

SegMix: A Simple Structure-Aware Data Augmentation Method

Anonymous ACL submission

Abstract

Interpolation-based Data Augmentation (DA) methods (Mixup) linearly interpolate the inputs and labels of two or more training examples. Mixup has more recently been adapted to the field of Natural Language Processing (NLP), mainly for sequence labeling tasks. However, such a simple adoption yields mixed or unstable improvements over the baseline models. We argue that the direct-adoption methods do not account for structures in NLP tasks. To this end, we propose **SegMix**, a collection of interpolation-based DA algorithms that can adapt to task-specific structures. SegMix poses fewer constraints on data structures, is robust to various hyperparameter settings, applies to more task settings, and adds little computational overhead. In the algorithm’s core, we apply interpolation methods on task-specific meaningful segments, in contrast to applying them on sequences as in prior work. We find SegMix to be a flexible framework that combines rule-based DA methods with interpolation-based methods, creating interesting mixtures of DA techniques. We show that SegMix consistently improves performance over strong baseline models in Named Entity Recognition (NER) and Relation Extraction (RE) tasks, especially under data-scarce settings. Furthermore, this method is easy to implement and adds negligible training overhead.

1 Introduction

Initially proposed as *Mixup* for computer vision tasks, interpolation-based Data Augmentation (DA) (Zhang et al., 2018) linearly interpolates the inputs and labels of two or more training examples. Inspired by *Mixup*, several attempts have been made to apply interpolation-based DA to NLP, mainly in sequence labeling tasks (Guo et al., 2020). However, the proposed embedding-mix solution does not extend well to tasks with structured labels. For example, mixing two sentences with different

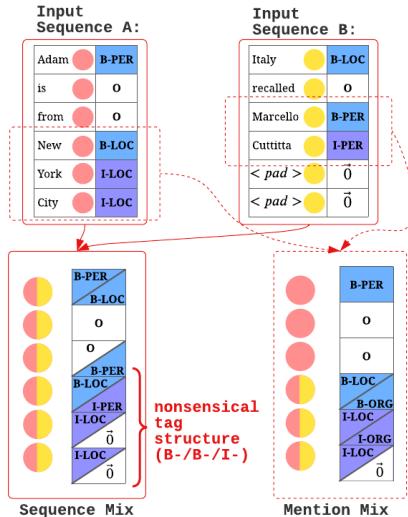


Figure 1: Example of SegMix v.s. Whole-sequence Mixup for NER. Each colored block is an entity.

structures usually generates a non-sensical output. As demonstrated in Fig. 1, when working with entity spans, Whole-sequence Mixup¹ produces non-sensical entity labels like a mixture of nonentity and entity ([O/B-PER]) and consecutive beginning labels ([O/B-PER], [B-LOC/I-PER]). Such noisy augmented data tend to mislead the model, especially in data-scarce settings. As shown in Chen et al. (2020a), without additional constraints on the augmented data, applying Whole-Sequence Mixup results in performance worse than baseline.

Instead of using extra heuristic constraints to filter out low-quality augmented data, it may be more efficient and effective to bring structure awareness into the mixing process from the beginning. To this end, we propose **Segment Mix (SegMix)**, a DA method that performs linear interpolations on meaningful, task-specific segments. Virtuous training examples are created by replacing the original segments with the interpolation of pairs of segment embeddings. As in Fig. 1, the embedding of a location entity (“New York City”) is mixed with the

¹Guo et al. 2020 is referred to as Whole-sequence Mixup to avoid confusion with SeqMix of Zhang et al. 2020.

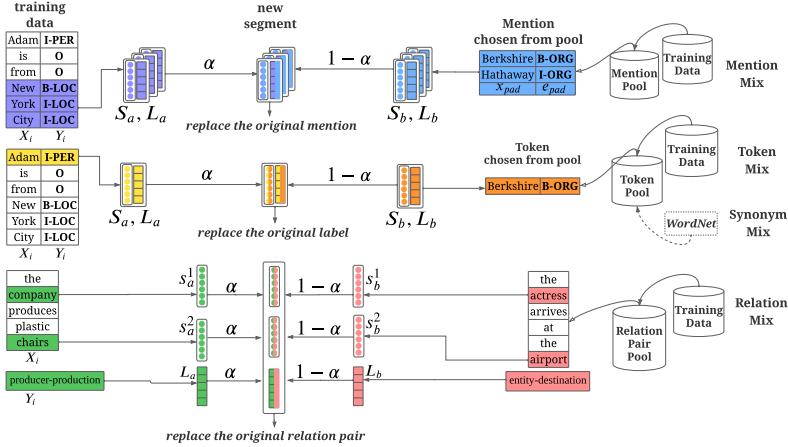


Figure 2: Four variations of SegMix (MMix, TMix, SMix, and RMix). The left is the original training sequence. The colored blocks are the segments to be mixed. The segments on the right are randomly sampled from the predefined Segment Pool. Mention Pool, Token Pool, and Relation Pair Pool are constructed from the training data, while the Synonym-token Pool is constructed with the WordNet (Miller, 1995a) and returns a synonym of the chosen token. The segment embeddings and one-hot encodings of labels are mixed with ratio α .

embedding of a person entity (“Marcello Cuttitta”). We exploit the benefit of linear interpolation while keeping the target structure more sensible.

Furthermore, SegMix imposes few restrictions on the original tasks, mixing pairs, or generated examples. On the one hand, this potentially allows one to explore a much larger data space. For example, it allows mixing training samples with various sentence lengths and structures. On the other, it means that SegMix can be applied to other NLP tasks in addition to sequence labeling.

This paper tests SegMix against Named Entity Recognition (NER) and Relation Extraction (RE), two typical Information Extraction tasks with text segments. We show that SegMix improves upon the baselines under data-scarce settings, and demonstrate its robustness under different hyperparameter settings, which is not the case for simple sequence-based Mixup methods. SegMix is easy to implement² and adds little computational overhead to training and inference.

2 Related Work

Many NLP tasks involve dealing with data with structures, while a popular area is structured prediction. These tasks often involve extracting a predefined target structure from the input data (Lafferty et al., 2001; Collins, 2002; Ma and Hovy, 2016). NER aims to locate and classify the named entities mentioned in unstructured text. There have been several attempts to apply algorithms similar to *Mixup* to sequence labeling tasks such as

NER (Chen et al., 2020a; Zhang et al., 2020). These tasks have linear structures that allow for simple sequence-level mixing methods. RE aims to detect the semantic relationship between a pair of nominals. Unlike NER, RE models typically do not use a linear encoding scheme such as BIO, making sequence-level mixing non-trivial. To the best of our knowledge, interpolation-based DA methods have not been applied to such tasks.

Rule-based DA Rule-based DA specifies rules for inserting, deleting, or replacing parts of text (van Dyk and Meng, 2001). Easy Data Augmentation (EDA) (Wei and Zou, 2019) proposed a set of token-level random perturbation operations (insertion, deletion, and swap). SwitchOut (Wang et al., 2018) randomly replaces tokens in the sentence with random words. WordDrop (Sennrich et al., 2016) drops tokens randomly. Existing work also brings structure awareness into DA. Substructure Substitution (SUB) (Shi et al., 2021) generates new examples by replacing substructures (e.g., subtrees or subsequences) with ones with the same label. SUB applies to POS tagging, parsing, and token classification. A similar idea is proposed for NER (Dai and Adel, 2020). Mention Replacement (MR) and Label-wise Token Replacement (LwTR) substitute entity mention and token with those with the same label. Synonym Replacement (SR) replaces token with a synonym retrieved from WordNet (Miller, 1995b). Xu et al. 2016 reverses dependency sub-paths and their corresponding relationships in relation classification. Şahin and Steedman 2018 crops and rotates the

²We will release the experiment code base.

dependency trees for POS tagging. Su et al. 2021 presents a contrastive pre-training method to create more generalized representations for RE tasks. It introduces a DA technique where text contained in the shortest dependency path is kept constant and other tokens are replaced. Generally, these methods explore the vicinity area around the data point and assume that they share the same label.

Interpolation-based DA Originally proposed for image classification tasks, *Mixup* (Zhang et al., 2018) performs convex combinations between a pair of data points and their labels. *Mixup* improves the performance of image classification tasks by regularizing the neural network to favor simple linear behavior between training examples (Zhang et al., 2018). Several adaptations of *Mixup* have been made in NLP tasks. TMix (Chen et al., 2020b) performs an interpolation of text in a hidden space in text classification tasks. Snippext (Miao et al., 2020) mixes BERT encodings and passes them through a classification layer for sentiment analysis tasks. AdvAug (Cheng et al., 2020) mixes adversarial examples as an adversarial augmentation method for Neural Machine Translation.

However, direct application of Whole-Sequence Mixup yields limited improvement in tasks involving structured data. As empirically shown in LADA (Chen et al., 2020a) on NER, the direct mixing of two sentences changes both the local token representation and the context embeddings required to identify the entity mention (Chen et al., 2020a). This is also demonstrated in Fig. 1, the generated data can sometimes be too noisy to help with model training. In fact, LADA has to add additional constraints by mixing the sequences only with its k -nearest neighbors to reduce the noise (Chen et al., 2020a). Similarly, SeqMix (Zhang et al., 2020) scans both sequences with a fixed-length sliding window and mixes the subsequence within the windows. However, this approach does not eliminate the problem of generating low-quality data — extra constraints are still used to ensure the quality of generated data. These constraints limit the explorable data space close to the training data. What is more, they complicate the algorithms and add non-negligible computational overheads.

3 Method

We propose SegMix and implements 4 variants, namely MentionMix (MMix), TokenMix (TMix), SynonymMix (SMix), and RelationMix (RMix).

As shown in Fig. 2, after defining the task-dependent segment, we create a new training sample by replacing a segment of the original sample with a mixed embedding of the segment itself and another randomly drawn segment. These mixed embeddings are then fed into the encoder. Algorithm 1 presents the SegMix generation process.

Algorithm 1 SegMix generation algorithm

```

1: Input:  $\mathcal{D}, \mathcal{P}^k, r$ 
2:  $\mathcal{D}_A \leftarrow \{\}, \mathcal{D}_S \leftarrow \text{sample}(\mathcal{D}, \text{len}(\mathcal{D}) \cdot r)$ 
3: for  $(X_i, Y_i)$  in  $\mathcal{D}_S$  do
4:    $E_i, O_i \leftarrow \text{Emb}(X_i), \text{OHE}(Y_i)$ 
5:    $\lambda \leftarrow \text{Beta}(\alpha, \alpha)$ 
6:    $S_a, l_a \leftarrow k$  segment tuples in  $X_i, Y_i$ 
7:    $S_b, l_b \leftarrow k$  segment tuples in  $\mathcal{P}$ 
8:    $X'_i, Y'_i \leftarrow X_i.\text{copy}(), Y_i.\text{copy}()$ 
9:   for  $s_a^j, s_b^j$  in  $S_a, S_b$  do
10:     $e_a, e_b = \text{Emb}(s_a), \text{Emb}(s_b)$ 
11:     $start, end \leftarrow \text{index range of } s_a^j \text{ in } X_i$ 
12:     $\tilde{e}_a^j, \tilde{e}_b^j \leftarrow \text{pad\_to\_longer}(e_a^j, e_b^j)$ 
13:     $E_i[start : end] \leftarrow \tilde{e}_a^j \cdot \lambda + \tilde{e}_b^j \cdot (1 - \lambda)$ 
14:   end for
15:   for  $l_a^j, l_b^j$  in  $l_a, l_b$  do
16:      $o_a, o_b = \text{OHE}(l_a), \text{OHE}(l_b)$ 
17:      $start, end \leftarrow \text{index range of } l_a^j \text{ in } Y_i$ 
18:      $\tilde{o}_a^j, \tilde{o}_b^j \leftarrow \text{pad\_to\_longer}(o_a^j, o_b^j)$ 
19:      $O_i[start : end] \leftarrow \tilde{o}_a^j \cdot \lambda + \tilde{o}_b^j \cdot (1 - \lambda)$ 
20:   end for
21:    $\mathcal{D}_A.\text{add}((E_i, O_i))$ 
22: end for
23: Output:  $\mathcal{D}_A$ 

```

Formally, consider a training dataset $\mathcal{D} = \{(X_i, Y_i) | i \in N\}$ of size N , where each input X_i is a sequence of tokens $X_i = (X_i^1, X_i^2, \dots)$ and a task-dependent structured output Y_i , a structured prediction algorithm generally encodes the output Y_i using a task-dependent scheme. For example, NER labels are often encoded with the BIO scheme while RE labels are associated with a pair of nominal phrases. SegMix adapts to different encoding schemes by designing task-dependent segments.

A segment $s(u, v)$ is a continuous sequence of tokens $(X_i^u, X_i^{u+1}, \dots, X_i^v)$ in sample X_i , a segment tuple $S = [s_i(u_i, v_i), \dots]$ is a k -ary tuple of segments contained in the sequence. We choose a segment tuple relevant to the task and associate it with an appropriate label list $L = [l_i, \dots]$. For example, in RE, there are segment tuple of length 2, which contains the pair of nominals in a relation.

203 A Segment Pool of size $M: \mathcal{P}^k = \{(S_i, L_i) | i \in$
 204 $M\}$ is generated by collecting segment tuples S_i
 205 from the training data or an external resource (e.g.
 206 *WordNet*). Here, k is a constant for a specific task.
 207 For example, in RE, there are binary segment tuple
 208 containing a pair of nominals.

209 With the training data set \mathcal{D} , the Segment Pool
 210 \mathcal{P}^k , and the mix rate r , SegMix $(\mathcal{D}, \mathcal{P}^k, r)$ returns
 211 an augmented data set \mathcal{D}_A of size $r \cdot N$. A set \mathcal{D}_S
 212 of size $r \cdot N$ is first drawn from the training data
 213 \mathcal{D} as candidates for augmentation. For each data
 214 point (X_i, Y_i) drawn from \mathcal{D}_S , we randomly pick
 215 a segment tuple S_a and the corresponding label list
 216 L_a from the sequence X_i . The mix for candidate
 217 $X_i, (S_b, L_b)$, is then drawn from the Segment Pool.

218 Let Emb be an embedding function on $\mathbb{R}^V \mapsto$
 219 \mathbb{R}^D , where V is the size of the vocabulary and D is
 220 the embedding dimension. Let OHE be a function
 221 that returns the one-hot encoding of a label.

222 For all $s_a, s_b = S_a[i], S_b[i], 1 \leq i \leq \text{len}(S_a)$,
 223 and $l_a, l_b = L_a[j], L_b[j], 1 \leq j \leq \text{len}(L_a)$.
 224 Define $e_a, e_b = \text{Emb}(s_a), \text{Emb}(s_b), o_a, o_b =$
 225 $\text{OHE}(l_a), \text{OHE}(l_b)$.

226 The embeddings and one-hot encodings are then
 227 padded according to sequence length (line 12, 18).
 228 Let $\tilde{e}_a, \tilde{e}_b, \tilde{o}_a, \tilde{o}_b$ be the padded version of the em-
 229 beddings and one-hot encodings. Finally, in line
 230 13, 19, we perform a linear interpolation between
 231 \tilde{e}_a, \tilde{e}_b and \tilde{o}_a, \tilde{o}_b with a mix rate λ chosen randomly
 232 from a Beta distribution (see specifications in 4.1):

$$233 \begin{aligned} e'_a &\leftarrow \tilde{e}_a \cdot \lambda + \tilde{e}_b \cdot (1 - \lambda) \\ o'_a &\leftarrow \tilde{o}_a \cdot \lambda + \tilde{o}_b \cdot (1 - \lambda) \end{aligned} \quad (1)$$

234 In Eq.1, \cdot is a scalar multiplication and $+, -$ are
 235 vector element-wise operations. When $\lambda = 1$,
 236 the augmented data falls back to the original one.
 237 When $\lambda = 0$, the segments are completely re-
 238 placed by those drawn from the pool, equivalent to
 239 replacement-based DA techniques.

240 Finally, the augmented data point is generated by
 241 copying the original data and replacing the chosen
 242 segment and labels with the mixed version. We
 243 present 3 variations of SegMix for NER and 1 for
 244 RE with different types of Segment Pool \mathcal{P}^k .

245 **MentionMix** Inspired by MR, MMix performs
 246 linear interpolations on a mention level (a contiguous
 247 segment of tokens with the same entity label).
 248 A Mention Pool \mathcal{P}^1 is constructed by scanning the
 249 training data set and extracting all mention seg-
 250 ments and their corresponding labels. Thus, each
 251 segment tuple is composed of a single mention and

252 a list of entity labels encoded with the BIO scheme.
 253 This method can also be viewed as a generaliza-
 254 tion of (SUB) (Shi et al., 2021) which performs a
 255 soft-mix of substructures of varying lengths.

256 **TokenMix** Inspired by LwTR, TMix performs
 257 linear interpolations at the token level. We use
 258 tokens with entity labels in the BIO scheme of
 259 training data sets as a token pool \mathcal{P}^1 . Each segment
 260 tuple is composed of a single token and its label.

261 **SynonymMix** Inspired by SR, the Synonym Pool
 262 \mathcal{P}^1 returns a synonym of the token in the original
 263 sequence based on *WordNet* (Miller, 1995b). We
 264 assume the two synonyms share the same label,
 265 thus interpolation only happens within input.

266 **RelationMix** Since each relation is composed of
 267 two possibly nonadjacent nominals in a sentence,
 268 we construct a pool \mathcal{P}^2 with groups of two nomi-
 269 nals and a relation label³. During the mixing phase,
 270 the two nominals and their corresponding relation
 271 labels are mixed with a pair of nominals from \mathcal{P}^2 .

4 Experiments

	Language	Task	# Instances
CoNLL-03	English	NER	14987
<i>Kin</i>	Kinyarwanda	NER	626
<i>Sin</i>	Sinhala	NER	753
SemEval	English	RE	8000
DDI	English	RE	22233
Chempert	English	RE	18035

272 Table 1: Dataset Statistics

273 **Datasets** We conduct SegMix experiments
 274 mainly on 3 datasets for NER and 3 for RE on
 275 a variety of domains and languages. An NER task
 276 is to recognize mentions from text belonging to
 277 predefined semantic types, such as person, loca-
 278 tion, and organization. An RE task requires one to
 279 classify the relation type between two prelabeled
 280 nominals in a sentence. Some basic dataset statis-
 281 tics are included in Table. 1⁴.

282 (1) CoNLL-03 (Sang and Meulder, 2003), an En-
 283 glish corpus for NER containing entity labels
 284 such as person, location, organization, etc.⁵

285 ³The direction of the relation is implied by the labels. For
 286 example, the label list contains both producer-product (e1,e2)
 287 and producer-product (e2,e1)

288 ⁴Since no down-sampling settings are included in
 289 LORELEI-Kin and Sin, we report the results as a single value.

290 ⁵We also conduct experiments on GermEval, a German

285 (2) LORELEI (Strassel and Tracey, 2016) which
286 contains NER annotations for text in lan-
287 guages Kinyarwanda (*Kin*) and Sinhala (*Sin*).
288 (3) SemEval-2010 Task 8 (Hendrickx et al.,
289 2010), an English corpus for RE task, contain-
290 ing 9 relation types that include cause-effect,
291 product-producer, instrument-agency, etc.
292 (4) DDI (Herrero-Zazo et al., 2013), a biomedical
293 dataset manually annotated with drug-drug
294 interactions, containing 4 relationship types.
295 (5) ChemProt (Krallinger et al., 2017), a biomedical
296 dataset annotated with chemical-protein
297 interactions, containing 4 interaction types.

298 **Data Sampling** For true low-resource languages
299 Kinyarwanda and Sinhala (data sizes of LORELEI-
300 *Sin* and LORELEI-*Kin* are less than 5% of the
301 CoNLL-03 English dataset), we use all avail-
302 able data. To create difference scarce set-
303 tings for CoNLL-03, we subsample a range of
304 sizes (200, 400, 800, 1600, 3200, 6400, 12800) of
305 the original training data as the training set. The
306 augmentation algorithm can only access the down-
307 sampled training set. We use 5 different random
308 seeds to subsample the training set of each size
309 and report both mean and standard deviation as
310 $(\mu \pm \sigma)$. The validation and test dataset are
311 unchanged. For LORELEI, we deleted all data sam-
312 ples that only have character "-". Therefore, there
313 are some discrepancies between our reported data
314 number and the original paper. For RE, we sub-
315 sample (100, 200, 400, 800, 1600, 6400) from the
316 original training data as the training set. We do
317 not continue experiments for larger sizes since the
318 improvement from DA diminished.

319 **Settings** For each data split, we conduct exper-
320 iments on 12 settings for NER — 2 interpolation-
321 based DA (Inter+Intra LADA⁶, Whole-sequence
322 Mixup⁷), 3 replacement based DA (MR, SR,
323 LwTR)⁸, and 6 variations of SegMix (MMix, TMix,
324 SMix, and their combinations MMix + SMix,
325 MMix + TMix, MMix + TMix + SMix) with a
326 fixed 0.2 augmentation rate. We use the BIO tag-
327 ging scheme (Màrquez et al., 2005) to assign la-
328 bels to each token in NER tasks. In RE tasks, we
329 compare RMix with Relation Replacement. Gold

330 NER dataset. The results and trends are similar to those in
331 CoNLL-03, and are presented in the Appendix. A.1

332 ⁶We used implementation available at <https://github.com/GT-SALT/LADA>.

333 ⁷Implemented by setting segments as whole sequences.

334 ⁸Implemented as SegMix where mix rate is 1.

330 standard nominal pairs are used.

331 All the methods are evaluated with F1 scores.
332 For *Kin* and *Sin*, we report the average F1 scores
333 over 10 folds with cross-validation, which is con-
334 sistent with Rijhwani et al. 2020.

4.1 Implementation Details

335 For our experiments, we adopt the pretrained BERT
336 and RoBERTa models⁹ as the encoder, and a linear
337 layer to make prediction, with soft cross-entropy
338 loss. The pretrained BERT model is adopted for
339 each language whereas due to computation ex-
340 penses, we adopted the pretrained RoBERTa model
341 for experiments on only the CoNLL-03 dataset.
342 For pseudo-data-scarce settings (CoNLL-03, DDI,
343 Chemprot, and SemEval), we train all the models
344 for 100 epochs with early stopping and take the
345 checkpoint with the maximum validation score on
346 the development dataset as the final model. For *Kin*
347 and *Sin*, under each data split, we train the model
348 for 100 epochs and report the F1 score. The initial
349 weight decay is 0.1 and α is 8 for both models.
350 Additionally, learning rates for all settings are set
351 to $5e - 5$ for the BERT model and $1e - 4$ for the
352 RoBERTa model.

4.2 Results and Analysis

353 **NER** The results for the three NER datasets un-
354 der data-scarce settings with BERT and RoBERTa
355 are shown in Table 2. Fig. 3 includes the results
356 for CoNLL-03 under all data settings with BERT.
357 Under all settings, SegMix or a combination of Seg-
358 Mix achieves the best result compared with other
359 interpolation- and replacement-based methods. For
360 BERT, the best performing SegMix improves the
361 baseline by 2.7 F1 in CoNLL-03 with the 200 sam-
362 ple setting, 1.5 F1 for *Kin*, and 5 F1 for *Sin*. As
363 for RoBERTa, SegMix and its variants perform bet-
364 ter compared to the baseline RoBERTa model in
365 all simulated data-scarce scenario with CoNLL-03.
366 For example, the best performing SegMix variant
367 with RoBERTa improves the baseline by 1.2 F1 on
368 CoNLL-03 under the 200-sample setting. SegMix
369 proves to be effective under both down-sampled
370 settings and true low-resource settings. These re-
371 sults are consistent with our hypothesis that the
372 “soft” mix of data points in structure-aware seg-
373 ments yields better results than “hard” replacement
374 or mixing on sequences. In comparison, LADA
375 has an unstable performance under data-scarce set-
376

377 ⁹The model choices are included in Appendix A.2.

Data Size	CoNLL-03			Kin	Sin
	200	400	800	626	753
BERT	76.03 \pm 0.57	81.20 \pm 0.29	84.34 \pm 0.33	82.29	75.02
BERT + LADA	70.46 \pm 0.84	81.98 \pm 0.16	84.53 \pm 0.09	76.02	60.43
BERT + SeqMix	77.10 \pm 1.04	81.55 \pm 0.66	84.89 \pm 0.27	83.13	78.93
BERT + Whole-seq Mix	75.11 \pm 0.62	81.94 \pm 0.14	84.61 \pm 0.18	82.35	79.17
BERT + MR	77.86 \pm 0.36	81.49 \pm 0.17	84.21 \pm 0.29	83.46	78.62
BERT + LwTR	76.69 \pm 0.49	81.13 \pm 0.36	84.56 \pm 0.37	82.42	78.17
BERT + SR	77.35 \pm 0.29	81.33 \pm 0.32	85.10 \pm 0.11	82.51	78.38
BERT + MMix †	78.51 \pm 0.34	82.98 \pm 0.61	85.37 \pm 0.59	83.37	79.50
BERT + TMix †	78.75 \pm 0.49	82.28 \pm 0.30	85.51 \pm 0.21	83.85	78.63
BERT + SMix †	77.95 \pm 0.38	82.51 \pm 0.36	85.33 \pm 0.19	83.31	79.38
BERT + MMix + SMix †	78.45 \pm 0.26	82.39 \pm 0.21	85.66 \pm 0.25	82.81	79.83
BERT + MMix + TMix †	78.46 \pm 0.26	82.39 \pm 0.24	85.82 \pm 0.21	82.75	80.31
BERT + MMix + SMix + TMix †	78.21 \pm 0.28	82.36 \pm 0.34	85.26 \pm 0.27	82.83	78.05
RoBERTa †	74.08 \pm 0.27	78.89 \pm 0.59	82.28 \pm 0.23	—	—
RoBERTa + MMix †	75.31 \pm 0.52	80.09 \pm 0.49	83.37 \pm 0.54	—	—
RoBERTa + TMix †	74.55 \pm 0.37	79.44 \pm 0.35	83.22 \pm 0.80	—	—
RoBERTa + SMix †	75.18 \pm 0.42	79.80 \pm 0.45	83.49 \pm 0.39	—	—

Table 2: F1 scores for NER in data-scarce settings (downsampled CoNLL-03 and LORELEI (*Kin* and *Sin*)) using SegMix compared with interpolation- and replacement-based DA methods. We use 5 different random seeds for down-sampled datasets and report their averaged performance and standard deviation as $\mu \pm \sigma$. For LORELEI, we report the 10-fold cross-validation result. Although there is no one best performing variant of SegMix for all settings, we observe that for all variants, SegMix had the best performance compared to the baseline in all settings and other DA techniques in most settings. †denotes our methods.

378 ttings. It produces worse results than the baseline
 379 under the CoNLL-03 with 200 samples, and in both
 380 low-resource languages *Kin* and *Sin*, while SegMix
 381 shows consistent improvements.

382 One notable trend is that most DA methods pro-
 383 vides a larger improvement on *Sin* in compared
 384 to *Kin*. Notice that even with the same model ar-
 385 chitecture, the baseline performance of *Sin* is con-
 386 siderably lower compared to the performance of
 387 *Kin* and English of similar data sizes. This could
 388 be due to the fact that multilingual BERT trans-
 389 fers better between languages that share more¹⁰
 390 word order features (Pires et al., 2019). Given the
 391 lower baseline, many DA methods provide larger
 392 improvements in *Sin* compared to *Kin*, and our
 393 SegMix variants score around 80 F1 scores. This
 394 shows that DA methods are generally very valuable
 395 for low resource and understudied languages.

396 **RE** For RE, we compare RMix with the base-
 397 line and Relation Replacement (replacing nominal
 398 pairs). The results are presented in Fig.3. We find
 399 that simple replacement sometimes worsens the
 400 baseline performance, while RMix consistently im-
 401 proves the baseline. We analyze its performance

¹⁰While both the Kinyarwanda-BERT and Sinhala-BERT are transferred from M-BERT, the number of common grammatical ordering WALS features (Dryer and Haspelmath, 2013) is 3 between Kinyarwanda and English and 1 for Sinhala. These features are 81A, 85A, 86A, 87A, 88A and 89A.

402 on increasing percentages of training data to simu-
 403 late pseudo-data-scarce settings, as well as settings
 404 with ample training data. We observe a consis-
 405 tent improvement performance of RMix over re-
 406 placement based methods, and at least comparable
 407 performance with the baselines. SegMix performs
 408 well in data scarce settings, more specifically, on
 409 scenarios with less than approximately 1000 train-
 410 ing examples. For example, in case of the DDI
 411 dataset, SegMix performs at least 2 F1 scores bet-
 412 ter compared to the baseline in these scenarios.

413 **Robustness with respect to augmentation**
 414 **rate** From previous results on sequence-level
 415 Mixup (Zhang et al., 2020; Chen et al., 2020a), we
 416 observe that the performance of the model tends to
 417 drop below the baseline as the augmentation rate in-
 418 creases above a certain value. Furthermore, the op-
 419 timal augmentation rate varies under different ini-
 420 tial data settings: a good augmentation rate for the
 421 200-sample might not be good for the 800-sample.
 422 With BERT, for example, a 0.2 augmentation rate
 423 improves upon baseline under the 200-sample set-
 424 ting, but produces worse results than the baseline
 425 under the 800-sample setting. This leads to an extra
 426 burden in hyperparameter tuning. Through experi-
 427 ments on varying augmentation rates under 3 differ-
 428 ent data-scarcity settings, we show that MMix con-
 429 sistently improves the baseline performance under
 430 all settings, making it more applicable in practical

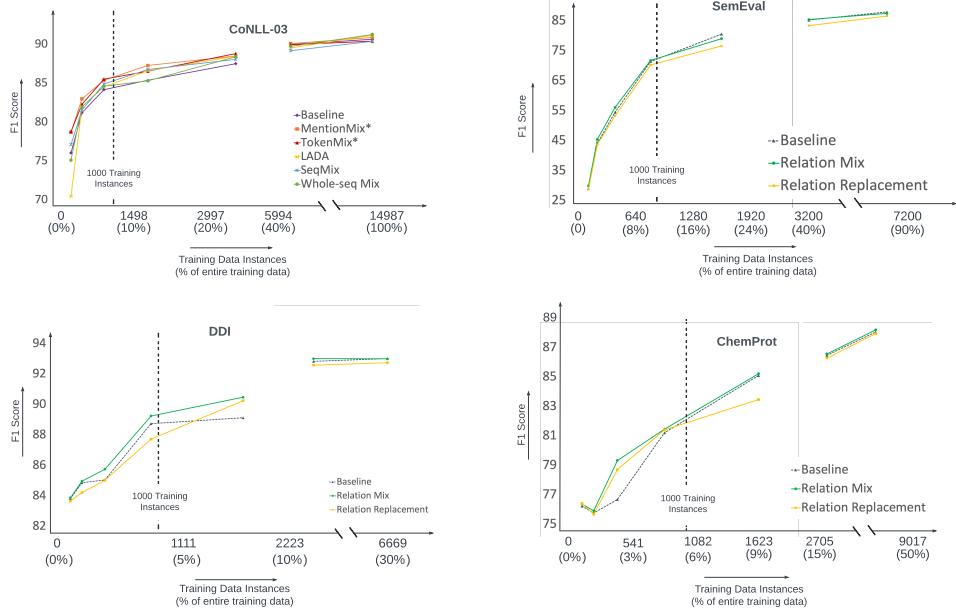


Figure 3: Average F1 score on CoNLL-03, DDI, ChemProt, and SemEval-2010 under different down-sampled data settings. The y axis represents the average F1 score, and the x axis represents number and percentage of instances used as the training set. For each dataset, we calculate the average F1 score on increasing data sub-samples until the performance of our SegMix variant either plateaus or equals that of the baseline. SegMix works best in settings with less than approximately 1000 training instances.

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
100100
100101
100102
100103
100104

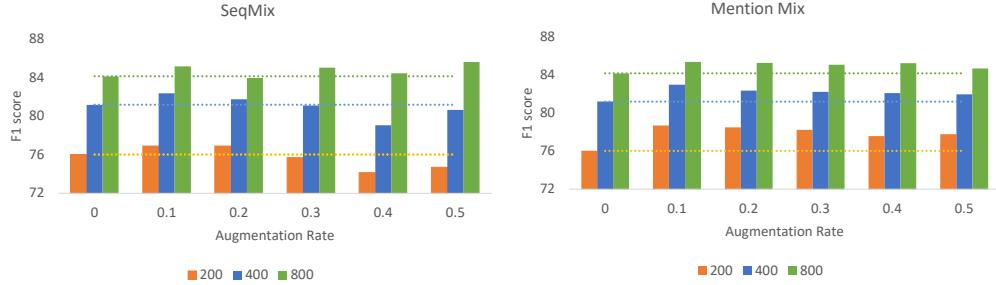


Figure 4: Average F1 score with variant augmentation rates of MMix and SeqMix on CoNLL-03 with 200, 400, and 800 down-sampled data. The colored line represents the baseline performance. MMix constantly outperforms the baseline performance.

Original: **Swedish** [MISC] options and derivatives exchange **OM Gruppen AB** [ORG] said on Thursday it would open an electronic bourse for forest industry products in **London** [LOC] in the first half of 1997.
MMix: **Swedish** [MISC] options and derivatives exchange **Javier Gomez de** [PER/ORG] said on Thursday it would open an electronic bourse for forest industry products in **London** [LOC] in the first half of 1997.
Whole-Sequence Mix: **Sweden** [MISC/ORG] **option** [O/ORG] but [unused33] transfer . . [unused10] [O/ORG] saying to Friday them might closed his electronics . with woods companies Products of **Paris** [O/LOC] of a second three in 1995.

Figure 5: Mixed sentence samples recovered by mapping embeddings to the nearest token (l2 distance). [A/B] represents the linear interpolation of the one-hot encodings of the two labels A and B.

algorithm but also saves computational time.

When analyzing the improvement for each entity class for CoNLL-03, there is an overall improvement in the accuracy for each class, especially for PER and ORG¹¹. Before SegMix, the model tends to mistakenly predict [LOC] for [ORG] (27% → 19%), and [O] for [PER] (19% → 8%). This may be due to the fact that MMix introduces more variations of meaningful entities into the training process, preventing the model from only predicting labels with the one of majority occurrence.

We also analyze cases that are improved in different tasks, the specifics can be found in Appendix.A.3. In one example, the baseline model correctly detects a entity span "British University", but falsely classifies it as [MISC] whereas SegMix correctly distinguishes it as an [ORG]. In another example, the baseline model fails to detect the entity span ("Minor Counties" instead of "Minor Counties XI") and the correct entity while SegMix gives the same wrong span, but correct entity class. We hypothesize that SegMix mainly helps the model distinguish between ambiguous types instead of span detection. To validate this claim, we convert all mentions to [B] and [I] during the inference phase and find that there is little difference

between the models (both around 98%) in terms of span accuracy — confirming our hypothesis. Similarly for RE, we conduct evaluation in two settings: evaluating only relation type and only relation direction. The accuracy scores for the two metrics both increase around 2%. Thus, RMix helps to identify both the correct type and direction of relations. Specific cases and examples can be found in Appendix A.3.

Limitations In this paper, we analyze the efficacy of SegMix on tasks with clear task related segments (NER and RE). SegMix works best in such settings but we do not validate it on tasks like syntactic parsing. Secondly, we only test the performance of SegMix on a few transformer based models (BERT and RoBERTa), it is not applicable to new paradigms such as question answering and generation based information extraction techniques (He et al., 2015; Josifoski et al., 2022). Lastly, although SegMix works best on small datasets (\approx 1000 examples), we recognize that it has a diminishing improvement with the increase of data size. Thus, we recommend using SegMix in data-scarce situations.

5 Conclusion

This paper proposes SegMix, a simple DA technique that adapts to task-specific data structures, which extends the application range of *Mixup* in NLP tasks. We demonstrate its robustness by evaluating model performance under both true low-resource and downsampled settings on multiple NER and RE datasets. SegMix consistently improves the model performance and is more consistent than other mixing methods. By combining rule-based and interpolation-based DA with a computationally inexpensive and straightforward method, SegMix opens up several interesting directions for further exploration.

¹¹Confusion Matrix included in Appendix. A.1

541 Ethics Statement

542 We are aware of the ACL Code of Ethics and the
543 ACM Code of Ethics and Professional Conduct and
544 strictly adhere to the rules throughout the course of
545 this research.

546 Our research does not present any new datasets
547 but present new general methods that can be used
548 to improve performance of existing NLP applica-
549 tions, and is intended to be used under data-scarce
550 situation. As a result, we anticipate no direct harm
551 involved with the intended usage. However, we
552 realize that it depends on the kind of NLP model-
553 s/applications the users to apply to.

554 Our research does not involve attributing any
555 forms of characteristics to any individual. As a
556 matter of fact, we strive to boost performance for
557 NLP applications on low-resource languages. Our
558 proposed method is easy to implement and adds
559 negligible overhead to computation time compared
560 to similar methods. Due to the fact that we con-
561 ducted experiments over extensive hyperparameter
562 and data settings, we used around 5000 GPU/hours
563 on Tesla T4 GPUs.

564 References

565 David Ifeoluwa Adelani, Jade Abbott, Graham Neu-
566 big, Daniel D’souza, Julia Kreutzer, Constantine Lignos,
567 Chester Palen-Michel, Happy Buzaaba, Shruti
568 Rijhwani, Sebastian Ruder, Stephen Mayhew, Is-
569 rael Abebe Azime, Shamsuddeen H. Muhammad,
570 Chris Chinenyem Emezue, Joyce Nakatumba-Nabende,
571 Perez Ogayo, Aremu Anuoluwapo, Catherine Gitau,
572 Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yi-
573 mam, Tajuddeen Rabiu Gwadabe, Ignatius Ezeani,
574 Rubungo Andre Niyongabo, Jonathan Mukiibi, Ver-
575 rah Otiende, Iroro Orife, Davis David, Samba Ngom,
576 Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi,
577 Gerald Muriuki, Emmanuel Anebi, Chiamaka Chuk-
578 wuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel
579 Oyerinde, Clemencia Siro, Tobius Saul Bateesa,
580 Temilola Oloyede, Yvonne Wambui, Victor Akin-
581 ode, Deborah Nabagereka, Maurice Katusime, Ayo-
582 dele Awokoya, Mouhamadane MBOUP, Dibora Ge-
583 breyohannes, Henok Tilaye, Kelechi Nwaike, De-
584 gaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
585 vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
586 Ogueji, Thierno Ibrahima DIOUP, Abdoulaye Diallo,
587 Adewale Akinfaderin, Tendai Marengereke, and Sa-
588 lomey Osei. 2021. **MasakhaNER: Named Entity**
589 **Recognition for African Languages.** *Transactions*
590 **of the Association for Computational Linguistics**,
591 9:1116–1131.

592 Jiaao Chen, Zhenghui Wang, Ran Tian, Zichao Yang,
593 and Diyi Yang. 2020a. **Local additivity based data**

594 **augmentation for semi-supervised NER.** *CoRR*,
595 abs/2010.01677.

596 Jiaao Chen, Zichao Yang, and Diyi Yang. 2020b. **Mix-**
597 **text: Linguistically-informed interpolation of hidden**
598 **space for semi-supervised text classification.**

599 Yong Cheng, Lu Jiang, Wolfgang Macherey, and Ja-
600 cob Eisenstein. 2020. **Advaug: Robust adversarial**
601 **augmentation for neural machine translation.** *CoRR*,
602 abs/2006.11834.

603 Michael Collins. 2002. **Discriminative training methods**
604 **for hidden Markov models: Theory and experiments**
605 **with perceptron algorithms.** In *Proceedings of the*
606 *2002 Conference on Empirical Methods in Natural*
607 *Language Processing (EMNLP 2002)*, pages 1–8. As-
608 *sociation for Computational Linguistics.*

609 Xiang Dai and Heike Adel. 2020. **An analysis of sim-**
610 **ple data augmentation for named entity recognition.**
611 *CoRR*, abs/2010.11683.

612 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
613 Kristina Toutanova. 2018. **BERT: pre-training of**
614 **deep bidirectional transformers for language under-**
615 **standing.** *CoRR*, abs/1810.04805.

616 Matthew S. Dryer and Martin Haspelmath, editors. 2013.
617 **WALS Online.** Max Planck Institute for Evolutionary
618 Anthropology, Leipzig.

619 Demi Guo, Yoon Kim, and Alexander Rush. 2020.
620 **Sequence-level mixed sample data augmentation.** In
621 *Proceedings of the 2020 Conference on Empirical*
622 *Methods in Natural Language Processing (EMNLP)*,
623 pages 5547–5552, Online. Association for Compu-
624 *tational Linguistics.*

625 Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
626 **Question-answer driven semantic role labeling: Us-**
627 **ing natural language to annotate natural language.**
628 In *Proceedings of the 2015 Conference on Empiri-*
629 *cal Methods in Natural Language Processing*, pages
630 643–653, Lisbon, Portugal. Association for Compu-
631 *tational Linguistics.*

632 Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
633 Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
634 Padó, Marco Pennacchiotti, Lorenza Romano, and
635 Stan Szpakowicz. 2010. **SemEval-2010 task 8: Multi-**
636 **way classification of semantic relations between pairs**
637 **of nominals.** In *Proceedings of the 5th International*
638 *Workshop on Semantic Evaluation*, pages 33–38, Up-
639 *psala, Sweden. Association for Computational Lin-*
640 *guistics.*

641 María Herrero-Zazo, Isabel Segura-Bedmar, Paloma
642 Martínez, and Thierry Declerck. 2013. **The ddi**
643 **corpus: An annotated corpus with pharmacological**
644 **substances and drug-drug interactions.** *Journal of*
645 *Biomedical Informatics*, 46(5):914–920.

646 Martin Josifoski, Nicola De Cao, Maxime Peyrard,
647 Fabio Petroni, and Robert West. 2022. **GenIE: Gen-**
648 **erative information extraction.** In *Proceedings of*

649	<i>the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</i> , pages 4626–4643, Seattle, United States. Association for Computational Linguistics.	704
650		705
651		706
652		707
653		708
654		709
655	Martin Krallinger, Obdulia Rabal, Saber Ahmad Akhondi, Martín Pérez Pérez, Jesus Santamaría, Gael Pérez Rodríguez, Georgios Tsatsaronis, Ander Intxaurreondo, J. A. Lopez, Umesh K. Nandal, Erin M. van Buel, Ambika Chandrasekhar, Marleen Rodenburg, Astrid Lægreid, Marius A. Doornenbal, Julen Oyarzábal, Anália Lourenço, and Alfonso Valencia. 2017. Overview of the biocreative vi chemical-protein interaction track.	710
656		711
657		712
658		713
659		
660		
661		
662		
663	John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In <i>Proceedings of the Eighteenth International Conference on Machine Learning, ICML '01</i> , page 282–289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.	714
664		715
665		716
666		717
667		718
668		719
669		
670	Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach.	720
671		721
672		722
673		
674		
675	Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. <i>CoRR</i> , abs/1603.01354.	723
676		724
677		725
678		726
679		727
680		728
681		729
682		
683	Lluís Márquez, Pere Comas, Jesús Giménez, and Neus Català. 2005. Semantic role labeling as sequential tagging. In <i>Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)</i> , pages 193–196, Ann Arbor, Michigan. Association for Computational Linguistics.	730
684		731
685		732
686		
687	Zhengjie Miao, Yuliang Li, Xiaolan Wang, and Wang-Chiew Tan. 2020. Snippext: Semi-supervised opinion mining with augmented data. <i>CoRR</i> , abs/2002.03049.	733
688		734
689		735
690	George A. Miller. 1995a. Wordnet: A lexical database for english. <i>Commun. ACM</i> , 38(11):39–41.	736
691		737
692	George A. Miller. 1995b. Wordnet: A lexical database for english. <i>Commun. ACM</i> , 38(11):39–41.	738
693		739
694		740
695		741
696		742
697	Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual BERT? In <i>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</i> , pages 4996–5001, Florence, Italy. Association for Computational Linguistics.	743
698		744
699		745
700		746
701		747
702		748
703	Shruti Rijhwani, Shuyan Zhou, Graham Neubig, and Jaime Carbonell. 2020. Soft gazetteers for low-resource named entity recognition. In <i>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</i> , pages 8118–8123, Online. Association for Computational Linguistics.	749
704		750
705		751
706		752
707		753
708		754
709		755
710		756
711	Gözde Gül Şahin and Mark Steedman. 2018. Data augmentation via dependency tree morphing for low-resource languages. In <i>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</i> , pages 5004–5009, Brussels, Belgium. Association for Computational Linguistics.	712
712		713
713		
714	Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. <i>CoRR</i> , cs.CL/0306050.	714
715		715
716		716
717		717
718		718
719		719
720	Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2021. Substructure substitution: Structured data augmentation for NLP. <i>CoRR</i> , abs/2101.00411.	720
721		721
722		722
723	Stephanie Strassel and Jennifer Tracey. 2016. LORELEI language packs: Data, tools, and resources for technology development in low resource languages. In <i>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)</i> , pages 3273–3280, Portorož, Slovenia. European Language Resources Association (ELRA).	723
724		724
725		725
726		726
727		727
728		728
729		729
730	Peng Su, Yifan Peng, and K. Vijay-Shanker. 2021. Improving bert model using contrastive learning for biomedical relation extraction.	730
731		731
732		732
733	David A van Dyk and Xiao-Li Meng. 2001. The art of data augmentation. <i>Journal of Computational and Graphical Statistics</i> , 10(1):1–50.	733
734		734
735		735
736	Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neubig. 2018. SwitchOut: an efficient data augmentation algorithm for neural machine translation. In <i>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</i> , pages 856–861, Brussels, Belgium. Association for Computational Linguistics.	736
737		737
738		738
739		739
740		740
741		741
742		742
743	Zihan Wang, Karthikeyan K, Stephen Mayhew, and Dan Roth. 2020. Extending multilingual BERT to low-resource languages. In <i>Findings of the Association for Computational Linguistics: EMNLP 2020</i> , pages 2649–2656, Online. Association for Computational Linguistics.	743
744		744
745		745
746		746
747		747
748		748
749	Jason Wei and Kai Zou. 2019. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In <i>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</i> , pages 6382–6388, Hong Kong, China. Association for Computational Linguistics.	749
750		750
751		751
752		752
753		753
754		754
755		755
756		756
757	Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. 2016. Improved relation classification by deep recurrent neural networks with	757
758		758
759		759

760 data augmentation. In *Proceedings of COLING 2016*,
 761 the 26th International Conference on Computational
 762 Linguistics: Technical Papers, pages 1461–1470, Os-
 763aka, Japan. The COLING 2016 Organizing Commit-
 764tee.

765 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
 766 David Lopez-Paz. 2018. mixup: Beyond empirical
 767 risk minimization.

768 Rongzhi Zhang, Yue Yu, and Chao Zhang. 2020. Se-
 769 qmix: Augmenting active sequence labeling via se-
 770 quence mixup. *CoRR*, abs/2010.02322.

771 A Appendix

772 A.1 Additional results

773 We conduct experiments on GermEval datasets.
 774 The results are included in Table 4. We report the
 775 results of the experiment on the varying augmentation
 776 rate in MMix, SMix, and TMix in Table 6.

GermEval			
	5%	10%	30%
BERT	70.28	75.64	79.63
BERT + MR	74.51	75.98	80.83
BERT + SR	73.77	73.26	75.52
BERT + LR	73.26	79.49	79.20
BERT + MMix †	76.06	80.32	83.48
BERT + SMix †	75.07	78.64	80.89
BERT + TMix †	74.48	77.07	80.99

777 Table 4: F1 scores on down-sampled GermEval compared
 778 with replacement-based augmentation methods. †denotes our
 779 methods.

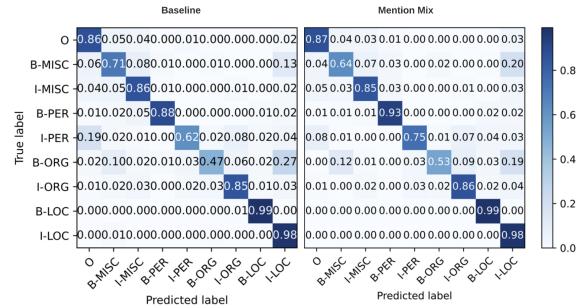
780 To better understand the improvement made by
 781 SegMix, we compare the confusion matrix of the
 782 baseline model and MMix for each class for 5% of
 783 CoNLL-03 data in Fig. 6.

Language	Model Link	Reference
English	BERT	Devlin et al. 2018
English	RoBERTa	Liu et al. 2019
Kinyarwanda	Kin	Adelani et al. 2021
Sinhala	Sin	Wang et al. 2020

784 Table 5: Pre-trained Models

785 A.2 Variants of BERT Models

786 As mentioned in Sec. 4.1, we adopted language-
 787 specific BERT models as the pre-trained models for
 788 all tasks. There are 12 layers (transformer blocks),
 789 12 attention heads, and 110 million parameters (De-
 790 vlin et al., 2018). The model links are included in



791 Figure 6: Confusion Matrix on CoNLL-03 with and without
 792 SegMix with 200 training data.

793 Table 5. For Kinyarwanda, *bert-base-multilingual-
 794 cased-finetuned-kinyarwanda* is obtained by fine-
 795 tuning Multilingual BERT (MBERT) on the Kin-
 796 yarwanda dataset JW300, KIRNEWS, and BBC
 797 Gahuza (Adelani et al., 2021). *EMBERT-Sin* is
 798 obtained by EXTEND (Wang et al., 2020) MBERT
 799 in Sinhala. Specifically, *EMBERT-Sin* first incor-
 800 porates the target language Sinhala by expanding
 801 the vocabulary, and then continues pre-training on
 802 LORELEI using a batch size of 32, a learning rate
 803 of $2e - 5$, and trained for 500K iterations.

804 A.3 Case Analysis

805 We list some improved cases in Table 7, Ex. 1 and
 806 2 are cases of correction between for ORG, while
 807 Ex. 3 is a case where the entity label is correct, but
 808 the mention range remains incomplete (both pre-
 809 dict the *Minor Counties* as a mention instead of *Minor
 810 Counties XI*). In Table 8, we list some improved
 811 cases for RMix on RE. Both Ex.4 and 5 are cases
 812 of correction for relation type. In Ex.5, RMix helps
 813 the model classify the correct relation but not in
 814 the correct order.

Aug Rate		200	400	800	Average
MMix	0	76.02 ± 0.56	81.20 ± 0.29	84.34 ± 0.33	-
	0.1	78.76 ± 0.49	82.28 ± 0.31	85.51 ± 0.21	+(1.66 ± 0.55)
	0.2	77.71 ± 0.29	82.10 ± 0.09	84.77 ± 0.23	+(1.01 ± 0.47)
	0.3	77.88 ± 0.20	82.10 ± 0.19	84.72 ± 0.28	+(1.05 ± 0.47)
	0.4	77.13 ± 0.23	81.89 ± 0.13	84.59 ± 0.24	+(0.68 ± 0.46)
	0.5	77.38 ± 0.32	81.32 ± 0.07	84.66 ± 0.07	+(0.60 ± 0.47)
	Average	78.16 ± 0.44	82.32 ± 0.26	85.12 ± 0.17	+(1.00 ± 0.48)
TMix	0.1	78.70 ± 0.47	82.98 ± 0.27	85.37 ± 0.26	+(1.83 ± 0.54)
	0.2	78.51 ± 0.34	82.35 ± 0.12	85.26 ± 0.23	+(1.52 ± 0.48)
	0.3	78.24 ± 0.39	82.21 ± 0.15	85.07 ± 0.12	+(1.32 ± 0.48)
	0.4	77.56 ± 0.49	82.11 ± 0.33	85.22 ± 0.06	+(1.11 ± 0.54)
	0.5	77.78 ± 0.60	81.97 ± 0.17	84.68 ± 0.25	+(0.96 ± 0.57)
	Average	78.16 ± 0.44	82.32 ± 0.26	85.12 ± 0.17	+(1.35 ± 0.51)
SMix	0.1	77.95 ± 0.39	82.52 ± 0.36	85.33 ± 0.19	+(1.4 ± 0.52)
	0.2	77.75 ± 0.46	82.42 ± 0.35	85.05 ± 0.18	+(1.22 ± 0.54)
	0.3	77.24 ± 0.44	82.11 ± 0.07	84.90 ± 0.16	+(0.89 ± 0.49)
	0.4	77.23 ± 0.59	81.75 ± 0.29	84.76 ± 0.15	+(0.73 ± 0.57)
	0.5	77.78 ± 0.49	81.42 ± 0.35	84.98 ± 0.21	+(0.54 ± 0.55)
	Average	77.39 ± 0.50	82.04 ± 0.29	85.01 ± 0.17	+(0.96 ± 0.54)

Table 6: f1 scores of MMix, TMix, SMix on CoNLL-03 with variant augmentation rates ($\frac{\# \text{of augmented data}}{\# \text{of training data}}$) under different initial data sizes. SegMix consistently improves over the baseline, demonstrating its stability and robustness over varying augmentation rates. The last row is the averaged improvement score for each augmentation rate over different initial data sizes. The last column is the average score for each initial data size over different augmentation rates.

Pred. 1	Baseline MMix	English [MISC] county sides and another against British Universities [MISC] English [MISC] county sides and another against British Universities [ORG]
Pred. 2	Baseline MMix	May 22 First one-day international at Headingley [ORG] May 22 First one-day international at Headingley [LOC]
Pred. 3	Baseline MMix	July 9 v Minor Counties [MISC] XI July 9 v Minor Counties [ORG] XI

Table 7: Examples of cases predicted by the baseline model and MMix from validation dataset. The colored segments represent an entity mention, the blue segment represents a correctly classified mention, and the red represents a misclassified mention.

Ex. 4	the complete [statue] _{e1} topped by an imposing [head] _{e2} was originally nearly five metres high
Other	Baseline: Component-Whole (e2,e1) RMix : Other
Ex. 5	the [slide] _{e1} which was triggered by an avalanche - control [crew] _{e2} damaged one home and blocked the road for most of the day
Cause-Effect(e2,e1)	Baseline: Product-Producer (e1,e2) RMix : Cause-Effect (e1,e2)

Table 8: Examples of correctly classified cases after RMix. The bold segment tuple represents a nominal pair, and the blue label represents a misclassified relation. The true label is presented in the first column.