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Abstract

Long reasoning models, such as OpenAl ol or DeepSeek R1, have demonstrated
remarkable performance on reasoning tasks but often incur a long reasoning path
with significant memory and time costs. Existing methods primarily aim to shorten
reasoning paths by introducing additional training data and stages. In this paper,
we propose three critical reward designs integrated directly into the rule-based
reinforcement learning process of long reasoning models, which reduce the re-
sponse length without extra training stages. Experiments on four settings show
that our method significantly decreases response length while maintaining or even
improving performance. Specifically, in a logic reasoning setting, we achieve
a 40% reduction in response length averaged by steps alongside a 14% gain in
performance. For math problems, we reduce response length averaged by steps by
33% while preserving performance.

1 Introduction

Recent advancements in long reasoning models (LRMs) have demonstrated exceptional performance
across diverse reasoning tasks. Leveraging large-scale, rule-based reinforcement learning (RL), these
models have developed advanced cognitive capabilities, including self-reflection, self-critique, and
self-correction [15 125 3]]

However, increased reasoning length introduces significant challenges. During inference, longer
responses lead to higher computational costs and heavier KV caches, drastically slowing down the
decoding process. During training, the growing response length considerably slows down the training
process, and may even make large-scale training on specific tasks impractical [2]].

Existing methods for reducing redundant response length in LRMs have primarily relied on supervised
fine-tuning or off-policy RL strategies [45 155 165 [7; 185 195 [10; [115[12]. There is also active research on
prompt-guided efficient reasoning, which seeks to reduce response length through prompt engineering
[L35 1451155 [16]]. While promising, these methods tend to be task-specific and often degrade overall
model performance. Other lines of work investigate shortening reasoning through model merging or
collaborative agent frameworks [17;/18]]. Additionally, some approaches propose dynamically routing
reasoning behavior based on the input question or user intent [[19; 205 215 225 |23; 24]. However,
these approaches are not directly applicable to the on-policy RL frameworks commonly used in
LRMs training. One promising approach, the direct length-reward method proposed by Kimi [25],
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incorporates response length as a factor in the RL reward function. While this method shows potential,
our reproduction of Kimi’s length reward reveals significant limitations. When applied early in the RL
training process, it drastically shortens response length but disrupts the model’s exploratory behavior,
leading to suboptimal performance. Moreover, other length rewards [26}; 27]] also show degraded
performance. This highlights the need for a effective approach that can be directly applied in the
on-policy RL training.

To address this challenge, we propose a novel method, Short-RL, designed to regulate response length
during RL training without compromising model performance. Through a detailed analysis of the
Kimi length-reward approach, we identify its adverse effects on learning dynamics, particularly its
tendency to suppress reasoning diversity in the early stages of training. Motivated by these findings,
we introduce three innovative enhancements to the length-reward framework, each aimed at balancing
efficiency and reasoning quality:

* Correctness-Conditioned Length Reward: reward computation is restricted to correctly an-
swered samples.

* Neutral Length Zone: exempts responses within an acceptable length range from length penalties,
allowing the model to retain flexibility in exploring responses with appropriate lengths.

* Accuracy-Aware Length Reward: automatically disables length rewards when batch accuracy
falls below a specified threshold.

Our approach effectively regulates response length during training without compromising—and in
some cases enhancing—model performance. Experimental results on logical reasoning tasks show a
40% average reduction in response length during training, alongside a 14% improvement in evaluation
scores. In the mathematical reasoning setting, our method achieves a 33% reduction in average
response length while maintaining performance comparable to standard RL training.

2 Methodology
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Figure 1: Reward values as a function of response length, where blue lines indicate rewards for
correct responses and red lines represent rewards for incorrect responses.

2.1 Length-Aware Optimization

A straightforward approach to reducing reasoning length is to incorporate a length penalty into the
original reward function. Generally, the length reward can be incorporated into the rule-based reward
as follows:

R(z,y) = Cy) + o S(y) ¢y
, where C(y) denotes the rule-based reward and S(y) denotes the length reward. « is a coefficient.

A brief visualization of three main length rewards (Kimi [25]; Efficient [26[]; ThinkPrune [27],
combined with rule-based rewards) is plotted in Figure

In this work, we primarily focus on the Kimi length reward, though the reward design we propose is
broadly applicable to other length-based reward functions as well.

2.1.1 Limitations of Length Reward in Early Training

In the original Kimi 1.5 paper [25], the length reward is not applied during the initial stage of
reinforcement learning training. Instead, standard policy optimization is performed first, and a



constant length penalty is introduced only in the later training phase. The authors claim that applying
the length reward too early negatively affects training performance. Our reproduction results in
Appendix [6.1] also verified this.

2.2 Short-RL

In this subsection, we identify two major issues with the direct length reward proposed by Kimi and
introduce three key reward design principles that are critical for optimizing model performance.

2.2.1 Problem 1: Length Reward Bias as a Barrier to Exploratory Behavior

The #1nin and £,,,x values defined by Kimi are computed based on all responses to a given problem
. Furthermore, Kimi applies the length reward function reward;e, = min(0, A) when the answer is
incorrect. This leads to longer incorrect responses being penalized more severely than shorter ones.
Additionally, the reward function is formulated as a linear function that favors shorter responses,
assigning them higher rewards while penalizing longer ones. This design incentivizes convergence
toward the shortest possible outputs, thereby diminishing response diversity.

These two aspects of the reward function suppress model exploration and increase the risk of the
model converging to suboptimal local minima. Notably, a similar limitation is observed in the reward
formulation proposed by [26].

To address this issue, we propose two reward design modifications that help preserve model diversity:
Reward Design I: Correctness-Conditioned Length Reward

We propose that length-based rewards should be applied only to correct responses. Specifically, the
length reward is computed exclusively for correct answers, with £,,;,, and ;. calculated solely from
correct responses to each question. This approach is similar to the reward scaling strategy adopted by
[26] and [27], who similarly restrict reward adjustments to correct outputs.

Reward Design II: Neutral Length Zone

To avoid penalizing responses that fall within an acceptable length range, we introduce a hyperpa-
rameter 7y, referred to as the length tolerance. For correct responses, the length reward is defined as
follows:

* If the response length £(3) satisfies (i) < min + ¢, the length reward is set to 0.5, matching the
reward for the shortest correct response.
* For responses exceeding this threshold, the length reward is set to the value A as defined earlier.

2.2.2 Problem 2: Instability Performance due to Length Penalty

In the Kimi setting, the length reward is applied at every training step, regardless of model performance
or prediction quality. That is, each gradient update includes a penalty on longer responses. In our
experiments, we find that although Design I and Design II help retain response diversity, in some
cases, model performance is still degraded.

To address this issue, we propose to stop the application of the length reward until the training process
has stabilized—namely, when batch accuracy shows consistent improvement.

Reward Design III: Accuracy-Aware Length Reward

We define a hyperparameter 7, that controls the accuracy threshold. For each training batch,
we compute the batch accuracy acc over all rollout samples, and maintain acc,,x, the maximum
accuracy achieved up to that point in training. The length reward is applied only when the condition
acC > aCCmax — Tacc 18 satisfied.

3 Experiments

3.1 Experimental Settings

We evaluate our method across two distinct domains: logic reasoning and mathematical reasoning.
The logic reasoning domain is represented by the Logic-RL project [28], while the mathematical



Table 1: Logic-RL valuation on the final checkpoint.

Method In Domain Out of Domain Average Response Length
pp12 ppl3 ppl4 ppl5S ppl6 ppl7 ppl8 Average AMC AIME Averaged by Steps Last
Standard 82 87 88 81 76 69 70 79 39.76  7.77 1477 2632
Kimi (post) 84 88 8 8 79 74 76 82 39.89  8.13 1477 763
Efficient 76 81 79 77 62 48 51 68 3735 177 772 843
ThinkPrune 80 84 8 82 70 66 64 76 3847 735 832 793
Short-RL 97 97 99 95 92 83 87 93 42.17 8.74 889 535
Table 2: Evaluation of math reasoning.
Model Math Benchmarks Average Response Length
AIME2024 AMC23 MATHS500 Minerva Math Olympiad Bench Average Averaged by Steps Last
Standard 26.67 59.04 81.40 26.10 42.65 47.17 2523 3072
Kimi (post) 23.33 61.45 81.00 25.37 42.79 46.79 2523 1678
Efficient 20.00 49.40 57.8 16.54 33.73 35.49 1517 1537
ThinkPrune 26.67 56.63 78.40 25.74 41.31 45.75 1589 1621
Short-RL 30.00 60.24 80.60 26.47 42.65 47.99 1692 1700
Open Reasoner Zero
Standard 16.67 50.60 78.80 30.88 38.04 43.00 746 840
Kimi (post) 20.00 49.40 77.40 31.25 38.63 43.34 746 621
Efficient 13.33 46.99 66.40 26.47 35.96 37.83 578 655
ThinkPrune 13.33 48.19 76.80 27.57 37.15 40.61 677 682
Short-RL 16.67 50.60 78.60 30.52 38.19 42.92 660 670
SimpleRL-Reason
Standard 13.33 48.19 77.00 32.72 39.97 42.24 703 791
Kimi (post) 16.67 48.19 77.40 31.99 39.67 42.78 703 601
Efficient 6.67 38.55 64.8 22.06 28.68 32.15 492 532
ThinkPrune 10.00 46.99 69.40 31.62 37.30 39.06 613 598
Short-RL 20.00 49.40 78.20 32.72 39.23 4391 554 620

reasoning domain includes three settings: DeepScaleR [29], SimpleRL-Reason [30]], and Open-
Reasoner-Zero [31]]. In all experiments, we employ the same model architecture and training

framework [32] as used in the original projects. Details can be found in[Training Details]

3.1.1 Evaluation Metrics

For Logic-RL, we evaluate the final accuracy on 2- to 8-person tasks using Logic-RL’s evaluation
script. To assess generalization, we also evaluate out-of-domain performance on the AIME and AMC
benchmarks following Logic-RL’s protocol. Additionally, we report two token-length metrics: (1)
step-wise average response length during training, reflecting training speed, and (2) average response
length at the final step, indicating inference speed after training.

For math reasoning, evaluation is carried out across five benchmark datasets: AIME2024[33]],
AMC23[34], MATH-500[35], Minerva Math[36], and Olympiad Bench[37]. We also report two
token-length metrics too.

3.1.2 Baselines

We compare our method with the following baselines:

 Standard: Reinforcement learning with standard rule-based rewards.

* Kimi: Rule-based rewards augmented with the Kimi length reward (o« = 1). Note that the Kimi
length reward was originally applied in a post-RL stage after a standard RL stage. Directly
applying this reward function may lead to issues and varying the choice of o remains
susceptible to reward hacking (discussed in Section 2.1.1). Thus we provide a Kimi (post)
baseline to show the best performance of Kimi reward function applied after the standard RL. For
this two-stage approach, we report the step-wise average response length during the first (standard
RL) stage in the tables.



* Efficient: A length-aware scaling reward from [26]], where we select optimal « values from
0.02,0.05,0.08, 0.10 for each method: Logic-RL (oo = 0.05), DeepScaleR (o = 0.10), and both
SimpleRL-Reason and Open-Reasoner-Zero (o« = 0.02). Note that the « used in Efficient (as a
scaling factor) differs from the « used in our method. Additionally, the experimental results in
their paper already show an obvious trade-off between accuracy and response length.

* ThinkPrune: A length-aware reward proposed by [27]]. We select the length limit that yields a
comparable average response length to our method: 1700 for Logic-RL, 2500 for DeepScaler,
1500 for OpenReasonerZero and SimpleRL-Reason.

3.2 Main Results

As is shown in Table[I] our proposed Short-RL method effectively regulates response length while
consistently outperforming standard RL approaches in terms of accuracy on logic reasoning tasks.
Specifically, Short-RL achieves a 40% reduction in step-wise average response length while delivering
statistically significant accuracy gains across all evaluated tasks.

Quantitative evaluation on math reasoning tasks in Table 2| reveals that Short-RL achieves 33% , 11%
, 21% reduction in step-averaged response length compared to standard RL approaches across the
three settings respectively. In contrast, the Kimi, Efficient and ThinkPrune baselines demonstrate
poorer performance.

4 Track the Length Reward
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Figure 2: Tracking the length reward during training
During training, we monitor the application of length rewards. We introduce a batch-wise metric

called length control rate (7,). For each batch, let N be the number of correct responses. Among
these, R denotes the number of responses with rewardye, < 0.5. We then define:

£, if N # 0 and acc > acCmax — Tace
=40 ifN=0 @
*1, lf acc < ACCmax — Tacc

, We track the proposed metrics and the average response length during training in two experiments,
as shown in Figure[2] We observe that the length reward is distributed throughout the training process.
In DeepScaleR, length rewards are applied more frequently.
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6 Appendix

6.1 Reproduction of Kimi length reward

We reproduced the experimental setup of Logic-RL [28] and modified it to include the Kimi length
reward from the beginning of training. Specifically, we varied the weight coefficient o across the
values [1,0.5,0.1,0.01], keeping all other hyperparameters fixed. We then evaluated the resulting
models on the ppl5 dataset (logic puzzles with 5 people) [38], measuring both test accuracy and
average response length. All models were trained from scratch for 3 epochs. As shown in Figure[3]
directly incorporating the length reward from the start results in a reward hacking phenomenon, with
response lengths rapidly collapsing to very short outputs.

ppl5 Test Accuracy Average Response Length
a=1 (Smoothed) —— =1 (Smoothed)
a=0.5 (Smoothed) «=0.5 (Smoothed)
— «=0.1 (Smoothed) 5001 —— =0.1 (Smoothed)
—— a=0.01 (Smoothed) —— a=0.01 (Smoothed)

° > °
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°
)
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0 250 500 750 1000 1250 1500 1750 o 250 500 750 1000 1250 1500 1750
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Figure 3: Test accuracy (left) and average response length (right) across different values of «.



6.2 Ablation Study
6.2.1 Component Ablation

We conduct an ablation study to evaluate the impact of our proposed designs. All experiments are
performed on the Logic-RL dataset and use the same length reward weight o = 1.

We compare the accuracy and average response length curves across several configurations. D1
applies standard RL using our proposed length reward design I. D1+D2 incorporates both design I and
design II, while D1+D3 combines design I and design III. Finally, our proposed method, Short-RL,
integrates all three designs: I, II, and III.

As shown in Figure [d] our proposed reward designs significantly improve both response length
control and validation accuracy. The subfigure fa]shows that the Standard baseline generates overly
long responses, while the Kimi baseline collapses to very short outputs. In contrast, our designs
(D1, D1+D2, D1+D3) progressively stabilize length generation, with Short-RL achieving the most
balanced outcome. The subfigure fa]illustrates consistent accuracy gains from our designs. Short-RL
consistently achieving the highest accuracy. Even partial configurations (D1+D2, D1+D3) outperform
Kimi, underscoring the effectiveness and complementarity of each design component. Note that the
ppl5 test set here differs from the final evaluation set, following the practice of Logic-RL.

Average Response Length ppl5 Test Accuracy
—— Standard (Smoothed) —— Standard (Smoothed)
3000 Kimi (Smoothed) 08 Kimi (Smoothed)
—— D1 (Smoothed) —— D1 (Smoothed)
2500/ — D1+D2 (Smoothed) —— D1+D2 (Smoothed)

|
\ [
|
D1+D3 (Smoothed) \ f \k Mv D1+D3 (Smoothed)
—— Short-RL (Smoothed) \/J"\/‘J\WN \\/ \\v\/
v

14
o

—— Short-RL (Smoothed)

N
S
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3

-
o
S
3
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S
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0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
Step Step

(a) Response Length (b) Accuracy

Figure 4: Ablation study on three reward designs
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Figure 5: Ablation study on the impact of length tolerance and accuracy tolerance, with both factors
plotted on a shared y-axis. The upper x-axis represents the length tolerance, while the lower x-axis
represents the accuracy tolerance.

6.2.2 Impact of Length and Accuracy Tolerance

We vary the 7, among 0, 100, 200, and 300, while fixing the 7, to 0.05. The comparisons of
step-wise average response length and average accuracy on ppl tasks are shown in Figure[5} We
observe that an overly small length tolerance (e.g., 0) leads to shorter average responses and degraded
performance. But the model is not too sensitive to the choice of length tolerance. Varying the choice
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Setting Logic-RL DeepScaleR Open Reasoner Zero SimpleRL-Reason

learning rate le-6 le-6 Se-7 Se-7
batch size 8 128 64 16
ppo-_mini_batch_size 32 64 256 64
ppo-_micro_batch_size 8 32 64 2
rollout_n 8 8 8 8
temperature 0.7 0.6 1.0 1.0
kl_loss_coef 0.001 0.001 0.001 0.0001
epochs 3 3 1 3
max_response_length 4096 8192 4096 8192
algorithm reinforce++ grpo grpo grpo
Te 200 100 100 50
Tace 0.05 0.05 0.02 0.05
e 1 1 1 1
Model Qwen2.5-7B DeepSeek Distill Qwen-1.5B Qwen2.5-7B Qwen2.5-7B

Table 3: Training details.

among 100, 200, 300 still achieves good performance. Larger length tolerance may result in longer
average response length. For this setting, a length tolerance of around 200 achieves the best balance.

We vary 7, among 0, 0.05, 0.10, and 1.0, while fixing the 7, to 200. Figure E] shows that model
performance is sensitive to this parameter. Specifically, higher 7, (e.g., 1.0) leads to shorter response
lengths and degraded performance. A good choice in this setting may be around 0.05.

(a) (b)
Figure 6: The prompt template for Logic-RL and Math-RL.

6.3 Training Details

Our experiments were conducted using a compute node equipped with 8 NVIDIA H100 GPUs. The
CUDA version we use is 12.3.

6.3.1 Logic-RL Training and Evaluation Details

The training and evaluation prompt template (Figure [6a) used in Logic-RL remains the same as in
the original GitHub project. The training hyperparameters are listed in Table 3| During evaluation,
we directly use the code from Logic-RL, which applies a temperature of 1.0 and top_p=1.0 for logic
tasks, and a temperature of 0.8 with top_p= 0.95 for math tasks.

6.3.2 Training and Evaluation Details for Math

The training and evaluation prompt template for three math settings is shown in Figure The
training hyperparameters are listed in Table[3] During evaluation, we directly use the code from
DeepScaleR, which employs a temperature of 1.0.

6.3.3 Reward Details

In all the math experiments, the standard reward employs a format and outcome-based reward scheme.
That is:

3 , the format is correct and the answer is right
reward = ¢ —0.5 | the format is correct and the answer is wrong 3)
-3 , the format is wrong
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. In Logic-RL experiments, we directly use their original standard reward design.
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