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Abstract

The increasing adoption of deep learning (DL)
technologies in safety-critical industries has
brought about a corresponding rise in security
challenges. While the security of DL frameworks
(Tensorflow, Pytorch, PaddlePaddle), which serve
as the foundation of various DL models, has not
garnered the attention they rightfully deserve. The
vulnerabilities of DL frameworks can cause sig-
nificant security risks such as model reliability
and data leakage. In this research project, we
address this challenge by employing a specifi-
cally designed model fuzzing method. Firstly, we
generate diverse models to test library implemen-
tations in the training and prediction phases by
optimized mutation strategies. Furthermore, we
consider the seed performance score including
coverage, discovery time, and mutation numbers
to prioritize the selection of model seeds. Our al-
gorithm also selects the optimal mutation strategy
based on heuristics to expand inconsistencies. Fi-
nally, to evaluate the effectiveness of our scheme,
we implement our test framework and conduct the
experiment on existing DL frameworks. The pre-
liminary results demonstrate that this is a promis-
ing direction.

1. Introduction

Deep learning technologies have achieved remarkable per-
formance in various domains such as computer vision and
automatic driving. As the core technology of artificial in-
telligence, deep learning is being rapidly adopted across
industries and domains. In order to ensure the security of
the entire deep learning lifecycle requires security testing to
expose vulnerabilities in DL systems and improve their trust-
worthiness. However, current researches focus primarily on
DNN model testing and test suite generation. Open-source
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Figure 1. The architecture of Deep Learning System

DL frameworks, as a toolkit for developing Al algorithms
and implementing applications, have not garnered the at-
tention they rightfully deserve. More specifically, the vul-
nerabilities from DL frameworks themselves can lead to a
range of security issues including data leakage and model
reliability. In addition, researchers also demonstrated the
ability to implant backdoors in models through attacks on
the training code within the framework (Bagdasaryan &
Shmatikov, 2021). Fig. 1 shows the interaction between
DL model layer, frameworks layer, and architecture layer
in a whole perspective. Hence, to mitigate the external and
internal risks associated with DL framework vulnerabilities,
it is essential to establish a systematic testing paradigm to
assure the security of DL system.

In 2018, Xiao et al (Xiao et al., 2018) and Zhang et al
(Zhang et al., 2018) conducted in-depth studies on three
deep learning frameworks, Caffe, TensorFlow, and Torch,
revealing the dependency complexity of popular deep learn-
ing frameworks and highlighting the existence of multiple
vulnerabilities in these frameworks. In 2019, Pham et al
(Pham et al., 2019) proposed using pre-trained models as
inputs to invoke deep learning libraries and capture run-time
triggered inconsistencies through differential testing. How-
ever, this approach relies on existing pre-trained models,
primarily targeting common tasks, and thus can only trig-
ger a small fraction of errors in the framework. Building
upon this approach, Guo et al (Guo et al., 2020) proposed a
search-based strategy for varying API parameters, weights,
and input data to generate more API parameter values and
more complex test samples, but Audee could only mutate
the collected pre-trained DNN models. Furthermore, Wang
et al (Wang et al., 2020) proposed Lemon to design a series
of mutation strategies for deep learning models to explore
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Figure 2. Workflow of our scheme

the different call sequences and hard-to-trigger behaviors
of deep learning library. However, this scheme can be fur-
ther improved on the model mutation strategies to test more
types of framework vulnerabilities. Additionally, Lemon
can only mutate the model to test the vulnerability of the
DL framework in the prediction phase without considering
the model training phase.

Existing model mutation strategies focus on generic intra-
layer and inter-layer neuron weights and positions, with-
out taking into consideration of structural mutations within
the neural network, such as activation functions, and layer
structures. However, existing DL testing schemes utilize
pre-trained models as seeds for mutation, thereby reducing
the model training time overhead. As a result, it is difficult
to test the library implementations used during the training
process because the pre-trained models no longer require
the training process.

2. Research Contents

To address the aforementioned issues, this work aims to
optimize model mutation strategies, generate a more diverse
set of seed models, and apply mutation strategies to the
retraining process. Fig. 2 describes the procedure of testing.

1) Model mutation strategy optimization: We seek to im-
prove typical model mutation strategies, such as weight
mutations, neuron activation state changes, and neuron loca-
tion alterations. Building upon these strategies, we define
mutation strategies at the source level and design a heuristic
mutation strategy selection algorithm to increase the degree
of output inconsistency across different frameworks.

2) Mutation seed selection: The selection of mutation seeds
is important to test DL frameworks. For the problem that the
currently proposed model mutation seed selection does not
trigger the libraries in the neural network training process,
this work intends to first collect existing DNN models as
seeds for mutation. The mutation strategy is further applied
during the model training phase to activate the underlying
layers of the framework, such as Dropout and loss optimiza-
tion

3. Methodologies

This work aims to generate more diverse test models that
can trigger more libraries and increase the likelihood of
inconsistencies or crashes on different frameworks.

1) Model mutation strategy optimization: In our work, the
network structure mainly includes intra-layer and inter-
layer neuron mutation strategies, including layer swapping,
adding layers, deleting layers, neuron swapping, weight mu-
tation, adding neurons, and deleting neurons. Additionally,
the mutation in the neural network parameters includes the
size of the neural network and the parameters related to the
computation such as activation function selection, dropout,
loss function, and penalty function.

2) Mutation seed selection: The process of generating mu-
tated models is iterative, and the models generated in the
previous iteration can also be used as seeds for the next
iteration, especially models that can lead to a greater de-
gree of inconsistency. To increase model diversity, a seed
model that has rarely selected mutations should be given
a higher priority to participate in mutations. Hence, the
seed performance score of the proposed definition model
includes coverage (seeds that can trigger more libraries are
preferred), discovery time (seeds that are found later are
preferred), and number of mutations (seeds with fewer mu-
tations are preferred) to jointly determine the seed priority.

3) Mutation strategy selection algorithm: Our work takes a
set of seed models and model mutation strategies as inputs.
Next, we utilize multiple heuristics (e.g. greedy algorithm,
or genetic algorithm) to find the optimal mutation strategies
that expand the inconsistency. In the current result, we found
that greedy-based mutation strategy selection algorithms can
efficiently generate more high-priority model seeds. Finally,
the mutation process is repeated in a depth-first manner to
generate more test models.

4. Ongoing and Future work

This work intends to address the problem that existing model
mutation-based schemes primarily rely on pre-trained mod-
els for testing. Therefore, we proposed a DL framework
testing technique based on model fuzzing to generate more
diverse models that can trigger more libraries in the frame-
work. Currently, We have established DL framework testing
platform based on Linux with 4*NVIDIA K40 GPU, which
has integrated the mainstream DL frameworks (e.g. Ten-
sorflow, Pytorch and Theano). Furthermore, we plan to
continuously optimize our mutation strategies and to verify
the optimal algorithm for selecting mutation strategies. Fur-
thermore, we will reproduce the disclosed vulnerabilities
and test the latest version of DL frameworks (i.e. PaddlePad-
dle) on our testing platform.
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