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ABSTRACT

Discovering insights from a real-world data lake potentially containing unclean,
semi-structured, and unstructured data requires a variety of data processing tasks,
ranging from extraction and cleaning to integration, analysis, and modeling. This
process often also demands domain knowledge and project-specific insight. While
Al models have shown remarkable results in reasoning and code generation, their
abilities to design and execute complex pipelines that solve these data-lake-to-
insight challenges remain unclear. We introduce KRAMABENC}ﬂ which consists
of 104 manually curated and solved challenges spanning 1700 files, 24 data sources,
and 6 domains. KRAMABENCH focuses on testing the end-to-end capabilities of
Al systems to solve challenges which require automated orchestration of different
data tasks. KRAMABENCH also features a comprehensive evaluation framework
assessing the pipeline design and individual data task implementation abilities of Al
systems. Evaluating 8 LLMs with our single-agent reference framework DS-Guru,
alongside open- and closed-source agentic systems, we find that while current
single-agent systems may handle isolated data-science tasks and generate plausible
draft pipelines, they struggle with producing working end-to-end pipelines. On
KRAMABENCH, the best system reaches only 50% end-to-end accuracy in the
full data-lake setting. Even with perfect retrieval, the accuracy tops out at 59%.
Leading LLMs can identify up to 42% of important data tasks but can only fully
implement 20% of individual data tasks.

1 INTRODUCTION

The goal of data science is to obtain insights from raw data. A data science workflow typically
involves manually selecting data and designing pipelines that perform data wrangling, conduct data
analyses, and extract findings, among other data tasks. These workflows are expected to
handle noisy, domain-specific data and scale to data lakes with tens to thousands of files, necessitating
multi-step, data-dependent reasoning and coordination across data tasks (Guo et al.| 2024} Shankar
et al.l [2025)).

Task: According to the Consumer Sentinel
Network, what is the total amount of money
defrauded in 2024, summing over all payment
methods? Give an integer in millions of
dollars.
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Figure 1: One of the tasks of KRAMABENCH based on a real data lake of 136 files in the legal
discovery domain. Data file sample snippets are simplified.
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Table 1: Comparing existing benchmarks. (- indicates partial satisfaction, e.g., not for all tasks)
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Data discovery X X X X X X X
Multi-file integration X X X X
Data cleaning X X X
Data preparation
Data analysis
Modeling
Abilities tested
Data semantics X X X X - - X
Domain knowledge X X X X X
Multi-step reasoning
Evaluation
Implementation
Pipeline design X X X X - - X
End-to-end X X X X X X X

While recent research has advanced individual components of these workflows such as code genera-
tion (Nam et al., 2024; [Wang & Chen, 2023)), tool use (Qin et al., 2024bza), and natural language
question answering (Zhang et al.,|2024bj [Pu et al., 2023)), the challenge of designing and executing
complete end-to-end data science pipelines remains underexplored.

Progress towards practical data-to-insight systems has been hindered by the lack of benchmarks that
reflect the real-world complexity of these workflows. Existing benchmarks focus on isolated steps,
such as code generation from fine-grained prompts (Lai et al., 2023 Zhang et al., 2025a; Huang
et al., |2024; [Yin et al., [2023), text-to-SQL (Lei et al., [2025; |[Zhang et al., 20244a), and modeling
using curated input (Gu et al.| 2024} Mitchener et al.| |2025; |Chen et al., [2025). We list these works
in[Table T]and discuss more in While immensely useful, these benchmarks do not capture
the heterogeneity of data tasks and the accompanying reasoning demands of real-world data science
involving large, domain-specific, and unclean input datasets.

To bridge this gap, we introduce KRAMABENCHm a benchmark designed to evaluate LLM-based
systems on complex end-to-end data science pipelines. KRAMABENCH consists of 104 tasks drawn
from 1700 real-world files across 24 sources in 6 domains. All tasks are manually curated from fresh,
domain-specific sources and paired with expert reference solutions grounded in accessible data. Each
task is specified in natural language and requires systems to discover relevant data, perform data
wrangling such as cleaning and normalization, and implement statistical or computational analyses to
produce insights. To study public data’s leakage into LLM training, we obscured the input of 20% of
tasks through replacing real-world identifiers and numeric data with synthetic ones without changing
the task structure. We hold them out for evaluation to prevent them from being trained on.

For each task, we provide reference sub-tasks that a system capable of solving the end-to-end task
should be able to solve. Sub-tasks are also annotated with ground truth results and text descriptors.
These assets facilitate our comprehensive evaluation framework with three settings. (1) The most
important end-to-end automation setting assesses the ability to solve tasks without a human in the
loop. (2) The pipeline design setting assesses the ability to reason and identify key components
towards a successful pipeline design. (3) The individual task implementation setting assesses the
ability to act on fine-grained descriptions of individual sub-tasks in a correct pipeline.

We evaluated KRAMABENCH across eight models, along with three different configurations of
DS-Guru and three other existing agentic systems (Hugging Facel 2025} |OpenAlL 2025} |Google,
2025). We conducted extensive ablations studies and failure analyses, taking advantage of our
comprehensive evaluation framework and obscured inputs.

Through KRAMABENCH, we observed multiple insights about where LLM systems are successful:
(1) Agentic control flow is helpful with KRAMABENCH’s challenges: systems like smolagents that
iteratively search, plan, and repair achieve 50% end-to-end accuracy, outperforming the strongest

We substantially improved upon an earlier version of this work.
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configurations of DS-Guru (22% overall), which uses a structured control flow. (2) LLM systems can
reason at a coarse level about the data operations required by a successful workflow and generate
plausible pipelines, achieving 42% on pipeline design.

Our analyses also reveal some persistent challenges: (1) Retrieval from a data lake is problematic, but
not the dominating obstacle. Supplying only the gold files improves overall accuracy by only 9-10%
across systems using different retrieval mechanisms. (2) Weaknesses in fine-grained data-dependent
reasoning cause models to fail. Systems even fail most of the time at implementing individual simple
sub-tasks, capping at 19.75% when evaluated under the individual task implementation described
above. (3) Agents often fail to achieve a holistic understanding of the data lake. We observe that the
agents often overly rely on their prior knowledge (12%-16% performance fluctuation on obscured
inputs), or assume clarifications will be given from a user (22% of failures).

2 THE DESIGN OF KRAMABENCH

Tasks in KRAMABENCH are based on real-world data science challenges from six domains: ar-
chaeology, astronomy, biomedical research, environmental science, legal insight discovery, and
wildfire prevention. Each domain is associated with a data lake containing raw files in structured,
semi-structured, or unstructured formats from multiple sources. Each task is a natural language
description of a domain-specific data science problem. The goal of a system under test is to design
and execute an end-to-end pipeline that takes the entire domain data lake as input and produces the
correct output. In addition to the target answer, KRAMABENCH provides the ground truth solution
both in code and in annotated sub-tasks: natural language descriptions of smaller building-block
operations that are essential elements within a full solution along with a prompt and their target
answers. These finer-grained references enable the evaluations of pipeline design and individual task
implementation.

2.1 TASK DESIGN AND VALIDATION

To curate tasks, we started with published studies and reports that (1) contain quantitative or graphical
findings produced by data analysis, (2) are based on complete and publicly accessible datasets, and
(3) require complex multi-step pipelines involving heterogeneous and noisy inputs. Grounding onto
these studies and reports ensures that our tasks reflect real-world data science pipelines. We followed
a 4-step workflow involving tight validations and repeated verifications of reference solutions to
ensure the quality of tasks, reference solutions, and fine-grained annotations.

Step 1: Task Curation. For each study or report, we reproduced its important findings using the
associated datasets, transforming these findings into problem statements. Within the same domain,
more tasks similar to the real-world ones are curated via integrating different data sources. The
creator of each task supplies a concrete implementation of the pipeline.

Step 2: Cross-Contributor Validation. For each task, a different second contributor independently
attempts to develop a solution. A third contributor compares the solution with the one in Step 1.,
resolves ambiguities in the problem statement, and checks in a reference pipeline. The execution time
of the reference pipeline is also recorded.

Step 3: Key Functionality Identification. A data science problem can have multiple valid solution
pipelines. However, certain data processing steps must exist in any correct pipeline. A simple
example would be "identifying the column containing the temperature to be Temp". We draft a list of
these key functionalities for each task using the reference pipeline via instruction-tuning GPT-03 and
manually polish the outputs to make sure the description of these sub-tasks do not depend on specific
implementation choices. The semi-automation scripts are available at our repository.

Step 4: Sub-task Curation. We transform each sub-task description into a prompt via instruction
tuning a local instance of Gemma3-27b and manual inspection. The example in Step 3 would be
transformed to "which column contains the temperature information"? The target answers to each
sub-task are manually verified using the reference pipeline.

Table [2]reports the statistics and difficulty distributions of the 6 domains and their tasks. We provide
more detailed descriptions and an example of tasks, key functionalities, and sub-tasks in[Appendix D]
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Table 2: Detailed breakdown of per-domain tasks in KRAMABENCH. Hard tasks require multiple
files or pipelines with more than three steps.

Domain #tasks #subtasks % Hard Tasks # datasets # sources File size
Archeology 12 71 50.00% 5 2 7.5MB
Astronomy 12 68 50.00% 1556 8 486MB
Biomedical 9 38 66.66% 7 2 175MB
Environment 20 148 70.00% 37 3 31MB
Legal 30 188 53.33% 136 2 1.3MB
Wildfire 21 120 71.42% 23 7 1GB
Total 104 633 60.58% 1764 24 1.7GB

Table 3: Answer type and example questions.

Type Example Metric Scoring
String (exact)  The name of a file to load. Accuracy 0/1
String The month when an experiment ~ ParaPluie paraphrase de- 0/1
(approximate) started. tection (Lemesle et al.|

2025)
Numeric Counting the number of entries  Accuracy 0/1
(exact) satisfying a predicate.
Numeric Prediction of a future experiment ~ Relative Absolute Error  1/(1 + RAE)
(approximate)  observation. (RAE) |9 — y|/ly|
List (exact) Names of columns to filter data.  F1 (exact match) F1 score
List Regression coefficients for dif- F1 score (approximate F1 score
(approximate) ferent variables. match > 0.9)

2.2 EVALUATION MECHANISM

As discussed in[Section 1} KRAMABENCH evaluates systems on three capabilities. Our primary
focus is (1) end-to-end automation.

(1) End-to-end Automation. For each task, the system output is given a score in [0, 1] based on the
reference target answer. The scoring schemes for each possible answer type address fuzzy matches
and are discussed in Given a domain workload W consisting of numerous tasks 7”s, the
total score of a system F for W is Meanpcyyscore(F(T')). The score of F for the entire benchmark
suite is analogous.

Results under the following two less-automated evaluation settings provide insights into why a system
may succeed or fail in the end-to-end automation setting and the abilities of a system to assist with a
human-in-the-loop.

(2) Pipeline Design. For each task, we assess the system generated pipeline using the key functionali-
ties that any correct pipeline needs to contain in some form (from Step 3 of [Subsection 2.1). We score
the system with the fraction of key functionalities covered in the pipeline produced by the system.
Coverage is evaluated via LLM-as-a-judge following the method in Tong & Zhang|(2024) using the
description obtained in Step 3.

(3) Sub-task Evaluation. We provide systems with the problem statements for sub-tasks and compare

system outputs to human-curated target answers (as in Step 4 of using the same
scoring approach as in end-to-end evaluation. Full technical details of these evaluations are provided

in[Appendix E}
2.3 REFERENCE IMPLEMENTATION

We introduce DS-Guru, a lightweight framework that serves as minimal scaffolding to enable a single
out-of-the-box LLM to attempt the data science challenges in KRAMABENCH. DS-Guru has three
variants. No-context: The LLM is invoked one-shot with the problem description and the names
and paths of the files from the data lake, without any file contents. One-shot: The LLM is invoked
one-shot with the problem description and sample snippets from each data file. Few-shot: The LLM
is first invoked once with the task description and sample snippets, then re-invoked few-shot with
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execution results and error messages from the pipeline it implemented in the previous shot. With all
variants, DS-Guru instructs the LLM to decompose the task into simpler tasks before attempting to
implement each task provide the concrete pipeline implementation along with the answer.

DS-Guru succinctly addresses where out-of-the-box LLMs struggle with KRAMABENCH. (1)
Realistic data lakes exceed LLM context windows. DS-Guru uses budgeted, type-annotated one-pass
sampling (OPS) retrieval to make this step tractable. (2) Many data science tasks require many
different data operations. DS-Guru uses chain-of-thought prompting (Wei et al.| [2022) to encourage
decomposition before code synthesis. (3) Code running on real-world uncurated data are subject to
more sporadic errors compared to code for well-structured tasks. DS-Guru’s multi-shot approach
(Press et al.|[2023)) can help LLMs recover from such errors. More details on DS-Guru in Appendix @

3 EXPERIMENTAL SETUP

We accessed all LLMs in different systems via OpenAl and Together APIs; pipelines generated by
systems are executed locally.

DS-Guru: We combine each of the three variants (as in |[Subsection 2.3) of DS-Guru with six
LLMs: GPT-03, GPT-40, Claude-3.5-Sonnet, Llama3.3, Deepseek-R1-70B, and Qwen2.5-Coder-
32B (OpenAl, 2025} 2024} |Anthropic, 2024} [Meta AlL 2025; [DeepSeek-Al et al., [2025; Hui et al.}
2024), totaling to 18 concrete DS-Guru implementations.

smolagents Deep Research (smolagents DR): We evaluate Hugging Face smolagents (Hugging
Face, [2025), an open source deep research agentic system, on the single agent setting. We report
results with four different LLMs: GPT-03, GPT-40, Claude-3.5-Sonnet, and Claude-3.7-Sonnet.
We view smolagents DR as a representative system for open-source “deep research” projects (e.g.,
Alibaba’s|Academy|(2025)).

Closed-Source Deep Research Systems: OpenAl Deep Research (OpenAl DR, OpenAl (2025))
and Gemini Pro-2.5 Agentic Mode (Gemini Agentic) (Google DeepMind| 2025} |Google| 2025)
were evaluated manually through their web interfaces under the end-to-end automation setting. We
made best efforts instructing them not to search online. However, this restriction was not enforceable.

Table 4: Comparison of different mechanisms across systems.

Systems Retrieval mechanisms Input modes Control flow Internet Access
DS-Guru One-Pass Sampling (OPS)  Full, Trimmed, Oracle  Structured loops Off
smolagents DR Agentic retrieval Full, Trimmed, Oracle ~ Agentic loops Off
OpenAl DR Agentic retrieval Trimmed, Oracle* Agentic loops On
Gemini Agentic Agentic retrieval Trimmed, Oracle* Agentic loops On

We evaluated four different systems, which differ in four important ways.

Retrieval Mechanisms. DS-Guru employs One-Pass Sampling (OPS) retrieval: a budgeted, type-
annotated sample of each file in the data lake (schema summaries + a small row sample) is provided to
the LLM once. OPS scales with data lake size but constrains the LLM’s direct interaction to sampled
views. DR systems employ agentic retrieval: the LLM plans the retrieval and issues file system tool
calls to iteratively read, filter, and revisit sources, offering richer interaction but at a higher cost.

Input Modes. Full: ideally, the entire input lake is available to the system’s retriever. Oracle: only the
gold files are provided (no discovery), isolating non-retrieval failures (planning, reasoning, execution).
Trimmed: to respect practical constraints, most notably the UI limit of <10 file uploads imposed by
the closed-source DR systems, we supply the gold files plus a random subset of distractors up to the
limit, testing discovery under budget. Oracle*: for tasks where the gold set itself exceeds 10 files, we
include the task by randomly sampling 10 gold files for upload.

Control flow simply describes whether a system has conventional loops or agentic flow. Internet
access describes whether systems have web search capabilities.

We measured the LLM cost of running the full KRAMABENCH evaluation for a system under test.
For DS-Guru (few-shot, GPT-03), a variant with high pipeline design and sub-task implementation
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completion, evaluating end-to-end answers took 4,501 tokens; evaluating pipeline designs took
116,805 tokens; and evaluating sub-task implementation took 10,358 tokens.

4 RESULTS AND TAKEAWAYS

Table [5]shows the performance of the systems under the Full, Oracle, and Trimmed input lake. We
report only top-performing configurations here and present full results in Appendix [A]

Table 5: Results by domain for KRAMABENCH on DS-Guru and smolagents DR under three settings.

System Models Domains
Archaeology  Astronomy Biomedical Environment Legal Wildfire  Overall
Full Input Mode

DS.G GPT-03 25% 1.73% 3.50% 1.35% 335% 24.87%  9.64%
Novontest GPT-4o 0.00% 1.41% 1.98% 0.45% 146%  145%  1.62%
Claude-3.5 16.67% 1.62% 2.87% 1.17% 733%  13.63%  7.45%
DS.G GPT-03 25% 3.00% 8.63% 7.66% 19.15% 45.95%  20.80%
ono-shot GPT-40 8.33% 1.40% 9.38% 2.60% 274% 1939% 1.61%
i Claude-3.5 0.00% 4.15% 2.15% 6.21% 6.68%  34.99% 10.85%
DS.Guru GPT-03 25% 3.53% 8.95% 19.6% 13.89% 50.73%  22.08%
fowr-shot GPT-40 16.67% 2.76% 8.97% 2.60% 280% 17.18%  8.28%
‘ Claude-3.5 16.67% 1.52% 1.96% 11.21% 701%  39.16% 14.35%
GPT-03 41.67% 16.67% 33.33% 50% 50%  38.1% 41.36%
smolagents DR GPT-40 33.33% 0.00% 11.11% 35% 40%  38.1% 30.77%
smofagents Claude-3-5 33.33% 0.00% 22.22% 60% 46.67% 52.38% 41.35%

Claude-3-7 33.33% 16.67% 44.44% 60% 6333% 52.38%  50%

Oracle Input Mode

DS.G GPT-03 17.83% 12.93% 19.48% 19.17% 9.94%  16.13% 14.93%
Homrontent GPT-40 15.09% 9.15% 12.16% 11.26%  888%  7.15%  10.05%
Claude-3.5 16.52% 10.63% 9.87% 12.51% 9.80%  0.00% 11.63%
DS-Gur GPT-03 23.90% 21.14% 18.29% 28.48% 18.49% 25.08%  22.85%
o -ohot GPT-40 14.26% 10.58% 9.38% 20.37% 1096% 19.21%  14.86%
) Claude-3.5 17.07% 10.24% 9.449% 22.27% 1147% 17.93%  15.48%
DS-Guru GPT-03 27.78% 23.22% 19.56% 33.67% 35.14% 32.53% 31.92%
fowr-shot GPT-40 18.97% 19.29% 12.51% 27.14% 2523% 26.07% 23.60%
Claude-3.5 16.24% 14.02% 14.80% 33.83% 2636% 25.02% 24.22%
GPT-03 41.67% 25% 44.44% 45% 4483% 47.62% 44.45%

molagents DR GPT-40 25% 25% 22.22% 20% 56.67% 38.1%  39%

smolagents Claude-3-5 16.67% 25% 33.33% 25% 66.66% 66.66%  47%

Claude-3-7 41.67% 33.33% 71.78% 80% 63.33% 71.43%  59%

Trimmed Input Mode

DS-Guru few-shot GPT-03 25.00% 3.17% 2.71% 17.02% 1625% 49.42%  21.78%
smolagents DR Claude-3-7 33.33% 33.33% 4444% 65% 6333% 66.67% 51.85%
OpenAI DR GPT-03-dr 0% 33.33% 44.45% 61.67% 50%  67.28% 52.18%
Gemini Agentic  Gemini-2.5-Pro 25% 16.67% 33.33% 25% 1333% 2487% 18.48%

Agentic control flows drive the largest performance gains on KRAMABENCH. smolagents DR
(Claude-3-7, max agentic iterations is 20) consistently outperforms DS-Guru across all domains
(Table E]), reaching 50% overall score compared to the best DS-Guru variant (few-shot, GPT-03;
22.08%). The DS-Guru (few-shot), which enables the LLM to catch implementation errors only
moderately improves over DS-Guru (one-shot, GPT-03), with 1.28% overall improvement. Our
detailed studies increased few-shot to 20 iterations yet still showed minor improvements (Appendix
Table[T2). This indicates that despite the heterogeneity of data operations, the core challenges are
not isolated data operation implementation issues, but instead are to (1) explore and fix the design
choices of the end-to-end pipeline; (2) iteratively understand the data and schema in a large data lake.
Smolagent DR’s agentic control flow helps address these challenges. Note that in the Trimmed setting
(max 10 files per call), OpenAl DR reaches 52.18% overall, partly due to its web search capability.

In terms of cost, smolagents DR (Claude-3-7) averages 6.10 minutes per task—faster than OpenAl
DR (10.35) but nearly 10x slower than DS-Guru few-shot (0.76).
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Table 6: DS-Guru (few-shot, 5 iterations, GPT-03): performance and cost across rows sampled.

Rows Sampled 10 50 100 150
Overall Performance (%) 22.89 24.68 23.36 22.58
Tokens (Mean) 14,0772 37,592.3 64,5489 92,116.1

4.1 ABLATION STUDIES

Retrieval Mechanisms. Using Oracle input for DS-Guru improves the performance for the overall
dataset across all domains and LLMs (by 9.98% on average and up to 20%) except for GPT-03,
Claude-3.5, and DeepSeek-R1 on wildfire (Table[5). These results under the design of DS-Guru show
that supplying samples of the gold files can lead to more successful pipelines. We also studied the
sensitivity of OPS against the sample size from each file. shows that the performance of the
system does not meaningfully increase with larger samples.

The benefits of the Oracle in smolagents DR shows the same trend (improvements of around 10%),
suggesting that agentic retrieval is not qualitatively closer to perfect retrieval than OPS in terms of
file extraction. Even with the Oracle input, the agentic smolagents DR with out-of-the-box LLM:s still
struggle to solve a lot of the tasks (59% overall with Claude-3.7). These results point to weaknesses
in data-dependent reasoning (e.g., pipeline design), in addition to extracting the right files.

Table 7: End-to-end scores of various systems under obscured vs oracle inputs over the same tasks.
Note that we sampled a subset of legal and wildfire respectively to curate obscured inputs for.

System Models Combined Legal Wildfire
Full Oracle  Obscured Full Oracle  Obscured Full Oracle  Obscured

DS-Guru GPT-03 12.54% 10.72% 11.15% 5.08% 6.45% 9.46% 20.00% 15.00% 13.07%
no-context GPT-40 7.19% 2.52% 8.60% 4.37% 5.04% 9.83% 10.00%  0.002% 7.21%
Claude-3-5 | 8.50%  4.85% 9.93% 6.99%  4.64% 11.30% 10.00%  0.00% 8.37%
DS-Guru GPT-03 12.73%  26.98% 8.99% 1547%  24.89% 11.62% 10.00%  29.08% 5.99%
one-shot GPT-40 26.03% 27.45% 11.15% 12.06% 14.89% 10.27% | 40.00% 40.00% 12.16%
Claude-3-5 | 19.56% 18.82% 6.11% 5.03% 8.56% 7.35% 34.08% 29.07% 4.70%
DS-Guru GPT-03 7.08% 44.74%  20.40% 4.18% 4041%  20.29% 10.00% 49.08%  20.52%
few-shot GPT-40 21.92% 34.21% 11.90% 8.85% 28.41% 1547% | 35.00% 40.00% 7.82%
Claude-3-5 | 25.06% 23.02% 13.46% 6.04%  16.98% 12.18% | 44.08% 29.07% 14.92%

GPT-03 40% 45% 20% 50% 30% 30% 30% 60% 10%

Smolagents DR GPT-40 50% 40% 30% 50% 40% 30% 50% 40% 30%

Claude-3-5 55% 60% 30% 40% 50% 20% 70% 70% 40%

Data Leakage. To study to what extent different systems are solving tasks via external knowledge
present in previous knowledge data instead of producing a reliable data pipeline, we manually curated
obscured inputs for 20% of tasks in KRAMABENCH, where some data fields are changed such
that a correct pipeline would still produce a correct solution, but a system relying on memorization
cannot. For example, in a query spanning multiple locations, the real place names may be swapped
for fictional ones, i.e., Los Angeles might be changed to “La-La Land."

For both smolagents DR and DS-Guru few-shot, the performance under the obscured input is 12-16%
lower compared to the oracle input (Table 7). Interestingly, compared to Full input, Obscured input
improved the performance for DS-Guru but significantly degraded smolagent for the legal workload.
These observations and the stark difference between the Full and Obscured input performances on
wildfire suggest two distinctive plausible explanations for our observations: (1) Prior knowledge
could discourage attempts at data-dependent reasoning. (2) Prior knowledge could be serving as an
unintended reward signal in agentic data-dependent reasoning, which possibly can either improve or
reduce the performance of the system. These effects are important topics for future research.

Diversity of Abilities Required from LLM Agents. Tested independently, both pipeline design
(+19.50% GPT-03) and sub-task implementation (+5.39% GPT-40) substantially outperformed end-
to-end automation. In addition, we observe that LLMs also have varying capability profiles: GPT-03
is strong at high-level pipeline design (42%) but weak at implementing those pipelines (20%);
interestingly, it scores higher on end-to-end automation (22%) than on some implementation tasks.
DeepSeek-R1 exhibits the opposite pattern (6.5% on pipeline design vs 11% on implementation).
These patterns provide strong evidence that single-agent approaches are insufficiently reliable for
real-world data science, as success depends on multiple heterogeneous skills, such as robust parsing
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Table 8: Lower automation settings evaluation results for KRAMABENCH on 18 methods.

Models

Variant Automation setting GPT-03 GPT-40 Claude-3.5 Llama3-3Instruct DeepSeek-R1 Qwen2-5Coder
DS-GURU End-to-end automation 9.64% 1.62% 7.45% 1.19% 3.14% 3.72%
no-context Pipeline Design 40.60% 30.83% 31.06% 26.74% 18.94% 27.35%
Sub-task Implementation  12.95%  9.27% 10.65% 8.28% 12.08% 7.52%
DS-GURU End-to-end automation ~ 20.80%  7.61% 10.85% 4.81% 6.35% 6.43%
one-shot Pipeline Design 42.14% 19.75% 25.49% 19.24% 10.60% 22.19%
Sub-task Implementation  17.24%  11.42% 10.12% 7.83% 11.37% 10.38%
DS-GURU End-to-end automation ~ 22.08%  8.28% 14.35% 4.48% 6.35% 9.98%
few-shot Pipeline Design 41.58% 16.67% 29.46% 16.83% 6.44% 14.65%
Sub-task Implementation  19.75%  13.67% 16.14% 8.87% 10.89% 12.09%

of noisy inputs, query parsing and planning, identifying and performing data-cleaning/ transformation,
coding, and iterative debugging.

4.2 DEEPER DIVE: FAILURE ANALYSIS

In this subsection, we closely study two tasks requiring two distinct reasoning capabilities from
LLM agents: (1) fine-grained data-dependent reasoning. (2) holistic understanding of a potentially
domain-specific data lake.

Monthly Precipitation Water Body Testing
Year Jan Feb Mar Community Sample Date Beach Name Violation
2015 44 39 47 Chatham 2016-06-13 Bucks Creek no
2016 5.0 6.2 3.5 Brewster 2016-08-16 Cliff Pond (DCR) @ DYS | yes
2017 45 M M Brewster 2016-05-24 Cliff Pond (DCR) @ Main | no

Figure 2: Data snippets for study cases. Multiple water testing entries for each location may exist.

Challenge 1: Fine-grained data-dependent reasoning.

environment-q17: What is the seasonal bacteria exceedance rate of Chatham’s Bucks Creek Beach
in the June, July, Aug of 2016? Impute missing values with median of the month in non-missing years.

To solve this query, a correct pipeline must analyze the data present in both files in[Figure 2] DS-Guru
uses OPS sampling, which may not see or realize the "M" buried in the data and deduce that "M"
stands for missing values. Although few-shot prompting enables the agent to see relevant errors, the
lack of an explicit agentic control flow results in the LLM not connecting the execution errors to these
fine-grained data observations. By contrast, on every agentic iteration, smolagents DR conjectures
what the important data are to look at next to ensure the correctness of the pipeline it has drafted.
This conjecture guides its tool call-enabled retrieval step. It subsequently analyzes the tool call and
pipeline execution results before the next iteration. This explicit retrieve-revise-repeat pattern tightly
couples error feedbacks with data retrieval, which helps address the fine-grained data-dependent
reasoning challenge and leads to working end-to-end pipelines.

Challenge 2: Holistic understanding of the input data and prior knowledge.

environment-q16: How many beaches remained safe to swimming from 2002 to 2023 inclusive?

environment-q16-3: How many beaches are there?

environment-q16-3 is an example sub-task for environment-q16, which also uses files in[Figure 2] To
solve the full task reliably, a system should be able to identify all beaches to start with. environment-
q16-3 prompts the system to carryout this identification and verifies the result.

The challenge with beach identification is that the "Beach Name" column encodes both the beach
and sampling location. Cliff Pond (DCR) @ Main refers to the Main (street) sampling location of
the Cliff Pond beach (Figure 2). Facing many near-duplicate files in the data lake, systems do not
have a clear global schema or geographical domain knowledge that they could use to understand
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this encoding scheme. As a result, both DS-Guru and smolagents DR failed on this sub-task, despite
smolagents DR’s agentic control flow. This case highlights the need to incorporate prior knowledge
and discover clarifications about under-specified conventions from the data (Mao et al.l 2019).

Towards this end, we analyzed the traces of DS-Guru (few-shot, GPT-03 & Claude 3.5) with the
agentic system diagnosis framework proposed in|Cemri et al.|(2025). Respectively 24% (GPT-03)
and 43% (Claude 3.5) of all 104 tasks suffer from "failure to ask for clarification" and thus were
not solved correctly. However, KRAMABENCH expects that a human expert could solve the tasks
without additional clarifications by exploring and understanding the data. In this example, a human
could decipher the beach name conventions with common U.S. geographical knowledge. Reasoning
models currently lack similar capabilities to gain holistic understandings of the input data and fail to
incorporate prior knowledge.

5 RELATED WORK

LLM-Powered Agentic Systems. There is a large and fast-growing literature on LLM-powered
Al systems. These systems take on vastly different designs, such as vanilla LLM calls to frontier
pre-trained reasoning models (OpenAl et al., [2024} DeepSeek-Al et al.| 2025 |Zhong et al.| [2024),
retrieval-augmented generation (Lewis et al.,[2020), agentic workflow systems (Zhang et al.| 2025b),
chain-of-thought and iterative calls (Wei et al., 2022; Press et al.,|[2023)), reflections (Ji et al.} [2023)
and task-time verifications (Tang et al.| |2024al), structured knowledge representations (Jiang et al.,
2024} [Su et al., 2025 [Wang et al., |2025)), and data processing centric systems (Liu et al., [2024;
Patel et al., 2025 |Shankar et al.| 2024)). Recent work applies these techniques to data science tasks.
For example, DocWrangler (Shankar et al., 2025) is an integrated development environment that
helps the user optimize LLM prompts to construct data processing programs. DSAgent (Guo et al.,
2024) is a framework that uses LLMs to understand user needs and build data science pipelines.
Evaporate (Arora et al.| 2023) helps users transform data into queryable tables. AutoPrep (Fan et al.|
20235)) constructs a data preparation program over a single table for a given question. Despite the
progress, evaluating agent performance in real-world end-to-end setting remains a challenge.

Evaluations of LLM-Powered Agentic Systems. Benchmarks for question answering (QA) have
shifted toward evaluating agentic solutions. These benchmarks require iterative retrieval, query
parsing, planning, tool use, and temporal awareness. Recent works include FanOutQA (Zhu et al.}
2024)), MultiHop-RAG (Tang & Yang|, |2024), CRAG (Yang et al., [2024)), BrowseComp [Wei et al.
(2025)), which test end-to-end retrieval systems, MEQA (Li et al.l |2024) for multi-hop reasoning
with explanation chains, and MINTQA (He et al., [2024) for scaffolding long knowledge. These
tasks differ from data science tasks, as they only require information retrieval and joins, but no
data-intensive processing. Benchmarks such as DS-1000 (Lai et al.| 2023), DA-Code (Huang et al.,
2024), ARCADE (Yin et al.| [2023)), DataSciBench (Zhang et al.,2025a)), DSEval (Zhang et al.,|2024c)
focus instead on implementing detailed instructions in general programming languages, specifically
in data science tasks, differentiating themselves from other benchmarks like SWE-Bench (Jimenez
et al., |2024), ML-Bench (Tang et al., 2024b), BigCodeBench (Zhuo et al.l [2025). More recently,
new benchmarks such as DSBench (Jing et al.| 2025)) and BLADE (Gu et al.,|2024) have started to
evaluate the ability to create an implementation plan. Benchmarks like ScienceAgentBench (Chen
et al.||2025) and BixBench (Mitchener et al., 2025) evaluate using domain knowledge. Although such
benchmarks assess specific capabilities, they fall short of capturing the full complexity of real-world
data science pipelines.

6 CONCLUSION

KRAMABENCH evaluates the capabilities of systems to generate data science pipelines over a
data lake consisting of heterogeneous, unclean input. Our comprehensive experiments using 8
LLMs across 4 different agentic systems with KRAMABENCH reveals although current systems
are equipped with useful techniques such as agentic control flow and generic coding abilities,
they are still far from solving real-world data science problems. Our analyses highlight several
underexplored challenges such as effective retrieval, data-dependent reasoning, plan revision, and
robust prior/domain knowledge integration as meaningful research directions towards practical
automated data science systems.
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ETHICS STATEMENT

We acknowledge the limitations of KRAMABENCH regarding its scope, language, and cultural biases,
and domain coverage, which stem from the human effort required for high-quality curation. All
data included is publicly available, anonymized, or pseudonymized, with no personally identifiable
information. The biomedical domain contains public data sourced from the cancer data commons
(CDC) — this data is pseudonymized and does not require confidential access nor specific approvals,
with the only sensitive attribute included as part of the workload being the pseudonymized age of
patients. We emphasize privacy as paramount and warn users of the benchmark against potential
identification risks, which we deem unlikely, associated with this data source. In future iterations
of our benchmark we aim at broaden domain diversity, include multilingual data, and integrate
community contributions to reduce existing biases Furthermore, we comply with licensing practices
of data sources. For data sources that are publicly available but have redistribution constraints, we do
not modify or separately host these datasets. Instead, we point users of our benchmark to the original
data sources.

REPRODUCIBILITY STATEMENT

We provide full artifacts—including code, data, workloads, and evaluation scripts—via our public
repository athttps://anonymous.4open.science/r/Kramabench-7D6D/. The main
paper section [2]and Appendix [C]describe the process obtained to design and curate the task based on
the datasets for each domain. Scripts to reproduce these steps can be found in the main repository. All
datasets, benchmark frameworks, benchmark curation semi-automation scripts, reference pipelines
and other accompanying annotations, and our reference system DS-Guru are available in our reposi-
tory. The experimental analysis of different system under test in Section @ can be reproduced using
Python scripts also available in the public repository.
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A EXTENDED EXPERIMENT RESULTS

In this section, we supply the full evaluation results for which we presented a summary of in the main
text due to space constraints.

Table 9: Results by domain for KRAMABENCH on DS-Guru and smolagents DR with Full input
mode.

System Models . D”F“ ams .
Archaeology  Astronomy Biomedical Environment  Legal Wildfire Overall
GPT-03 25% 1.73% 3.50% 1.35% 335% 2487%  9.64%
GPT-40 0.00% 1.41% 1.98% 0.45% 1.46% 1.45% 1.62%
DS-Guru Claude-3.5 16.67% 1.62% 2.87% 1.17% 7.33% 13.63%  7.45%
no-context Llama3-3Instruct 0.00% 1.43% 1.70% 0.98% 1.37% 1.44% 1.19%
DeepSeek-R1 0.00% 1.50% 2.49% 2.60% 1.61% 6.46% 3.14%
Qwen2-5Coder 0.00% 1.37% 2.02% 1.07% 1.44% 13.68%  3.72%
GPT-03 25% 3.00% 8.63% 7.66% 19.15%  45.95%  20.80%
GPT-40 8.33% 1.40% 9.38% 2.60% 2.74% 19.39%  7.61%
DS-Guru Claude-3.5 0.00% 4.15% 2.15% 6.21% 6.68%  3499% 10.85%
one-shot Llama3-3Instruct 0.00% 1.42% 10.38% 0.98% 5.48% 9.81% 4.81%
DeepSeek-R1 0.00% 1.57% 3.39% 2.60% 8.30% 14.81%  6.35%
Qwen2-5Coder 0.00% 1.36% 2.22% 12.59% 1.15% 16.48%  6.43%
GPT-03 25% 3.53% 8.95% 19.6% 13.89% 50.73%  22.08%
GPT-40 16.67% 2.76% 8.97% 2.60% 2.80% 17.18%  8.28%
DS-Guru Claude-3.5 16.67% 1.52% 1.96% 11.21% 701%  39.16% 14.35%
few-shot Llama3-3Instruct 0.00% 1.35% 6.98% 0.93% 2.15% 1449%  4.48%
DeepSeek-R1 8.33% 2.64% 2.87% 19.08% 839%  30.29%  6.34%
Qwen2-5Coder 8.33% 2.40% 4.35% 12.64% 9.06% 16.48%  9.98%
GPT-03 41.67% 16.67 % 33.33% 50% 50% 38.1%  41.36%
smolagents DR GPT-40 33.33% 0.00% 11.11% 35% 40% 38.1%  30.77%
) Claude-3-5 33.33% 0.00% 22.22% 60% 46.67% 52.38% 41.35%
Claude-3-7 33.33% 16.67 % 44.44% 60% 63.33% 52.38% 50%

B DS-GURU DETAILS

The baseline system we provide, DS-Guru, follows a simple design. For each task, the system
provides the backend LLM with an informative sample of data from each file in the data lake first as
well as the task prompt. DS-Guru leverages instruction tuning to guide the LLM backend to provide
a Python implementation of the task pipeline as well as a structured explanation of the steps to be
taken. DS-Guru then executes the implementation and iterate with the LLM pipeline to debug and
improve the pipeline by supplying outputs and error messages.

The prompt used to instruct the LLM backend to provide a pipeline for the end-to-end task is presented
below:
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Table 10: Results by domain for KRAMABENCH on DS-Guru and smolagents DR with Oracle input
mode.

System Models . D?“‘ ams .
Archaeology  Astronomy Biomedical Environment Legal  Wildfire  Total
GPT-03 17.83% 12.93% 19.48% 19.17% 9.94%  16.13% 14.93%
GPT-40 15.09% 9.15% 12.16% 11.26% 8.88% 7.15%  10.05%
DS-Guru Claude-3.5 16.52% 10.63% 9.87% 12.51% 9.80% 0.00% 11.63%
no-context Llama3-3Instruct 14.44% 12.17% 10.24% 10.35% 8.20% 8.06% 9.93%
DeepSeek-R1 18.79% 8.53% 8.25% 12.71% 11.39%  890%  11.56%
Qwen2-5Coder 10.24% 6.74% 7.71% 7.14% 1.52% 4.53% 6.62%
GPT-03 23.90% 21.14% 18.29% 28.48% 18.49%  25.08% 22.85%
GPT-40 14.26% 10.58% 9.38% 20.37% 10.96% 19.21 14.86%
DS-Guru Claude-3-5 17.07% 10.24% 9.44% 22.27% 11.47% 17.93% 15.48%
one-shot Llama3-3Instruct 8.92% 10.44% 4.45% 12.44% 8.64%  1290% 10.23%
DeepSeek-R1 16.78% 15.23% 8.06% 14.23% 11.89%  9.65%  12.64%
Qwen2-5Coder 9.72% 11.57% 5.37% 15.13% 896%  13.22% 11.26%
GPT-03 27.78% 23.22% 19.56% 33.67% 35.14% 32.53% 31.92%
GPT-40 18.97% 19.29% 12.51% 27.14% 2523% 26.07%  23.60%
DS-Guru Claude-3-5 16.24% 14.02% 14.80% 33.83% 26.36% 25.02% 24.22%
few-shot Llama3-3Instruct 15.57% 13.85% 11.63% 19.37% 15.57% 21.56% 17.11%
DeepSeek-R1 22.29% 10.79% 9.65% 15.45% 11.75% 10.76% 13.37%
Qwen2-5Coder 11.83% 14.91% 7.51% 18.39% 13.70% 18.51% 15.15%
GPT-03 41.67% 25% 44.44% 45% 44.83% 47.62% 44.45%
smolagents DR GPT-40 25% 25% 22.22% 20% 56.67%  38.1% 39%
] ; Claude-3-5 16.67% 25% 33.33% 25% 66.66%  66.66% 47%
Claude-3-7 41.67% 33.33% 77.78% 80% 63.33% 71.43% 59%

Table 11: Results by domain for KRAMABENCH under Trimmed input lake. x marks web-browser
on.

Domains
System Metric Archaeology ~ Astronomy Biomedical Environment Legal Wildfire  Total
DS-Guru few-shot Score 25.00% 3.17% 2.71% 17.02% 16.25% 49.42% 21.78%
(GPT-03) Avg. runtime/task (min) 0.47 0.49 043 0.83 1.44 0.81 0.76
smolagents DR Claude-3-7 33.33% 33.33% 44.44% 65% 63.33% 66.67% 57.85%
Avg. runtime/task (min) 2.22 5.13 40.38 3.72 2.12 2.11 6.10
OpenAl DR% Score 40% 33.33% 44.45% 61.67% 50% 67.28%  52.18%
Avg. runtime/task (min) 8.105 20.16 10.67 53 8.68 12.62 10.35
Gemini 2.5 Pro « Score 25% 16.67% 33.33% 25% 13.33% 2487% 18.48%
: Avg. runtime/task (min) 0.64 2.44 3.49 2.3975 3.105 2314 24835
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B.1

SYSTEM PROMPT

You are a helpful assistant that generates a plan to solve the
given request, and you’ll be given:Your task is to answer the
following question based on the provided data sources.
Question: {query}

Data file names: {file_ names}

The following is a snippet of the data files: {data}

Now think step-by-step carefully.

First, provide a step-by-step reasoning of how you would arrive
at the correct answer.

Do not assume the data files are clean or well-structured
(e.g., missing values, inconsistent data type in a column).

Do not assume the data type of the columns is what you see in
the data snippet (e.g., 2012 in Year could be a string, instead
of an int). So you need to convert it to the correct type if
your subsequent code relies on the correct data type (e.g.,
cast two columns to the same type before joining the two
tables) .

You have to consider the possible data issues observed in the
data snippet and how to handle them.

Output the steps in a JSON format with the following keys:

- i1d: always "main-task" for the main task. For each subtask,
use "subtask-1", "subtask-2", etc.

- query: the question the step is trying to answer. Copy down
the question from above for the main task.

— data_sources: the data sources you need to check to answer
the question. Include all the file names you need for the main
task.

— subtasks: a list of subtasks. Each subtask should have the
same structure as the main task.

For example, a JSON object for the task might look like this:
{example_json}

You can have multiple steps, and each step should be a JSON
object. Your output for this task should be a JSON array of
JSON objects.

Mark the JSON array with {json_notation} to indicate the start
and end of the code block.

Then, provide the corresponding Python code to extract the
answer from the data sources.

The data sources you may need to answer the question are:
{file_paths}.

If possible, print the answer (in a JSON format) to each step
you provided in the JSON array using the print () function.

Use "id" as the key to print the answer.

For example, if you have an answer to subtask-1, subtask-2, and
main-task (i.e., the final answer), you should print it like
this:

print (json.dumps (

{{"subtask-1": answerl,
"subtask-2": answer2,
"main-task": answer

}}, indent=4))

You can find a suitable indentation for the print statement.
Always import Jjson at the beginning of your code.

Mark the code with {notations} to indicate the start and end of
the code block.
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B.2 ABLATION STUDIES

We have started conducted ablation studies on key hyper-parameters, using the best-performing
configuration of DS-Guru (i.e., self-correcting with GPT-03). Here are our preliminary findings:
The quality performance is positively correlated to token usage [1]. When varying the number of
rows sampled per table, our result is consistent — success goes up as we sample more rows. We
then observed a decrease at n=100, which is caused by the limited context window and our naive
sampling algorithm. DS-Guru falls back to no data snippet when the prompt exceeds the context limit.
DS-Guru showed consistent success across different numbers of maximum tries, with an initial slight
increase. This potentially has two implications: (i) compile/runtime errors are not the major cause of
failures; (ii) in a single-agent system, it may be difficult for the agent to get unstuck from a loop when
fixing the error. We will discuss this in depth in failure analysis. We will update the paper to present
these results and discuss them analytically under our 3-level evaluation framework. For reference, the
full table of results is as follows: Varying the number of rows sampled in the input data snippet.

Table 12: DS-Guru with GPT-03: performance and cost across different numbers of iterations.
Number of Iterations 5 10 15 20

Overall Performance (%) 23.36 22.83 20.73 21.33
Tokens/Iteration (Mean)  64,548.9 72,926.3 70,845.1 72,301.7

Table 13: Runtime performance by number of sampled rows per file. Runtime is in seconds.

SUT Archaeology Astronomy Biomedical Environment Legal Wildfire Overall Runtime
10 Rows 18.75 12.80 8.63 34.52 13.32 37.42 22.89 732.45
50 Rows 23.48 10.55 7.87 37.60 14.08 40.63 24.68 655.61
100 Rows 20.61 11.95 8.53 34.84 12.20 40.60 23.36 1374.82
150 Rows 21.08 10.58 8.64 31.68 13.09 39.22 22.58 802.90

Table 14: Performance by number of tries. Runtime is in seconds.

SUT Archaeology Astronomy Biomedical Environment Legal Wildfire Overall Runtime
5 Tries 20.61 11.95 8.53 34.84 12.20 40.60 23.36 1374.82
10 Tries 19.86 11.60 8.71 36.66 10.79 37.86 22.83 575.88
15 Tries 20.47 7.00 8.72 36.84 9.51 31.47 20.73 721.95

C DATASET DETAILS

The six input domains with the associated studies that we used to design our benchmark tasks are:

* Archaeology: the data files consists of chronological, archaeological, faunal, and botanical data
supporting the presence of Holocene hunter-gatherers on the Maltese Islands in the Mediterranean
from roughly 8000 years ago to 7500 years ago. The files were collected from the publicly available
data associated with the papers |Groucutt et al.| (2021)); Scerri et al.| (2025).

* Astronomy: the data files consist of the OMNI dataset |Papitashvili & King (2020a:b)) that contains
near-Earth solar wind, plasma, and magnetic field data, the Swarm dataset Siemes et al.| (2016);
European Space Agency|(2013) that contains the magnetic field and geomagnetic field data, the
SILSO Sunspot Number data|Clette & Lefevre|(2015), Space-Track.org Two-Line Element Sets
(TLEs) [U.S. Space Command| (2025)), the National Oceanic and Atmospheric Administration
(NOAA) Flux Forecast dataset|U.S. Air Force & NOAA Space Weather Prediction Center| (2025)),
and NOAA GOES Satellite dataset NOAA Office of Satellite and Product Operations|(1994). The
combination of these datasets has been used to analyze how activity from the Sun affects Earth’s
atmosphere, ocean currents, and weather by the authors of [Briden et al.| (2023)); [Parker & Linares
(2024).

* Biomedical: the data files consist of the prote-ogenomic characterization of 95 prospectively
collected endometrial carcinomas, respectively for 83 endometrioid and 12 serous tumors. Extensive
analysis are done on these datasets to understand proteomic markers of tumor subgroups and
regulatory mechanisms in the papers |Dou et al.| (2020); Gillette et al.| (2020).
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Table 15: Detailed breakdown of per-domain tasks in KRAMABENCH. Reproduced from [Table 3

Domain #tasks #subtasks % Hard Tasks # datasets # sources File size
Archeology 12 71 50.00% 5 2 7.5MB
Astronomy 12 68 50.00% 1556 8 436MB
Biomedical 9 38 66.66% 7 2 175MB
Environment 20 148 70.00% 37 3 31MB
Legal 30 188 53.33% 136 2 1.3MB
Wildfire 21 120 71.42% 23 7 1GB
Total 104 633 60.58% 1764 24 1.7GB

* Environment: the data files consist of beach water quality dataset from Massachusetts Environ-
ment Public Health Tracking (EPHT) Massachusetts Department of Public Health| (2025b)), the
Massachusetts Bay beach dataset from Massachusetts Water Resources Authority (MWRA) Mas+
sachusetts Water Resources Authority| (2025b)), and the rainfall dataset from NOAA National
Weather Service [National Weather Service|(2025)), from 2002 to 2025. The data has been used in
yearly reports Massachusetts Department of Public Health|(2025a); Massachusetts Water Resources
Authority| (2025a)) to uncover trends in beach water pollution and the correlation between rainfall
and water quality.

» Legal: the datasets consists of 136 data files, accessible through the Federal Trade Commission
(FTC) portal [Federal Trade Commission|(2025b) and Wikipedia|[Wikipedia contributors| (2025]),
including information on merger filings, civil penalty actions, etc. The data is used in visualizations
and dashboards that analyze nation-level debt collection and fraud detection, available at|Federal
Trade Commission| (2025cfa)).

» Wildfire: the datasets consists of NOAA wildfire dataset National Centers for Environmental
Information (NCEI)|(2025)), National Interagency Fire Center (NIFC) Fire Information National
Interagency Fire Center| (2025)), US Environmental Protection Agency (EPA) Air Quality Annual
Data |U.S. Environmental Protection Agency| (2025), US Election 2020 Dataset Fontes| (2020)),
Zillow Home Value Index DatasetRobikscube| (2021)), US Census 2020(U.S. Census Bureau| (2025)),
and the Large wildfire Incident Status Summary |Young et al|(2021) to understand wildfire incident
location, cause, and consequences in the US from 2002 to 2016. This data has been used for
analysis in the reports published by the NOAA and NIFC NCEI.Monitoring.Info @noaa.gov|(2025));
Center .

D TASK DETAILS

Across the 6 workloads, we supply 104 end-to-end data science pipelines. The table for the overall
breakdown of the tasks over the workloads is reproduced at[Table T5|for convenience. In this section,
we use an example from the archeology workload to explain the organization of tasks.

Each workload is associated with a data lake consisting of tabular data and unstructured textual data.

archeology/input/:
climateMeasurements.xlsx
conflict_brecke.csv
radiocarbon_database_regional.xlsx
roman_cities.csv
worldcities.csv

Before tasks in a workload are sent to the system under test, the system receives the directory where
the data lake resides and may index it offline. When tasks are prompted, the system should not receive
information on which files in the data lake the task pertains to. Each end-to-end task is specified with
a high-level natural language prompt. Consider the following example of end-to-end task from the
archeology domain:
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What is the average Potassium in ppm from the first and last
time the study recorded people in the Maltese area? Assume
that Potassium is linearly interpolated between samples.
Round your answer to 4 decimal places.

For evaluating the performance of our systems, we use three artifacts:

1. The end-to-end ground truth answer used to calculate the overall end-to-end score.

2. A sequence of key functionalities, extracted from a manually verified reference implementa-
tion for the solution in Python.

3. A sequence of subtasks, natural language questions whose correct answer depends on correct
code implementation of a key functionality.

The key functionalities are manually refined to correspond to the functionalities that should exist in
any pipeline that produces the correct output. The sequence of key functionalities for the example
end-to-end task above is the following:

1. Load the radiocarbon_database_regional.xlsx and
climateMeasurements.xlsx and read the first worksheet
of each.

2. Remove rows or columns that are entirely NaN or do not
contain relevant information from both dataframes to
ensure clean numeric processing.

3. Convert both chronologies to calendar years: for the
radio-carbon table get the year as 1950 minus the
"date’

4. Convert both chronologies to calendar years: for the

climate table get the year as 1950 minus the rounded
"Age_ky.1l’” (in thousands of years) multiplied by 1000.

5. Determine the span of human presence in the Maltese
area by taking the minimum and maximum ’year’ in the
radio-carbon dataframe.

6. For every integer year within the human presence
span, locate the closest earlier and later rows in the
climate dataframe and linearly interpolate (or directly
return) the Potassium value 'K’ and collect all these
values.

7. Compute the mean of the collected Potassium values.

For each key functionality, we supply a subtask associated with the key functionality. Each subtask
is annotated with the ground truth subtask answer. These subtasks are used to verify the code
implementation capabilities of systems under test. Note that among correct pipeline implementations
for the end-to-end task, key functionalities may be ordered or composed differently. The subtasks
associated to the end-to-end example task are:
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Table 16: Answer type and example questions

Type Example Metric Scoring
String (exact)  The name of a file to load. Accuracy 0/1
String The month when an experiment ~ ParaPluie paraphrase de- 0/1
(approximate) started. tection (Lemesle et al.]

2025)
Numeric Counting the number of entries ~ Accuracy 0/1
(exact) satisfying a predicate.
Numeric Prediction of a future experiment ~ Relative Absolute Error  1/(1 + RAE)
(approximate) —observation. (RAE) |5 — y|/]y|
List (exact) Names of columns to filter data. F1 (exact match) F1 score
List Regression coefficients for dif- F1 score (approximate F1 score
(approximate) ferent variables. match > 0.9)

1. Which files contain information about Potassium in ppm
and the maltese people?

2. What are the indices (0-indexed) in rows in the climate
measurement dataframe that must be cleaned?

3. What are the calendar years in the radiocarbon table?

4. What are the calendar years in the climate table?

5. What are the minimum and maximum years of radiocarbon
dating for the Malta region?

6. What are the Potassium values for each integer year
between -7580 and -4050 (included)? If the value is
not available, use interpolatation between the closest
earlier and later values.

7. What is the mean potassium value for the years between
-4462 and -4055? Use 4 decimal places.

E EVALUATION DETAILS

Considering the broad nature of data science tasks, and the challenges in correctly evaluating their
design and implementation, KRAMABENCH evaluates systems on three capabilities. From the most
to the least automated: (1) End-to-end automation (2) Pipeline design (3) Sub-task implementation.

We are primarily interested in systems that can solve end-to-end data science tasks fully correctly,
which drives our main evaluation metric to be the result from the end-to-end automation setting.

E.1 MAIN METRIC: END-TO-END AUTOMATION SETTING

Each task in KRAMABENCH has a manually validated target output and is scored from [0,1]. Since
pipelines might be composed of steps with varying nature, we identify six possible answer types for
the target output. summarized and discussed in [Table ? For each answer type, we choose a scoring
scheme normalized to the range [0, 1], also shown in|Table 3] When tested, the total score of system
F for a workload W is defined solely based on the end-to-end correctness as

ZTeW score(F(T))
14

Each T is a task belonging to workload W, and |WW| is the number of tasks in workload W. The
overall score for the entire benchmark suite is defined analogously.
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E.2 ADDITIONAL EVALUATION SETTINGS

A system that cannot provide fully correct end-to-end results may still be helpful for end-users via
assisting them in the process of data pipeline design and implementation. Motivated by the goal
of assessing this type of helpfulness of systems, we conduct evaluations under two less-automated
settings. In Section [4| detailing our experiments, we report these results as micro-benchmarks in
[Table &

Pipeline Design: This setting evaluates how many essential functions a system-generated pipeline
includes. Here, we ask the system to provide an end-to-end pipeline implemented in Python that
solves an end-to-end task. For evaluation, we manually curated an explicit list of key functionalities
that any correct solution must implement for each task. We evaluate whether the generated pipeline
code covers each functionality using the LLM evaluation method proposed in|{Tong & Zhang| (2024).
The score for a single task is computed as

ZfeKF(T) Judge(f, P)
[KF(T)]

Here, K F(T') denotes the set of human-annotated key functionalities for task 7', | K F(T)]| is the
number of those functionalities, f represents a single functionality, P is the pipeline the system
generated under test, and Judge is a binary decision from an LLM-based evaluator indicating wether
P contains the key functionality f. The overall score across a workload/the entire benchmark is the
average of the individual task scores.

Sub-task Implementation: This setting evaluates the system’s ability to correctly implement simpler,
lower-level functionalities and individual data tasks required to solve the entire challenge when
explicitly prompted. We provide the system with problem statements of sub-tasks generate in Step
4 of the benchmark curation. Each sub-task corresponds to a key functionality and represents an
intermediate step within the full end-to-end pipeline, operating over the gold subset of the data lake.
We assess sub-task performance by comparing the system’s intermediate outputs to human-annotated
references, using an evaluation approach similar to the end-to-end automated method described earlier
in this section.

F SUMMARY OF LLM USAGE

In this section, we summarize our usage of LLMs in compliance with the conference policy. We used
LLMs for the following purposes

1. LLMs were used for the semi-automated generation of fine-grained annotations for the
benchmark. However, contributors manually improved and verified all annotations. This is
described in detail in[Subsection 2.1

2. LLMs are an integral part of the systems we evaluated. Their roles in the systems are

described in detail in[Subsection 2.3|and [Section 3|

3. LLM-as-a-judge were used to evaluade string paraphrases and code coverage. This is
described in detail in[Appendix E]

4. LLMs were used to generate better documentations in our repository.

In addition to these research-level involvement of LLMs, we also used LLMs for table formatting
and paraphrasing some sentences already written by authors in favor of brevity.
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