,
and domain coverage, which stem from the human effort required for high-quality curation. All
data included is publicly available, anonymized, or pseudonymized, with no personally identifiable
information. The biomedical domain contains public data sourced from the cancer data commons

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

(CDC) – this data is pseudonymized and does not require confidential access nor specific approvals,
with the only sensitive attribute included as part of the workload being the pseudonymized age of
patients. We emphasize privacy as paramount and warn users of the benchmark against potential
identification risks, which we deem unlikely, associated with this data source. In future iterations
of our benchmark we aim at broaden domain diversity, include multilingual data, and integrate
community contributions to reduce existing biases Furthermore, we comply with licensing practices
of data sources. For data sources that are publicly available but have redistribution constraints, we do
not modify or separately host these datasets. Instead, we point users of our benchmark to the original
data sources.

REPRODUCIBILITY STATEMENT

We provide full artifacts—including code, data, workloads, and evaluation scripts—via our public
repository at https://anonymous.4open.science/r/Kramabench-7D6D/. The main
paper section 2 and Appendix D describe the process obtained to design and curate the task based on
the datasets for each domain. Scripts to reproduce these steps can be found in the main repository. All
datasets, benchmark frameworks, benchmark curation semi-automation scripts, reference pipelines
and other accompanying annotations, and our reference system DS-Guru are available in our reposi-
tory. The experimental analysis of different system under test in Section 4 can be reproduced using
Python scripts also available in the public repository.

REFERENCES

smolagents/examples/open_deep_research at main · huggingface/smolagents — github.com.
https://github.com/huggingface/smolagents/tree/main/examples/
open_deep_research. [Accessed 01-12-2025].

Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks - Microsoft Research
— microsoft.com. https://www.microsoft.com/en-us/research/articles/
magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/.
[Accessed 01-12-2025].

Alibaba DAMO Academy. Deepresearcher: An open-source multi-agent system for deep research.
https://github.com/alibaba/DeepResearcher, 2025. Accessed: YYYY-MM-DD.

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024. Accessed: 2025-09-24.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trummer,
and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes. PVLDB, 17(2):92–105, October 2023. ISSN 2150-8097. doi:
10.14778/3626292.3626294. URL https://doi.org/10.14778/3626292.3626294.

Julia Briden, Peng Mun Siew, Victor Rodriguez-Fernandez, and Richard Linares.
Transformer-based atmospheric density forecasting. Advanced Maui Optical and
Space Surveillance (AMOS) Technologies Conference, 2023. Free preprint available at
https://arxiv.org/abs/2310.16912.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya G. Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why do multi-agent LLM systems fail? CoRR, abs/2503.13657, 2025.
doi: 10.48550/ARXIV.2503.13657. URL https://doi.org/10.48550/arXiv.2503.
13657.

National Interagency Fire Center. Statistics| National Interagency Fire Center — nifc.gov. https:
//www.nifc.gov/fire-information/statistics. [Accessed 21-05-2025].

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
Liao, Chen Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns, Daniel
Adu-Ampratwum, Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. Scienceagentbench:

11

https://anonymous.4open.science/r/Kramabench-7D6D/
https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research
https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research
https://www.microsoft.com/en-us/research/articles/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/
https://www.microsoft.com/en-us/research/articles/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/
https://github.com/alibaba/DeepResearcher
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.14778/3626292.3626294
https://doi.org/10.48550/arXiv.2503.13657
https://doi.org/10.48550/arXiv.2503.13657
https://www.nifc.gov/fire-information/statistics
https://www.nifc.gov/fire-information/statistics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Toward rigorous assessment of language agents for data-driven scientific discovery, 2025. URL
https://openreview.net/forum?id=6z4YKr0GK6.

F. Clette and L. Lefèvre. Silso sunspot number v2.0. https://doi.org/10.24414/qnza-ac80, 07 2015.
Published by WDC SILSO - Royal Observatory of Belgium (ROB).

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Yongchao Dou, Emily A Kawaler, Daniel Cui Zhou, Marina A Gritsenko, Chen Huang, Lili Blumen-
berg, Alla Karpova, Vladislav A Petyuk, Sara R Savage, Shankha Satpathy, et al. Proteogenomic
characterization of endometrial carcinoma. Cell, 180(4):729–748, 2020.

European Space Agency. Swarm Satellite Mission Data. https://earth.esa.int/
eogateway/missions/swarm/data, 2013. Accessed: 2025-05-06.

Meihao Fan, Ju Fan, Nan Tang, Lei Cao, Guoliang Li, and Xiaoyong Du. Autoprep: Natural
language question-aware data preparation with a multi-agent framework, 2025. URL https:
//arxiv.org/abs/2412.10422.

Federal Trade Commission. Age and Fraud Dashboard. https://public.tableau.com/
app/profile/federal.trade.commission/viz/AgeandFraud/Infographic,
2025a. Accessed: 2025-05-06.

Federal Trade Commission. FTC Open Government Data Sets. https://www.ftc.gov/
policy-notices/open-government/data-sets, 2025b. Accessed: 2025-05-06.

Federal Trade Commission. Debt Collection Dashboard. https://public.tableau.
com/app/profile/federal.trade.commission/viz/DebtCollection/
Infographic, 2025c. Accessed: 2025-05-06.

Raphael Fontes. Us election 2020 dataset. https://www.kaggle.com/datasets/
unanimad/us-election-2020, 2020. Accessed: 2025-05-06.

12

https://openreview.net/forum?id=6z4YKr0GK6
https://arxiv.org/abs/2501.12948
https://earth.esa.int/eogateway/missions/swarm/data
https://earth.esa.int/eogateway/missions/swarm/data
https://arxiv.org/abs/2412.10422
https://arxiv.org/abs/2412.10422
https://public.tableau.com/app/profile/federal.trade.commission/viz/AgeandFraud/Infographic
https://public.tableau.com/app/profile/federal.trade.commission/viz/AgeandFraud/Infographic
https://www.ftc.gov/policy-notices/open-government/data-sets
https://www.ftc.gov/policy-notices/open-government/data-sets
https://public.tableau.com/app/profile/federal.trade.commission/viz/DebtCollection/Infographic
https://public.tableau.com/app/profile/federal.trade.commission/viz/DebtCollection/Infographic
https://public.tableau.com/app/profile/federal.trade.commission/viz/DebtCollection/Infographic
https://www.kaggle.com/datasets/unanimad/us-election-2020
https://www.kaggle.com/datasets/unanimad/us-election-2020

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael A Gillette, Shankha Satpathy, Song Cao, Saravana M Dhanasekaran, Suhas V Vasaikar,
Karsten Krug, Francesca Petralia, Yize Li, Wen-Wei Liang, Boris Reva, et al. Proteogenomic
characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell, 182(1):200–225,
2020.

Google. Agent mode in gemini code assist. https://developers.google.com/
gemini-code-assist/docs/agent-mode, 2025. Accessed: 2025-09-24.

Google DeepMind. Gemini 2.5 pro. https://deepmind.google/models/gemini/pro/,
2025. Accessed: 2025-09-24.

Huw S Groucutt, Tom S White, Eleanor ML Scerri, Eric Andrieux, Richard Clark-Wilson, Paul S
Breeze, Simon J Armitage, Mathew Stewart, Nick Drake, Julien Louys, et al. Multiple hominin
dispersals into southwest asia over the past 400,000 years. Nature, 597(7876):376–380, 2021.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran
Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A Merrill, Jeffrey
Heer, and Tim Althoff. BLADE: Benchmarking language model agents for data-driven science,
November 2024. URL https://aclanthology.org/2024.findings-emnlp.815/.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: automated
data science by empowering large language models with case-based reasoning. 2024.

Jie He, Nan Hu, Wanqiu Long, Jiaoyan Chen, and Jeff Z. Pan. Mintqa: A multi-hop question
answering benchmark for evaluating llms on new and tail knowledge, 2024. URL https:
//arxiv.org/abs/2412.17032.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu
Huang, Xiao Liu, Jun Zhao, and Kang Liu. Da-code: Agent data science code generation
benchmark for large language models, 2024. URL https://doi.org/10.18653/v1/
2024.emnlp-main.748.

Hugging Face. Open deep research — smolagents/examples/open_deep_research.
https://github.com/huggingface/smolagents/tree/main/examples/
open_deep_research, 2025. Accessed: 2025-09-24.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren, Jin-
gren Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report. arXiv preprint arXiv:2409.12186,
2024. URL https://arxiv.org/abs/2409.12186.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigat-
ing LLM hallucination via self reflection. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1827–1843, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.123. URL https://aclanthology.org/2023.
findings-emnlp.123/.

Zhouyu Jiang, Ling Zhong, Mengshu Sun, Jun Xu, Rui Sun, Hui Cai, Shuhan Luo, and Zhiqiang
Zhang. Efficient knowledge infusion via KG-LLM alignment. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics, pp. 2986–2999,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.176. URL https://aclanthology.org/2024.findings-acl.
176/.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues?, 2024. URL
https://openreview.net/forum?id=VTF8yNQM66.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents from becoming data
science experts?, 2025. URL https://arxiv.org/abs/2409.07703.

13

https://developers.google.com/gemini-code-assist/docs/agent-mode
https://developers.google.com/gemini-code-assist/docs/agent-mode
https://deepmind.google/models/gemini/pro/
https://aclanthology.org/2024.findings-emnlp.815/
https://arxiv.org/abs/2412.17032
https://arxiv.org/abs/2412.17032
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://doi.org/10.18653/v1/2024.emnlp-main.748
https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research
https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research
https://arxiv.org/abs/2409.12186
https://aclanthology.org/2023.findings-emnlp.123/
https://aclanthology.org/2023.findings-emnlp.123/
https://aclanthology.org/2024.findings-acl.176/
https://aclanthology.org/2024.findings-acl.176/
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2409.07703

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: a natural and reliable benchmark for data science
code generation, 2023.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin SU, ZHAOQING SUO,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun, Qian
Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise text-
to-SQL workflows. 2025. URL https://openreview.net/forum?id=XmProj9cPs.

Quentin Lemesle, Jonathan Chevelu, Philippe Martin, Damien Lolive, Arnaud Delhay, and Nelly
Barbot. Paraphrase generation evaluation powered by an LLM: A semantic metric, not a lexical
one. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio,
and Steven Schockaert (eds.), Proceedings of the International Conference on Computational
Linguistics, pp. 8057–8087, Abu Dhabi, UAE, January 2025. Association for Computational
Linguistics. URL https://aclanthology.org/2025.coling-main.538/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks, 2020.

Ruosen Li, Zimu Wang, Son Quoc Tran, Lei Xia, and Xinya Du. Meqa: A benchmark
for multi-hop event-centric question answering with explanations. In Advances in Neu-
ral Information Processing Systems 37 (NeurIPS 2024), Datasets and Benchmarks Track,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/e560a0b22e4432003d0dba63ff8dc457-Abstract-Datasets_and_
Benchmarks_Track.html.

Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen, Zui Chen, Michael
Franklin, Tim Kraska, Samuel Madden, and Gerardo Vitagliano. A declarative system for optimiz-
ing ai workloads, 2024. URL https://arxiv.org/abs/2405.14696.

Yaoli Mao, Dakuo Wang, Michael Muller, Kush R. Varshney, Ioana Baldini, Casey Dugan, and
Aleksandra Mojsilović. How data scientistswork together with domain experts in scientific
collaborations: To find the right answer or to ask the right question? Proc. ACM Hum.-Comput.
Interact., 3(GROUP), December 2019. doi: 10.1145/3361118. URL https://doi.org/10.
1145/3361118.

Massachusetts Department of Public Health. Water Quality at Mas-
sachusetts Swimming Beaches. https://www.mass.gov/lists/
water-quality-at-massachusetts-swimming-beaches, 2025a. Accessed:
2025-05-06.

Massachusetts Department of Public Health. Water Body Testing Report — Massachusetts
Environmental Public Health Tracking Network (MEPHTN). https://dphanalytics.hhs.
mass.gov/ibmcognos/bi/?perspective=authoring&pathRef=.public_
folders%2FMEPHTN%2Fenvironmental%2Fwater-body-testing&id=
iB8503D8E63864870AC33EF393D858EB2, 2025b. Accessed: 2025-05-06.

Massachusetts Water Resources Authority. Beach Fact Sheets — Massachusetts
Water Resources Authority (MWRA). https://www.mwra.com/harbor/
download-environmental-data#beach-fact-sheets, 2025a. Accessed: 2025-05-
06.

Massachusetts Water Resources Authority. Download Environmental Data — Mas-
sachusetts Water Resources Authority (MWRA). https://www.mwra.com/harbor/
download-environmental-data, 2025b. Accessed: 2025-05-06.

Meta AI. Llama 3.3: Model cards and prompt formats. https://www.llama.com/docs/
model-cards-and-prompt-formats/llama3_3/, 2025. Accessed: 2025-09-24.

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P Wellawatte,
Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehensive benchmark
for llm-based agents in computational biology, 2025. URL https://arxiv.org/abs/2503.
00096.

14

https://openreview.net/forum?id=XmProj9cPs
https://aclanthology.org/2025.coling-main.538/
https://proceedings.neurips.cc/paper_files/paper/2024/hash/e560a0b22e4432003d0dba63ff8dc457-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/e560a0b22e4432003d0dba63ff8dc457-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/e560a0b22e4432003d0dba63ff8dc457-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2405.14696
https://doi.org/10.1145/3361118
https://doi.org/10.1145/3361118
https://www.mass.gov/lists/water-quality-at-massachusetts-swimming-beaches
https://www.mass.gov/lists/water-quality-at-massachusetts-swimming-beaches
https://dphanalytics.hhs.mass.gov/ibmcognos/bi/?perspective=authoring&pathRef=.public_folders%2FMEPHTN%2Fenvironmental%2Fwater-body-testing&id=iB8503D8E63864870AC33EF393D858EB2
https://dphanalytics.hhs.mass.gov/ibmcognos/bi/?perspective=authoring&pathRef=.public_folders%2FMEPHTN%2Fenvironmental%2Fwater-body-testing&id=iB8503D8E63864870AC33EF393D858EB2
https://dphanalytics.hhs.mass.gov/ibmcognos/bi/?perspective=authoring&pathRef=.public_folders%2FMEPHTN%2Fenvironmental%2Fwater-body-testing&id=iB8503D8E63864870AC33EF393D858EB2
https://dphanalytics.hhs.mass.gov/ibmcognos/bi/?perspective=authoring&pathRef=.public_folders%2FMEPHTN%2Fenvironmental%2Fwater-body-testing&id=iB8503D8E63864870AC33EF393D858EB2
https://www.mwra.com/harbor/download-environmental-data#beach-fact-sheets
https://www.mwra.com/harbor/download-environmental-data#beach-fact-sheets
https://www.mwra.com/harbor/download-environmental-data
https://www.mwra.com/harbor/download-environmental-data
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://arxiv.org/abs/2503.00096
https://arxiv.org/abs/2503.00096

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using an
llm to help with code understanding. In Proceedings of the International Conference on Software
Engineering (ICSE), pp. 1–13, 2024.

National Centers for Environmental Information (NCEI). Wildfires - National Centers for Environ-
mental Information (NCEI). https://www.ncei.noaa.gov/access/monitoring/
wildfires/, 2025. Accessed: 2025-05-06.

National Interagency Fire Center. Fire Information — National Interagency Fire Center (NIFC).
https://www.nifc.gov/fire-information, 2025. Accessed: 2025-05-06.

National Weather Service. Climate Data for Boston (BOX) Office — National Weather Service.
https://www.weather.gov/wrh/Climate?wfo=box, 2025. Accessed: 2025-05-06.

NCEI.Monitoring.Info@noaa.gov. Monthly Climate Reports | National Centers for Environ-
mental Information (NCEI) — ncei.noaa.gov. https://www.ncei.noaa.gov/access/
monitoring/monthly-report/fire, 2025. [Accessed 21-05-2025].

NOAA Office of Satellite and Product Operations. NOAA Geostationary Operational Environmental
Satellite (GOES) I-M and N-P Series Imager Data. NOAA National Centers for Environmental
Information, 1994. URL https://doi.org/10.25921/Z9JQ-K976. Accessed: 2025-05-
06.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024. Accessed:
2025-09-24.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025. [Accessed 13-05-2025].

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025. Accessed: 2025-09-24.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,
Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg

15

https://www.ncei.noaa.gov/access/monitoring/wildfires/
https://www.ncei.noaa.gov/access/monitoring/wildfires/
https://www.nifc.gov/fire-information
https://www.weather.gov/wrh/Climate?wfo=box
https://www.ncei.noaa.gov/access/monitoring/monthly-report/fire
https://www.ncei.noaa.gov/access/monitoring/monthly-report/fire
https://doi.org/10.25921/Z9JQ-K976
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie
Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,
Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card,
2024. URL https://arxiv.org/abs/2412.16720.

Natalia E. Papitashvili and Joseph H. King. Omni daily data. NASA Space Physics Data Facility,
2020a. URL https://doi.org/10.48322/5fmx-hv56. Accessed: 2025-05-06.

Natalia E. Papitashvili and Joseph H. King. Omni hourly data. NASA Space Physics Data Facility,
2020b. URL https://doi.org/10.48322/1shr-ht18. Accessed: 2025-05-06.

William E. Parker and Richard Linares. Satellite drag analysis during the may 2024 gannon geo-
magnetic storm. Journal of Spacecraft and Rockets, 61(5):1412–1416, September 2024. ISSN
1533-6794. doi: 10.2514/1.a36164. URL http://dx.doi.org/10.2514/1.a36164.

Liana Patel, Siddharth Jha, Melissa Pan, Harshit Gupta, Parth Asawa, Carlos Guestrin, and Matei
Zaharia. Semantic operators: A declarative model for rich, ai-based data processing, 2025. URL
https://arxiv.org/abs/2407.11418.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 5687–5711, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.378. URL https://aclanthology.org/2023.
findings-emnlp.378/.

Xiao Pu, Mingqi Gao, and Xiaojun Wan. Summarization is (almost) dead. arXiv preprint
arXiv:2309.09558, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. ACM Computing
Surveys, 57(4):1–40, 2024a.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to
master 16000+ real-world APIs, 2024b. URL https://openreview.net/forum?id=
dHng2O0Jjr.

Robikscube. Zillow home value index (zhvi). https://www.kaggle.com/datasets/
robikscube/zillow-home-value-index, 2021. Accessed: 2025-05-06.

Eleanor ML Scerri, James Blinkhorn, Huw S Groucutt, Mathew Stewart, Ian Candy, Ethel Allué, Aitor
Burguet-Coca, Andrés Currás, W Christopher Carleton, Susanne Lindauer, et al. Hunter-gatherer
sea voyages extended to remotest mediterranean islands. Nature, pp. 1–7, 2025.

Shreya Shankar, Tristan Chambers, Tarak Shah, Aditya G. Parameswaran, and Eugene Wu. Docetl:
Agentic query rewriting and evaluation for complex document processing, 2024. URL https:
//arxiv.org/abs/2410.12189.

Shreya Shankar, Bhavya Chopra, Mawil Hasan, Stephen Lee, Björn Hartmann, Joseph M. Hellerstein,
Aditya G. Parameswaran, and Eugene Wu. Steering semantic data processing with docwrangler.
2025. URL https://arxiv.org/abs/2504.14764.

16

https://arxiv.org/abs/2412.16720
https://doi.org/10.48322/5fmx-hv56
https://doi.org/10.48322/1shr-ht18
http://dx.doi.org/10.2514/1.a36164
https://arxiv.org/abs/2407.11418
https://aclanthology.org/2023.findings-emnlp.378/
https://aclanthology.org/2023.findings-emnlp.378/
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://www.kaggle.com/datasets/robikscube/zillow-home-value-index
https://www.kaggle.com/datasets/robikscube/zillow-home-value-index
https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2504.14764

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023.
Curran Associates Inc.

C. Siemes, J. de Teixeira da Encarnação, E. N. Doornbos, J. van den IJssel, J. Kraus, R. Pereštý,
L. Grunwaldt, G. Apelbaum, J. Flury, and P. E. Holmdahl Olsen. Swarm accelerometer data
processing from raw accelerations to thermospheric neutral densities. Earth, Planets and
Space, 68:92, 2016. doi: 10.1186/s40623-016-0474-5. URL https://doi.org/10.1186/
s40623-016-0474-5.

Hanchen Su, Wei Luo, Yashar Mehdad, Wei Han, Elaine Liu, Wayne Zhang, Mia Zhao, and Joy Zhang.
LLM-friendly knowledge representation for customer support. In Owen Rambow, Leo Wanner,
Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert, Kareem Dar-
wish, and Apoorv Agarwal (eds.), Proceedings of the International Conference on Computational
Linguistics: Industry Track, pp. 496–504, Abu Dhabi, UAE, January 2025. Association for Com-
putational Linguistics. URL https://aclanthology.org/2025.coling-industry.
42/.

Nan Tang, Chenyu Yang, Ju Fan, Lei Cao, Yuyu Luo, and Alon Y. Halevy. Verifai: Verified generative
ai. In Proceedings of the Conference on Innovative Data Systems Research (CIDR), 2024a.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024b. URL https://arxiv.org/abs/
2311.09835.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
hop queries. In Proceedings of the 1st Conference on Language Modeling (COLM), Philadelphia,
PA, USA, 2024. URL https://openreview.net/forum?id=t4eB3zYWBK. COLM
2024.

Weixi Tong and Tianyi Zhang. CodeJudge: Evaluating code generation with large language models.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 20032–20051, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.1118. URL https://aclanthology.org/2024.emnlp-main.1118/.

U.S. Air Force and NOAA Space Weather Prediction Center. USAF 45-Day Ap
and F10.7cm Flux Forecast. https://www.swpc.noaa.gov/products/
usaf-45-day-ap-and-f107cm-flux-forecast, 2025. Accessed: 2025-05-06.

U.S. Census Bureau. National Population Totals: 2020–2023. https://www.census.gov/
data/tables/time-series/demo/popest/2020s-national-total.html,
2025. Accessed: 2025-05-06.

U.S. Environmental Protection Agency. Air Quality System (AQS) Annual Data Download. https:
//aqs.epa.gov/aqsweb/airdata/download_files.html#Annual, 2025. Ac-
cessed: 2025-05-06.

U.S. Space Command. Two-line element sets (tles) from space-track.org. https://www.
space-track.org/, 2025. Accessed: 2025-05-06.

Jianxun Wang and Yixiang Chen. A review on code generation with llms: Application and evaluation.
In IEEE International Conference on Medical Artificial Intelligence (MedAI), pp. 284–289. IEEE,
2023.

Xi Wang, Taketomo Isazawa, Liana Mikaelyan, and James Hensman. KBLam: Knowledge base
augmented language model. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2025. URL https://openreview.net/forum?id=aLsMzkTej9.

17

https://doi.org/10.1186/s40623-016-0474-5
https://doi.org/10.1186/s40623-016-0474-5
https://aclanthology.org/2025.coling-industry.42/
https://aclanthology.org/2025.coling-industry.42/
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835
https://openreview.net/forum?id=t4eB3zYWBK
https://aclanthology.org/2024.emnlp-main.1118/
https://www.swpc.noaa.gov/products/usaf-45-day-ap-and-f107cm-flux-forecast
https://www.swpc.noaa.gov/products/usaf-45-day-ap-and-f107cm-flux-forecast
https://www.census.gov/data/tables/time-series/demo/popest/2020s-national-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2020s-national-total.html
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual
https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual
https://www.space-track.org/
https://www.space-track.org/
https://openreview.net/forum?id=aLsMzkTej9

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Wikipedia contributors. Metropolitan statistical area — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/wiki/Metropolitan_statistical_area, 2025. Accessed:
2025-05-06.

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal Choudhary,
Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, Lingkun Kong, Brian Moran, Jiaqi Wang,
Yifan Ethan Xu, An Yan, Chenyu Yang, Eting Yuan, Hanwen Zha, Nan Tang, Lei Chen, Nicolas
Scheffer, Yue Liu, Nirav Shah, Rakesh Wanga, Anuj Kumar, Wen-tau Yih, and Xin Luna Dong.
Crag – comprehensive rag benchmark. In Advances in Neural Information Processing Systems
37 (NeurIPS 2024), Datasets and Benchmarks Track, 2024. doi: 10.48550/arXiv.2406.04744.
URL https://proceedings.neurips.cc/paper_files/paper/2024/
hash/1435d2d0fca85a84d83ddcb754f58c29-Abstract-Datasets_and_
Benchmarks_Track.html. See arXiv:2406.04744 for the full version.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks, July 2023. URL
https://aclanthology.org/2023.acl-long.9/.

Jesse D. Young, Alexander M. Evans, Jose M. Iniguez, Andrea Thode, Marc D. Meyer, Shaula J.
Hedwall, Sarah M. McCaffrey, Patrick Shin, and Ching-Hsun Huang. Large wildfire incident
status summary (ics-209) report-generated data for the western united states, 2002–2016. Forest
Service Research Data Archive, Fort Collins, CO, 2021. URL https://doi.org/10.2737/
RDS-2021-0100.

Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang, Chi Harold Liu, Rui Zhao,
Ziyue Li, and Hangyu Mao. Benchmarking the text-to-sql capability of large language models: A
comprehensive evaluation. arXiv preprint arXiv:2403.02951, 2024a.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science, 2025a.
URL https://arxiv.org/abs/2502.13897.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation, 2025b. URL https://openreview.
net/forum?id=z5uVAKwmjf.

Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
process-oriented automatic text summarization with exploration of llm-based methods. arXiv
preprint arXiv:2403.02901, 2024b.

Yuge Zhang, Qiyang Jiang, XingyuHan XingyuHan, Nan Chen, Yuqing Yang, and Kan Ren. Bench-
marking data science agents, August 2024c. URL https://aclanthology.org/2024.
acl-long.308/.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
Yanjun Lyu, Peng Shu, Xiaowei Yu, Chao Cao, Hanqi Jiang, Hanxu Chen, Yiwei Li, Junhao Chen,
Huawen Hu, Yihen Liu, Huaqin Zhao, Shaochen Xu, Haixing Dai, Lin Zhao, Ruidong Zhang, Wei
Zhao, Zhenyuan Yang, Jingyuan Chen, Peilong Wang, Wei Ruan, Hui Wang, Huan Zhao, Jing
Zhang, Yiming Ren, Shihuan Qin, Tong Chen, Jiaxi Li, Arif Hassan Zidan, Afrar Jahin, Minheng
Chen, Sichen Xia, Jason Holmes, Yan Zhuang, Jiaqi Wang, Bochen Xu, Weiran Xia, Jichao Yu,
Kaibo Tang, Yaxuan Yang, Bolun Sun, Tao Yang, Guoyu Lu, Xianqiao Wang, Lilong Chai, He Li,

18

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://en.wikipedia.org/wiki/Metropolitan_statistical_area
https://en.wikipedia.org/wiki/Metropolitan_statistical_area
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1435d2d0fca85a84d83ddcb754f58c29-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1435d2d0fca85a84d83ddcb754f58c29-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1435d2d0fca85a84d83ddcb754f58c29-Abstract-Datasets_and_Benchmarks_Track.html
https://aclanthology.org/2023.acl-long.9/
https://doi.org/10.2737/RDS-2021-0100
https://doi.org/10.2737/RDS-2021-0100
https://arxiv.org/abs/2502.13897
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://aclanthology.org/2024.acl-long.308/
https://aclanthology.org/2024.acl-long.308/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Jin Lu, Lichao Sun, Xin Zhang, Bao Ge, Xintao Hu, Lian Zhang, Hua Zhou, Lu Zhang, Shu Zhang,
Ninghao Liu, Bei Jiang, Linglong Kong, Zhen Xiang, Yudan Ren, Jun Liu, Xi Jiang, Yu Bao, Wei
Zhang, Xiang Li, Gang Li, Wei Liu, Dinggang Shen, Andrea Sikora, Xiaoming Zhai, Dajiang Zhu,
and Tianming Liu. Evaluation of openai o1: Opportunities and challenges of agi, 2024. URL
https://arxiv.org/abs/2409.18486.

Andrew Zhu, Alyssa Hwang, Liam Dugan, and Chris Callison-Burch. FanOutQA: A multi-hop,
multi-document question answering benchmark for large language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 18–37, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.2. URL
https://aclanthology.org/2024.acl-short.2/.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. 2025. URL https://openreview.net/forum?id=YrycTjllL0.

19

https://arxiv.org/abs/2409.18486
https://aclanthology.org/2024.acl-short.2/
https://openreview.net/forum?id=YrycTjllL0

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A EXTENDED EXPERIMENT RESULTS

In this section, we supply the full evaluation results for which we presented a summary of in the main
text due to space constraints.

Table 9: Results by domain for KRAMABENCH on DS-Guru and smolagents DR with Full mode.
System Models Domains

Archeology Astronomy Biomedical Environment Legal Wildfire Overall

DS-Guru
no-context

GPT-o3 25% 1.73% 3.50% 1.35% 3.35% 24.87% 9.64%
GPT-4o 0.00% 1.41% 1.98% 0.45% 1.46% 1.45% 1.62%

Claude-3.5 16.67% 1.62% 2.87% 1.17% 7.33% 13.63% 7.45%
Llama3-3Instruct 0.00% 1.43% 1.70% 0.98% 1.37% 1.44% 1.19%

DeepSeek-R1 0.00% 1.50% 2.49% 2.60% 1.61% 6.46% 3.14%
Qwen2-5Coder 0.00% 1.37% 2.02% 1.07% 1.44% 13.68% 3.72%

DS-Guru
one-shot

GPT-o3 25% 3.00% 8.63% 7.66% 19.15% 45.95% 20.80%
GPT-4o 8.33% 1.40% 9.38% 2.60% 2.74% 19.39% 7.61%

Claude-3.5 0.00% 4.15% 2.15% 6.21% 6.68% 34.99% 10.85%
Llama3-3Instruct 0.00% 1.42% 10.38% 0.98% 5.48% 9.81% 4.81%

DeepSeek-R1 0.00% 1.57% 3.39% 2.60% 8.30% 14.81% 6.35%
Qwen2-5Coder 0.00% 1.36% 2.22% 12.59% 1.15% 16.48% 6.43%

DS-Guru
few-shot

GPT-o3 25% 3.53% 8.95% 19.6% 13.89% 50.73% 22.08%
GPT-4o 16.67% 2.76% 8.97% 2.60% 2.80% 17.18% 8.28%

Claude-3.5 16.67% 1.52% 1.96% 11.21% 7.01% 39.16% 14.35%
Llama3-3Instruct 0.00% 1.35% 6.98% 0.93% 2.15% 14.49% 4.48%

DeepSeek-R1 8.33% 2.64% 2.87% 19.08% 8.39% 30.29% 6.34%
Qwen2-5Coder 8.33% 2.40% 4.35% 12.64% 9.06% 16.48% 9.98%

smolagents DR

GPT-o3 41.67% 16.67% 33.33% 50% 50% 38.1% 41.36%
GPT-4o 33.33% 0.00% 11.11% 35% 40% 38.1% 30.77%

Claude-3-5 33.33% 0.00% 22.22% 60% 46.67% 52.38% 41.35%
Claude-3-7 33.33% 16.67% 44.44% 60% 63.33% 52.38% 50%

Table 10: Results by domain for KRAMABENCH on DS-Guru and smolagents DR with Oracle mode.
System Models Domains

Archeology Astronomy Biomedical Environment Legal Wildfire Total

DS-Guru
no-context

GPT-o3 17.83% 12.93% 19.48% 19.17% 9.94% 16.13% 14.93%
GPT-4o 15.09% 9.15% 12.16% 11.26% 8.88% 7.15% 10.05%

Claude-3.5 16.52% 10.63% 9.87% 12.51% 9.80% 0.00% 11.63%
Llama3-3Instruct 14.44% 12.17% 10.24% 10.35% 8.20% 8.06% 9.93%

DeepSeek-R1 18.79% 8.53% 8.25% 12.71% 11.39% 8.90% 11.56%
Qwen2-5Coder 10.24% 6.74% 7.71% 7.14% 1.52% 4.53% 6.62%

DS-Guru
one-shot

GPT-o3 23.90% 21.14% 18.29% 28.48% 18.49% 25.08% 22.85%
GPT-4o 14.26% 10.58% 9.38% 20.37% 10.96% 19.21 14.86%

Claude-3-5 17.07% 10.24% 9.44% 22.27% 11.47% 17.93% 15.48%
Llama3-3Instruct 8.92% 10.44% 4.45% 12.44% 8.64% 12.90% 10.23%

DeepSeek-R1 16.78% 15.23% 8.06% 14.23% 11.89% 9.65% 12.64%
Qwen2-5Coder 9.72% 11.57% 5.37% 15.13% 8.96% 13.22% 11.26%

DS-Guru
few-shot

GPT-o3 27.78% 23.22% 19.56% 33.67% 35.14% 32.53% 31.92%
GPT-4o 18.97% 19.29% 12.51% 27.14% 25.23% 26.07% 23.60%

Claude-3-5 16.24% 14.02% 14.80% 33.83% 26.36% 25.02% 24.22%
Llama3-3Instruct 15.57% 13.85% 11.63% 19.37% 15.57% 21.56% 17.11%

DeepSeek-R1 22.29% 10.79% 9.65% 15.45% 11.75% 10.76% 13.37%
Qwen2-5Coder 11.83% 14.91% 7.51% 18.39% 13.70% 18.51% 15.15%

smolagents DR

GPT-o3 41.67% 25% 44.44% 45% 44.83% 47.62% 44.45%
GPT-4o 25% 25% 22.22% 20% 56.67% 38.1% 39%

Claude-3-5 16.67% 25% 33.33% 25% 66.66% 66.66% 47%
Claude-3-7 41.67% 33.33% 77.78% 80% 63.33% 71.43% 59%

B DS-GURU DETAILS

The baseline system we provide, DS-Guru, follows a simple design. For each task, the system
provides the backend LLM with an informative sample of data from each file in the data lake first as
well as the task prompt. DS-Guru leverages instruction tuning to guide the LLM backend to provide
a Python implementation of the task pipeline as well as a structured explanation of the steps to be
taken. DS-Guru then executes the implementation and iterate with the LLM pipeline to debug and
improve the pipeline by supplying outputs and error messages.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Results by domain for KRAMABENCH (Trimmed input lake). ⋆ marks web-browser on.
Domains

System Metric Archeology Astronomy Biomedical Environment Legal Wildfire Total
DS-Guru few-shot Score 25.00% 3.17% 2.71% 17.02% 16.25% 49.42% 21.78%

(GPT-o3) Avg. runtime/task (min) 0.47 0.49 0.43 0.83 1.44 0.81 0.76

smolagents DR Claude-3-7 33.33% 33.33% 44.44% 65% 63.33% 66.67% 57.85%
Avg. runtime/task (min) 2.22 5.13 40.38 3.72 2.12 2.11 6.10

OpenAI DR⋆ Score 40% 33.33% 44.45% 61.67% 50% 67.28% 52.18%
Avg. runtime/task (min) 8.105 20.16 10.67 5.3 8.68 12.62 10.35

Gemini 2.5 Pro ⋆
Score 25% 16.67% 33.33% 25% 13.33% 24.87% 18.48%

Avg. runtime/task (min) 0.64 2.44 3.49 2.3975 3.105 2.314 2.4835

Table 12: Cost-accuracy Tradeoff between different SUTs under Full input mode.

SUT Overall Accuracy Accuracy/
Runtime

Accuracy /
1k In Tokens

Accuracy /
1k Out Tokens

GPTo3 - Naive 4.4272% 0.0253% 3.6242% 2.0076%
GPTo3 - One Shot 14.3006% 0.0792% 0.3651% 8.0089%
GPTo3 - Few Shot 26.1561% 0.1123% 0.3571% 8.8960%
GPT4o - Naive 1.3532% 0.0081% 1.1068% 1.4968%
GPT4o - One Shot 9.8278% 0.0624% 0.7268% 15.6457%
GPT4o - Few Shot 11.8930% 0.0566% 0.3718% 9.9949%
Llama3_3Instruct - Naive 1.3755% 0.0077% 1.1041% 1.5074%
Llama3_3Instruct - One Shot 5.9167% 0.0313% 0.4362% 10.0508%
Llama3_3Instruct - Few Shot 9.3734% 0.0412% 0.3027% 9.9297%
DeepseekR1 - Naive 3.1111% 0.0546% 3.0126% 1.5262%
DeepseekR1 - One Shot 2.7946% 0.0300% 0.0697% 1.3719%
DeepseekR1 - Few Shot 6.0351% 0.0592% 0.1482% 2.9354%

The prompt used to instruct the LLM backend to provide a pipeline for the end-to-end task is presented
below:

B.1 SYSTEM PROMPT

You are a helpful assistant that generates a plan to solve
the given request, and you’ll be given:Your task is to answer
the following question based on the provided data sources.
Question: {query}
Data file names: {file_names}
The following is a snippet of the data files: {data}
Now think step-by-step carefully.
First, provide a step-by-step reasoning of how you would arrive
at the correct answer.
Do not assume the data files are clean or well-structured
(e.g., missing values, inconsistent data type in a column).
Do not assume the data type of the columns is what you see in
the data snippet (e.g., 2012 in Year could be a string, instead
of an int). So you need to convert it to the correct type if
your subsequent code relies on the correct data type (e.g.,
cast two columns to the same type before joining the two
tables).
You have to consider the possible data issues observed in the
data snippet and how to handle them.
Output the steps in a JSON format with the following keys:
- id: always "main-task" for the main task. For each subtask,
use "subtask-1", "subtask-2", etc.
- query: the question the step is trying to answer. Copy down
the question from above for the main task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

- data_sources: the data sources you need to check to answer
the question. Include all the file names you need for the main
task.
- subtasks: a list of subtasks. Each subtask should have the
same structure as the main task.
For example, a JSON object for the task might look like this:
{example_json}
You can have multiple steps, and each step should be a JSON
object. Your output for this task should be a JSON array of
JSON objects.
Mark the JSON array with {json_notation} to indicate the start
and end of the code block.
Then, provide the corresponding Python code to extract the
answer from the data sources.
The data sources you may need to answer the question are:
{file_paths}.
If possible, print the answer (in a JSON format) to each step
you provided in the JSON array using the print() function.
Use "id" as the key to print the answer.
For example, if you have an answer to subtask-1, subtask-2, and
main-task (i.e., the final answer), you should print it like
this:
print(json.dumps(
{{"subtask-1": answer1,
"subtask-2": answer2,
"main-task": answer
}}, indent=4))
You can find a suitable indentation for the print statement.
Always import json at the beginning of your code.
Mark the code with {notations} to indicate the start and end of
the code block.

B.2 ABLATION STUDIES

We have started conducted ablation studies on key hyper-parameters, using the best-performing
configuration of DS-Guru (i.e., self-correcting with GPT-o3). Here are our preliminary findings:
The quality performance is positively correlated to token usage [1]. When varying the number of
rows sampled per table, our result is consistent — success goes up as we sample more rows. We
then observed a decrease at n=100, which is caused by the limited context window and our naive
sampling algorithm. DS-Guru falls back to no data snippet when the prompt exceeds the context limit.
DS-Guru showed consistent success across different numbers of maximum tries, with an initial slight
increase. This potentially has two implications: (i) compile/runtime errors are not the major cause of
failures; (ii) in a single-agent system, it may be difficult for the agent to get unstuck from a loop when
fixing the error. We will discuss this in depth in failure analysis. We will update the paper to present
these results and discuss them analytically under our 3-level evaluation framework. For reference, the
full table of results is as follows: Varying the number of rows sampled in the input data snippet.

Table 13: DS-Guru with GPT-o3: performance and cost across different numbers of iterations.
Number of Iterations 5 10 15 20
Overall Performance (%) 23.36 22.83 20.73 21.33
Tokens/Iteration (Mean) 64,548.9 72,926.3 70,845.1 72,301.7

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: Runtime performance by number of sampled rows per file. Runtime is in seconds.
SUT Archeology Astronomy Biomedical Environment Legal Wildfire Overall Runtime
10 Rows 18.75 12.80 8.63 34.52 13.32 37.42 22.89 732.45
50 Rows 23.48 10.55 7.87 37.60 14.08 40.63 24.68 655.61
100 Rows 20.61 11.95 8.53 34.84 12.20 40.60 23.36 1374.82
150 Rows 21.08 10.58 8.64 31.68 13.09 39.22 22.58 802.90

Table 15: Performance by number of tries. Runtime is in seconds.
SUT Archeology Astronomy Biomedical Environment Legal Wildfire Overall Runtime
5 Tries 20.61 11.95 8.53 34.84 12.20 40.60 23.36 1374.82
10 Tries 19.86 11.60 8.71 36.66 10.79 37.86 22.83 575.88
15 Tries 20.47 7.00 8.72 36.84 9.51 31.47 20.73 721.95

C SMOLAGENTSAGENTIC BASELINE DETAILS

In this section, we describe the single-agent and multi-agent baselines systems we evaluated on
KRAMABENCH more.

C.1 SMOLAGENTS-SINGLE

For the single-agent baseline, we use the open source deep research implementation by
smolagents (git). This agentic framework follows a canonical think → action → response
loop with agentic actions expressed in code. In addition to code, the system is equipped with a
text inspector capable of processing different common formats originally released with Microsoft
Magentic One (mic). While the official implementation also equips the system with a web browser
by default, we disabled the internet access to allow for direct comparison with DS-Guru.

C.2 SMOLAGENTS-REFLEXION

Our first multi-agent baseline is Reflexion (Shinn et al., 2023). In addition to an Actor agent, Reflexion
(Figure 6) introduces (1) An Evaluator agent which provides internal feedback by evaluating the
outcome of each action. (2)A Self-reflection agent which provides external feedback with the outcome
and the evaluation of the action. Compared to traditional reinforcement learning techniques, feedback
in Reflexion are expressed with natural language and stored in agent memory to guide future actions.

C.3 SMOLAGENTS-PDT

Our second multi-agent baseline is based on AutoPrep (Fan et al., 2025), a framework for natural
language question answering over tabular data. We augmented AutoPrep with tools for parsing
non-tabular data and the hierarchical task decomposition technique similar with DS-Guru to address
the complexity of KRAMABENCH tasks. The original AutoPrep pipeline involves three agents: (1)
Planner (2) Programmer (3) Executor. With the augmentations we implemented, the system employs
two agents respectively playing the roles of (1) Planner and (task) Decomposer (3) Tool Executor.
We implemented this approach also using smolagents and illustrate the architecture in Figure 7.

D DATASET DETAILS

The six input domains with the associated studies that we used to design our benchmark tasks are:

• Archeology: the data files consists of chronological, archaeological, faunal, and botanical data
supporting the presence of Holocene hunter-gatherers on the Maltese Islands in the Mediterranean
from roughly 8000 years ago to 7500 years ago. The files were collected from the publicly available
data associated with the papers Groucutt et al. (2021); Scerri et al. (2025).

• Astronomy: the data files consist of the OMNI dataset Papitashvili & King (2020a;b) that contains
near-Earth solar wind, plasma, and magnetic field data, the Swarm dataset Siemes et al. (2016);

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 6: Architecture diagram of Reflexion. Reproduced from Figure 2(a) in Shinn et al. (2023).

Planner/
Decomposer

Tool
Executor

Execution
Engine /
Environment

List of subtasks

Do sub-tasks
one-by-one

AnswerTask

Figure 7: Architecture diagram of smolagents-pdt

Figure 8: KRAMABENCH maps system evaluation to both pipeline-design and sub-task-level
evaluations, enabling analysis of why models succeed or fail beyond end-to-end performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

European Space Agency (2013) that contains the magnetic field and geomagnetic field data, the
SILSO Sunspot Number data Clette & Lefèvre (2015), Space-Track.org Two-Line Element Sets
(TLEs) U.S. Space Command (2025), the National Oceanic and Atmospheric Administration
(NOAA) Flux Forecast dataset U.S. Air Force & NOAA Space Weather Prediction Center (2025),
and NOAA GOES Satellite dataset NOAA Office of Satellite and Product Operations (1994). The
combination of these datasets has been used to analyze how activity from the Sun affects Earth’s
atmosphere, ocean currents, and weather by the authors of Briden et al. (2023); Parker & Linares
(2024).

• Biomedical: the data files consist of the prote-ogenomic characterization of 95 prospectively
collected endometrial carcinomas, respectively for 83 endometrioid and 12 serous tumors. Extensive
analysis are done on these datasets to understand proteomic markers of tumor subgroups and
regulatory mechanisms in the papers Dou et al. (2020); Gillette et al. (2020).

• Environment: the data files consist of beach water quality dataset from Massachusetts Environ-
ment Public Health Tracking (EPHT) Massachusetts Department of Public Health (2025b), the
Massachusetts Bay beach dataset from Massachusetts Water Resources Authority (MWRA) Mas-
sachusetts Water Resources Authority (2025b), and the rainfall dataset from NOAA National
Weather Service National Weather Service (2025), from 2002 to 2025. The data has been used in
yearly reports Massachusetts Department of Public Health (2025a); Massachusetts Water Resources
Authority (2025a) to uncover trends in beach water pollution and the correlation between rainfall
and water quality.

• Legal: the datasets consists of 136 data files, accessible through the Federal Trade Commission
(FTC) portal Federal Trade Commission (2025b) and Wikipedia Wikipedia contributors (2025),
including information on merger filings, civil penalty actions, etc. The data is used in visualizations
and dashboards that analyze nation-level debt collection and fraud detection, available at Federal
Trade Commission (2025c;a).

• Wildfire: the datasets consists of NOAA wildfire dataset National Centers for Environmental
Information (NCEI) (2025), National Interagency Fire Center (NIFC) Fire Information National
Interagency Fire Center (2025), US Environmental Protection Agency (EPA) Air Quality Annual
Data U.S. Environmental Protection Agency (2025), US Election 2020 Dataset Fontes (2020),
Zillow Home Value Index Dataset Robikscube (2021), US Census 2020 U.S. Census Bureau (2025),
and the Large wildfire Incident Status Summary Young et al. (2021) to understand wildfire incident
location, cause, and consequences in the US from 2002 to 2016. This data has been used for
analysis in the reports published by the NOAA and NIFC NCEI.Monitoring.Info@noaa.gov (2025);
Center .

D.1 CROSS-DOMAIN ACCURACY DIFFERENCE ANALYSIS

In this subsection, we discuss the findings on likely causes of the differences in accuracy between
different domains in KRAMABENCH. We obtained these findings by manually analyzing the traces
of smolagents-reflexion DR.

1. Archeology (33.33%) : In this domain, the system correctly solves questions answerable
from a single table. However, errors occur for tasks requiring joining tables found in different
files, because it treats multiple files as raw text instead of loading them as tables.

2. Astronomy (16.67%) : Astronomy tasks have the lowest average performance. In this
domain, a large portion of the required input data is found in proprietary scientific formats
(e.g., FORTRAN-style dat files). We observed that the agent struggles whenever it needed
to load data from these files, e.g., SP3 orbit files or satellite products.

3. Biomedical (44.44%) : When working with biomedical data, the agent is reliable for shallow
operations on a single sheet but fails to navigate large, multi-sheet workbooks and join data
across sheets. Cross-sheet joins, especially between clinical and phosphoproteomics data,
are problematic, and errors arise in correlation statistics due to sign miscalculations.

4. Environment (60.00%) : In the environmental domain, the system performs well on the
relatively tasks involving clean CSV data, such as filtering, counting, and averaging. Unlike
other tasks which struggle from data retrieval or understanding issues, the main issues arise
from implementation/arithmetic mistakes, such as incorrect aggregation scopes or rounding
errors, which explains the higher score.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Detailed breakdown of per-domain tasks in KRAMABENCH. Reproduced from Table 3
Domain # tasks # subtasks % Hard Tasks # datasets # sources File size
Archeology 12 71 50.00% 5 2 7.5MB
Astronomy 12 68 50.00% 1556 8 486MB
Biomedical 9 38 66.66% 7 2 175MB
Environment 20 148 70.00% 37 3 31MB
Legal 30 188 53.33% 136 2 1.3MB
Wildfire 21 120 71.42% 23 7 1GB

Total 104 633 60.58% 1764 24 1.7GB

5. Legal (63.33%): In these tasks, the agent handles the straightforward pipelines well but
struggles with loading data from messy files, i.e., that contain multi-row headers, partial
subtotals, and metadata rows. Amongst the common errors that stem from these shortcom-
ings, one example is that sum, means, and aggregations are only partial due to incorrect
loading.

6. Wildfire (52.38%) : Within wildfire-related tasks, the system faces challenges with geospatial
data and temporal/statistical reasoning. It struggles with GeoPackage layers and spatial
joins, as well as with rolling-window aggregations for weather. However, text lookups and
simple value comparisons work relatively well.

E TASK DETAILS

Across the 6 workloads, we supply 104 end-to-end data science pipelines. The table for the overall
breakdown of the tasks over the workloads is reproduced at Table 16 for convenience. In this section,
we use an example from the archeology workload to explain the organization of tasks.

Each workload is associated with a data lake consisting of tabular data and unstructured textual data.

archeology/input/:
climateMeasurements.xlsx
conflict_brecke.csv
radiocarbon_database_regional.xlsx
roman_cities.csv
worldcities.csv

Before tasks in a workload are sent to the system under test, the system receives the directory where
the data lake resides and may index it offline. When tasks are prompted, the system should not receive
information on which files in the data lake the task pertains to. Each end-to-end task is specified with
a high-level natural language prompt. Consider the following example of end-to-end task from the
archeology domain:

What is the average Potassium in ppm from the first and last
time the study recorded people in the Maltese area? Assume
that Potassium is linearly interpolated between samples.
Round your answer to 4 decimal places.

For evaluating the performance of our systems, we use three artifacts:

1. The end-to-end ground truth answer used to calculate the overall end-to-end score.
2. A sequence of key functionalities, extracted from a manually verified reference implementa-

tion for the solution in Python.
3. A sequence of subtasks, natural language questions whose correct answer depends on correct

code implementation of a key functionality.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The key functionalities are manually refined to correspond to the functionalities that should exist in
any pipeline that produces the correct output. The sequence of key functionalities for the example
end-to-end task above is the following:

1. Load the radiocarbon_database_regional.xlsx and
climateMeasurements.xlsx and read the first worksheet
of each.

2. Remove rows or columns that are entirely NaN or do not
contain relevant information from both dataframes to
ensure clean numeric processing.

3. Convert both chronologies to calendar years: for the
radio-carbon table get the year as 1950 minus the
’date’

4. Convert both chronologies to calendar years: for the
climate table get the year as 1950 minus the rounded
’Age_ky.1’ (in thousands of years) multiplied by 1000.

5. Determine the span of human presence in the Maltese
area by taking the minimum and maximum ’year’ in the
radio-carbon dataframe.

6. For every integer year within the human presence
span, locate the closest earlier and later rows in the
climate dataframe and linearly interpolate (or directly
return) the Potassium value ’K’ and collect all these
values.

7. Compute the mean of the collected Potassium values.

For each key functionality, we supply a subtask associated with the key functionality. Each subtask
is annotated with the ground truth subtask answer. These subtasks are used to verify the code
implementation capabilities of systems under test. Note that among correct pipeline implementations
for the end-to-end task, key functionalities may be ordered or composed differently. The subtasks
associated to the end-to-end example task are:

1. Which files contain information about Potassium in ppm
and the maltese people?

2. What are the indices (0-indexed) in rows in the climate
measurement dataframe that must be cleaned?

3. What are the calendar years in the radiocarbon table?

4. What are the calendar years in the climate table?

5. What are the minimum and maximum years of radiocarbon
dating for the Malta region?

6. What are the Potassium values for each integer year
between -7580 and -4050 (included)? If the value is
not available, use interpolatation between the closest
earlier and later values.

7. What is the mean potassium value for the years between
-4462 and -4055? Use 4 decimal places.

F HUMAN BASELINE DETAILS

In this section, we summarize how we conducted the human baseline and discuss the results and
implications. To contextualize LLM performance on KRAMABENCH, we conducted a human data
science study involving nine participants. Each participant was assigned a subset of benchmark

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

tasks and asked to solve them under the same data directory structure, resource constraints, and
assumptions provided to our LLM agents. For every assigned task, participants produced:

• a complete, reproducible end-to-end solution in a Jupyter notebook,

• a detailed log of their active time, broken down into data exploration, pipeline design, coding,
and debugging, and

• both draft-stage notes and a final clean solution, enabling direct comparison to LLM work-
flows and error modes.

Incorrect pipeline design (46%): The largest category. These errors occur when, for example,
experts mis-specified a join, aggregation rule, grouping key, or filtering logic. This suggests that
the most cognitively demanding part of real-world data science is pipeline design, rather than
implementation.

Lack of domain knowledge (24%): Many tasks contain implicit domain assumptions (e.g., def-
initions of “violation,” mapping categorical labels). Experts often produced internally consistent
but mismatched interpretations. This shows that even humans struggle with domain-specific task
semantics.

Incorrect inputs (12%): Tasks often require gathering information across multiple similarly named
or structurally similar files, and even humans sometimes use wrong inputs. These errors reflect the
challenge of navigating multi-file datasets.

Incorrect answer format (9%): Some errors are due to having the final outputs in the wrong
representation (e.g., units, rounding, formatting), which did not match the one requested by the task.

Library/version issues (9%): Minor inconsistencies (e.g., pandas handling) that changed intermedi-
ate results enough to fail strict correctness checking.

Interpretation and implications. Multi-file, multi-step pipelines are inherently error-prone—even
for trained experts. Humans have difficulty navigating a vast data lake, which we see as an opportunity
for LLM-powered systems to quickly search through the lake and identify the target files. Having a
reliable retriever could greatly improve accuracy. Ambiguity and assumed domain knowledge are
a real factor in real-world data tasks. One possible way for future agentic data-science systems to
combat this issue is to ask clarification questions and invite user input. Another approach is to branch
out on possible solutions by clearly stating the assumptions. Pipeline design is the bottleneck. Nearly
half of all errors (45.45%) are due to incorrect pipeline logic, highlighting that the core challenge
is understanding what transformations to perform, not coding them. Overall, most human errors
stemmed from misinterpreting ambiguous tasks, selecting the wrong files, or designing incorrect
pipelines—challenges that mirror the dominant failure modes of LLM agents. This confirms that
KRAMABENCH captures genuinely difficult, real-world data-to-insight tasks where even trained data
scientists struggle with pipeline reasoning, multi-file navigation, and implicit domain assumptions.

G EVALUATION DETAILS

Considering the broad nature of data science tasks, and the challenges in correctly evaluating their
design and implementation, KRAMABENCH evaluates systems on three capabilities. From the most
to the least automated: (1) End-to-end automation (2) Pipeline design (3) Sub-task implementation.

We are primarily interested in systems that can solve end-to-end data science tasks fully correctly,
which drives our main evaluation metric to be the result from the end-to-end automation setting.

G.1 MAIN METRIC: END-TO-END AUTOMATION SETTING

Each task in KRAMABENCH has a manually validated target output and is scored from [0,1]. Since
pipelines might be composed of steps with varying nature, we identify six possible answer types for
the target output. summarized and discussed in Table 3. For each answer type, we choose a scoring
scheme normalized to the range [0, 1], also shown in Table 3. When tested, the total score of system

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 17: Answer type and example questions
Type Example Metric Scoring
String (exact) The name of a file to load. Accuracy 0/1

String
(approximate)

The month when an experiment
started.

ParaPluie paraphrase de-
tection (Lemesle et al.,
2025)

0/1

Numeric
(exact)

Counting the number of entries
satisfying a predicate.

Accuracy 0/1

Numeric
(approximate)

Prediction of a future experiment
observation.

Relative Absolute Error
(RAE) |ŷ − y|/|y|

1/(1 + RAE)

List (exact) Names of columns to filter data. F1 (exact match) F1 score

List
(approximate)

Regression coefficients for dif-
ferent variables.

F1 score (approximate
match > 0.9)

F1 score

F for a workload W is defined solely based on the end-to-end correctness as∑
T∈W score(F (T))

|W |

Each T is a task belonging to workload W , and |W | is the number of tasks in workload W . The
overall score for the entire benchmark suite is defined analogously.

G.2 LLM-AS-A-JUDGE VALIDATION

To assess the validity of the evaluation for String (approximate) and List
(approximate) with String (approximate) list members conducted via instruction tun-
ing an LLM, we performed a small scale human-LLM evaluator agreement study. We asked three
human reviewers to manually evaluate the equivalence between the reference solutions and the
answers generated by 12 different SUTs (the three variants of DS-Guru across four different LLM
backends). We run the LLM-as-a-judge evaluation pipeline three times. We report the Cohen’s Kappa
values for inter-human agreement, human-LLM agreement and inter-LLM calibration (Table 18). The
possible values range from -1 (complete misalignment) to 1 (complete alignment). The results show
very high inter-human agreement (9̃5% on average) and moderately high human-LLM agreement
(8̃4% on average), indicating that our usage of LLM-as-a-judge provides meaningful evaluation
results.

Table 18: Inter-Human, inter-LLM, and human-LLM agreement on approximate answer evaluation.
Inter-Human Agreement Inter-LLM Agreement Human–LLM Agreement

Rater 1 Rater 2 K Rater 1 Rater 2 K Rater 1 Rater 2 K
Human_0 Human_1 0.949 LLM judge_0 LLM judge_1 1 Human_0 LLM judge_0 0.870
Human_0 Human_2 0.950 LLM judge_0 LLM judge_2 1 Human_1 LLM judge_0 0.867
Human_1 Human_2 0.949 LLM judge_1 LLM judge_2 1 Human_2 LLM judge_0 0.818

G.3 ADDITIONAL EVALUATION SETTINGS

A system that cannot provide fully correct end-to-end results may still be helpful for end-users via
assisting them in the process of data pipeline design and implementation. Motivated by the goal
of assessing this type of helpfulness of systems, we conduct evaluations under two less-automated
settings. In Section 4 detailing our experiments, we report these results as micro-benchmarks in
Table 8.

Pipeline Design: This setting evaluates how many essential functions a system-generated pipeline
includes. Here, we ask the system to provide an end-to-end pipeline implemented in Python that
solves an end-to-end task. For evaluation, we manually curated an explicit list of key functionalities
that any correct solution must implement for each task. We evaluate whether the generated pipeline

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

code covers each functionality using the LLM evaluation method proposed in Tong & Zhang (2024).
The score for a single task is computed as∑

f∈KF (T) Judge(f, P)

|KF (T)|

Here, KF (T) denotes the set of human-annotated key functionalities for task T , |KF (T)| is the
number of those functionalities, f represents a single functionality, P is the pipeline the system
generated under test, and Judge is a binary decision from an LLM-based evaluator indicating wether
P contains the key functionality f . The overall score across a workload/the entire benchmark is the
average of the individual task scores.

Sub-task Implementation: This setting evaluates the system’s ability to correctly implement simpler,
lower-level functionalities and individual data tasks required to solve the entire challenge when
explicitly prompted. We provide the system with problem statements of sub-tasks generate in Step
4 of the benchmark curation. Each sub-task corresponds to a key functionality and represents an
intermediate step within the full end-to-end pipeline, operating over the gold subset of the data lake.
We assess sub-task performance by comparing the system’s intermediate outputs to human-annotated
references, using an evaluation approach similar to the end-to-end automated method described earlier
in this section.

H SUMMARY OF LLM USAGE

In this section, we summarize our usage of LLMs in compliance with the conference policy. We used
LLMs for the following purposes

1. LLMs were used for the semi-automated generation of fine-grained annotations for the
benchmark. However, contributors manually improved and verified all annotations. This is
described in detail in Subsection 2.1.

2. LLMs are an integral part of the systems we evaluated. Their roles in the systems are
described in detail in Subsection 2.3 and Section 3.

3. LLM-as-a-judge were used to evaluade string paraphrases and code coverage. This is
described in detail in Appendix G.

4. LLMs were used to generate better documentations in our repository.

In addition to these research-level involvement of LLMs, we also used LLMs for table formatting
and paraphrasing some sentences already written by authors in favor of brevity.

30

