
AdaMeM: Memory Efficient Momentum for Adafactor

Nikhil Vyas * 1 Depen Morwani * 1 2 Sham Kakade 1 2

Abstract

Adafactor is a memory efficient algorithm which
does not maintain momentum and has near 0 mem-
ory overhead as compared to gradient descent.
However it performs worse than Adam in many
setups. Prior works have shown that this gap can
be removed by adding momentum to Adafactor.
This comes at the cost of increased memory re-
quirements. In this work we use the ideas of low
rank optimizers such as LoRA and GaLore to
maintain momentum on a low rank subspace of
the weights on top of Adafactor to give a new
optimizer: AdaMeM. However unlike low rank
optimizers we still utilize full rank gradients but
maintain momentum only on the top SVD sub-
space of the gradients. We show results on lan-
guage modelling for models of size 210M and
550M demonstrating improved performance over
Adafactor and GaLore. We also give theoretical
arguments supporting the design of AdaMeM.

1. Introduction
Adam (Kingma & Ba, 2015), the default optimizer utilized
in language modeling tasks within deep learning, is con-
siderably more memory-intensive compared to stochastic
gradient descent (SGD) (Robbins & Monro, 1951), as it
maintains two additional values: the first and second-order
momentum for each network parameter. The development
of memory-efficient optimizers that retain Adam’s perfor-
mance remains a critical area of research, as evidenced by
numerous previous studies.

Adafactor (Shazeer & Stern, 2018), in its original proposal,
entirely eliminated the memory overhead by removing the
first-order momentum and implementing a highly efficient
factorization of the second-order momentum. Nonetheless,

*Equal contribution 1SEAS, Harvard University 2Kempner
Institute, Harvard University. Correspondence to: Nikhil Vyas
<nikhil@g.harvard.edu>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

subsequent works have demonstrated that Adafactor’s per-
formance lags behind that of Adam (Rae et al., 2021; Zhai
et al., 2022). Reintroducing the first-order momentum has
been shown to bridge this performance gap (Zhai et al.,
2022). Similarly, a recently proposed optimization algo-
rithm, Lion (Chen et al., 2023), also removes the memory
overhead associated with the second-order momentum, sub-
stituting it with a sign operation.

Other research efforts have focused on reducing the num-
ber of parameters involved in the overall update, thereby
diminishing the memory overhead for both first and second-
order momentum. LoRA (Hu et al., 2022) introduced
low-rank updates for fine-tuning network parameters, sig-
nificantly reducing the optimizer’s memory requirements.
ReLoRA (Lialin et al., 2023) extended this approach to pre-
training by periodically merging the low-rank updates into
the parameters. GaLore (Zhao et al., 2024) also maintained
low-rank updates for parameters, but specifically within the
top singular value decomposition (SVD) subspace of the
gradients.

In this work, we integrate the memory-efficient precon-
ditioning of Adafactor with the low-rank momentum con-
cepts of GaLore, resulting in AdaMem—a capable optimizer
with substantially lower overhead compared to Adam. We
empirically compare our method with Adam, Adafactor,
and GaLore for language pretraining tasks, demonstrating
that our method, which incorporates low-rank momentum,
achieves performance significantly closer to Adam than ei-
ther Adafactor or GaLore.

We support our empirical findings with theoretical results.
Specifically, we establish a novel connection between low-
rank optimization and the Shampoo optimizer (Gupta et al.,
2018), illustrating that the low-rank subspace used for main-
taining momentum approximates the top eigenspace of the
Hessian, based on the assumptions of the Shampoo opti-
mizer. For linear regression, we further demonstrate that
maintaining momentum in the top eigenspace of the Hessian
substantially enhances the convergence speed of gradient
descent.

1

Submission and Formatting Instructions for the WANT@ICML 2024

16 32 64 128 256 512
Rank

3.050

3.075

3.100

3.125

3.150

3.175

3.200

3.225

Fin
al

 V
al

id
at

io
n

Lo
ss

210m
 Galore and AdaMeM applied to all

 but the last and first layers

40 80 160 320 640
Rank

2.85

2.90

2.95

3.00

3.05

3.10

550m
 Galore and AdaMeM applied to all

 but the last and first layers

16 32 64 128 256 512
Rank

3.050

3.075

3.100

3.125

3.150

3.175

3.200

210m
 Galore and AdaMeM applied to all layers

GaLore AdaMeM Adafactor AdamW(factor)

Figure 1. Comparison of our algorithm (AdaMeM) to Adafactor and Adam as baselines and the prior work of GaLore. In these plots
we plot final validation loss as a function of rank used by AdaMeM and GaLore. We observe that while AdaMeM is always better than
Adafactor, GaLore is only better than Adafactor at large ranks. In the right and middle figure the low rank approximation is applied to all
layers except first and last layers while in the last plot it is applied to all layers. See Section 5 for additional details.

2. Related Works
Low-Rank Optimizers: The training of language mod-
els using low-rank methods has become a prominent area
of research, experiencing a significant surge in recent
times. LoRA (Hu et al., 2022) introduced low-rank fine-
tuning of large language models (LLMs), demonstrating
competitive performance across various downstream tasks.
ReLoRA (Lialin et al., 2023) extended this approach to pre-
training by periodically merging low-rank updates into the
weights. Similarly, GaLore (Zhao et al., 2024) proposed
using low-rank updates, specifically along the top SVD
subspace of the gradients.

Low-Memory Optimizers: Adafactor (Shazeer & Stern,
2018) is a variant of Adam that maintains factored second
moments and does not use momentum. As a result, this
optimizer incurs almost no1 overhead. Given that Adafac-
tor’s space requirements are negligible compared to the
weights, we will use it as our primary baseline for low-
space optimizers. Additionally, the recently proposed opti-
mizer Lion (Chen et al., 2023) reduces the overall memory
footprint compared to Adam by replacing the second-order

1The factored second momentum statistics occupy m+n space
for an m× n layer, which is negligible compared to the mn space
required to store the weights themselves. Common implementa-
tions in libraries such as PyTorch typically use twice the space
of the weights, as they also store gradients for all layers. This
can be mitigated by optimizers like LOMO (see Appendix A for
further discussion). Throughout this paper we will assume such an
implmentation.

momentum in the Adam update with a sign operation. There
is also a large literature (????) on optimizers using lower
precision to save memory. These approaches based on using
lower precision to save memory are orthogonal to low rank
based approaches and can be combined with them (Zhao
et al., 2024), this also applies to our approach.

Adamw(factor) as a baseline: In some of our exper-
iments, Adafactor with momentum outperforms Adam.
Therefore, we will report the best results from these two
methods as Adamw(factor), which will serve as our baseline
for algorithms utilizing full-rank momentum.

Benefit of using Momentum: Given that Adafactor does
not use momentum, it is expected to perform poorly in sce-
narios where momentum benefits optimization speed. Pre-
vious studies (Kidambi et al., 2018; Lee et al., 2022; Wang
et al., 2024) have argued and empirically demonstrated that
momentum is advantageous with large batch sizes, with its
benefits diminishing at smaller batch sizes. We empirically
explore this in Section 6, confirming that these observations
hold for pretraining language models. This leads to the fol-
lowing question: With large batch sizes, how can we gain
the benefits of momentum without incurring its space
cost?

3. Algorithm
We begin by describing the intuition behind AdaMeM (Al-
gorithm 1). Low-rank algorithms such as LoRA (Hu et al.,

2

Submission and Formatting Instructions for the WANT@ICML 2024

2022), ReLoRA (Lialin et al., 2023), and GaLore (Zhao
et al., 2024) perform gradient descent with momentum in
a low-dimensional space. Our approach builds upon the
methodology of GaLore. For a gradient matrix G ∈ Rm×n

with m ≤ n, GaLore maintains momentum within the top
r rank subspace corresponding to the left singular vectors
of G. Specifically, let P ∈ Rm×r denote the projection
matrix to the top r left singular vectors of G. Momentum
is then maintained for PTG, with P itself being updated
every T = 200 steps.

Our improvement is based on a straightforward concept: in
addition to running gradient descent with momentum in the
low-rank space, we can also perform gradient descent (with-
out momentum) on the residual space using the gradient of
the current batch. This requires using full-rank gradients
while maintaining momentum solely in the low-rank space.
Although this outlines the core idea behind our algorithm,
further complexities arise because we aim to implement
Adam-like algorithms instead of SGD.

We address these complexities as follows: First, for the
low-rank component of the gradient, we run Adafactor with
momentum in the low-rank space, similar to the Adafac-
tor variant of GaLore. A natural choice for handling the
residual gradient would be to apply Adafactor (without mo-
mentum) in the complementary space. However, we lack
a basis for the complementary space. Consequently, we
could opt to run Adafactor (without momentum) for the
residual gradient in the original space. This approach has
a drawback: while the low-rank gradient and the residual
gradient are orthogonal by definition, preconditioning the
low-rank gradient in the low-rank space and the residual
gradient in the original space with Adafactor can disrupt
this orthogonality. To maintain orthogonality, we employ a
one-sided version of Adafactor, as described in Algorithm 4.
We prove below that this preserves orthogonality. In Sec-
tion 6, we demonstrate that using the standard Adafactor
instead results in suboptimal performance.

Claim 3.1. Let G ∈ Rm×n be the gradient matrix with
m ≤ n and P ∈ Rm×r be the projected matrix. Then
preconditionng the projected gradient (PTG) for Adafactor
(Algorithm 3) and residual gradient ((I − PPT)G) by one
sided Adafactor (Algorithm 4) preserves their orthogonality.

Proof. We begin by noting that precondition PTG by
Adafactor (Algorithm 3) results in a matrix of the form
A = PD1P

TGD2 where D1 ∈ Rr×r, D2 ∈ Rn×n are di-
agonal matrices. We note that A ∈ Rm×n is in the original
space. Preconditioning residual gradient ((I − PPT)G)
by one sided Adafactor (Algorithm 4) results in a matrix
of the form B = (I − PPT)GD3 where D3 ∈ Rn×n is a
diagonal matrices.

We are interested in the inner product of A and B when they

are treated as vectors i.e. Tr(ATB).

Tr(ATB) = Tr(DT
2 G

TPDT
1 P

T (I − PPT)GD3) = 0

since PT (I − PPT) = 0.

The pseduocode for AdaMeM is given in Algorithm 1.

Memory Requirements. We note here that our memory
requirement (beyond the weights themselves) for maintain-
ing rank r momentum is mr(for projection matrix P) +
nr(for momentum in the low rank space) + r + n +
n(for Adafactor’s second moments) ≈ (m + n)r same as
the Adafactor version of GaLore.

Algorithm 1 AdaMeM.
Bias correction and regularization constant ϵ not described
for simplicity.
Require: A layer weight matrix W ∈ Rm×n with m ≤ n.

Step size η, relative step size δ = 1, decay rates β1 = .9,
β2 = .95, rank r, subspace change frequency T = 200.

1: Initialize first-order moment M0 ∈ Rn×r ← 0
2: Initialize auxiliary variables Z0, Z

os
0 to be used by

Adafactor preconditioner (Algorithm 3) and one-sided
Adafactor preconditioner (Algorithm 4).

3: Initialize step t← 1, auxillary
4: repeat
5: Gt ∈ Rm×n ← −∇Wϕt(Wt)
6: Rt ← Project(Gt, r, T, t) {Project gradient into

compact space using Algorithm 2}
7: St ← Gt − PtRt {Residual gradient outside of the

compact space}
8: Mt ← β1 ·Mt−1 + (1− β1) ·Rt

9: Nt,1, Zt = Adafactor-Preconditioner(Mt, Zt−1, β2)
10: Nt,2, Z

os
t = OS-Adafactor-Preconditioner(St, Z

os
t−1, β2)

11: Wt ←Wt−1 + η · (N1,t + δN2,t)
12: t← t+ 1
13: until convergence criteria met

Algorithm 2 Project (Zhao et al., 2024)
Require: Gradient matrix Gt ∈ Rm×n with m ≤ n, rank

r, subspace change frequency T , and current step t
1: if t mod T = 0 then
2: U, S, V ← SVD(Gt)
3: Pt ← U [:, : r] {Initialize left projector as m ≤ n}
4: else
5: Pt ← Pt−1 {Reuse the previous projector}
6: end if

output P⊤
t Gt

4. Theory
In this section, we provide theoretical arguments to support
the implementation of AdaMem.

3

Submission and Formatting Instructions for the WANT@ICML 2024

Algorithm 3 Adafactor Preconditioner (Shazeer & Stern,
2018)
Operations such as squaring matrices and division of matri-
ces are done elementwise.
Require: Momentum matrix Mt ∈ Rr×n, previous step

moment estimates Zt−1, decay rate β2 = .95
1: Rt−1, Ct−1 ← Zt−1

2: Rt = β2Rt−1 + (1 − β2)(M
2
t)1n {Update Rt, Ct as

done in Adafactor}
3: Ct = β2Ct−1 + (1− β2)1

⊤
r (M

2
t)

4: V̂t = RtC
T
t /(1

⊤
r Rt) {Rank-1 approximation of second

moment matrix, as done in Adafactor.}
output Mt√

V̂t

, Zt

Algorithm 4 One Sided Adafactor Preconditioner
Require: (Residual) gradient matrix St ∈ Rm×n, previous

step moment estimates Zt−1, decay rate β2 = .95
1: Rt−1 ← Zt−1 {Only Rt is maintained and used for

preconditioning.}
2: Rt = β2Rt−1 + (1− β2)(S

2
t)1n

3: Zt ← Rt

4: V̂t = Rt1
T
m/m

output St√
V̂t

, Zt

4.1. Momentum only needed in the top eigenvectors of
Hessian

Consider a quadratic loss landscape given by L(w) =
wTHw, where H is a postive-definite matrix. Let the
eigenspectrum of H be given by λi for i ∈ [d] where
λ1 ≥ λ2 . . . ≥ λd. Let κ denote the condition number
of H given by λ1/λd. Then it is well known (Nesterov,
1983) that gradient descent with momentum can achieve a
convergence rate of (

√
κ−1)/(

√
κ+1), which is a quadratic

speed up of convergence rate of gradient descent, which is
(κ− 1)/(κ+ 1). For maintaining momentum in the top-k
eigenspace with power-law decay in the eigenspectrum, that
is representative of deep learning tasks (Murray et al., 2023),
the following result holds:

Theorem 4.1. Consider a quadratic loss landscape given
by L(w) = wTHw, where the eigenspectrum of H follows
a power-law decay, i.e, λi ∝ iα for some α > 0. For k =
d2/3, there exists learning rates η1 and η2, and momentum
β, such that using learning rate η1 and momentum β in the
top-k eigenspace and learning rate η2 with no momentum
in the complement, leads to a convergence rate of (κ1/3 −
1)/(κ1/3 + 1).

Proof. For k = d2/3, consider the top-k eigenspace denoted
by Sk. For power-law decay, the condition number of Sk

is given by 1
d2α/3 = κ2/3. Thus, by the convergence rate of

gradient descent with momentum, we can set learning rates
η1 and momentum β in this space to get a convergence rate
of (κ1/3 − 1)/(κ1/3 + 1).

Let the complement of Sk be denoted by Ck. The condition
number of Ck is given by 1

dα/3 = κ1/3. Thus, by the
convergence rate of gradient descent, we can set learning
rate η2 in this space to get a convergence rate of (κ1/3 −
1)/(κ1/3 + 1).

Note that as d → ∞, with k = d2/3, k
d → 0. Thus,

in higher dimensions, we need to maintain momentum in
a very small subspace to get the benefits of momentum.
Although notice that this small subspace should correspond
to the top eigenspace of the Hessian.

4.2. Connection to Shampoo, identifying top
eigenvectors

Given Theorem 4.1 we know that momentum is only needed
in the top eigenspace of the Hessian. This means we need to
identify the top eigenspace. Various optimizers such as K-
FAC and Shampoo approximate the Hessian by Kronecker
products. We will be using the following claim from Gupta
et al. (2018):

Claim 4.2. Under Shampoo’s Hessian approximation,
eigenvectors of Hessian are of the form Vector(uvT) where
u and v are the eigenvectors of E[GGT] and E[GTG] re-
spectively.

Further approximating eigenvectors of E[GGT] and
E[GTG] by a single sample of G, we see that the top sin-
gular vectors of G indeed are an estimate of the top eigen-
vectors of the Hessian. This shows that the low-rank sub-
space used in Algorithm 1 is a natural estimate of the top
eigenspace of the Hessian. We hope that this connection
between Shampoo and low rank training can be generally
useful in further understanding the dynamics of low rank
training.

5. Experiments
Models and Dataset. Starting from the OLMo codebase
(Groeneveld et al., 2024), we train decoder-only transformer
models with sequence length of 512 in two sizes: 210m and
550m. The models have widths of 1024, 1280, and depths of
12, 24. The batch sizes are 1024, 2048. All models, except
those using GaLore, are trained for 8000 steps with 2500
steps of warmup followed by cosine decay. For GaLore,
we train for longer to take into account the fact that one
gradient step of GaLore can be implemented with fewer
FLOPs (see Appendix B). All of our models approximately
match chinchilla (Hoffmann et al., 2022) style 20x scaling
of tokens with respect to model size. The MLP hidden
dimension is 4x the width. The activation function is GeLU

4

Submission and Formatting Instructions for the WANT@ICML 2024

(Hendrycks & Gimpel, 2016). We use RoPE positional
encodings (Su et al., 2024). Attention heads are always
of dimension 64. We use PyTorch’s default LayerNorm.
Following Wortsman et al. (2024), we do not learn biases
for the linear layers or LayerNorms. We train in mixed
precision with bfloat16. We use the T5 tokenizer (Raffel
et al., 2020) and train on the C4 dataset.

Optimizer Hyperparameter Sweeps. Following Tou-
vron et al. (2023); Biderman et al. (2023), we fix β1 =
.9, β2 = .95, and ϵ = 1e − 8 (though we study ablat-
ing β2 in Section 6.1). We use weight decay of .01. For
Adafactor and Adam, we sweep over the learning rates
[1.0e − 4, 3.16e − 3, 1.0e − 3, 3.16e − 3, 1.0e − 2]. For
GaLore, we sweep over learning rates [3.16e − 4, 1.0e −
3, 3.16e− 3, 1.0e− 2, 3.16e− 2] and [.125, .25, .5] for the
α parameter. For AdaMeM, we sweep over learning rates
[3.16e− 4, 1.0e− 3, 3.16e− 3, 1.0e− 2] and [.5, 1] for the
δ parameter.

Results. In Figure 1, we compare our algorithm
(AdaMeM) to Adafactor and Adam as baselines and the
prior work of GaLore. In these plots we plot final validation
loss as a function of rank used by AdaMeM and GaLore. We
observe that while AdaMeM is always better than Adafactor,
GaLore is only better than Adafactor at large ranks. In the
GaLore paper, the low rank approximation is not applied to
the first and last layer. We do the same in the right and mid-
dle figures by training the first and last layers with Adafactor
for AdaMeM and Adam for GaLore. Here we see that while
GaLore and AdaMeM perform nearly equally at the high-
est rank we considered (half of full rank), at lower ranks,
AdaMeM performs significantly better. In the last plot, low
rank approximation is applied to all layers, and we see that
AdaMeM outperforms GaLore at all ranks considered.

6. Ablations
Other Design Choices. While designing AdaMeM, we
tried some other variants which were less performant than
AdaMeM. Variant 1 corresponds to directly adding the low
rank momentum and the residual gradient and precondition-
ing in the original space by Adafactor, and Variant 2 is the
same as AdaMeM except we use the standard Adafactor
instead of one sided Adafactor for the residual gradient. We
show their performance in Figure 2. We note that at smaller
ranks, all of these variants outperform GaLore, which shows
the importance of using full rank gradients.

Momentum and Batch Size. Prior works (Kidambi et al.,
2018; Lee et al., 2022; Wang et al., 2024) have given empir-
ical and theoretical evidence that momentum is only helpful
at large batch sizes. In Figure 3, we confirm this for our
setup where we vary batch size while keeping overall token

40 80 160 320 640
Rank

2.85

2.90

2.95

3.00

3.05

3.10

Fin
al

 V
al

id
at

io
n

Lo
ss

550m
 Galore and AdaMeM applied to all but the last and first layers

GaLore
AdaMeM

Variant 1
Variant 2

Adafactor
AdamW(factor)

Figure 2. Performance comparison of variants of AdaMeM.

count approximately constant. This argues that for small
batch sizes, Adafactor (without momentum) is as good as
Adam. But for large batch sizes, momentum is needed, and
as we have shown, that a large fraction of this gap can be
recovered by using AdaMeM at a fraction of the memory
cost of Adam or Adafactor with momentum.

4 16 64 256 1024
Batch Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ga
p

be
tw

ee
n

fin
al

 v
al

id
at

io
n

lo
ss

 w

ith
 a

nd
 w

ith
ou

t m
om

en
tu

m

210m

Adafactor (Gap)

Figure 3. Effect of Momentum across batch sizes

6.1. Reproducing GaLore in their codebase; Ablating β2

Algorithms β2 = .95 β2 = .999
GaLore 3.205 3.23
Adam 3.136 3.22

Table 1. Performance of Adam and GaLore for different values of
β2. Results are for the 130M model used in the GaLore (Zhao
et al., 2024) work.

The GaLore paper found that GaLore nearly matches Adam
even with rank set to half of the full rank. We did not
find this to be the case in Figure 1. We reproduce their

5

Submission and Formatting Instructions for the WANT@ICML 2024

experiments in their codebase and show that this was due
to non-optimal value of β2. They used β2 = .999, while
the standard value used in language modelling (Biderman
et al., 2023; Touvron et al., 2023; Wortsman et al., 2024) is
β2 = .95, which is what we have used for our experiments.
Table 1 gives the performance of GaLore and Adam for
β2 = .95 and β2 = .999. We see that

• β2 = .95 outperforms β2 = .999 for both algorithms.

• For β2 = .95, Adam outperforms GaLore with rank
set to half of the full rank.

Since we are reproducing these experiments from the Ga-
Lore (Zhao et al., 2024) work, we did not run GaLore for
additional steps as described in Appendix B.

7. Limitations
The strongest limitation of our work and of other low rank
optimizers such as ReLoRA and GaLore is that they are only
practically useful to reduce memory in situations where mo-
mentum is helpful. This is because if momentum is not
helpful then one can use Adafactor which has negligible
memory overhead2 above the weights themselves. In par-
ticular, the other memory usage is due to activations which
grows with batch size and as prior works (as well our results
in Section 6) have found, momentum is more beneficial with
large batch sizes. In this work we have focused on optimizer
memory usage, we leave the exploration of regimes in which
optimizers such as ours can reduce total memory usage to
future work.

8. Conclusion
In this work, we propose a memory efficient variant of
Adafactor called AdaMem. It combines the preconditioning
of Adafactor with low rank momentum ideas of works like
LoRA and GaLore. We empirically show that this leads to
significantly better performance for low-rank momentum
as compared to GaLore, and also provide a theoretical jus-
tification for the method. Our method provides a specific
recipe for combining preconditioning and momentum in a
low-rank subspace, and further exploration within this space
is a promising research direction.

Acknowledgments
SK and DM acknowledge support from the Office of Naval
Research under award N00014-22-1-2377 and the National
Science Foundation Grant under award #IIS 2229881. This
work has been made possible in part by a gift from the Chan

2This holds under the AdaLomo implementation of Adafactor
as discussed in Appendix A.

Zuckerberg Initiative Foundation to establish the Kemp-
ner Institute for the Study of Natural and Artificial Intelli-
gence. NV and DM are supported by a Simons Investiga-
tor Fellowship, NSF grant DMS-2134157, DARPA grant
W911NF2010021,and DOE grant DE-SC0022199.

References
Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,

H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit,
S., Prashanth, U. S., Raff, E., Skowron, A., Sutawika,
L., and van der Wal, O. Pythia: A suite for analyz-
ing large language models across training and scaling.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pp. 2397–2430. PMLR,
2023. URL https://proceedings.mlr.press/
v202/biderman23a.html.

Chen, X., Liang, C., Huang, D., Real, E., Wang, K.,
Pham, H., Dong, X., Luong, T., Hsieh, C., Lu, Y.,
and Le, Q. V. Symbolic discovery of optimization
algorithms. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances
in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.
nips.cc/paper_files/paper/2023/hash/
9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.
html.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney,
R., Tafjord, O., Jha, A. H., Ivison, H., Magnusson, I.,
Wang, Y., et al. Olmo: Accelerating the science of lan-
guage models. arXiv preprint arXiv:2402.00838, 2024.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Pre-
conditioned stochastic tensor optimization. In Dy,
J. and Krause, A. (eds.), Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pp. 1842–1850. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
gupta18a.html.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,

6

Submission and Formatting Instructions for the WANT@ICML 2024

Vinyals, O., and Sifre, L. Training compute-optimal large
language models. CoRR, abs/2203.15556, 2022. doi:
10.48550/ARXIV.2203.15556. URL https://doi.
org/10.48550/arXiv.2203.15556.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adapta-
tion of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Kidambi, R., Netrapalli, P., Jain, P., and Kakade, S. M.
On the insufficiency of existing momentum schemes
for stochastic optimization. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=rJTutzbA-.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Lee, K., Cheng, A. N., Paquette, E., and Paquette, C. Trajec-
tory of mini-batch momentum: Batch size saturation and
convergence in high dimensions. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=z9poo2GhOh6.

Lialin, V., Shivagunde, N., Muckatira, S., and Rumshisky,
A. Relora: High-rank training through low-rank updates.
2023.

Lv, K., Yan, H., Guo, Q., Lv, H., and Qiu, X. Adalomo:
Low-memory optimization with adaptive learning rate.
CoRR, abs/2310.10195, 2023a. doi: 10.48550/ARXIV.
2310.10195. URL https://doi.org/10.48550/
arXiv.2310.10195.

Lv, K., Yang, Y., Liu, T., Gao, Q., Guo, Q., and Qiu, X. Full
parameter fine-tuning for large language models with
limited resources. CoRR, abs/2306.09782, 2023b. doi:
10.48550/ARXIV.2306.09782. URL https://doi.
org/10.48550/arXiv.2306.09782.

Murray, M., Jin, H., Bowman, B., and Montufar, G. Char-
acterizing the spectrum of the NTK via a power se-
ries expansion. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Tvms8xrZHyR.

Nesterov, Y. A method of solving a convex pro-
gramming problem with convergence rate o(1/k**2),

1983. URL https://cir.nii.ac.jp/crid/
1370017280653524239.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J.,
Song, H. F., Aslanides, J., Henderson, S., Ring, R., Young,
S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A.,
Powell, R., van den Driessche, G., Hendricks, L. A.,
Rauh, M., Huang, P., Glaese, A., Welbl, J., Dathathri, S.,
Huang, S., Uesato, J., Mellor, J., Higgins, I., Creswell,
A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S. M.,
Buchatskaya, E., Budden, D., Sutherland, E., Simonyan,
K., Paganini, M., Sifre, L., Martens, L., Li, X. L., Kun-
coro, A., Nematzadeh, A., Gribovskaya, E., Donato, D.,
Lazaridou, A., Mensch, A., Lespiau, J., Tsimpoukelli,
M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M.,
Pohlen, T., Gong, Z., Toyama, D., de Masson d’Autume,
C., Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark,
A., de Las Casas, D., Guy, A., Jones, C., Bradbury, J.,
Johnson, M. J., Hechtman, B. A., Weidinger, L., Gabriel,
I., Isaac, W., Lockhart, E., Osindero, S., Rimell, L., Dyer,
C., Vinyals, O., Ayoub, K., Stanway, J., Bennett, L.,
Hassabis, D., Kavukcuoglu, K., and Irving, G. Scaling
language models: Methods, analysis & insights from
training gopher. CoRR, abs/2112.11446, 2021. URL
https://arxiv.org/abs/2112.11446.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Robbins, H. and Monro, S. A Stochastic Approxima-
tion Method. The Annals of Mathematical Statis-
tics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/
1177729586. URL https://doi.org/10.1214/
aoms/1177729586.

Shazeer, N. and Stern, M. Adafactor: Adaptive
learning rates with sublinear memory cost. In Dy,
J. G. and Krause, A. (eds.), Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 4603–4611. PMLR,
2018. URL http://proceedings.mlr.press/
v80/shazeer18a.html.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation

7

Submission and Formatting Instructions for the WANT@ICML 2024

language models. CoRR, abs/2302.13971, 2023. doi:
10.48550/ARXIV.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Wang, R., Malladi, S., Wang, T., Lyu, K., and Li, Z. The
marginal value of momentum for small learning rate SGD.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=3JjJezzVkT.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi,
A. A., Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A.,
Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K.,
Lee, J., Gilmer, J., and Kornblith, S. Small-scale proxies
for large-scale transformer training instabilities. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=d8w0pmvXbZ.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pp. 1204–1213.
IEEE, 2022. doi: 10.1109/CVPR52688.2022.01179.
URL https://doi.org/10.1109/CVPR52688.
2022.01179.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient LLM training
by gradient low-rank projection. CoRR, abs/2403.03507,
2024. doi: 10.48550/ARXIV.2403.03507. URL https:
//doi.org/10.48550/arXiv.2403.03507.

8

Submission and Formatting Instructions for the WANT@ICML 2024

A. LOMO Optimizer
LOMO optimizer Standard deep learning libraries such as PyTorch first compute the gradient for all parameters in the
network and then apply it. This leads to a space requirement which is 2x that of storing just the weights of the network.
LOMO (Lv et al., 2023b) instead is an implementation which applies the gradients as soon as they are computed and hence
removes the 2x blowup in optimizer memory.

AdaLomo AdaLomo (Lv et al., 2023a) is an implementation of Adafactor which applies gradients of a layer as soon as
they are computed, this removes the overhead of storing the gradients. With this implementation the space requirement of
the optimizer is negligible as compared to that of the weights themselves.

B. Faster Implementation of GaLore
We note here that GaLore can be implemented faster than usual full rank algorithms. This is similar to the computational
benefits of LoRA. To see this note that GaLore computes PTG for P ∈ Rm×r, G ∈ Rm×n. Let A ∈ Rm×z denote the
inputs to the layer in question where z = sequence length× batch size. Similarly let B ∈ Rn×z denote the output gradients.
Then G = ABT . Now rather than computing PTG as first computing G = ABT and then computing PTG we can instead
first compute C = PTA and then compute CBT . This changes the runtime of this part of backprop from mn(z + r) to
(m+ n)rz. All of our GaLore runs take this speedup into account and run GaLore for longer to equalize FLOPs.

9

