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Abstract

Interpolation-based Data Augmentation (DA)001
methods (Mixup) linearly interpolate the inputs002
and labels of two or more training examples.003
Mixup has more recently been adapted to the004
field of Natural Language Processing (NLP),005
mainly for sequence labeling tasks. However,006
such a simple adoption yields mixed or un-007
stable improvements over the baseline mod-008
els. We argue that the direct-adoption meth-009
ods do not account for structures in NLP tasks.010
To this end, we propose SegMix, a collec-011
tion of interpolation-based DA algorithms that012
can adapt to task-specific structures. SegMix013
poses fewer constraints on data structures, is014
robust to various hyperparameter settings, ap-015
plies to more task settings, and adds little016
computational overhead. In the algorithm’s017
core, we apply interpolation methods on task-018
specific meaningful segments, in contrast to019
applying them on sequences as in prior work.020
We find SegMix to be a flexible framework021
that combines rule-based DA methods with022
interpolation-based methods, creating interest-023
ing mixtures of DA techniques. We show that024
SegMix consistently improves performance025
over strong baseline models in Named Entity026
Recognition (NER) and Relation Extraction027
(RE) tasks, especially under data-scarce set-028
tings. Furthermore, this method is easy to im-029
plement and adds negligible training overhead.030

1 Introduction031

Initially proposed as Mixup for computer vi-032

sion tasks, interpolation-based Data Augmentation033

(DA) (Zhang et al., 2018) linearly interpolates the034

inputs and labels of two or more training exam-035

ples. Inspired by Mixup, several attempts have036

been made to apply interpolation-based DA to NLP,037

mainly in sequence labeling tasks (Guo et al., 2020).038

However, the proposed embedding-mix solution039

does not extend well to tasks with structured labels.040

For example, mixing two sentences with different041

Figure 1: Example of SegMix v.s. Whole-sequence Mixup for
NER. Each colored block is an entity.

structures usually generates a non-sensical output. 042

As demonstrated in Fig. 1, when working with en- 043

tity spans, Whole-sequence Mixup1 produces non- 044

sensical entity labels like a mixture of nonentity 045

and entity ([O/B-PER]) and consecutive beginning 046

labels ([O/B-PER], [B-LOC/I-PER]). Such noisy 047

augmented data tend to mislead the model, espe- 048

cially in data-scarce settings. As shown in Chen 049

et al. (2020a), without additional constraints on the 050

augmented data, applying Whole-Sequence Mixup 051

results in performance worse than baseline. 052

Instead of using extra heuristic constraints to fil- 053

ter out low-quality augmented data, it may be more 054

efficient and effective to bring structure awareness 055

into the mixing process from the beginning. To 056

this end, we propose Segment Mix (SegMix), a 057

DA method that performs linear interpolations on 058

meaningful, task-specific segments. Virtuous train- 059

ing examples are created by replacing the original 060

segments with the interpolation of pairs of segment 061

embeddings. As in Fig. 1, the embedding of a lo- 062

cation entity (“New York City”) is mixed with the 063

1Guo et al. 2020is referred to as Whole-sequence Mixup
to avoid confusion with SeqMix of Zhang et al. 2020.

1



Adam I -PER

is O

from O

New B-LOC

York I -LOC
City I -LOC

Ment ion 
Pool

t r ain ing 
data Ment ion

chosen f r om  pool

Token 
Pool

Berkshir e B-ORG

Token
chosen f r om  pool

Berkshir e B-ORG

Hathaway I -ORG
Ment ion

Mix

Adam I -PER

is O

from O

New B-LOC

York I -LOC
City I -LOC

Tr ain ing 
Data

Tr ain ing 
Data

Wor dNet

new 
segm ent

Token
Mix

Synonym
Mix

r eplace the or iginal mention

r eplace the or iginal label

the

company
produces

plastic

chair s

the

actr ess
ar r ives

at

the
air por t

Relat i on 
Pai r  
Pool

Tr ain ing 
Data

r eplace the or iginal r elation pair

producer-production entity-destination

Relat i on 
Mix

Figure 2: Four variations of SegMix (MMix, TMix, SMix, and RMix). The left is the original training sequence. The colored
blocks are the segments to be mixed. The segments on the right are randomly sampled from the predefined Segment Pool.
Mention Pool, Token Pool, and Relation Pair Pool are constructed from the training data, while the Synonym-token Pool is
constructed with the WordNet (Miller, 1995a) and returns a synonym of the chosen token. The segment embeddings and one-hot
encodings of labels are mixed with ratio α.

embedding of a person entity (“Marcello Cuttitta”).064

We exploit the benefit of linear interpolation while065

keeping the target structure more sensible.066

Furthermore, SegMix imposes few restrictions067

on the original tasks, mixing pairs, or generated068

examples. On the one hand, this potentially allows069

one to explore a much larger data space. For exam-070

ple, it allows mixing training samples with various071

sentence lengths and structures. On the other, it072

means that SegMix can be applied to other NLP073

tasks in addition to sequence labeling.074

This paper tests SegMix against Named Entity075

Recognition (NER) and Relation Extraction (RE),076

two typical Information Extraction tasks with text077

segments. We show that SegMix improves upon the078

baselines under data-scarce settings, and demon-079

strate its robustness under different hyperparameter080

settings, which is not the case for simple sequence-081

based Mixup methods. SegMix is easy to imple-082

ment2 and adds little computational overhead to083

training and inference.084

2 Related Work085

Many NLP tasks involve dealing with data with086

structures, while a popular area is structured predic-087

tion. These tasks often involve extracting a prede-088

fined target structure from the input data (Lafferty089

et al., 2001; Collins, 2002; Ma and Hovy, 2016).090

NER aims to locate and classify the named enti-091

ties mentioned in unstructured text. There have092

been several attempts to apply algorithms simi-093

lar to Mixup to sequence labeling tasks such as094

2We will release the experiment code base.

NER (Chen et al., 2020a; Zhang et al., 2020). 095

These tasks have linear structures that allow for 096

simple sequence-level mixing methods. RE aims to 097

detect the semantic relationship between a pair of 098

nominals. Unlike NER, RE models typically do not 099

use a linear encoding scheme such as BIO, making 100

sequence-level mixing non-trivial. To the best of 101

our knowledge, interpolation-based DA methods 102

have not been applied to such tasks. 103

Rule-based DA Rule-based DA specifies rules 104

for inserting, deleting, or replacing parts of 105

text (van Dyk and Meng, 2001). Easy Data 106

Augmentation (EDA) (Wei and Zou, 2019) pro- 107

posed a set of token-level random perturba- 108

tion operations (insertion, deletion, and swap). 109

SwitchOut (Wang et al., 2018) randomly replaces 110

tokens in the sentence with random words. Word- 111

Drop (Sennrich et al., 2016) drops tokens randomly. 112

Existing work also brings structure awareness into 113

DA. Substructure Substitution (SUB) (Shi et al., 114

2021) generates new examples by replacing sub- 115

structures (e.g., subtrees or subsequences) with 116

ones with the same label. SUB applies to POS 117

tagging, parsing, and token classification. A simi- 118

lar idea is proposed for NER (Dai and Adel, 2020). 119

Mention Replacement (MR) and Label-wise Token 120

Replacement (LwTR) substitute entity mention and 121

token with those with the same label. Synonym Re- 122

placement (SR) replaces token with a synonym 123

retrieved from WordNet (Miller, 1995b). Xu et al. 124

2016 reverses dependency sub-paths and their cor- 125

responding relationships in relation classification. 126

Şahin and Steedman 2018 crops and rotates the 127
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dependency trees for POS tagging. Su et al. 2021128

presents a contrastive pre-training method to create129

more generalized representations for RE tasks. It130

introduces a DA technique where text contained in131

the shortest dependency path is kept constant and132

other tokens are replaced. Generally, these meth-133

ods explore the vicinity area around the data point134

and assume that they share the same label.135

Interpolation-based DA Originally proposed for136

image classification tasks, Mixup (Zhang et al.,137

2018) performs convex combinations between a138

pair of data points and their labels. Mixup improves139

the performance of image classification tasks by140

regularizing the neural network to favor simple lin-141

ear behavior between training examples (Zhang142

et al., 2018). Several adaptations of Mixup have143

been made in NLP tasks. TMix (Chen et al., 2020b)144

performs an interpolation of text in a hidden space145

in text classification tasks. Snippext (Miao et al.,146

2020) mixes BERT encodings and passes them147

through a classification layer for sentiment anal-148

ysis tasks. AdvAug (Cheng et al., 2020) mixes149

adversarial examples as an adversarial augmenta-150

tion method for Neural Machine Translation.151

However, direct application of Whole-Sequence152

Mixup yields limited improvement in tasks in-153

volving structured data. As empirically shown in154

LADA (Chen et al., 2020a) on NER, the direct155

mixing of two sentences changes both the local156

token representation and the context embeddings157

required to identify the entity mention (Chen et al.,158

2020a). This is also demonstrated in Fig. 1, the gen-159

erated data can sometimes be too noisy to help with160

model training. In fact, LADA has to add additional161

constraints by mixing the sequences only with its k-162

nearest neighbors to reduce the noise (Chen et al.,163

2020a). Similarly, SeqMix (Zhang et al., 2020)164

scans both sequences with a fixed-length sliding165

window and mixes the subsequence within the win-166

dows. However, this approach does not eliminate167

the problem of generating low-quality data — ex-168

tra constraints are still used to ensure the quality169

of generated data. These constraints limit the ex-170

plorable data space close to the training data. What171

is more, they complicate the algorithms and add172

non-negligible computational overheads.173

3 Method174

We propose SegMix and implements 4 variants,175

namely MentionMix (MMix), TokenMix (TMix),176

SynonymMix (SMix), and RelationMix (RMix).177

As shown in Fig. 2, after defining the task- 178

dependent segment, we create a new training sam- 179

ple by replacing a segment of the original sample 180

with a mixed embedding of the segment itself and 181

another randomly drawn segment. These mixed 182

embeddings are then fed into the encoder. Algo- 183

rithm 1 presents the SegMix generation process. 184

Algorithm 1 SegMix generation algorithm

1: Input: D,Pk, r
2: DA ← {},DS ← sample(D, len(D) · r)
3: for (Xi, Yi) in DS do
4: Ei, Oi ← Emb(Xi),OHE(Yi)
5: λ← Beta(α, α)
6: Sa, la ← k segment tuples in Xi, Yi
7: Sb, lb ← k segment tuples in P
8: X ′

i, Y
′
i ← Xi.copy(), Yi.copy()

9: for sja, s
j
b in Sa, Sb do

10: ea, eb = Emb(sa),Emb(sb)
11: start, end← index range of sja in Xi

12: ẽja, ẽ
j
b ←pad_to_longer(eja, e

j
b)

13: Ei[start : end]← ẽja ·λ+ ẽjb · (1−λ)
14: end for
15: for lja, l

j
b in la, lb do

16: oa, ob = OHE(la),OHE(lb)
17: start, end← index range of lja in Yi
18: õja, õ

j
b ←pad_to_longer(oja, o

j
b)

19: Oi[start : end]← õja ·λ+ õjb · (1−λ)
20: end for
21: DA.add((Ei, Oi))
22: end for
23: Output: DA

Formally, consider a training dataset D = 185

{(Xi, Yi)|i ∈ N} of size N , where each input Xi 186

is a sequence of tokens Xi = (X1
i , X

2
i , . . . , ) and 187

a task-dependent structured output Yi, a structured 188

prediction algorithm generally encodes the output 189

Yi using a task-dependent scheme. For example, 190

NER labels are often encoded with the BIO scheme 191

while RE labels are associated with a pair of nomi- 192

nal phrases. SegMix adapts to different encoding 193

schemes by designing task-dependent segments. 194

A segment s(u, v) is a continuous sequence of 195

tokens (Xu
i , X

u+1
i , . . . , Xv

i ) in sample Xi, a seg- 196

ment tuple S = [si(ui, vi), ...] is a k−ary tuple of 197

segments contained in the sequence. We choose 198

a segment tuple relevant to the task and associate 199

it with an appropriate label list L = [li, ...]. For 200

example, in RE, there are segment tuple of length 201

2, which contains the pair of nominals in a relation. 202
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A Segment Pool of size M :Pk = {(Si, Li)|i ∈203

M} is generated by collecting segment tuples Si204

from the training data or an external resource (e.g.205

WordNet). Here, k is a constant for a specific task.206

For example, in RE, there are binary segment tuple207

containing a pair of nominals.208

With the training data set D, the Segment Pool209

Pk, and the mix rate r, SegMix (D,Pk, r) returns210

an augmented data set DA of size r ·N . A set DS211

of size r · N is first drawn from the training data212

D as candidates for augmentation. For each data213

point (Xi, Yi) drawn from DS , we randomly pick214

a segment tuple Sa and the corresponding label list215

La from the sequence Xi. The mix for candidate216

Xi, (Sb, Lb), is then drawn from the Segment Pool.217

Let Emb be an embedding function on RV 7→218

RD, where V is the size of the vocabulary and D is219

the embedding dimension. Let OHE be a function220

that returns the one-hot encoding of a label.221

For all sa, sb = Sa[i], Sb[i], 1 ≤ i ≤ len(Sa),222

and la, lb = La[j], Lb[j], 1 ≤ j ≤ len(La).223

Define ea, eb = Emb(sa),Emb(sb), oa, ob =224

OHE(la),OHE(lb).225

The embeddings and one-hot encodings are then226

padded according to sequence length (line 12, 18).227

Let ẽa, ẽb, õa, õb be the padded version of the em-228

beddings and one-hot encodings. Finally, in line229

13, 19, we perform a linear interpolation between230

ẽa, ẽb and õa, õa with a mix rate λ chosen randomly231

from a Beta distribution (see specifications in 4.1):232

e′a ← ẽa · λ+ ẽb · (1− λ)

o′a ← õa · λ+ õb · (1− λ)
(1)233

In Eq.1, · is a scalar multiplication and +,− are234

vector element-wise operations. When λ = 1,235

the augmented data falls back to the original one.236

When λ = 0, the segments are completely re-237

placed by those drawn from the pool, equivalent to238

replacement-based DA techniques.239

Finally, the augmented data point is generated by240

copying the original data and replacing the chosen241

segment and labels with the mixed version. We242

present 3 variations of SegMix for NER and 1 for243

RE with different types of Segment Pool Pk.244

MentionMix Inspired by MR, MMix performs245

linear interpolations on a mention level (a contigu-246

ous segment of tokens with the same entity label).247

A Mention Pool P1 is constructed by scanning the248

training data set and extracting all mention seg-249

ments and their corresponding labels. Thus, each250

segment tuple is composed of a single mention and251

a list of entity labels encoded with the BIO scheme. 252

This method can also be viewed as a generaliza- 253

tion of (SUB) (Shi et al., 2021) which performs a 254

soft-mix of substructures of varying lengths. 255

TokenMix Inspired by LwTR, TMix performs 256

linear interpolations at the token level. We use 257

tokens with entity labels in the BIO scheme of 258

training data sets as a token pool P1. Each segment 259

tuple is composed of a single token and its label. 260

SynonymMix Inspired by SR, the Synonym Pool 261

P1 returns a synonym of the token in the original 262

sequence based on WordNet (Miller, 1995b). We 263

assume the two synonyms share the same label, 264

thus interpolation only happens within input. 265

RelationMix Since each relation is composed of 266

two possibly nonadjacent nominals in a sentence, 267

we construct a pool P2 with groups of two nomi- 268

nals and a relation label3. During the mixing phase, 269

the two nominals and their corresponding relation 270

labels are mixed with a pair of nominals from P2. 271

4 Experiments 272

Language Task # Instances

CoNLL-03 English NER 14987

Kin Kinyarwanda NER 626

Sin Sinhala NER 753

SemEval English RE 8000

DDI English RE 22233

Chemport English RE 18035

Table 1: Dataset Statistics

Datasets We conduct SegMix experiments 273

mainly on 3 datasets for NER and 3 for RE on 274

a variety of domains and languages. An NER task 275

is to recognize mentions from text belonging to 276

predefined semantic types, such as person, loca- 277

tion, and organization. An RE task requires one to 278

classify the relation type between two prelabeled 279

nominals in a sentence. Some basic dataset statis- 280

tics are included in Table. 14. 281

(1) CoNLL-03 (Sang and Meulder, 2003), an En- 282

glish corpus for NER containing entity labels 283

such as person, location, organization, etc.5 284

3The direction of the relation is implied by the labels. For
example, the label list contains both producer-product (e1,e2)
and producer-product (e2,e1)

4Since no down-sampling settings are included in
LORELEI-Kin and Sin, we report the results as a single value.

5We also conduct experiments on GermEval, a German

4



(2) LORELEI (Strassel and Tracey, 2016) which285

contains NER annotations for text in lan-286

guages Kinyarwanda (Kin) and Sinhala (Sin).287

(3) SemEval-2010 Task 8 (Hendrickx et al.,288

2010), an English corpus for RE task, contain-289

ing 9 relation types that include cause-effect,290

product-producer, instrument-agency, etc.291

(4) DDI (Herrero-Zazo et al., 2013), a biomedical292

dataset manually annotated with drug-drug293

interactions, containing 4 relationship types.294

(5) ChemProt (Krallinger et al., 2017), a biomed-295

ical dataset annotated with chemical-protein296

interactions, containing 4 interaction types.297

Data Sampling For true low-resource languages298

Kinyarwanda and Sinhala (data sizes of LORELEI-299

Sin and LORELEI-Kin are less than 5% of the300

CoNLL-03 English dataset), we use all avail-301

able data. To create difference scarce set-302

tings for CoNLL-03, we subsample a range of303

sizes (200, 400, 800, 1600, 3200, 6400, 12800) of304

the original training data as the training set. The305

augmentation algorithm can only access the down-306

sampled training set. We use 5 different random307

seeds to subsample the training set of each size308

and report both mean and standard deviation as309

(µ ± σ). The validation and test dataset are un-310

changed. For LORELEI, we deleted all data sam-311

ples that only have character "–". Therefore, there312

are some discrepancies between our reported data313

number and the original paper. For RE, we sub-314

sample (100, 200, 400, 800, 1600, 6400) from the315

original training data as the training set. We do316

not continue experiments for larger sizes since the317

improvement from DA diminished.318

Settings For each data split, we conduct experi-319

ments on 12 settings for NER —- 2 interpolation-320

based DA (Inter+Intra LADA6, Whole-sequence321

Mixup7), 3 replacement based DA (MR, SR,322

LwTR)8, and 6 variations of SegMix (MMix, TMix,323

SMix, and their combinations MMix + SMix,324

MMix + TMix, MMix + TMix + SMix) with a325

fixed 0.2 augmentation rate. We use the BIO tag-326

ging scheme (Màrquez et al., 2005) to assign la-327

bels to each token in NER tasks. In RE tasks, we328

compare RMix with Relation Replacement. Gold329

NER dataset. The results and trends are similar to those in
CoNLL-03, and are presented in the Appendix. A.1

6We used implementation available at https://github.
com/GT-SALT/LADA.

7Implemented by setting segments as whole sequences.
8Implemented as SegMix where mix rate is 1.

standard nominal pairs are used. 330

All the methods are evaluated with F1 scores. 331

For Kin and Sin, we report the average F1 scores 332

over 10 folds with cross-validation, which is con- 333

sistent with Rijhwani et al. 2020. 334

4.1 Implementation Details 335

For our experiments, we adopt the pretrained BERT 336

and RoBERTa models9 as the encoder, and a linear 337

layer to make prediction, with soft cross-entropy 338

loss. The pretrained BERT model is adopted for 339

each language whereas due to computation ex- 340

penses, we adopted the pretrained RoBERTa model 341

for experiments on only the CoNLL-03 dataset. 342

For pseudo-data-scarce settings (CoNLL-03, DDI, 343

Chemprot, and SemEval), we train all the models 344

for 100 epochs with early stopping and take the 345

checkpoint with the maximum validation score on 346

the development dataset as the final model. For Kin 347

and Sin, under each data split, we train the model 348

for 100 epochs and report the F1 score. The initial 349

weight decay is 0.1 and α is 8 for both models. 350

Additionally, learning rates for all settings are set 351

to 5e− 5 for the BERT model and 1e− 4 for the 352

RoBERTa model. 353

4.2 Results and Analysis 354

NER The results for the three NER datasets un- 355

der data-scarce settings with BERT and RoBERTa 356

are shown in Table 2. Fig. 3 includes the results 357

for CoNLL-03 under all data settings with BERT. 358

Under all settings, SegMix or a combination of Seg- 359

Mix achieves the best result compared with other 360

interpolation- and replacement-based methods. For 361

BERT, the best performing SegMix improves the 362

baseline by 2.7 F1 in CoNLL-03 with the 200 sam- 363

ple setting, 1.5 F1 for Kin, and 5 F1 for Sin. As 364

for RoBERTa, SegMix and its variants perform bet- 365

ter compared to the baseline RoBERTa model in 366

all simulated data-scarce scenario with CoNLL-03. 367

For example, the best performing SegMix variant 368

with RoBERTa improves the baseline by 1.2 F1 on 369

CoNLL-03 under the 200-sample setting. SegMix 370

proves to be effective under both down-sampled 371

settings and true low-resource settings. These re- 372

sults are consistent with our hypothesis that the 373

“soft” mix of data points in structure-aware seg- 374

ments yields better results than “hard” replacement 375

or mixing on sequences. In comparison, LADA 376

has an unstable performance under data-scarce set- 377

9The model choices are included in Appendix A.2.
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CoNLL-03 Kin Sin

Data Size 200 400 800 626 753

BERT 76.03 ± 0.57 81.20 ± 0.29 84.34 ± 0.33 82.29 75.02

BERT + LADA 70.46 ± 0.84 81.98 ± 0.16 84.53 ± 0.09 76.02 60.43
BERT + SeqMix 77.10 ± 1.04 81.55 ± 0.66 84.89 ± 0.27 83.13 78.93
BERT + Whole-seq Mix 75.11 ± 0.62 81.94 ± 0.14 84.61 ± 0.18 82.35 79.17
BERT + MR 77.86 ± 0.36 81.49 ± 0.17 84.21 ± 0.29 83.46 78.62
BERT + LwTR 76.69 ± 0.49 81.13 ± 0.36 84.56 ± 0.37 82.42 78.17
BERT + SR 77.35 ± 0.29 81.33 ± 0.32 85.10 ± 0.11 82.51 78.38

BERT + MMix † 78.51 ± 0.34 82.98 ± 0.61 85.37 ± 0.59 83.37 79.50
BERT + TMix † 78.75 ± 0.49 82.28 ± 0.30 85.51 ± 0.21 83.85 78.63
BERT + SMix † 77.95 ± 0.38 82.51 ± 0.36 85.33 ± 0.19 83.31 79.38
BERT + MMix + SMix † 78.45 ± 0.26 82.39 ± 0.21 85.66 ± 0.25 82.81 79.83
BERT + MMix + TMix † 78.46 ± 0.26 82.39 ± 0.24 85.82 ± 0.21 82.75 80.31
BERT + MMix + SMix + TMix † 78.21 ± 0.28 82.36 ± 0.34 85.26 ± 0.27 82.83 78.05

RoBERTa † 74.08 ± 0.27 78.89 ± 0.59 82.28 ± 0.23 − −

RoBERTa +MMix † 75.31 ± 0.52 80.09 ± 0.49 83.37 ± 0.54 − −
RoBERTa + TMix † 74.55 ± 0.37 79.44 ± 0.35 83.22 ± 0.80 − −
RoBERTa + SMix † 75.18 ± 0.42 79.80 ± 0.45 83.49 ± 0.39 − −

Table 2: F1 scores for NER in data-scarce settings (downsampled CoNLL-03 and LORELEI (Kin and Sin)) using SegMix
compared with interpolation- and replacement-based DA methods. We use 5 different random seeds for down-sampled datasets
and report their averaged performance and standard deviation as µ± σ. For LORELEI, we report the 10-fold cross-validation
result. Although there is no one best performing variant of SegMix for all settings, we observe that for all variants, SegMix had
the best performance compared to the baseline in all settings and other DA techniques in most settings. †denotes our methods.

tings. It produces worse results than the baseline378

under the CoNLL-03 with 200 samples, and in both379

low-resource languages Kin and Sin, while SegMix380

shows consistent improvements.381

One notable trend is that most DA methods pro-382

vides a larger improvement on Sin in compared383

to Kin. Notice that even with the same model ar-384

chitecture, the baseline performance of Sin is con-385

siderably lower compared to the performance of386

Kin and English of similar data sizes. This could387

be due to the fact that multilingual BERT trans-388

fers better between languages that share more10389

word order features (Pires et al., 2019). Given the390

lower baseline, many DA methods provide larger391

improvements in Sin compared to Kin, and our392

SegMix variants score around 80 F1 scores. This393

shows that DA methods are generally very valuable394

for low resource and understudied languages.395

RE For RE, we compare RMix with the base-396

line and Relation Replacement (replacing nominal397

pairs). The results are presented in Fig.3. We find398

that simple replacement sometimes worsens the399

baseline performance, while RMix consistently im-400

proves the baseline. We analyze its performance401

10While both the Kinyarwanda-BERT and Sinhala-BERT
are transferred from M-BERT, the number of common gram-
matical ordering WALS features (Dryer and Haspelmath,
2013) is 3 between Kinyarwanda and English and 1 for Sin-
hala. These features are 81A, 85A, 86A, 87A, 88A and 89A.

on increasing percentages of training data to simu- 402

late pseudo-data-scarce settings, as well as settings 403

with ample training data. We observe a consis- 404

tent improvement performance of RMix over re- 405

placement based methods, and at least comparable 406

performance with the baselines. SegMix performs 407

well in data scarce settings, more specifically, on 408

scenarios with less than approximately 1000 train- 409

ing examples. For example, in case of the DDI 410

dataset, SegMix performs at least 2 F1 scores bet- 411

ter compared to the baseline in these scenarios. 412

Robustness with respect to augmentation 413

rate From previous results on sequence-level 414

Mixup (Zhang et al., 2020; Chen et al., 2020a), we 415

observe that the performance of the model tends to 416

drop below the baseline as the augmentation rate in- 417

creases above a certain value. Furthermore, the op- 418

timal augmentation rate varies under different ini- 419

tial data settings: a good augmentation rate for the 420

200-sample might not be good for the 800-sample. 421

With BERT, for example, a 0.2 augmentation rate 422

improves upon baseline under the 200-sample set- 423

ting, but produces worse results than the baseline 424

under the 800-sample setting. This leads to an extra 425

burden in hyperparameter tuning. Through experi- 426

ments on varying augmentation rates under 3 differ- 427

ent data-scarcity settings, we show that MMix con- 428

sistently improves the baseline performance under 429

all settings, making it more applicable in practical 430
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Figure 3: Average F1 score on CoNLL-03, DDI, ChemProt, and SemEval-2010 under different down-sampled data settings. The
y axis represents the average F1 score, and the x axis represents number and percentage of instances used as the training set. For
each dataset, we calculate the average F1 score on increasing data sub-samples until the performance of our SegMix variant
either plateaus or equals that of the baseline. SegMix works best in settings with less than approximately 1000 training instances.

contexts. As presented in Fig. 4, MMix consistently431

improves upon the baseline for all experimented432

augmentation rate. Furthermore, the best perfor-433

mance is consistently achieved at 0.1. TMix and434

SMix also show a similar trend, the specific scores435

are presented in Appendix. A.1.436

Computation Time SegMix is easy to imple-437

ment and adds little computational overhead. We438

compare the time required to generate the mixing439

data and training using LADA, MMix, and SeqMix440

in Table. 3. Without extra constraints on the aug-441

mentation process, MMix (and its other variants)442

takes <1 second on average to generate the aug-443

mented dataset. While SeqMix takes >2 minutes444

due to the filtering process. Both SeqMix and Seg-445

Mix pass mixed embeddings into the encoder di-446

rectly; thus, no extra computation is required for447

each epoch. However, we observe that SegMix448

converges faster than SeqMix, thus requiring less449

training time on average. Since LADA mixes hid-450

den representations during training, no augmented451

dataset is explicitly generated. This leads to almost452

twice the training time of SegMix.453

4.3 Discussion454

We argue that SegMix keeps the syntactic and out-455

put structure of training data intact. We choose456

some sample sequences in CoNLL-03 and visualize457

them in Fig. 5 by mapping the mixed embeddings458

mixing time (s) training time (s)

SeqMix 138.90 ± 15.46 1094.99 ± 108.28

MMix † 0.81 ± 0.22 609.61 ± 66.39

LADA – 1120.78 ± 103.13

Table 3: Comparison of the mixing time (time taken to gen-
erate the augmented data) and the training time (time taken
to train the model to converge) of LADA, SeqMix and MMix
on CoNLL-03 with 200 downsampled data. We experimented
with 5 different random seeds and reported the average time
and standard deviation.

to the nearest word in the vocabulary. 459

MMix preserves the syntactic and entity struc- 460

tures while achieving linear interpolation between 461

each mention. Due to the high proportion of 462

non-entity phrases in the dataset, SeqMix tends 463

to mix entity mentions with nonentity segments 464

(label [O]). The resulting sentences often contain 465

nonmeaningful entities (e.g., option and . . [un- 466

used10]), but are perceived as entities (with a non- 467

[O] label). The nonentity phrases in the sentence 468

would also be mixed, producing semantically in- 469

correct context phrases like second three in 1995. 470

Unlike other interpolation-based DA methods, 471

SegMix imposes few constraints on the mixing can- 472

didate and mixed examples. All training data pairs 473

can potentially be used as mixing candidates and 474

no filtering process is required after the augmented 475

sample is generated. This not only potentially ex- 476

pands the explorable space of our augmentation 477
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Figure 4: Average F1 score with variant augmentation rates of MMix and SeqMix on CoNLL-03 with 200, 400, and 800 down-
sampled data. The colored line represents the baseline performance. MMix constantly outperforms the baseline performance.

Original: Swedish [MISC] options and derivatives exchange
OM Gruppen AB [ORG] said on Thursday it would open
an electronic bourse for forest industry products in London
[LOC] in the first half of 1997.
MMix: Swedish [MISC] options and derivatives exchange
Javier Gomez de [PER/ORG] said on Thursday it would open
an electronic bourse for forest industry products in London
[LOC] in the first half of 1997.
Whole-Sequence Mix: Sweden [MISC/ORG] option [O/ORG]

but [unused33] transfer . . [unused10] [O/ORG] saying to
Friday them might closed his electronics . with woods com-
panies Products of Paris [O/LOC] of a second three in 1995.

Figure 5: Mixed sentence samples recovered by mapping em-
beddings to the nearest token (l2 distance). [A/B] represents
the linear interpolation of the one-hot encodings of the two
labels A and B.

algorithm but also saves computational time.478

When analyzing the improvement for each entity479

class for CoNLL-03, there is an overall improve-480

ment in the accuracy for each class, especially for481

PER and ORG11. Before SegMix, the model tends482

to mistakenly predict [LOC] for [ORG] (27% →483

19%), and [O] for [PER] (19%→ 8%). This may484

be due to the fact that MMix introduces more vari-485

ations of meaningful entities into the training pro-486

cess, preventing the model from only predicting487

labels with the one of majority occurrence.488

We also analyze cases that are improved in dif-489

ferent tasks, the specifics can be found in Ap-490

pendix.A.3. In one example, the baseline model491

correctly detects a entity span "British University",492

but falsely classifies it as [MISC] whereas Seg-493

Mix correctly distinguishes it as an [ORG]. In an-494

other example, the baseline model fails to detect the495

entity span ("Minor Counties" instead of "Minor496

Counties XI") and the correct entity while Seg-497

Mix gives the same wrong span, but correct entity498

class. We hypothesize that SegMix mainly helps499

the model distinguish between ambiguous types500

instead of span detection. To validate this claim,501

we convert all mentions to [B] and [I] during the in-502

ference phase and find that there is little difference503

11Confusion Matrix included in Appendix. A.1

between the models (both around 98%) in terms of 504

span accuracy — confirming our hypothesis. Simi- 505

larly for RE, we conduct evaluation in two settings: 506

evaluating only relation type and only relation di- 507

rection. The accuracy scores for the two metrics 508

both increase around 2%. Thus, RMix helps to 509

identify both the correct type and direction of rela- 510

tions. Specific cases and examples can be found in 511

Appendix A.3. 512

Limitations In this paper, we analyze the efficacy 513

of SegMix on tasks with clear task related segments 514

(NER and RE). SegMix works best in such settings 515

but we do not validate it on tasks like syntactic pars- 516

ing. Secondly, we only test the performance of Seg- 517

Mix on a few transformer based models (BERT and 518

RoBERTa), it is not applicable to new paradigms 519

such as question answering and generation based 520

information extraction techniques (He et al., 2015; 521

Josifoski et al., 2022). Lastly, although SegMix 522

works best on small datasets (≈1000 examples), 523

we recognize that it has a diminishing improvement 524

with the increase of data size. Thus, we recommend 525

using SegMix in data-scarce situations. 526

5 Conclusion 527

This paper proposes SegMix, a simple DA tech- 528

nique that adapts to task-specific data structures, 529

which extends the application range of Mixup in 530

NLP tasks. We demonstrate its robustness by eval- 531

uating model performance under both true low- 532

resource and downsampled settings on multiple 533

NER and RE datasets. SegMix consistently im- 534

proves the model performance and is more con- 535

sistent than other mixing methods. By combin- 536

ing rule-based and interpolation-based DA with a 537

computationally inexpensive and straightforward 538

method, SegMix opens up several interesting direc- 539

tions for further exploration. 540
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We are aware of the ACL Code of Ethics and the542

ACM Code of Ethics and Professional Conduct and543

strictly adhere to the rules throughout the course of544

this research.545

Our research does not present any new datasets546

but present new general methods that can be used547

to improve performance of existing NLP applica-548

tions, and is intended to be used under data-scarce549

situation. As a result, we anticipate no direct harm550

involved with the intended usage. However, we551

realize that it depends on the kind of NLP model-552

s/applications the users to apply to.553

Our research does not involve attributing any554

forms of characteristics to any individual. As a555

matter of fact, we strive to boost performance for556

NLP applications on low-resource languages. Our557

proposed method is easy to implement and adds558

negligible overhead to computation time compared559

to similar methods. Due to the fact that we con-560

ducted experiments over extensive hyperparameter561

and data settings, we used around 5000 GPU/hours562

on Tesla T4 GPUs.563
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A Appendix771

A.1 Additional results772

We conduct experiments on GermEval datasets.773

The results are included in Table. 4. We report the774

results of the experiment on the varying augmenta-775

tion rate in MMix, SMix, and TMix in Table 6.776

GermEval

5% 10% 30%
BERT 70.28 75.64 79.63

BERT + MR 74.51 75.98 80.83
BERT + SR 73.77 73.26 75.52
BERT + LR 73.26 79.49 79.20

BERT + MMix † 76.06 80.32 83.48
BERT + SMix † 75.07 78.64 80.89
BERT + TMix † 74.48 77.07 80.99

Table 4: F1 scores on down-sampled GermEval compared
with replacement-based augmentation methods. †denotes our
methods.

To better understand the improvement made by777

SegMix, we compare the confusion matrix of the778

baseline model and MMix for each class for 5% of779

CoNLL-03 data in Fig. 6.780

Language Model Link Reference

English BERT Devlin et al. 2018
English RoBERTa Liu et al. 2019
Kinyarwanda Kin Adelani et al. 2021
Sinhala Sin Wang et al. 2020

Table 5: Pre-trained Models

A.2 Variants of BERT Models781

As mentioned in Sec. 4.1, we adopted language-782

specific BERT models as the pre-trained models for783

all tasks. There are 12 layers (transformer blocks),784

12 attention heads, and 110 million parameters (De-785

vlin et al., 2018). The model links are included in786

Figure 6: Confusion Matrix on CoNLL-03 with and without
SegMix with 200 training data.

Table. 5. For Kinyarwanda, bert-base-multilingual- 787

cased-finetuned-kinyarwanda is obtained by fine- 788

tuning Multilingual BERT (MBERT) on the Kin- 789

yarwanda dataset JW300, KIRNEWS, and BBC 790

Gahuza (Adelani et al., 2021). EMBERT-Sin is 791

obtained by EXTEND (Wang et al., 2020) MBERT 792

in Sinhala. Specifically, EMBERT-Sin first incor- 793

porates the target language Sinhala by expanding 794

the vocabulary, and then continues pre-training on 795

LORELEI using a batch size of 32, a learning rate 796

of 2e− 5, and trained for 500K iterations. 797

A.3 Case Analysis 798

We list some improved cases in Table. 7, Ex. 1 and 799

2 are cases of correction between for ORG, while 800

Ex. 3 is a case where the entity label is correct, but 801

the mention range remains incomplete (both pre- 802

dicts Minor Counties as a mention instead of Minor 803

Counties XI). In Table. 8, we list some improved 804

cases for RMix on RE. Both Ex.4 and 5 are cases 805

of correction for relation type. In Ex.5, RMix helps 806

the model classify the correct relation but not in 807

the correct order. 808
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Aug Rate 200 400 800 Average

Baseline 0 76.02± 0.56 81.20± 0.29 84.34± 0.33 -

MMix

0.1 78.76± 0.49 82.28± 0.31 85.51± 0.21 +(1.66± 0.55)
0.2 77.71± 0.29 82.10± 0.09 84.77± 0.23 +(1.01± 0.47)
0.3 77.88± 0.20 82.10± 0.19 84.72± 0.28 +(1.05± 0.47)
0.4 77.13± 0.23 81.89± 0.13 84.59± 0.24 +(0.68± 0.46)
0.5 77.38± 0.32 81.32± 0.07 84.66± 0.07 +(0.60± 0.47)

Average 78.16± 0.44 82.32± 0.26 85.12± 0.17 +(1.00± 0.48)

TMix

0.1 78.70± 0.47 82.98± 0.27 85.37± 0.26 +(1.83± 0.54)
0.2 78.51± 0.34 82.35± 0.12 85.26± 0.23 +(1.52± 0.48)
0.3 78.24± 0.39 82.21± 0.15 85.07± 0.12 +(1.32± 0.48)
0.4 77.56± 0.49 82.11± 0.33 85.22± 0.06 +(1.11± 0.54)
0.5 77.78± 0.60 81.97± 0.17 84.68± 0.25 +(0.96± 0.57)

Average 78.16± 0.44 82.32± 0.26 85.12± 0.17 +(1.35± 0.51)

SMix

0.1 77.95± 0.39 82.52± 0.36 85.33± 0.19 +(1.4± 0.52)
0.2 77.75± 0.46 82.42± 0.35 85.05± 0.18 +(1.22± 0.54)
0.3 77.24± 0.44 82.11± 0.07 84.90± 0.16 +(0.89± 0.49)
0.4 77.23± 0.59 81.75± 0.29 84.76± 0.15 +(0.73± 0.57)
0.5 77.78± 0.49 81.42± 0.35 84.98± 0.21 +(0.54± 0.55)

Average 77.39± 0.50 82.04± 0.29 85.01± 0.17 +(0.96± 0.54)

Table 6: f1 scores of MMix, TMix, SMix on CoNLL-03 with variant augmentation rates (#of augmented data
#of training data ) under different initial

data sizes. SegMix consistently improves over the baseline, demonstrating its stability and robustness over varying augmentation
rates. The last row is the averaged improvement score for each augmentation rate over different initial data sizes. The last column
is the average score for each initial data size over different augmentation rates.

Pred. 1
Baseline English [MISC] county sides and another against British Universities [MISC]

MMix English [MISC] county sides and another against British Universities [ORG]

Pred. 2
Baseline May 22 First one-day international at Headingley [ORG]

MMix May 22 First one-day international at Headingley [LOC]

Pred. 3
Baseline July 9 v Minor Counties [MISC] XI
MMix July 9 v Minor Counties [ORG] XI

Table 7: Examples of cases predicted by the baseline model and MMix from validation dataset. The colored segments represent
an entity mention, the blue segment represents a correctly classified mention, and the red represents a misclassified mention.

Ex. 4 the complete [statue]e1 topped by an imposing [head]e2was originally nearly
five metres high

Other Baseline: Component-Whole(e2,e1) RMix : Other

Ex. 5 the [slide]e1which was triggered by an avalanche - control [crew] e2 damaged
one home and blocked the road for most of the day

Cause-Effect(e2,e1) Baseline: Product-Producer(e1,e2) RMix : Cause-Effect(e1,e2)

Table 8: Examples of correctly classified cases after RMix. The bold segment tuple represents a nominal pair, and the blue label
represents a misclassified relation. The true label is presented in the first column.
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