
Under review as a conference paper at ICLR 2024

SHIFTADDAUG: AUGMENT MULTIPLICATION-FREE
TINY NEURAL NETWORK WITH HYBRID COMPUTA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a novel training methodology termed ShiftAddAug aimed1

at enhancing the performance of multiplication-free tiny neural networks.2

Multiplication-free operators, such as Shift and Add, have garnered attention be-3

cause of their hardware-friendly nature. They are more suitable for deployment4

on resource-limited platforms with reduced energy consumption and computa-5

tional demands. However, multiplication-free networks usually suffer from under-6

performance in terms of accuracy compared to their vanilla counterpart with the7

same structure. ShiftAddAug uses costly multiplication to augment efficient but8

less powerful multiplication-free operators, improving network accuracy without9

any inference overhead. It puts a multiplication-free tiny NN into a large multi-10

plicative model and encourages it to be trained as a sub-model to obtain additional11

supervision, rather than as an independent model. In the process of inference, only12

the multiplication-free tiny model is used. The effectiveness of ShiftAddAug is13

demonstrated through experiments in image classification, consistently resulting14

in significant improvements in accuracy and energy saving. Notably, it achieves up15

to a 4.95% accuracy improvement on the CIFAR100 compared to multiplication-16

free counterparts. This result far exceeds the directly trained multiplicative NNs of17

the same structure. Additionally, neural architecture search is used to obtain bet-18

ter augmentation effects and smaller but stronger multiplication-free tiny neural19

networks. Codes and models will be released upon acceptance.20

1 INTRODUCTION21

The application of deep neural networks (DNNs) on resource-constrained platforms is still lim-22

ited due to their huge energy requirements and computational costs. However, with the increasing23

popularity of small computing devices such as IoT equipment(Statista, 2016), implementing DNNs24

directly on these devices can enhance privacy and efficiency. To obtain a small model deployed25

on edge devices, the commonly used techniques are pruning(Han et al., 2015b; Molchanov et al.,26

2017), quantization(Han et al., 2015a; Wang et al., 2019), and knowledge distillation(Hinton et al.,27

2015). There are also some training methods specially designed for tiny neural networks(tiny NNs).28

NetAug(Cai et al., 2022) believes tiny NNs tend to cause under-fitting results due to limited capacity,29

so it augments the tiny model by inserting it into a larger models, sharing the weights and gradients.30

However, the NNs designed by the above works are all based on multiplication, which is not31

hardware-efficient. The common hardware design practice in computer architecture or digital signal32

processing tells that multiplication can be replaced by bitwise shifts and additions(Xue & Liu, 1986;33

Gwee et al., 2009) to achieve faster speed and lower energy consumption. Introducing this idea into34

NNs design, DeepShift(Elhoushi et al., 2021) and AdderNet(Chen et al., 2020) proposed ShiftConv35

operator and AddConv operator respectively.36

This paper takes one step further along the direction of multiplication-free neural networks, propos-37

ing a method to augment tiny multiplication-free NNs by hybrid computation, which significantly38

improves accuracy without any inference overhead. Tiny computing devices have more severe com-39

putational, memory, and energy requirements, which makes using multiplication-free networks a40

good choice. However, these multiplication-free operators cannot restore all the information from41

1

Under review as a conference paper at ICLR 2024

>>1 0 >>2
0 <<1 <<2

>>1 0 >>3

ShiftConv

-0.5 -1.1 +1
-0.3 0 -1.2
+1 +0.2 -0.2

AddConv

* 0.5 * -0.3 * 1.1
0 * 0.2 * 2

* -1.2 0 * 0.4

Mult. Conv

Mult-free kenel
target

Mult kenel
augmented

Feature Extraction

...

...

INPUT OUTPUT

INPUT OUTPUT

INPUT OUTPUT

...
... +

target out

augmented out

...

backwards 1

backwards 2

Conv
Linear

Gate

Train Eval

Mult-free OnlyHybrid Compute

Cat on channel

Figure 1: Overview of ShiftAddAug. The solid line and pink modules represent the multiplication-
free kernels, which are used to build the target model (Shift or Add); the dotted line and orange
modules represent the multiplicative kernels, which are the part that augment the model. We connect
this two kinds of operators in the channel dimension for weight sharing and joint training. In
the process of inference, we only retain the multiplication-free part. Obtained models have higher
accuracy (up to 4.05%) than their multiplicative counterparts with the same structure, and save
68.9% energy.

the original operator, resulting in more serious under-fitting. Instead of converting and fine-tuning42

from a well-trained multiplicative model, we choose to build wider hybrid computing NNs, and set43

the multiplication-free part as the target model used in inference. We expect the stronger multiplica-44

tive part to push the target model to a better condition.45

We validate our method on MobileNetV2(Sandler et al., 2018), MobileNetV3(Howard et al., 2019),46

MCUNet(Lin et al., 2020), ProxylessNAS(Cai et al., 2019), MobileNetV2-Tiny(Lin et al., 2020).47

Compared with the multiplicative networks of the same structure, we have significant accuracy im-48

provements (1.24%∼4.05%) on the CIFAR100 dataset and obtain considerable speed improvement49

(2.94× to 3.09×) and energy saving (67.75%∼69.09%). To further improve the performance, we50

introduce neural architecture search(NAS) into our work, proposing a new method for searching51

more efficient multiplication-free tiny neural networks. Our contributions can be summarized as52

follows:53

• For the multiplication-free tiny neural network, we propose a hybrid computing augmenta-54

tion method using multiplicative operators to augment the target multiplication-free network.55

Under the same model structure, it is more expressive and ultra-efficient.56

• We propose a new weight sharing strategy for hybrid computing augmentation, which solves57

the weight tearing problem in heterogeneous (e.g., Gaussian vs. Laplacian) weight sharing58

during the augmentation process.59

• We design a hardware-aware neural architecture search strategy based on hybrid computing60

augmentation. We start training with an costly model and let some parts of it fade away to61

meet the hardware constraints in the training process. NAS will search for shrinking solutions62

to further boost accuracy.63

2

Under review as a conference paper at ICLR 2024

2 RELATED WORKS64

Multiplication-Free NNs. In order to reduce the intensive multiplication that occuplies the main65

energy and time consumption, an important trend is to use hardware-friendly operators instead of66

multiplications. ShiftNet(Wu et al., 2018; Chen et al., 2019) believes that the Shift can be regarded67

as a special case of Depthwise Convolution, and proposes a zero-parameter, zero-flop convolution68

operator. DeepShift(Elhoushi et al., 2021) retains the calculation method of original convolution,69

but replaces the multiplication with bit-shift and bit-reversal. BNNs(Courbariaux et al., 2016; Lin70

et al., 2016; Rastegari et al., 2016) binarize the weight or activation to build DNNs consisting of sign71

changes, and get faster calculation in hardware by xnor. AdderNet (Chen et al., 2020; Song et al.,72

2021) chooses to replace multiplicative convolution with less expensive addition, and design an73

efficient hardware implementation(Wang et al., 2021). ShiftAddNet(You et al., 2020) combines bit-74

shift and add. It gets up to 196× energy savings on hardware as shown in Tab. 1. ShiftAddVit(You75

et al., 2023) puts this idea into vision transformer and performs hybrid computing through mixture76

of experts.77

Table 1: Hardware cost under
45nm CMOS.

OPs Format Energy (pJ)

Mult.

FP32 3.7
FP16 0.9
INT32 3.1
INT8 0.2

Add

FP32 1.1
FP16 0.4
INT32 0.1
INT8 0.03

Shift
INT32 0.13
INT16 0.057
INT8 0.024

Network Augmentation. The tiny neural network is developing78

rapidly. Networks and optimization techniques designed for MCU79

have already appeared at present(Lin et al., 2020; 2021a). It is80

also possible to train under the 256KB memory limit(Lin et al.,81

2022). Due to the smaller capacity, the training of tiny NNs will82

have more challenges. Once-for-all(Cai et al., 2020) proposes the83

Progressive Shrinking training method, and finds that the accu-84

racy of the obtained model is better than the same network that85

trained from scratch. Inspired by this result, NetAug(Cai et al.,86

2022) raises a point that tiny neural networks need more capac-87

ity rather than noise in training. Therefore, they chose a scheme88

that is the opposite of network structure regularization methods89

like Dropout(Srivastava et al., 2014), StochasticDepth(Huang et al.,90

2016), DropBlock(Ghiasi et al., 2018): expand the model width and91

let the large model lead the small model to achieve better accuracy92

through weight sharing.93

Nerual Archtecture Search. NAS has achieved amazing success in automating the design of ef-94

ficient NN architectures(Liu et al., 2019b;a). In addition to obtain higher accuracy, some works95

include hardware performance of the model, such as latency(Tan et al., 2019; Wu et al., 2019) and96

memory(Lin et al., 2020), into the search. In parts that are closer to the hardware, NAS can also97

be used to explore faster operator implementations(Chen et al., 2018) and combine network struc-98

tures for optimization(Lin et al., 2021b; Shi et al., 2022). BossNAS(Li et al., 2021) searched the99

network of hybrid CNN-transformers structure and ShiftAddNAS(You et al., 2022) for the first time100

constructed a search space with mixed multiplication and multiplication-free operators. However,101

unlike our target, networks the ShiftAddNAS focuses on are far beyond the hardware limitations of102

edge devices.103

3 SHIFTADDAUG104

In this section, we introduce the hybrid computing augmentation method and then present our het-105

erogeneous weight sharing strategy to solve the weight-tearing problem. In the end, we introduce a106

new hardware-aware NAS method to get better multiplication-free tiny NNs.107

3.1 PRELIMINARIES108

Shift. For the shift operator, training is similar to the regular approach of linear or convolution109

operators with weight W , but round it to the nearest power of 2. During inference, use bit-shift and110

bit-reversal to efficiently get the same calculation result as Equ. 1. All inputs are quantized before111

calculation and dequantized when the output is obtained.112

3

Under review as a conference paper at ICLR 2024

{
S = sign(W)

P = round(log2(|W |)) −→

{
Y = XW̃q

T
= X(S · 2P)

T
, train.

Y =
∑

i,j

∑
k ±(Xi,k >> Pk,j), infer.

(1)

Add. Add operator replaces multiplication in original convolutions with subtractions and ℓ1 dis-113

tance, since subtractions can be easily reduced to additions by using complement code.114

Ym,n,t = −
d∑

i=0

d∑
j=0

cin∑
k=0

|Xm+i,n+j,k − Fi,j,k,t| . (2)

NetAug. Network Augmentation encourages the tiny NNs to work as a sub-model of a large model115

expanded in width. Based on shared weights, the target tiny NN and the augmented large model are116

jointly trained. The training loss and parameter updates are as follows:117

Laug = L(Wt) + αL(Wa), W n+1
t = W n

t − η(
∂L(W n

t)

∂W n
t

+ α
∂L(W n

a)

∂W n
t

). (3)

where L is the loss function, Wt is the weight of the target tiny NN, Wa is the weight of the118

augmented NN, and Wt is a subset of Wa.119

3.2 HYBRID COMPUTING AUGMENT120

Our method is designed for tiny multiplication-free CNNs, introducing multiplication in the training121

process, and using only multiplication-free operators during inference as possible to improve the122

speed and save more energy. We combine the convolution kernels of different operators on the123

channel dimension as shown in Fig. 1. The target model will use multiplication-free convolution124

(MFConv, ShiftConv(Elhoushi et al., 2021) or AddConv(Chen et al., 2020) can be chosen), then125

take multiplicative convolution (MConv, i.e. original Conv) as the augmented part.126

Since NetAug widens the channel and increases the expanding ratio of the Inverted Block, the input127

of each convolution in the large model can be conceptually split into the target part Xt and the128

augmented part Xa, so does the output Yt,Ya. In our work, Xt and Yt mainly carry information of129

MFConv, while XA and YA are obtained by original Conv.130

Here we mainly discuss three types of operators commonly used to build augmented tiny NNs:131

Convolution (Conv), Depthwise Convolution (DWConv), and Fully Connected (FC) layer. The132

hybrid computing augmentation for DWConv is the most intuitive. We only need to split the input133

into Xt and Xa, then use MFConv and MConv to calculate respectively and connect the obtained134

Yt and Ya in the channel dimension. For Conv, We use all input X to get Ya through MConv. But135

to get Yt, we still need to split the input and calculate it separately, and finally add the results. Since136

the FC layer is only used as a classification head, its output does not require augmentation. We137

divide the input and use Linear and ShiftLinear to calculate respectively, and add the results. If bias138

is used, it will be preferentially bounded to multiplication-free operators.139

DWConv :

{
Yt = MFConv(Xt)
Ya = MConv(Xa)
Y = cat(Yt,Ya)

, FC :

{
Yt = ShiftLinear(Xt)

Ya = Linear(X)
Y = Yt + Ya

,

Conv :

{
Yt = MFConv(Xt) + MConv(Xa)

Ya = MConv(X)
Y = cat(Yt,Ya)

(4)

3.3 HETEROGENEOUS WEIGHT SHARING140

Dilemma. Weight sharing strategy is widely used in one-shot neural architecture search(Guo et al.,141

2020; Yu et al., 2020) and multi-task learning(Ruder, 2017). In Network Augmentation, to learn the142

most important information in the large network, the ℓ1 norm is calculated for the weight of each143

4

Under review as a conference paper at ICLR 2024

Add: Laplacian Vanilla subtract Shift

ShiftVanilla: Gaussian

(a). Weight distribution in different operators (b). Remapping for heterogeneous weight sharing

shared
weight ...

remapped
weight

Gaussian Laplacian

or

target

augmented

Figure 2: Left: Weight distribution of different convolution operators for MobileNetV2. Inconsistent
weight distribution leads to tearing problems, making weight sharing difficult. Right: Through our
weight remapping strategy, different operators can share a weight pool. For ShiftConv, the mapping
result is only used as a bias.

channel at the end of every epoch. The important weights will be redirected to the target model.144

This looks like Channel-level Pruning(Mao et al., 2017), but different in the training process.145

However, since the weight distribution of the multiplication-free operator is inconsistent with origi-146

nal Conv, it causes the weight tearing problem. As shown in Fig. 2(a), the weight in original Conv147

conform to Gaussian distribution, while ShiftConv has spikes at some special values. We find that148

the weight in ShiftConv is the one of original Conv plus a Laplace distribution with a small variance.149

The weight in AddConv conforms to the Laplace distribution. ShiftAddNas(You et al., 2022) adds150

a penalty term to the loss function, and guides the weight in heterogeneous operators to conform to151

the same distribution. Although this can alleviate the problem, it affects the network to achieve its152

maximum performance, which is more serious on tiny NNs with smaller capacity.153

Solution: heterogeneous weight sharing. To solve the above dilemma, we propose a new hetero-154

geneous weight sharing strategy for the shift and add operators. This method is based on original155

Conv and passes parameters to weights of different distribution types through a mapping function156

R(·). Considering that the weights of original Conv and ShiftConv still have a deep relation, we157

hope to get a suitable bias to compensate for the weight when mapping to ShiftConv. For AddConv,158

we directly use the same method to get a new weight for replacement.159

When mapping the Gaussian distribution to the Laplace distribution, we hope that the cumulative160

probability of the original value and mapping result are the same. Firstly, calculate the cumulative161

probability of the original weight in Gaussian. Then put the result in the percent point function of162

Laplacian. The workflow is shown in Fig. 2(b). The mean and standard deviation of the Gaussian163

can be calculated through the weights, but for the Laplace, these two values need to be determined164

through prior knowledge.165

Wl = R(Wg) = r(FC(Wg)), cpfg(x) =
1

σ
√
2π

∫ x

−∞ e(−
(x−µ)2

2σ2)dx,

r(·) = ppfl(cpfg(·)), ppfl(x) = µ− b ∗ sign(x− 1
2) ∗ ln(1− 2

∣∣x− 1
2

∣∣). (5)

Where Wg is the weight in original Conv that conforms to the Gaussian distribution, and Wl is166

the weight obtained by mapping that conforms to the Laplace distribution. FC is a fully connected167

layer. We need this because the weights don’t fit the distribution perfectly. cpfg(·) is the cumulative168

probability function of Gaussian, ppfl(·) is the percentage point function of Laplace.169

3.4 NERUAL ARCHTECTURE SEARCH170

We take our proposed method one step further and use neural architecture search to design more171

efficient yet powerful multiplication-free models. Our method mainly aims to enhance the effect of172

hybrid computing augmentation.173

5

Under review as a conference paper at ICLR 2024

Augment Expand Augment BlockAugment Width

Block n

...

Block 1

Block n+1

...

Aug Block

...
Block 1

Block n

Activation

1

0
epoch

Vanilla Conv

+
Out

...
Block Mutation

...

Block n

...

Block n+2

Block n+1

Shift
Block

Add
Block

Figure 3: Methods used to construct search spaces. Augment Width: use MConv to widen the
MFConv channel; Augment Expand: increase expand ratio of InvertedBlock, i.e. the channels of
depthwise separable convolution; Augment Block: select some blocks and make them fade away
during training for target model; Block Mutation: based on MConv, mutate the block into ShiftConv
or AddConv.

Table 2: Search space of ShiftAddAug.

Block types [Conv, Shift, Add]
width aug. multiples [2.2, 2.4, 2.8, 3.2]
expand aug. multiples [2.2, 2.4, 2.8, 3.2]
block aug. index [None, 1, 2, 3]

We follow tinyNAS(Lin et al., 2020) to build our174

search space of model structure and set energy and175

latency limit of the target model to help us priori-176

tize the elimination of some expensive model struc-177

tures. Let the set of model structures that satisfy the178

hardware constraints be T, and the set of all feasible179

model structures be A. We first select the structure180

and operator type of the target model, and verify whether it belongs to the T. If so, we create its181

counterpart, which is in the A but not in the T, and transition it into the T during training. To achieve182

this, we use Augment Block and Block Mutation.183

Augment Block is intended to insert some multiplication blocks into the backbone to help the target184

model extract more information during early training. It will then fade away in the target model but185

remain in the augmented one. In other words, this is an augmentation at the depth of the model. As186

for Block Mutation, although the operator type of the target model is determined at the beginning187

of each search, it lets the model use more powerful multiplicative operators in the early stage, and188

mutate to more efficient Shift or Add operators during the training process.189

Combining the Width Augmentation and Expand Augmentation we used in section 3.2, we construct190

our search space according to Tab. 2. The schematic diagram of the four augmentation methods is191

shown in Fig. 3. We then perform an evolution search to find the best model within the search space.192

4 EXPERIMENTS193

4.1 SETUP194

Datasets. We conduct experiments on several image classification datasets, including195

ImageNet-1K(Deng et al., 2009), CIFAR10(Krizhevsky, 2009), CIFAR100(Krizhevsky, 2009),196

Food101(Bossard et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), Cars(Krause et al.,197

2013), Pets(Parkhi et al., 2012) and OpenEDS(Palmero et al., 2020) for segmentation task.198

Training Details. We follow the training process in NetAug(Cai et al., 2022) and train models with199

batch size 128 using 2 GPUs. We use the SGD optimizer with Nesterov momentum 0.9 and weight200

decay 4e-5. By default, the Baseline and Shift models are trained for 250 epochs, and Add models201

are trained for 300 epochs. The initial learning rate is 0.05 and gradually decreases to 0 following202

the cosine schedule. Label smoothing is used with a factor of 0.1. Please refer to Appendix E for203

more details.204

Hardware Performance. Since many works have verified the efficiency of shift and add on pro-205

prietary hardware(You et al., 2020; 2022; Wang et al., 2021; You et al., 2023), we follow their206

evaluation metrics. Hardware energy and latency are measured based on a simulator of Eyeriss-like207

6

Under review as a conference paper at ICLR 2024

Table 3: ShiftAddAug vs. Multiplicative Baseline in terms of accuracy and efficiency on CIFAR100
classification tasks. ShiftAddAug not only improves the accuracy of popular tiny neural networks
but also achieves better speed and energy efficiency. Please refer to Appendix.B for the specific
meaning of each method.

Model Method Params (M) Mult (M) Shift (M) Add (M) Accuracy(%) Energy (mj) Latency (ms)

MobileNetV2
Base / NetAug 0.52 29.72 0 29.72 70.59 / 71.98 2.345 0.73

w0.35
Shift / AugShift 0.52 0 29.72 29.72 69.25 / 71.83 (↑2.58) 0.74 0.246
Add / AugAdd 0.52 4.52 0 56.88 67.85 / 69.38 (↑1.5) 1.091 0.753

MobileNetV3
Base / NetAug 0.96 18.35 0 18.35 69.32 / 72.2 1.726 0.485

w0.35
Shift / AugShift 0.96 0 18.35 18.35 68.42 / 73.37 (↑4.95) 0.536 0.16
Add / AugAdd 0.96 3.5 0 34.34 - / - 0.699 0.512

MCUNet
Base / NetAug 0.59 65.72 0 65.72 71.38 / 73.15 4.28 1.682

Shift / AugShift 0.59 0 65.72 65.72 70.87 / 74.59 (↑3.72) 1.323 0.545
Add / AugAdd 0.59 20.91 0 113.09 70.25 / 72.72 (↑2.47) 2.345 1.72

ProxylessNAS
Base / NetAug 0.63 34.56 0 34.56 70.86 / 72.32 2.471 0.883

w0.35
Shift / AugShift 0.63 0 34.56 34.56 70.54 / 73.86 (↑3.32) 0.774 0.294
Add / AugAdd 0.63 8.81 0 61.97 68.87 / 70.18 (↑1.31) 1.281 0.881

MobileNetV2
Base / NetAug 0.35 27.31 0 27.31 69.3 / 71.62 2.161 0.67

-Tiny
Shift / AugShift 0.35 0 27.31 27.31 68.29 / 71.89 (↑3.6) 0.697 0.228
Add / AugAdd 0.35 4.43 0 52.09 66.57 / 67.65 (↑1.08) 0.999 0.693

Table 4: Accuracy of MobileNetV2 (w0.35) and MCUNet on more datasets. Training with Shif-
tAddAug can improve model performance without any overhead during inference on fine-grained
classification tasks.

Model Methods CIFAR10 ImageNet Food101 Flower102 Cars Pets

MobileNetV2 - w0.35
Shift 88.59 51.92 72.99 92.25 72.83 75.4

AugShift 92.51 53.86 74.67 96.08 74.47 79.59

MCUNet
Shift 90.61 56.45 78.46 95.59 80.51 79.67

AugShift 93.08 57.34 79.96 97.06 83.29 83.95

hardware accelerator(Chen et al., 2017; Zhao et al., 2020), which calculates not only computational208

but also data movement energy.209

4.2 SHIFTADDAUG VS. BASELINE210

We validate our method on MobileNetV2, MobileNetV3, MCUNet, ProxylessNAS and211

MobileNetV2-Tiny. ShiftAddAug provides consistent accuracy improvements (average ↑2.82%) for212

ShiftConv augmentation over the multiplicative baselines. For AddConv augmentation, it improves213

the accuracy compared with direct training (average ↑1.59%). The resulting model will be faster214

(3.0× for Shift) and more energy-efficient (↓68.58% for Shift and ↓52.02% for Add) due to the use215

of hardware-friendly operators. As shown in Tab. 3, these multiplication-free operators usually hurt216

the performance of the network. Changing all operators to Shift will cause ↓0.82% accuracy drop on217

average compared to the multiplication baseline. But after using our method, the accuracy increased218

by ↑3.63% on average under the same energy cost. 1219

In addition, our method achieves higher results than multiplicative NetAug on some models (Mo-220

bileNetV3:↑1.17%, MCUNet:↑1.44%, ProxylessNAS:↑1.54%). This means that our method enables221

the multiplication-free operator to be stronger than those of the original operator.222

To verify the generality of our method, we also conduct experiments on more datasets. As shown223

in Tab. 4, our method can achieve ↑0.89% to ↑4.28% accuracy improvements on different datasets.224

Hybrid computing augmentation works better on smaller models and datasets with less classification.225

On Flower102, MobileNetV2-w0.35 has ↑3.83% accuracy improvements with our method, while226

MCUNet has only ↑1.47%. This shows that smaller model capacity can achieve better effect on this227

dataset. The larger the model, the smaller the gain brought by augmentation. The same phenomenon228

also occurs in CIFAR10. But for bigger datasets such as ImageNet, even if it is augmented, the229

1Loss diverges when we use AddConv on MobileNetV3, both direct training and augmented training.

7

Under review as a conference paper at ICLR 2024

Table 5: ShiftAddAug vs. SOTA NAS method for hybrid operators in terms of accuracy and effi-
ciency on CIFAR-10/100 classification tasks. ShiftAddAug can further improve the performance of
the obtained multiplication-free model.

Model Method Resolution Mult (M) Shift (M) Add (M) Accuracy(%) MACs Saving

CIFAR10

ShiftAddNas (Mult-free) 32 2 26 38 91.32 -
ShiftAddNas 32 17 19 58 95.83 -

ShiftAddAug (Mult-free) 160 0.13 27 27.1 93.43(↑2.11) 17.9%
ShiftAddAug 96 12.3 14.5 28 95.92(↑0.09) 40.4%

CIFAR100

ShiftAddNas (Mult-free) 32 3 35 48 71.0 -
ShiftAddNas 32 22 21 62 78.6 -

ShiftAddAug (Mult-free) 160 0.13 33.5 33.6 74.61(↑3.61) 21.9%
ShiftAddAug 160 21 17 51 76.21 15.2%
ShiftAddAug 96 16.2 20.2 36.4 78.72(↑0.12) 33.8%

Energy

 A
cc

ur
ac

y

90.7% saved 84.2% saved

(a). Accuarcy & Energy on CIFAR100 (b). Accuarcy & Energy on CIFAR10
 A

cc
ur

ac
y

Energy

Figure 4: Accuracy and energy cost of ShiftAddAug over SOTA manually designed multiplication-
free model and tiny multiplicative models. Tested on CIFAR-100/10.

capacity of the model is still not enough. It only achieves ↑1.94% for MobileNetV2-w0.35 and230

↑0.89% for MCUNet on ImageNet. For segmentation task, please refer to Appendix. D.231

4.3 SHIFTADDAUG VS. SOTA MULT.-FREE MODELS232

We further compare ShiftAddAug over SOTA multiplication-free models, which are designed man-233

ually for tiny computing devices, on CIFAR-10/100 to evaluate its effectiveness. As shown in Fig.234

4, the base models we use are smaller and have better energy performance. With ShiftAddAug, the235

accuracy still exceeds existing work. For DeepShift and AdderNet, our method boosts ↑0.67% and236

↑1.95% accuracy on CIFAR100 with ↓84.17% and ↓91.7% energy saving. Compared with the SOTA237

shift quantization method APoT(Li et al., 2020), we achieve an improved accuracy of ↑3.8%. With238

the same accuracy on CIFAR10, our model saves ↓84.2% of the energy compared with Deepshift,239

and ↓56.45% of the energy compared with AdderNet.240

4.4 SHIFTADDAUG WITH NEURAL ARCHITECTURE SEARCH241

Based on hybrid computing augmentation, we introduce neural architecture search into our method242

to get stronger tiny neural networks. We conduct our experiments on CIFAR-10/100 and compare243

them with the results of ShiftAddNAS(You et al., 2022) under similar calculation amounts. As244

shown in Tab. 5, the multiplication-free model we obtained achieved higher accuracy (↑2.11% and245

↑3.61%) than ShiftAddNas with FBNet(Wu et al., 2019) search space. For hybrid-computed models,246

we have to use a smaller input resolution (96 instead of 160) and larger models. While the input247

resolution of ShiftAddNas is 32, this gives us 9× the number of calculations at the same model size.248

Even so, we can still save 37.1% of calculations on average with similar accuracy.249

4.5 ABLATION STUDY250

Hybrid Computing Augment. In order to prove that hybrid computing works better, we add an251

experiment using only multiplication-free operators for augmentation. We exert experiments based252

on NetAug, and replace all the original operators with Shift operators. The difference from our253

method is that the Shift operator is also used in the augmentation part, while our method uses the254

multiplicative operator in it. As shown in Tab. 6, it yields an average accuracy improvement of255

↑1.40%.256

8

Under review as a conference paper at ICLR 2024

Table 6: The ablation study of hybrid computing augmentation and heterogeneous weight sharing
in terms of accuracy on CIFAR100.

Method
MobileNetV2 MobileNetV3

MCUNet
ProxylessNAS MobileNetV2

w0.35 w0.35 w0.35 Tiny
Mult. baseline 70.59 69.32 71.38 70.86 69.3

To shift op 69.25 68.42 70.87 70.54 68.29
Aug. with Shift 70.12 71.56 72.68 70.91 69.28

Aug. with Hybrid Computation 69.41 69.63 71.02 70.6 68.45
Aug. with HWS 71.83 73.37 74.59 73.86 71.89

Table 7: The ablation study of block augmentation and block mutation in terms of accuracy on
CIFAR100. Results are obtained by neural architecture search.

Method Mult (M) Shift (M) Add (M) Accuracy(%) Energy (mj) Latency (ms)

Aug. Width & Expand 3.7 61 65 75.13 1.52 0.57
Aug. Width & Expand & Block 1.5 56 64.3 75.63 1.42 0.66

Aug. Width & Expand, Mutation 0.6 58 67 75.92 1.4 0.67
All 0.1 71.9 72 76.35 1.632 0.554

Mult. Conv Shift Conv Add Conv

(a). w/o weight sharing

Shift Conv Add Conv Shift Conv Add Conv

(b). HWS (c). HWS after remap

Figure 5: The weight distribution of original Conv / ShiftConv / AddConv layers

Then without using the heterogeneous weight sharing (HWS) method, only augmenting tiny NNs257

with multiplicative operator will cause ↓1.09% accuracy drop on average due to the weight tearing258

problem. However, the situation changed after we applied for HWS. Compared with using the shift259

operator for augmentation, the accuracy increased by ↑2.2%.260

Heterogeneous Weight Sharing. Since the help of HWS on training results has been discussed261

above, here we visualize the weight distributions of Conv layers in tiny NNs under three scenarios,262

(a) w/o weight sharing; (b) heterogeneous weight sharing; (c) weight after remapped, as shown263

in Fig. 5. We consistently observe that the three operators exhibit different weight distributions264

without weight sharing. With our HWS, the saved weights are based on the original Conv and265

conform to Gaussian distribution. After remapping, the weights can show different distribution266

states in Shift/Add Conv calculations. Please refer to Appendix.C for more ablation study of HWS.267

Neural Architecture Search. Our neural architecture search approach is dependent on our pro-268

posed hybrid compututing augmentation. And it can help the multiplication-free operator to be as269

strong as the original operator. Block augmentation and block mutation help us further improve the270

performance of multiplication-free tiny NNs. As shown in Tab. 7, under similar energy consump-271

tion and latency, block augmentation improves accuracy by ↑0.5%, and block mutation improves by272

↑0.79%. Combining all method, the accuracy of the target model is increased by ↑1.22%.273

5 CONCLUSION274

In this paper, we propose ShiftAddAug for training multiplication-free tiny neural networks, which275

can greatly improve model accuracy without expanding the model size. It exceeds the multiplica-276

tive model in terms of accuracy under the same structure. It’s achieved by putting the target277

multiplication-free tiny NN into a larger multiplicative NN to get auxiliary supervision. To relo-278

cate important weights into the target model, we also propose a novel heterogeneous weight sharing279

strategy to approach the tearing problem caused by inconsistent weight distribution. Based on the280

work above, we use neural architecture search to design more powerful models. Extensive exper-281

iments on image classification task consistently demonstrate the effectiveness of ShiftAddAug on282

the training process of multiplication-free tiny neural networks.283

9

Under review as a conference paper at ICLR 2024

REFERENCES284

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-285

ponents with random forests. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars286

(eds.), European Conference on Computer Vision, pp. 446–461, Cham, 2014. Springer Interna-287

tional Publishing.288

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task289

and hardware. In International Conference on Learning Representations, 2019.290

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one291

network and specialize it for efficient deployment. In International Conference on Learning292

Representations, 2020.293

Han Cai, Chuang Gan, Ji Lin, and song han. Network augmentation for tiny deep learning. In294

International Conference on Learning Representations, 2022.295

Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. Addernet:296

Do we really need multiplications in deep learning? In 2020 IEEE/CVF Conference on Computer297

Vision and Pattern Recognition (CVPR), pp. 1465–1474, 2020. doi: 10.1109/CVPR42600.2020.298

00154.299

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen300

Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:301

An automated end-to-end optimizing compiler for deep learning, 2018.302

Weijie Chen, Di Xie, Yuan Zhang, and Shiliang Pu. All you need is a few shifts: Designing ef-303

ficient convolutional neural networks for image classification. In Proceedings of the IEEE/CVF304

Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.305

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss: An energy-efficient re-306

configurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State307

Circuits, 52(1):127–138, 2017. doi: 10.1109/JSSC.2016.2616357.308

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized309

neural networks: Training deep neural networks with weights and activations constrained to +1310

or -1, 2016.311

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-312

archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,313

pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.314

Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian, and Joey Yiwei Li. Deepshift:315

Towards multiplication-less neural networks. In Proceedings of the IEEE/CVF Conference on316

Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 2359–2368, June 2021.317

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolu-318

tional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and319

R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-320

ciates, Inc., 2018.321

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.322

Single path one-shot neural architecture search with uniform sampling. In European Conference323

on Computer Vision, 2020.324

Bah-Hwee Gwee, Joseph S. Chang, Yiqiong Shi, Chien-Chung Chua, and Kwen-Siong Chong. A325

low-voltage micropower asynchronous multiplier with shift–add multiplication approach. IEEE326

Transactions on Circuits and Systems I: Regular Papers, 56(7):1349–1359, 2009. doi: 10.1109/327

TCSI.2008.2006649.328

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural net-329

work with pruning, trained quantization and huffman coding. Computer Vision and Pattern330

Recognition, 2015a.331

10

Under review as a conference paper at ICLR 2024

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for332

efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),333

Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015b.334

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.335

Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace336

Chu, Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, and Quoc Le. Searching337

for mobilenetv3. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.338

1314–1324, 2019. doi: 10.1109/ICCV.2019.00140.339

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochas-340

tic depth, 2016.341

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained342

categorization. In 2013 IEEE International Conference on Computer Vision Workshops, pp. 554–343

561, 2013. doi: 10.1109/ICCVW.2013.77.344

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.345

Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng, Bing Wang, Xiaodan Liang, and Xiaojun346

Chang. Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural347

architecture search. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),348

pp. 12261–12271, 2021. doi: 10.1109/ICCV48922.2021.01206.349

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient350

non-uniform discretization for neural networks. In International Conference on Learning351

Representations, 2020.352

Ji Lin, Wei-Ming Chen, Yujun Lin, john cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep353

learning on iot devices. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin354

(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 11711–11722. Curran355

Associates, Inc., 2020.356

Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. Memory-efficient patch-based in-357

ference for tiny deep learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and358

J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.359

2346–2358. Curran Associates, Inc., 2021a.360

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device361

training under 256kb memory. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and362

A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 22941–22954.363

Curran Associates, Inc., 2022.364

Yujun Lin, Mengtian Yang, and Song Han. Naas: Neural accelerator architecture search. In 2021365

58th ACM/IEEE Design Automation Conference (DAC), pp. 1051–1056, 2021b. doi: 10.1109/366

DAC18074.2021.9586250.367

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. Neural networks with368

few multiplications, 2016.369

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and370

Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmenta-371

tion. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.372

82–92, 2019a. doi: 10.1109/CVPR.2019.00017.373

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In374

International Conference on Learning Representations, 2019b.375

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J. Dally. Ex-376

ploring the granularity of sparsity in convolutional neural networks. In 2017 IEEE Conference377

on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1927–1934, 2017. doi:378

10.1109/CVPRW.2017.241.379

11

Under review as a conference paper at ICLR 2024

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolu-380

tional neural networks for resource efficient inference. In International Conference on Learning381

Representations, 2017.382

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number383

of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics Image Processing,384

pp. 722–729, 2008. doi: 10.1109/ICVGIP.2008.47.385

Cristina Palmero, Abhishek Sharma, Karsten Behrendt, Kapil Krishnakumar, Oleg V. Komogortsev,386

and Sachin S. Talathi. Openeds2020: Open eyes dataset, 2020.387

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In388

2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505, 2012. doi:389

10.1109/CVPR.2012.6248092.390

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet391

classification using binary convolutional neural networks, 2016.392

Sebastian Ruder. An overview of multi-task learning in deep neural networks, 2017.393

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-394

bilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer395

Vision and Pattern Recognition(CVPR), pp. 4510–4520, 2018. doi: 10.1109/CVPR.2018.00474.396

Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, and Yingyan Lin. Nasa: Neural ar-397

chitecture search and acceleration for hardware inspired hybrid networks. In 2022 IEEE/ACM398

International Conference On Computer Aided Design (ICCAD), pp. 1–9, 2022.399

Dehua Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, and Dacheng Tao. Addersr:400

Towards energy efficient image super-resolution. In 2021 IEEE/CVF Conference on Computer401

Vision and Pattern Recognition(CVPR), pp. 15643–15652, 2021. doi: 10.1109/CVPR46437.402

2021.01539.403

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.404

Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):405

1929–1958, jan 2014. ISSN 1532-4435.406

Statista. Internet of things (iot) connected devices installed base worldwide from 2015407

to 2025. Website, 2016. https://www.statista.com/statistics/471264/408

iot-number-of-connected-devices-worldwide/.409

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and410

Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. In 2019 IEEE/CVF411

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2815–2823, 2019. doi:412

10.1109/CVPR.2019.00293.413

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware automated quan-414

tization with mixed precision, 2019.415

Yunhe Wang, Mingqiang Huang, Kai Han, Hanting Chen, Wei Zhang, Chunjing Xu, and Dacheng416

Tao. Addernet and its minimalist hardware design for energy-efficient artificial intelligence, 2021.417

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,418

Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial con-419

volutions. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),420

pp. 9127–9135, 2018. doi: 10.1109/CVPR.2018.00951.421

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,422

Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via423

differentiable neural architecture search. In 2019 IEEE/CVF Conference on Computer Vision and424

Pattern Recognition (CVPR), pp. 10726–10734, 2019. doi: 10.1109/CVPR.2019.01099.425

12

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Under review as a conference paper at ICLR 2024

Ping Xue and Bede Liu. Adaptive equalizer using finite-bit power-of-two quantizer. IEEE426

Transactions on Acoustics, Speech, and Signal Processing, 34(6):1603–1611, 1986. doi:427

10.1109/TASSP.1986.1164999.428

Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang,429

and Yingyan Lin. Shiftaddnet: A hardware-inspired deep network. In H. Larochelle, M. Ranzato,430

R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,431

volume 33, pp. 2771–2783. Curran Associates, Inc., 2020.432

Haoran You, Baopu Li, Huihong Shi, Yonggan Fu, and Yingyan Lin. Shiftaddnas: Hardware-433

inspired search for more accurate and efficient neural networks, 2022.434

Haoran You, Huihong Shi, Yipin Guo, Yingyan, and Lin. Shiftaddvit: Mixture of multiplication435

primitives towards efficient vision transformer, 2023.436

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,437

Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural ar-438

chitecture search with big single-stage models. In European Conference on Computer Vision,439

2020.440

Yang Zhao, Chaojian Li, Yue Wang, Pengfei Xu, Yongan Zhang, and Yingyan Lin. Dnn-chip predic-441

tor: An analytical performance predictor for dnn accelerators with various dataflows and hardware442

architectures. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and443

Signal Processing (ICASSP), pp. 1593–1597, 2020. doi: 10.1109/ICASSP40776.2020.9053977.444

A ABLATION STUDY OF TRAINING SETTINGS445

160 180 200 220 240 260 280 300
Epoch

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

Ac
cu

ar
cy

MobileNetV2
MobileNetV3
ProxylessNAS
MCUNet
MobileNetV2-Tiny

Figure 6: Baseline accuracy with training epochs.

More training epochs can improve accuracy as shown in Fig.6. However, training for too long may446

produce overfitting on the augmented model and require more training time. As a trade-off, we447

choose to train 250 epochs on the datasets such as CIFAR-10/100. A similar ablation study on448

ImageNet can be found in NetAug(Cai et al., 2022).449

25 50 75 100 125 150 175 200 225
Resolution

45

50

55

60

65

70

Ac
cu

ar
cy

MobileNetV2
MobileNetV3
ProxylessNAS
MCUNet
MobileNetV2-Tiny

Figure 7: Baseline accuracy with different input resolution.
As shown in Fig. 6, higher resolution improves the accuracy but introduces more computation.450

We decided that all inputs should be resized to 160 during training and inference. Our model has451

a smaller capacity, allowing it to consume less energy than previous work with larger resolutions.452

This setting also means our experimental conclusions won’t be limited to low-resolution datasets.453

13

Under review as a conference paper at ICLR 2024

B THE SPECIFIC MEANING OF METHOD454

• Base: directly trained multiplicative model.455

• NetAug: multiplicative model with multiplicative augmentation.456

• Shift: directly trained shift-model with ShiftConv in DeepShift(Elhoushi et al., 2021).457

• AugShift: ShiftConv with multiplicative augmentation.458

• Add: directly trained add-model with AddConv in AdderNet(Chen et al., 2020).459

• AugAdd: AddConv with multiplicative augmentation.460

• ShiftAddAug (Mult-free): results of neural architecture search with shift/add operator only461

• ShiftAddAug: results of neural architecture search with shift/add/multi. operator462

 MultShift

Base

Mult

 MultMult

NetAug AugShift

ShiftConv

Shift

 MultAdd

AugAdd

AddConv

Add

... ... convolution
channel

Figure 8: Schematic diagram of each method.

C MORE ABLATION STUDY OF HETEROGENEOUS WEIGHT SHARING463

The difference from ShiftAddNas. When we encountered the issue of weight tearing, we first464

thought of the solution in ShiftAddNAS(You et al., 2022). However, when we applied it, the train-465

ing loss didn’t converge, which made us believe that the method was not suitable for our training466

situation and it was difficult to compare performance. ShiftAddNas sorts the values of weights,467

dividing them into n groups from bottom to top, and then sets n learnable parameters to scale the468

weight values within each group. Our HWS strategy uses fully connected to remap the Conv ker-469

nel and use Equ.5 to handle different weight distributions. The obtained result is only added to the470

original weight as a bias, rather than applied directly. We use directly trained multiplicative and471

multiplication-free Conv weights as datasets to train the FC layer here, and freeze it in augmented472

training. We believe that our method has better training stability than ShiftAddNas. As shown in473

Tab.8, the ShiftAddNas method and direct mapping with learnable Linear will make it unable to474

train.475

Table 8: The ablation study of different method for HWS

Method MobileNetV2 w0.35 MobileNetV3 w0.35 MCUNet ProxylessNAS w0.35 MobileNet-tiny

ShiftAddNAS Nan Nan Nan Nan Nan
Linear remap Nan Nan Nan Nan Nan
KL-loss only 69.84 69.98 71.12 70.52 68.70

Linear + skip connect + freeze 71.02 72.70 74.44 72.99 71.08
Ours 71.83 73.37 74.59 73.86 71.89

Is HWS a parameterization trick that can directly improve the target model? We designed this476

ablation study to demonstrate that our HWS remapping method does not improve the accuracy of477

multiplication-free NNs by itself. On the contrary, it slightly damages the accuracy of the model.478

This kind of remapping is only a compensation method for different weight distributions, and will479

not produce gain for directly trained multiplication-free NNs.480

14

Under review as a conference paper at ICLR 2024

Table 9: HWS is not a parameterization trick that can directly improve target model

Method MobileNetV2 w0.35 MobileNetV3 w0.35 MCUNet ProxylessNAS w0.35 MobileNet-tiny

w/o. augmentation, w/o. HWS 69.25 68.42 70.87 70.54 68.29
w/o. augmentation, with HWS 68.32 68.10 71.13 69.88 68.02
with augmentation, with HWS 71.83 73.37 74.59 73.86 71.89

D SHIFTADDAUG IN SPECIFIC TASKS FOR IOT DEVICES481

To demonstrate the effectiveness of our method in specific applications, we apply ShiftAddAug to a482

semantic segmentation task for IoT devices.483

The segmentation of iris, pupil and sclera plays an important role in eye tracking in VR devices.484

To cope with this task, it is highly cost-effective to use fast and energy-efficient multiplication-free485

neural networks on such devices. OpenEDS(Palmero et al., 2020) is a large scale dataset of eye-486

images captured using a virtual-reality (VR) devices. We train each model from scratch for 100487

epochs with a learning rate of 0.001 and batch size of 8. The mIoU(%) of the segmentation results488

of each model are shown in Tab.10 .489

Table 10: ShiftAddAug on OpenEDS dataset for semantic segmentation task

Method MobileNetV2 w0.35 ProxylessNAS w0.35

Base/NetAug 88.68 / 92.41 86.27 / 92.84
Shift/AugShift 88.01 / 94.52 86.01 / 95.12
Add/AugAdd 83.94 / 91.20 82.01 / 90.45

From the results shown in Fig.9, we can see that the model trained with augmentation will have490

fewer abnormal segmentation areas.491

MobileNetV2-w0.35
Add

MobileNetV2-w0.35
AugShift

MobileNetV2-w0.35
AugAdd

MobileNetV2-w0.35
Shift

ProxylessNAS-w0.35
Shift

ProxylessNAS-w0.35
AugShift

Figure 9: ShiftAddAug on OpenEDS.

E MORE TRAINING DETAILS492

For ImageNet, we train models with batch size 768 on 6 GPUs. We use the SGD optimizer with493

Nesterov momentum of 0.9 and weight decay 4e-5. The initial learning rate is 0.15 and gradually494

decreases to 0 following the cosine schedule. Label smoothing is used with a factor of 0.1. We train495

150 epochs with the multiplicative model and then finetune 100 epochs for the Shift model with the496

same setting. The models with AddConv are trained from scratch for 300 epochs.497

For CIFAR10, we use pre-trained weights from CIFAR100 with original Conv and finetune 100498

epochs for the Shift model. The models with AddConv are trained from scratch for 300 epochs on499

2 GPUs. For other datasets, we load pre-trained weights from ImageNet and finetune with the same500

settings.501

15

Under review as a conference paper at ICLR 2024

For the neural architecture search, we changed the model structures based on MCUNet and Mo-502

bileNetV3 and pre-explored 100 model structures that met the hardware requirements. Energy con-503

sumption and latency can be easily obtained. We start training from the model that meets the condi-504

tions with the largest computational amount. Evolutionary algorithms are then used to explore other505

model structures. Any setting that exceeds the hardware limit will be stopped early and output 0%506

accuracy as a penalty. We trained them for 30 epochs for quick exploration and trained the top 10507

for the full 300-epoch training.508

For ShiftConv, its weights are quantized to 5 bits, and activations are quantized to 16 bits during509

calculation. For AddConv, all calculations are performed under 32bit.510

For HWS, we take the weights on the convolution kernel as input into the FC. The FC has a hidden511

layer enlarged by a factor of 8. Then values goes through distribution remapping to get the output.512

This section is pre-trained using independently trained model weights. We assume that this mapping513

is generalizable and freezes its weights when training the final model.514

F COMPARED WITH MULTIPLICATION-FREE NNS515

Method Backbone Resolution Params(M) Mult(M) Shift(M) Add(M) CIFAR100
Accy(%) Energy(mj) Latency(ms)

DeepShift/
AugShift

MobileNetV2-w0.35 160 0.52 0 29.72 29.72 69.25 / 71.83 0.74 0.246
MobileNetV2-w1.0 32 2.4 0 94.72 94.72 72.39 1.749 0.821
MobileNetV2-Tiny 160 0.35 0 27.31 27.31 68.29 / 71.89 0.697 0.228

MobileNetV3-w0.35 160 0.96 0 18.35 18.35 68.42 / 73.37 0.536 0.16
MCUNet 160 0.59 0 65.72 65.72 70.87 / 74.59 1.323 0.545

ProxylessNAS-w0.35 160 0.63 0 34.56 34.56 70.54 / 73.86 0.774 0.294
ResNet-18 32 11.05 0 549.18 549.18 73.92 8.39 7.158

VGG19 32 20.08 0 399.21 399.21 62.68 7.603 5.192

AdderNet/
AugAdd

MobileNetV2-w0.35 160 0.52 4.52 0 56.88 67.85 / 69.38 1.091 0.753
MobileNetV2-Tiny 160 0.35 4.43 0 52.09 66.57 / 67.65 0.999 0.693

MCUNet 160 0.59 20.91 0 113.09 70.25 / 72.72 2.345 1.72
ProxylessNAS-w0.35 160 0.63 8.81 0 61.97 68.87 / 70.18 1.281 0.881

ResNet-20 32 0.28 0.56 0 102.7 67.6 1.802 1.434
ResNet-32 32 0.47 0.56 0 174.6 69.02 3.038 2.428
VGG-small 32 20.3 0 0 920 72.73 16 15.11

ShiftAddNet
ResNet-20 32 1.13 0 40.8 127.17 58.5 2.07 2.315

VGG19 32 83.52 0 398 1380 65 24.68 25.632

ShiftAddNAS
mult-free 32 - 3 35 48 71.0 - -

hybrid 32 - 22 21 62 78.6 - -

ShiftAddAug mult-free (NAS) 160 1.3 0.13 33.5 33.6 74.61 0.851 0.264
hybrid (NAS) 96 2.3 16.2 20.2 36.4 78.72 2.431 0.644

16

	Introduction
	related works
	ShiftAddAug
	Preliminaries
	Hybrid computing augment
	Heterogeneous weight sharing
	Nerual Archtecture Search

	Experiments
	setup
	ShiftAddAug vs. Baseline
	ShiftAddAug vs. SOTA Mult.-free Models
	ShiftAddAug with Neural architecture search
	Ablation Study

	Conclusion
	Ablation Study of Training Settings
	The specific meaning of method
	More Ablation Study of Heterogeneous Weight Sharing
	ShiftAddAug in specific tasks for IoT devices
	More Training Details
	Compared with multiplication-free NNs

