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Abstract

Learning representations of entity mentions is001
a core component of modern entity linking sys-002
tems for both candidate generation and making003
linking predictions. In this paper, we present004
and empirically analyze a novel training ap-005
proach for learning mention and entity repre-006
sentations that is based on building minimum007
spanning arborescences (i.e., directed spanning008
trees) over mentions and entities across docu-009
ments to explicitly model mention coreference010
relationships. We demonstrate the efficacy of011
our approach by showing significant improve-012
ments in both candidate generation recall and013
linking accuracy on the Zero-Shot Entity Link-014
ing dataset and MedMentions, the largest pub-015
licly available biomedical dataset. In addition,016
we show that our improvements in candidate017
generation yield higher quality re-ranking mod-018
els downstream, setting a new SOTA result in019
linking accuracy on MedMentions. We further020
demonstrate that our improved mention repre-021
sentations are effective for the discovery of new022
entities via cross-document coreference.023

1 Introduction024

Natural language corpora, such as biomedical re-025

search papers (Leaman and Lu, 2016), news articles026

(Milne and Witten, 2008; Hoffart et al., 2011), and,027

more generally, web page text (Gabrilovich et al.,028

2013; Lazic et al., 2015a), often contain ambigu-029

ous mentions of entities. Resolving this ambiguity030

requires mentions to either be linked to a knowl-031

edge base (KB) of entities or discovered as a new032

KB concept if no suitable entry exists. Grounded033

entity mentions can be beneficial for tasks such034

as question-answering (Das et al., 2019), semantic035

search (Leaman and Lu, 2016), recommendation036

ranking (Noia et al., 2016), and KB construction037

(Ling et al., 2015). The task is made particularly038

challenging in zero-shot settings, where not every039

entity has labeled training data (Lin et al., 2017;040

Logeswaran et al., 2019). In such settings, a com-041

mon approach is to make use of entity descriptions,042

types, and aliases to form entity representations, 043

which are then used for making predictions. 044

Learned vector representations of entity men- 045

tions are an integral part of modern linking systems 046

(Gillick et al., 2019; Wu et al., 2020, inter alia). 047

These representations are used for (a) retrieving 048

a short-list of entity candidates for a mention for 049

use with a re-ranker (Wu et al., 2020), (b) making 050

linking predictions directly (Zhang et al., 2021; Liu 051

et al., 2020; Sung et al., 2020), and (c) performing 052

coreference by clustering mentions to form entities 053

(Logan IV et al., 2020). 054

In this work, we present a new objective and 055

training procedure for learning mention and en- 056

tity representations that explicitly models mention 057

coreference relationships. Our proposed method 058

uses a supervised clustering training objective 059

based on forming a directed minimum spanning 060

tree, or arborescence, over mentions and entities. 061

We hypothesize that such coreference links provide 062

a useful inductive bias because the two tasks are 063

inherently related (Angell et al., 2021; FitzGerald 064

et al., 2021). We thoroughly analyze the perfor- 065

mance of the proposed training procedure in each 066

of the aforementioned use cases on MedMentions 067

(Mohan and Li, 2019) and ZeShEL (Logeswaran 068

et al., 2019), two challenging datasets that require 069

zero-shot generalization at inference. 070

Retrieving Candidates. We illustrate that our 071

approach yields mention and entity representations 072

useful for candidate retrieval. We show improve- 073

ments over baselines that use similarly parameter- 074

ized models, achieving gains of at least 7.94 and 075

0.93 points in recall@64 over two standard dual- 076

encoder training procedures on MedMentions and 077

ZeShEL, respectively. We also consider the link- 078

ing capacity of our learned embeddings without 079

re-ranking and find that their performance (i.e re- 080

call@1) indeed improves upon our baselines. Our 081

best performing models show gains of 13.61 & 082

15.46 points in linking accuracy on MedMentions 083

and 12.06 & 1.52 points on ZeShEL. 084
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Linking Predictions. We further consider the085

improvement in downstream training of full cross-086

attention re-ranker models using higher quality can-087

didates generated by our approach. We show con-088

sistent gains in linking accuracy on MedMentions,089

setting a new state-of-the-art with a 1.63 point gain090

over the previous best model. We also note that091

our proposed approach shows mixed results on092

ZeShEL, with one variant outperforming all com-093

pared models by at least 1.19 points, while the other094

two underperform the baselines. We analyze this095

behavior in a later section and discuss the charac-096

teristics of the data distribution sufficient to make097

our approach effective.098

Cross-Document Coreference. Finally, we il-099

lustrate that the learned representations can be used100

to perform coreference of mentions across docu-101

ments. This indicates that they could be used to102

discover entities in settings where there is limited103

or no existing knowledge base of entities.104

2 Arborescence-based Training for105

Mention & Entity Representations106

In this section, we describe our proposed ap-107

proach for constructing training objectives for dual-108

encoders that model mention coreference relation-109

ships.110

2.1 Problem Definition111

Each document d of a corpus D contains a set of112

entity mention spans Md = {md
1,m

d
2, . . . ,m

d
N}.113

All mentions in the corpus are given by M =114 ⋃
d∈D Md. Following (Logeswaran et al., 2019;115

Angell et al., 2021), we assume that these mentions116

are pre-identified spans of text.117

Entity Linking Formally, we define the task of118

entity linking as follows: given a knowledge base119

of entities E and a set of mentions M, predict an120

entity edi ∈ E for each mention md
i . We use e⋆di to121

refer to the ground truth entity label for md
i .122

Zero-Shot Linking The zero-shot task refers to123

the setting where there are entities in the knowl-124

edge base that do not have any labeled training125

data. Linking decisions must instead rely on pro-126

vided information for entities, such as a descrip-127

tions, aliases, and/or entity types.128

Coreference We also consider a setting in which129

the KB of entities is not known in advance and130

entities must be discovered. For this task, we map131

every entity mention md
i to a cluster and assign a132

coreference label cdi ∈ C that is independent of the133

entity labels in the KB.134

2.2 Coreference-based Similarity 135

In order to jointly train both the mention and entity 136

encoders, we define a similarity measure and an 137

analogous procedure for sampling positive training 138

examples that intersperses the selection of corefer- 139

ent mentions and gold entities based on a single- 140

linkage structure formed by the representations 141

generated by the model snapshot. We construct 142

k-nearest neighbor graphs over coreferent mention 143

and entity clusters, followed by the application of 144

a pruning algorithm to generate arborescence (di- 145

rected MST) structures rooted at entity nodes. In 146

this way, the resultant edges represent pairs of pos- 147

itive examples used for training. 148

Graph-based Dissimilarity Let G be a graph 149

with nodes V = M ∪ E and directed edges 150

E ⊂ V × V . Each edge (x, y) of the graph has 151

an associated weight wx,y. We define a dissimilar- 152

ity function f between two nodes u, v ∈ V to be 153

the weight of the minimax path between the nodes, 154

i.e. 155

f(u, v) =

{
min

p∈u⇝v
max

(x,y)∈p
wx,y, if connected(u, v)

∞ otherwise
(1) 156

where connected(u, v) is true if there exists a di- 157

rected path from node u to v inG, and u⇝ v is the 158

set of all paths between u and v. In words, the dis- 159

similarity between u and v is the minimum of the 160

largest edge weights in all paths between the two 161

nodes, and this is often referred to as the "bottle- 162

neck edge". This measure has the property of emit- 163

ting low dissimilarities between nodes even when 164

the direct edge weight wu,v is high by connecting 165

them through a chain of low-weight edges, provid- 166

ing an inductive bias well-suited for coreference, 167

i.e. not all pairs of points in a cluster are nearby 168

(Figure 1). This inductive bias is not achieved if we 169

sum edge weights and simply find the minimum 170

path. 171

Edge Weights With this definition of dissimilar- 172

ity, we now define how edge weights are calculated. 173

We use two models: a mention-pair affinity model, 174

ϕ : M × M → R, and a mention-entity affinity 175

model, ψ : E × M → R. An edge between two 176

mentions mi and mj has weight: 177

wmi,mj = −ϕ(mi,mj), (2) 178

and the weight of the edge from entity e to mi is: 179

we,mi = −ψ(e,mi) (3) 180

Each of ϕ(·, ·) and ψ(·, ·) are independently pa- 181

rameterized by dual-encoder transformer models 182
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…increasingly recognized as an important 
functional activity mode and is tightly 
linked with various cognitive functions.

…the instantaneous changes in 
metabolites as a function of the levels of 
enzymatic catalytic activities.

Here we investigate a novel strategy to 
normalize medial frontal brain activity 
by stimulating cerebellar projections.

In addition, deletion of the N-terminal 
24- or 37-amino acids led to significant 
reduction in thermostability but not the 
enzymatic activity.

EncM
<latexit sha1_base64="9YWNj/DKWAGSc2yg4HboqDXPaZo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdBlUQQ3QgX7gDaEyXTSDp08mLkRSsjGX3HjQhG3foY7/8ZJzEJbDwycOede7r3HiwVXYFlfRmVpeWV1rbpe29jc2t4xd/e6KkokZR0aiUj2PaKY4CHrAAfB+rFkJPAE63nTq9zvPTCpeBTewyxmTkDGIfc5JaAl1zwYBgQmAOl1SDO3+Mggvc1cs241rAJ4kdglqaMSbdf8HI4imgQsBCqIUgPbisFJiQROBctqw0SxmNApGbOBpiEJmHLS4oAMH2tlhP1I6hcCLtTfHSkJlJoFnq7MN1TzXi7+5w0S8C+clIdxAkwfWAzyE4EhwnkaeMQloyBmmhAqud4V0wmRhILOrKZDsOdPXiTdZsM+bTTvzuqtyzKOKjpER+gE2egctdANaqMOoihDT+gFvRqPxrPxZrz/lFaMsmcf/YHx8Q2uUJca</latexit>

[########]

The activity of stearoyl - CoA 
desaturase-1 , the central enzyme in 
the synthesis of monounsaturated 
fatty acids.…

EncM
<latexit sha1_base64="9YWNj/DKWAGSc2yg4HboqDXPaZo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdBlUQQ3QgX7gDaEyXTSDp08mLkRSsjGX3HjQhG3foY7/8ZJzEJbDwycOede7r3HiwVXYFlfRmVpeWV1rbpe29jc2t4xd/e6KkokZR0aiUj2PaKY4CHrAAfB+rFkJPAE63nTq9zvPTCpeBTewyxmTkDGIfc5JaAl1zwYBgQmAOl1SDO3+Mggvc1cs241rAJ4kdglqaMSbdf8HI4imgQsBCqIUgPbisFJiQROBctqw0SxmNApGbOBpiEJmHLS4oAMH2tlhP1I6hcCLtTfHSkJlJoFnq7MN1TzXi7+5w0S8C+clIdxAkwfWAzyE4EhwnkaeMQloyBmmhAqud4V0wmRhILOrKZDsOdPXiTdZsM+bTTvzuqtyzKOKjpER+gE2egctdANaqMOoihDT+gFvRqPxrPxZrz/lFaMsmcf/YHx8Q2uUJca</latexit>

[########]

EncM
<latexit sha1_base64="9YWNj/DKWAGSc2yg4HboqDXPaZo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdBlUQQ3QgX7gDaEyXTSDp08mLkRSsjGX3HjQhG3foY7/8ZJzEJbDwycOede7r3HiwVXYFlfRmVpeWV1rbpe29jc2t4xd/e6KkokZR0aiUj2PaKY4CHrAAfB+rFkJPAE63nTq9zvPTCpeBTewyxmTkDGIfc5JaAl1zwYBgQmAOl1SDO3+Mggvc1cs241rAJ4kdglqaMSbdf8HI4imgQsBCqIUgPbisFJiQROBctqw0SxmNApGbOBpiEJmHLS4oAMH2tlhP1I6hcCLtTfHSkJlJoFnq7MN1TzXi7+5w0S8C+clIdxAkwfWAzyE4EhwnkaeMQloyBmmhAqud4V0wmRhILOrKZDsOdPXiTdZsM+bTTvzuqtyzKOKjpER+gE2egctdANaqMOoihDT+gFvRqPxrPxZrz/lFaMsmcf/YHx8Q2uUJca</latexit>

[########]

EncM
<latexit sha1_base64="9YWNj/DKWAGSc2yg4HboqDXPaZo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdBlUQQ3QgX7gDaEyXTSDp08mLkRSsjGX3HjQhG3foY7/8ZJzEJbDwycOede7r3HiwVXYFlfRmVpeWV1rbpe29jc2t4xd/e6KkokZR0aiUj2PaKY4CHrAAfB+rFkJPAE63nTq9zvPTCpeBTewyxmTkDGIfc5JaAl1zwYBgQmAOl1SDO3+Mggvc1cs241rAJ4kdglqaMSbdf8HI4imgQsBCqIUgPbisFJiQROBctqw0SxmNApGbOBpiEJmHLS4oAMH2tlhP1I6hcCLtTfHSkJlJoFnq7MN1TzXi7+5w0S8C+clIdxAkwfWAzyE4EhwnkaeMQloyBmmhAqud4V0wmRhILOrKZDsOdPXiTdZsM+bTTvzuqtyzKOKjpER+gE2egctdANaqMOoihDT+gFvRqPxrPxZrz/lFaMsmcf/YHx8Q2uUJca</latexit>

[########]

EncM
<latexit sha1_base64="9YWNj/DKWAGSc2yg4HboqDXPaZo=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokVdBlUQQ3QgX7gDaEyXTSDp08mLkRSsjGX3HjQhG3foY7/8ZJzEJbDwycOede7r3HiwVXYFlfRmVpeWV1rbpe29jc2t4xd/e6KkokZR0aiUj2PaKY4CHrAAfB+rFkJPAE63nTq9zvPTCpeBTewyxmTkDGIfc5JaAl1zwYBgQmAOl1SDO3+Mggvc1cs241rAJ4kdglqaMSbdf8HI4imgQsBCqIUgPbisFJiQROBctqw0SxmNApGbOBpiEJmHLS4oAMH2tlhP1I6hcCLtTfHSkJlJoFnq7MN1TzXi7+5w0S8C+clIdxAkwfWAzyE4EhwnkaeMQloyBmmhAqud4V0wmRhILOrKZDsOdPXiTdZsM+bTTvzuqtyzKOKjpER+gE2egctdANaqMOoihDT+gFvRqPxrPxZrz/lFaMsmcf/YHx8Q2uUJca</latexit>

[########]

[########]

EncE
<latexit sha1_base64="erSOklk2XvTW/LI9jnRMMyiCjdw=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSKuiyKAWXFewD2hAm00k7dCYJMzdCCdn4K25cKOLWz3Dn3ziJWWjrgYEz59zLvff4MWcKbPvLqKysrq1vVDdrW9s7u3vm/kFPRYkktEsiHsmBjxXlLKRdYMDpIJYUC5/Tvj+7yf3+A5WKReE9zGPqCjwJWcAIBi155tFIYJgCpO2QZF7xkSJtZ55Ztxt2AWuZOCWpoxIdz/wcjSOSCBoC4VipoWPH4KZYAiOcZrVRomiMyQxP6FDTEAuq3LQ4ILNOtTK2gkjqF4JVqL87UiyUmgtfV+YbqkUvF//zhgkEV27KwjgBqg8sBgUJtyCy8jSsMZOUAJ9rgolkeleLTLHEBHRmNR2Cs3jyMuk1G855o3l3UW9dl3FU0TE6QWfIQZeohW5RB3URQRl6Qi/o1Xg0no034/2ntGKUPYfoD4yPb6IolxI=</latexit>

C0443158 
Brain Activity

[########]

EncE
<latexit sha1_base64="erSOklk2XvTW/LI9jnRMMyiCjdw=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSKuiyKAWXFewD2hAm00k7dCYJMzdCCdn4K25cKOLWz3Dn3ziJWWjrgYEz59zLvff4MWcKbPvLqKysrq1vVDdrW9s7u3vm/kFPRYkktEsiHsmBjxXlLKRdYMDpIJYUC5/Tvj+7yf3+A5WKReE9zGPqCjwJWcAIBi155tFIYJgCpO2QZF7xkSJtZ55Ztxt2AWuZOCWpoxIdz/wcjSOSCBoC4VipoWPH4KZYAiOcZrVRomiMyQxP6FDTEAuq3LQ4ILNOtTK2gkjqF4JVqL87UiyUmgtfV+YbqkUvF//zhgkEV27KwjgBqg8sBgUJtyCy8jSsMZOUAJ9rgolkeleLTLHEBHRmNR2Cs3jyMuk1G855o3l3UW9dl3FU0TE6QWfIQZeohW5RB3URQRl6Qi/o1Xg0no034/2ntGKUPYfoD4yPb6IolxI=</latexit>

C0243102 
Enzyme Activity

[########]
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<latexit sha1_base64="erSOklk2XvTW/LI9jnRMMyiCjdw=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFcFWSKuiyKAWXFewD2hAm00k7dCYJMzdCCdn4K25cKOLWz3Dn3ziJWWjrgYEz59zLvff4MWcKbPvLqKysrq1vVDdrW9s7u3vm/kFPRYkktEsiHsmBjxXlLKRdYMDpIJYUC5/Tvj+7yf3+A5WKReE9zGPqCjwJWcAIBi155tFIYJgCpO2QZF7xkSJtZ55Ztxt2AWuZOCWpoxIdz/wcjSOSCBoC4VipoWPH4KZYAiOcZrVRomiMyQxP6FDTEAuq3LQ4ILNOtTK2gkjqF4JVqL87UiyUmgtfV+YbqkUvF//zhgkEV27KwjgBqg8sBgUJtyCy8jSsMZOUAJ9rgolkeleLTLHEBHRmNR2Cs3jyMuk1G855o3l3UW9dl3FU0TE6QWfIQZeohW5RB3URQRl6Qi/o1Xg0no034/2ntGKUPYfoD4yPb6IolxI=</latexit>

C0243102 
Tryptophanase 

Activity 

pull closer together

push farther apart

Figure 1: Arborescence-based Training Objective for Mention & Entity Representations. Shown above is an
illustrative example our proposed training objective for a dual-encoder (EncM, EncE) on real mentions and entities
from the MedMentions data set. Mentions are highlighted in context and entities are represented using grey boxes
with the name and unique identifier for the entity in UMLS. First, each mention and entity is encoded into a dense
vector representation using the respective transformer encoder. Pairs of mentions and mention-entity pairs are then
selected based on our arborescence-based procedure. The embeddings of these pairs are encouraged to be pulled
closer together if both endpoints are contained in the pruned arborescence structure (represented by the shaded
regions), or encouraged to be pushed farther apart if the endpoints are sampled as hard negatives.

(Gillick et al., 2019; Humeau et al., 2019), one for183

mentions (EncM), and one for entities (EncE). The184

affinity models are simply the inner products of the185

associated encoded representations:186

ϕ(mi,mj) = EncM(mi)
TEncM(mj)

ψ(e,mi) = EncE(e)
TEncM(mi)

(4)187

For the mention encoder, EncM, the transformer188

input is the surrounding mention context with the189

mention span marked by special tokens [START]190

and [END]:191

[CLS]cleft[START]mi[END]cright[SEP]192

where cleft and cright are the left and right contexts193

of the mention mi in the document. For the entity194

encoder, EncE, the transformer takes as input the195

title and description of the entity:196

[CLS]etitle[TITLE]edesc[SEP]197

In this input, edesc is the token sequence correspond-198

ing to the description of the entity, which could199

include natural language text related to the entity,200

such as a "wiki" entry, a list of entity aliases, or any201

other available features useful in forming an entity202

representation.203

2.3 Training Procedure 204

We now define our approach for training the affin- 205

ity models, ϕ(·, ·) and ψ(·, ·), and their associated 206

encoders, EncM and EncE. Our objective is to opti- 207

mize the dissimilarity function f(·, ·) such that the 208

procedure infers a set of clusters that each contain 209

exactly one entity, and every mention is assigned to 210

the cluster containing its ground truth entity. We op- 211

timize f(·, ·) using mini-batch gradient descent by 212

sequentially building batches of mentions B ⊂ M 213

over the training data, where each mi ∈ B has its 214

gold entity defined by e⋆i . We then build a graph 215

GB with nodes consisting of each mi ∈ B, each 216

mention coreferent to mi ∈ B, and the set of gold 217

entities for each mi ∈ B. For every mi, we build a 218

set of directed edges defined by 219

Emi =
{
(e⋆i ,mℓ)

∣∣∣mℓ ∈ Me⋆i

}
∪
{
(mℓ,mp)

∣∣∣mℓ,mp ∈ Me⋆i

} (5) 220

The complete set of edges in graph GB for a mini- 221

batch B is then given by E(GB) =
⋃

mi∈B Emi . 222

Observe that the resultant edges ensure that each 223

connected component contains exactly one entity 224

(namely, the gold entity for the mentions in that 225

connected component). 226

Forming Clusters for Positive Sampling. The 227

graphGB is input to a constrained clustering proce- 228
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dure that partitions a graph G into disjoint clusters229

C = {C1, . . . , CM} such that each cluster contains230

at most one entity. There are three constraints that231

every C ∈ C must satisfy:232

(i) |C ∩ E| ≤ 1,

(ii) ∀u, v ∈ C, connected(u, v) =⇒ f(u, v) ≤ λ,

(iii) ∀u, v ∈ C, connected(u, v) ∨ connected(v, u)

233

where λ is a hyperparameter representing the dis-234

similarity threshold over which edges between235

nodes are dropped. We set λ = ∞ during train-236

ing. These constraints ensure that (i) there is at237

most one entity in each cluster, (ii) if u is reachable238

from v then every edge in the path from v to u has239

a weight ≤ λ, and (iii) each node in the cluster240

has a path connecting itself with every other node241

in the cluster. We solve this constrained clustering242

problem, i.e., partition graph G, using a process243

similar to Angell et al. (2021).244

Specifically, we first remove all edges in graph245

G with weight greater than threshold λ. We then246

evaluate each edge (u, v) ∈ E in descending order247

of dissimilarity and check if its presence violates248

any of the three constraints defined above, remov-249

ing the edge from E if it does. If not, we evaluate250

whether there is an entity in the connected compo-251

nent of node u, i.e. |Cu ∩ E| = 1. If |Cu ∩ E| = 1,252

we temporarily drop edge (u, v) and check whether253

v can still be reached by an entity node. If reach-254

able, we permanently drop (u, v), maintaining the255

validity of constraint (i) as well as our minimax dis-256

similarity function f(·, ·). If an entity cannot reach257

v, we retain edge (u, v), preserving the connectiv-258

ity of the cluster, and iterate further. Our predicted259

clusters are the resultant connected components in260

the partitioned graph G.261

Using this clustering procedure on GB , we262

construct a partitioned target graph G⋆
B =263

{E⋆
mi

| mi ∈ B}. We use E⋆
mi

to optimize the264

parametric encoder models. Note that each men-265

tion node in a target edge set E⋆
mi

has only one266

incoming edge originating from either an entity or267

a mention, and the selection of E⋆
mi

was done in268

a way to minimize f(·, ·) between mentions and269

entities with coreferent labels on the subgraph of270

the mini-batch.271

For every cluster with an entity node, the edge272

structure is a directed analogue of the minimum273

spanning tree, where there exists a directed path274

from the entity node to every other node in the275

cluster. This structure is often referred to as the276

minimum spanning arborescence, thus lending its277

name to our method, i.e. ARBORESCENCE-based 278

linking. 279

Negative Sampling. Akin to the graph embed- 280

ding objectives used by Nickel and Kiela (2018) 281

and others, we construct our objective by sampling 282

hard negative edges. For each mention mi ∈ B, 283

the set of negative edges N(mi) is the k/2 lowest- 284

weight incoming edges from E \ {e⋆i } and the k/2 285

lowest-weight incoming edges from M \ Me⋆i
, 286

where k is a specified hyperparameter. 287

Loss Function. We define Γ(mi) = 288

{u | (u,mi) ∈ E∗
mi

} ∪ {u | (u,mi) ∈ N(mi)} to 289

be the set of all neighbors with an outgoing edge to 290

mi in the training graph. Let Iu,mi be the indicator 291

variable such that Iu,mi = 1 if (u,mi) ∈ E∗
mi

292

and Iu,mi = 0 otherwise. Our loss function with 293

respect to each mention mi ∈ B is then defined as 294

follows: 295

L(mi) =
∑

u∈Γ(mi)

(
Iu,mi log(σu(wu,mi)) (6) 296

+ (1− Iu,mi) log(1− σu(wu,mi))
)
, 297

where σ(·) is the softmax function over all edges in 298

Γ(mi)× {mi}. The loss for the entire batch B is 299

the mean of losses over all mentions in B. Optimiz- 300

ing this loss function requires simultaneously in- 301

creasing the likelihood of the positive edges and de- 302

creasing the likelihood of the negative edges. This 303

objective and training routine are inspired by the 304

supervised single-linkage clustering proposed by 305

Yadav et al. (2019), but differs in the choice of loss 306

function and selection of negative examples. We 307

also experimented with the standard cross-entropy 308

loss, but found its performance subpar. 309

3 Experiments 310

We are interested in investigating the following 311

empirical research questions: 312

• Does our proposed approach improve the re- 313

call of candidate generators? 314

• Do improvements in candidate generation at 315

training lead to improvements in downstream 316

re-ranker models? 317

• Does our approach result in better learned 318

mention embeddings that can be used for 319

coreference / discovering entities when a KB 320

does not exist? 321

Experiment Details Our experiments are run 322

on top of BLINK (Wu et al., 2020), a PyTorch 323

(Paszke et al., 2019) implementation of dual- and 324

cross-encoder architectures for entity linking, with 325
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MedMentions ZeShEL
Training Method Recall@ 1 2 4 8 16 32 64 1 2 4 8 16 32 64

IN-BATCH NEGATIVES 58.70 69.01 75.87 80.03 83.14 85.54 87.73 39.27 53.02 62.98 70.32 75.97 80.27 84.04
K-NN NEGATIVES 56.85 65.96 71.68 76.50 80.31 83.51 86.11 49.81 60.59 68.24 74.11 78.07 81.53 84.77
TF-IDF ‡ 50.8 63.8 73.4 79.2 82.3 84.6 85.3 - - - - - - -
IN-BATCH NEGATIVES ‡‡ - - - - - - - - - - - - - 82.06

ARBORESCENCE † 72.31 80.88 86.09 89.86 92.36 94.31 95.67 50.31 61.04 68.34 74.26 78.40 82.02 85.11
1-NN ARBORESCENCE † 71.99 80.78 86.10 89.61 91.92 93.75 95.23 51.33 62.00 69.03 74.67 78.86 81.97 85.13
1-RAND ARBORESCENCE † 71.27 80.17 85.44 89.09 91.65 93.34 94.88 50.86 62.09 69.36 75.05 78.78 82.50 85.70

Table 1: Dual-Encoder Retriever Results: Recall@k (†Proposed methods; ‡Angell et al. (2021); ‡‡Wu et al.
(2020))

MedMentions ZeShEL

|M|
Train 120K 49K
Dev 40K 10K
Test 40K 10K

|E|
Train 19K 26K
Dev 9K 7K
Test 8K 7K

|E \ ETrain|
Dev 4K 7K
Test 4K 7K

Table 2: Dataset Statistics. |M| is the number of men-
tions. |E| is the number of unique entities in the labeled
partition (not the total KB size). |E \ETrain| is the number
of zero-shot entities. The total KB size of MedMentions
and ZeShEL is 2.3M and 492K, respectively.

model fine-tuning performed over only BERT-base,326

since gains from pre-trained LM size are unrelated327

to our approach. For more details, see Appendix328

§A.1.329

3.1 Datasets330

We run experiments on two entity linking datasets331

that both require generalization to unseen entities332

at test time. Each document in the datasets contains333

a set of entity mention spans, which are pre-defined334

using common mention detection heuristics. KB335

entities are composed of two metadata attributes336

– an entity title and description, which are natural337

language sequences of text. ZeShEL, additionally,338

contains a fine-grained type specification, which339

is needed due to the diverse disjoint domains con-340

tained in the dataset. The statistics for both datasets341

are reported in Table 2.342

MedMentions (Mohan and Li, 2019) is a col-343

lection of titles and abstractions of bio-medical re-344

search papers. The KB that is used for this dataset345

is the 2017AA full-version of UMLS. The vali-346

dation and test sets contain both entities that are347

present in the training set as well as entities that are348

zero-shot (never seen at training time). We use the 349

author-recommended ST21pv subset. 350

ZeShEL (Logeswaran et al., 2019) is a collec- 351

tion of crowd-sourced wikis, which are divided into 352

train, validation, and test splits such that no Fan- 353

dom topic overlaps across the sets. In this way, all 354

entities that appear at validation and test time are 355

not seen during training. 356

3.2 Dual-Encoder Retrieval 357

In order to evaluate the benefit of explicitly mod- 358

eling coreference relationships, we construct three 359

variants of our proposed dual-encoder training 360

objective, which jointly trains both the mention- 361

mention similarity function ϕ(·, ·) and the mention- 362

entity similarity function ψ(·, ·). We compare to 363

baselines that only explicitly train ψ(·, ·), and 364

rely on the structure of ϕ(·, ·) sharing represen- 365

tations with ψ(·, ·) to provide meaningful mention- 366

mention similarities. Our proposed objectives are 367

identical to each other except in how the positive 368

training pairs are constructed, while our baselines 369

differ in the selection of negatives. 370

Arborescence In this training variant, for each 371

mention query, we first construct a fully-connected 372

graph of the ground truth coreferent mention clus- 373

ter along with the gold entity. We then apply the 374

pruning procedure described in the previous sec- 375

tion to compute an arborescence rooted at the en- 376

tity node. From the resultant graph, each pair of a 377

mention and its incoming-edge node (which can 378

either be a coreferent mention or the gold entity) 379

is then treated as a positive example for training. 380

Following previous work by Gillick et al. (2019), 381

we use hard negative mining with k = 10 negatives 382

composed of equal number of mention and entities. 383

1-NN Arborescence Instead of constructing a 384

fully-connected k-NN graph over the entire gold 385

cluster, in this variant we approximate the arbores- 386

cence structure by pruning a restricted graph of 387
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Accuracy Oracle
Re-ranker Candidate Retriever Overall Seen Unseen Self Union

K-NN NEGATIVES Dual (IN-BATCH NEGATIVES) 73.31 77.58 58.47 80.78 47.96
K-NN NEGATIVES Dual (K-NN NEGATIVES) 70.76 77.05 48.85 79.90 21.12
MST & K-NN (Angell et al., 2021) TF-IDF (Angell et al., 2021) 74.1 77.3 62.9 - -

K-NN NEGATIVES Dual (ARBORESCENCE) † 75.73 79.97 60.99 76.09 75.64
K-NN NEGATIVES Dual (1-NN ARBORESCENCE) † 74.73 78.91 60.19 75.48 74.71
K-NN NEGATIVES Dual (1-RAND ARBORESCENCE) † 74.89 79.39 59.22 75.75 74.95

Table 3: MedMentions: Cross-Encoder Linking Results: We report the re-ranker accuracy trained using the
candidates generated by each retriever variant. (†Proposed methods)

only the gold entity, the query mention, and the388

most similar within-cluster mention neighbor of389

the query. We keep all other details of the training390

procedure identical to the first variant.391

1-Rand Arborescence A third training objec-392

tive we explore modifies the initial k-NN graph393

construction by restricting the nodes to the gold394

entity, the query mention, and a random within-395

cluster mention neighbor of the query, instead of396

the nearest-neighbor.397

Baselines We compare to two baselines follow-398

ing previous work: (1) training ψ(·, ·) with random399

negatives (IN-BATCH NEGATIVES) where each400

gold entity for a mention in a training batch is401

treated as a negative example for all other mentions402

in the batch, and (2) training ψ(·, ·) with hard neg-403

atives (K-NN NEGATIVES) similar to the negative404

mining in our proposed methods albeit with only405

mention-entity positive selection.406

Results In Table 1, we report the test set re-407

call@64 for each dual-encoder model, where the408

prediction is evaluated as a hit if the gold entity409

is retrieved in the top-64 candidates of the model.410

On each dataset, we additionally include the per-411

formance of candidate generators used by previous412

works that we compare to.413

We find that models trained with explicit coref-414

erence relationships outperform those that incorpo-415

rate this relationship only indirectly. For recall@64,416

our proposed methods improve over the baseline417

models by at least 7.94 percentage points on Med-418

Mentions and 0.93 points on ZeShEL. Even at link-419

ing, or recall@1, our proposed methods show sim-420

ilar improvements, with gains of 13.61 and 1.52421

points over the next best baseline models. We per-422

form a more comprehensive analysis of the dual-423

encoder linking performance and describe our in-424

ference approach and results in Appendix §A.2 and425

§A.3.426

We posit that much of the observed gains in re- 427

call using our proposed methods result from higher 428

quality mention embeddings generated due to a 429

wide array of surface forms available to mention 430

queries at training. Since each training example 431

evaluates not only the gold entity but also its coref- 432

erent mentions, this leads to better generalization 433

of representations. We evaluate this improvement 434

in representations in the clustering/coreference set- 435

ting in Section 3.5. 436

We also provide representative examples of pre- 437

dictions comparing the candidates generated by our 438

proposed ARBORESCENCE to the retriever from 439

Angell et al. (2021) in Appendix Table 7. 440

3.3 Cross-Encoder Re-ranking 441

To answer our second research question, we com- 442

pare 5 cross-attention models, which are trained 443

using entity candidates generated by the dual- 444

encoder variants discussed in the previous exper- 445

iment. Training and inference batches are con- 446

structed by concatenating each mention with an 447

entity candidate separated by a [SEP] token. Sim- 448

ilar to Wu et al. (2020), we use the top-64 retrieved 449

entities as hard negatives during training and as 450

linking candidates during inference. 451

Results We report the cross-encoder linking accu- 452

racy for MedMentions in Table 3. We additionally 453

report the breakdown of accuracy on subsets of 454

test mentions for which the ground truth entities 455

were not evaluated ("unseen") during training, illus- 456

trating the zero-shot capability of the models. We 457

also include the current state-of-the-art results by 458

Angell et al. (2021), which uses an n-gram based 459

model for candidate generation and two cross- 460

encoder models, one each for mention-mention 461

and mention-entity scoring, as the re-ranker. We 462

observe that each cross-encoder trained with can- 463

didates generated by an arborescence-based model 464

outperforms the baselines, including the current 465
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Oracle
Self Union

Candidate Retriever Acc. Macro Acc. Macro Acc. Macro

Dual (IN-BATCH NEGATIVES) 61.27 60.93 64.96 67.81 62.91 66.13
Dual (K-NN NEGATIVES) 61.02 60.47 63.66 66.91 61.30 64.72
Dual (IN-BATCH NEGATIVES) (Wu et al., 2020) - 61.34 - - - -

Dual (ARBORESCENCE) † 60.72 60.36 62.64 65.90 61.04 64.39
Dual (1-NN ARBORESCENCE) † 60.47 60.48 63.20 66.70 61.03 64.77
Dual (1-RAND ARBORESCENCE) † 62.35 62.53 64.94 67.90 63.33 66.51

Table 4: ZeShEL: Cross-Encoder Linking Results: Unnormalized Accuracy. We report the accuracy of the
re-ranker trained using the candidates generated by each retriever. (†Proposed methods)

SOTA by at least 0.63 points, and the best per-466

forming model – ARBORESCENCE – achieves 1.63467

point gains. We note, however, that Angell et al.468

(2021) does better on unseen entities by 1.91 points469

compared to ARBORESCENCE, which might be a470

result of the within-document nature of their TF-471

IDF candidate retriever.472

Table 4 contains linking results for ZeShEL,473

where each reported model varies only in the474

method used for retrieving the entity candidates,475

while the cross-encoder re-ranker training method476

is held constant (K-NN NEGATIVES with k = 64).477

Since ZeShEL is completely zero-shot, we do not478

include a seen-unseen analysis. We follow Wu479

et al. (2020) and report the unnormalized accu-480

racy, which is calculated as the percentage of suc-481

cesses out of the total number of query mentions in482

the test set, and the macro-averaged unnormalized483

accuracy, which is a simple average of the unnor-484

malized accuracies over the different "worlds", or485

domains, in the test set. We find that the best per-486

forming model is 1-RAND ARBORESCENCE, with487

a 1.19 point difference in macro-averaged accuracy488

over the next best model (Wu et al., 2020).489

We also note that, unlike on MedMentions, not490

all of our proposed models have higher accuracy491

than the mention-entity baselines. Since a key mo-492

tivation for the proposed arborescence-based meth-493

ods is to explicitly model coreference relationships494

during training, we expect performance gains to be495

strongly correlated with the number of coreference496

links present within the dataset. We analyze the497

two datasets in terms of the number of mentions498

for each KB entity. This can be thought of as how499

large each cluster of coreferent mentions is. We500

report a histogram distribution in Figure 2. We find501

that the clusters in ZeShEL are typically very small502

(at most 3), whereas in MedMentions, each cluster503

has many more mentions with maximum sizes of504

1256, 434, and 447 across the train, validation, and 505

test sets. 506

3.4 Oracle Inference 507

In this setting, we isolate the re-ranking capabil- 508

ity of the cross-encoder from the quality of the 509

candidates retrieved at inference. This setting also 510

removes the upper-bound on re-ranker accuracy by 511

artificially injecting the ground-truth entity in the 512

top-64 candidates retrieved at inference for each 513

mention where retrieval failed. An additional set- 514

ting we explore holds this oracle candidate set con- 515

stant across each variant of the cross-encoder by 516

taking a union over all dual-encoder candidate sets, 517

and then proceeding to inject the ground-truth. This 518

construction provides a way to purge the factor 519

of candidate retrieval quality at inference, which 520

otherwise conflates the comparison of re-ranking 521

performance. We refer to these oracle settings as 522

SELF and UNION, respectively. 523

Results As seen in column Oracle of Table 3, 524

the baseline models show higher linking accuracy 525

than our proposed methods when the gold entity 526

is guaranteed to be present in the original candi- 527

date set. However, the performance of the base- 528

line models drops significantly (≥ 32 points) when 529

evaluated with the UNION candidate set, while the 530

arborescence-based models show a ± 0.9 point vari- 531

ation. We believe this discrepancy clearly high- 532

lights the poor quality of candidates retrieved by the 533

baseline models compared to our proposed meth- 534

ods. This also explains the inflation in accuracy 535

of the baselines on the SELF set due to the trivial 536

discrimination task presented to the cross-encoders. 537

We further point to linking performance on the 538

UNION set, which provides the more challenging 539

task of differentiating between higher quality can- 540

didates that are similar and argue that the large per- 541

formance difference (≥ 26.75 points) is strongly 542
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Figure 2: Cluster Distribution. We count the number
of mentions in each coref cluster. Clusters in ZeShEL
are typically very small, compared to the MedMentions
clusters which have considerably more mentions.

indicative of the greater linking capacity of our543

proposed methods.544

In Table 4, we report both the micro accuracy and545

macro-averaged accuracy for the two oracle sets.546

We observe that 1-RAND ARBO performs the best547

on the UNION set, but is marginally outperformed548

by IN-BATCH on micro accuracy on the SELF set549

by 0.02 points. In contrast to the fluctuation on550

MedMentions, the relative stability of results on the551

oracle candidate sets indicates that the candidates552

generated by each model have similar quality.553

3.5 Mention Coreference554

We evaluate the quality of the learned mention rep-555

resentations for cross-document coreference. Entity556

labels of each mention are its ground truth cluster557

assignment. To form clusters, we build mention-558

only arborescences using the clustering procedure559

described in Section 2.3, tuning the threshold value,560

λ, based on the validation data. In Table 5, we561

report the Adjusted Rand Index (ARI) clustering562

scores using each of the representation learning ob-563

jectives using dual-encoders. For both ZeShEL and564

MedMentions, we report ARI on all the test men-565

tions (denoted ALL). For MedMentions, we report566

two additional settings: (1) ARI when clustering567

mentions with ground truth entity not seen at train-568

ing (denoted UNSEEN ONLY) and (2) clustering on569

all mentions but evaluating only on the set in (1)570

(denoted ALL/UNSEEN). Representations learned571

with the ARBORESCENCE objective performs best572

on each setting, aligning with the inductive bias.573

4 Related Work574

Entity Linking Entity linking has been widely575

studied (Milne and Witten, 2008; Cucerzan, 2007;576

Lazic et al., 2015b; Gupta et al., 2017; Raiman577

and Raiman, 2018; Kolitsas et al., 2018; Cao et al.,578

2021, inter alia). Dutta and Weikum (2015) com-579

bine clustering-based cross-document coreference580

decisions and linking around sparse bag-of-word581

representations not well suited for the embedding-582

MedMentions ZeShEL
Setting ALL ALL/ UNSEEN ALL

UNSEEN ONLY

IN-BATCH NEGATIVES 0.37 0.71 0.71 0.31
K-NN NEGATIVES 0.26 0.73 0.80 0.29
ARBORESCENCE 0.51 0.83 0.85 0.34
1-NN ARBORESCENCE 0.47 0.75 0.83 0.34
1-RAND ARBORESCENCE 0.35 0.63 0.81 0.32

Table 5: Coreference Results. We report the Adjusted
Rand Index achieved by clustering (§2.3) the embed-
dings produced by each model. We evaluate on three
settings: ALL (clustering & evaluating on all test set
mentions), ALL/UNSEEN (clustering all mentions, eval-
uating on mentions with ground truth entity not seen
in train), UNSEEN ONLY (clustering & evaluating on
mentions with ground truth entity not in train).

based representations used in this work. Hoffart 583

et al. (2011); Cheng and Roth (2013); Ganea and 584

Hofmann (2017); Le and Titov (2018) use global 585

objectives instead of independent predictions, mea- 586

suring the compatibility of entity links. Zhang and 587

Stratos (2021) use noise contrastive estimation to 588

mine hard negatives for the linking task. 589

Cross-document Coreference Models have 590

been developed for the cross-document coreference 591

setting where no entity KB is known in advance 592

(Bagga and Baldwin, 1998; Gooi and Allan, 2004; 593

Singh et al., 2011; Barhom et al., 2019; Cattan 594

et al., 2020; Caciularu et al., 2021; Ravenscroft 595

et al., 2021; Logan IV et al., inter alia). 596

Alternatives to Cross-Encoders Our work 597

demonstrates how clustering-based training and 598

prediction improves dual-encoder based models for 599

linking and discovery. If prediction efficiency, and 600

not training efficiency, was the only concern, one 601

could use model distillation (Hinton et al., 2015; 602

Izacard and Grave, 2021, inter alia). We could also 603

consider models such as poly-encoders as an alter- 604

native to dual-encoders (Humeau et al., 2020). 605

5 Conclusion 606

We presented a novel approach for learning men- 607

tion and entity representations for use in entity link- 608

ing candidate generation and prediction, as well as 609

in the discovery of new entities. Our approach uses 610

an objective that explicitly incorporates mention- 611

to-mention coreference relationships. We demon- 612

strated its empirical effectiveness through analysis 613

on two datasets, MedMentions and the Zero-Shot 614

Entity Linking dataset. As future work, we hope 615

to further analyze these objectives with the lens of 616

efficiency, distillation, and domain transfer. 617
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6 Ethical Considerations618

The base models, which we fine-tuned, and evalu-619

ation datasets are all publicly available. We will620

also make our code and models publicly avail-621

able. There are several ways in which entity link-622

ing/entity resolution models could be biased and623

there is the potential for those biases to have harm-624

ful downstream consequences. There is a large625

body of work studying the biases of language mod-626

els (such as those used for fine-tuning here) and627

coreference models. Most notably in understanding628

when error rates in coreference differ across cer-629

tain populations (e.g., genders, races, or any entity-630

type more broadly). If entity linking and discovery631

systems are used to build / populate knowledge-632

bases, those systems may propagate these biased633

predictions. This could be particularly problematic634

if one used such a biased knowledge-base with635

this realization. For instance, if entity mentions are636

author names on citation data and the entities are637

scientific authors, statistics like h-index or citation638

count could be biased if the algorithms used to639

disambiguate the author names are biased. Lastly,640

we note entity linking and discovery are related to641

surveillance and tracking in computer vision, which642

bear a substantial weight of ethical considerations.643

References644

Rico Angell, Nicholas Monath, Sunil Mohan, Nishant645
Yadav, and Andrew McCallum. 2021. Clustering-646
based inference for biomedical entity linking. In647
Conference of the North American Chapter of the648
Association for Computational Linguistics (NAACL).649

Amit Bagga and Breck Baldwin. 1998. Entity-based650
cross-document coreferencing using the vector space651
model. In 36th Annual Meeting of the Association652
for Computational Linguistics and 17th International653
Conference on Computational Linguistics, Volume 1,654
pages 79–85, Montreal, Quebec, Canada. Association655
for Computational Linguistics.656

Shany Barhom, Vered Shwartz, Alon Eirew, Michael657
Bugert, Nils Reimers, and Ido Dagan. 2019. Revis-658
iting joint modeling of cross-document entity and659
event coreference resolution. In Proceedings of the660
57th Annual Meeting of the Association for Computa-661
tional Linguistics, pages 4179–4189, Florence, Italy.662
Association for Computational Linguistics.663

Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E664
Peters, Arie Cattan, and Ido Dagan. 2021. Cross-665
document language modeling. arXiv preprint666
arXiv:2101.00406.667

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and668
Fabio Petroni. 2021. Autoregressive entity retrieval.669

In International Conference on Learning Representa- 670
tions. 671

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar 672
Joshi, and Ido Dagan. 2020. Streamlining cross- 673
document coreference resolution: Evaluation and 674
modeling. arXiv preprint arXiv:2009.11032. 675

Xiao Cheng and Dan Roth. 2013. Relational inference 676
for wikification. In Proceedings of the 2013 Con- 677
ference on Empirical Methods in Natural Language 678
Processing, pages 1787–1796, Seattle, Washington, 679
USA. Association for Computational Linguistics. 680

Silviu Cucerzan. 2007. Large-scale named entity disam- 681
biguation based on Wikipedia data. In Proceedings 682
of the 2007 Joint Conference on Empirical Methods 683
in Natural Language Processing and Computational 684
Natural Language Learning (EMNLP-CoNLL), pages 685
708–716, Prague, Czech Republic. Association for 686
Computational Linguistics. 687

Rajarshi Das, Ameya Godbole, Dilip Kavarthapu, Zhiyu 688
Gong, Abhishek Singhal, Mo Yu, Xiaoxiao Guo, Tian 689
Gao, Hamed Zamani, Manzil Zaheer, et al. 2019. 690
Multi-step entity-centric information retrieval for 691
multi-hop question answering. In Proceedings of 692
the 2nd Workshop on Machine Reading for Question 693
Answering, pages 113–118. 694

Sourav Dutta and Gerhard Weikum. 2015. C3EL: A 695
joint model for cross-document co-reference resolu- 696
tion and entity linking. In Proceedings of the 2015 697
Conference on Empirical Methods in Natural Lan- 698
guage Processing, pages 846–856, Lisbon, Portugal. 699
Association for Computational Linguistics. 700

Nicholas FitzGerald, Jan A Botha, Daniel Gillick, 701
Daniel M Bikel, Tom Kwiatkowski, and Andrew Mc- 702
Callum. 2021. Moleman: Mention-only linking of 703
entities with a mention annotation network. arXiv 704
preprint arXiv:2106.07352. 705

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag 706
Subramanya. 2013. Facc1: Freebase annotation of 707
clueweb corpora, version 1 (release date 2013-06-26, 708
format version 1, correction level 0). 709

Octavian-Eugen Ganea and Thomas Hofmann. 2017. 710
Deep joint entity disambiguation with local neural 711
attention. In Proceedings of the 2017 Conference on 712
Empirical Methods in Natural Language Processing, 713
pages 2619–2629, Copenhagen, Denmark. Associa- 714
tion for Computational Linguistics. 715

Dan Gillick, Sayali Kulkarni, Larry Lansing, Alessan- 716
dro Presta, Jason Baldridge, Eugene Ie, and Diego 717
Garcia-Olano. 2019. Learning dense representations 718
for entity retrieval. In Proceedings of the 23rd Con- 719
ference on Computational Natural Language Learn- 720
ing (CoNLL). 721

Chung Heong Gooi and James Allan. 2004. Cross- 722
document coreference on a large scale corpus. In Pro- 723
ceedings of the Human Language Technology Con- 724
ference of the North American Chapter of the Asso- 725
ciation for Computational Linguistics: HLT-NAACL 726

9

https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980859
https://doi.org/10.3115/980845.980859
https://doi.org/10.18653/v1/P19-1409
https://doi.org/10.18653/v1/P19-1409
https://doi.org/10.18653/v1/P19-1409
https://doi.org/10.18653/v1/P19-1409
https://doi.org/10.18653/v1/P19-1409
https://openreview.net/forum?id=5k8F6UU39V
https://www.aclweb.org/anthology/D13-1184
https://www.aclweb.org/anthology/D13-1184
https://www.aclweb.org/anthology/D13-1184
https://www.aclweb.org/anthology/D07-1074
https://www.aclweb.org/anthology/D07-1074
https://www.aclweb.org/anthology/D07-1074
https://doi.org/10.18653/v1/D15-1101
https://doi.org/10.18653/v1/D15-1101
https://doi.org/10.18653/v1/D15-1101
https://doi.org/10.18653/v1/D15-1101
https://doi.org/10.18653/v1/D15-1101
https://doi.org/10.18653/v1/D17-1277
https://doi.org/10.18653/v1/D17-1277
https://doi.org/10.18653/v1/D17-1277
https://www.aclweb.org/anthology/N04-1002
https://www.aclweb.org/anthology/N04-1002
https://www.aclweb.org/anthology/N04-1002


2004, pages 9–16, Boston, Massachusetts, USA. As-727
sociation for Computational Linguistics.728

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-729
tity linking via joint encoding of types, descriptions,730
and context. In Proceedings of the 2017 Conference731
on Empirical Methods in Natural Language Process-732
ing, pages 2681–2690, Copenhagen, Denmark. Asso-733
ciation for Computational Linguistics.734

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.735
Distilling the knowledge in a neural network. arXiv736
preprint arXiv:1503.02531.737

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,738
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,739
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.740
2011. Robust disambiguation of named entities in741
text. In Proceedings of the 2011 Conference on Em-742
pirical Methods in Natural Language Processing,743
pages 782–792, Edinburgh, Scotland, UK. Associa-744
tion for Computational Linguistics.745

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,746
and Jason Weston. 2019. Poly-encoders: Architec-747
tures and pre-training strategies for fast and accurate748
multi-sentence scoring. In International Conference749
on Learning Representations.750

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,751
and Jason Weston. 2020. Poly-encoders: Architec-752
tures and pre-training strategies for fast and accurate753
multi-sentence scoring. In International Conference754
on Learning Representations.755

Gautier Izacard and Edouard Grave. 2021. Distilling756
knowledge from reader to retriever for question an-757
swering. In International Conference on Learning758
Representations.759

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.760
Billion-scale similarity search with gpus. arXiv761
preprint arXiv:1702.08734.762

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas763
Hofmann. 2018. End-to-end neural entity linking.764
In Proceedings of the 22nd Conference on Computa-765
tional Natural Language Learning, pages 519–529,766
Brussels, Belgium. Association for Computational767
Linguistics.768

Nevena Lazic, Amarnag Subramanya, Michael Ring-769
gaard, and Fernando Pereira. 2015a. Plato: A selec-770
tive context model for entity resolution. Transac-771
tions of the Association for Computational Linguis-772
tics, 3:503–515.773

Nevena Lazic, Amarnag Subramanya, Michael Ring-774
gaard, and Fernando Pereira. 2015b. Plato: A selec-775
tive context model for entity resolution. Transac-776
tions of the Association for Computational Linguis-777
tics, 3:503–515.778

Phong Le and Ivan Titov. 2018. Improving entity link-779
ing by modeling latent relations between mentions.780
In Proceedings of the 56th Annual Meeting of the781

Association for Computational Linguistics (Volume 782
1: Long Papers), pages 1595–1604, Melbourne, Aus- 783
tralia. Association for Computational Linguistics. 784

Robert Leaman and Zhiyong Lu. 2016. Taggerone: joint 785
named entity recognition and normalization with 786
semi-markov models. Bioinformatics, 32(18):2839– 787
2846. 788

Ying Lin, Chin-Yew Lin, and Heng Ji. 2017. List-only 789
entity linking. In Proceedings of the 55th Annual 790
Meeting of the Association for Computational Lin- 791
guistics (Volume 2: Short Papers), pages 536–541, 792
Vancouver, Canada. Association for Computational 793
Linguistics. 794

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015. 795
Design challenges for entity linking. Transactions of 796
the Association for Computational Linguistics, 3:315– 797
328. 798

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco 799
Basaldella, and Nigel Collier. 2020. Self-alignment 800
pretraining for biomedical entity representations. 801
arXiv preprint arXiv:2010.11784. 802

Robert L. Logan IV, Matt Gardner, and Sameer Singh. 803
2020. On importance sampling-based evaluation of 804
latent language models. In Proceedings of the 58th 805
Annual Meeting of the Association for Computational 806
Linguistics, pages 2171–2176, Online. Association 807
for Computational Linguistics. 808

Robert L Logan IV, Andrew McCallum, Sameer Singh, 809
and Daniel Bikel. Benchmarking scalable methods 810
for streaming cross document entity coreference. 811

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, 812
Kristina Toutanova, Jacob Devlin, and Honglak Lee. 813
2019. Zero-shot entity linking by reading entity de- 814
scriptions. In Proceedings of the 57th Annual Meet- 815
ing of the Association for Computational Linguistics, 816
pages 3449–3460, Florence, Italy. Association for 817
Computational Linguistics. 818

David Milne and Ian H Witten. 2008. Learning to link 819
with wikipedia. In Proceedings of the 17th ACM con- 820
ference on Information and knowledge management, 821
pages 509–518. 822

Sunil Mohan and Donghui Li. 2019. Medmentions: A 823
large biomedical corpus annotated with umls con- 824
cepts. arXiv preprint arXiv:1902.09476. 825

Maximillian Nickel and Douwe Kiela. 2018. Learning 826
continuous hierarchies in the lorentz model of hy- 827
perbolic geometry. In International Conference on 828
Machine Learning, pages 3779–3788. PMLR. 829

Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, 830
and Eugenio Di Sciascio. 2016. Sprank: Semantic 831
path-based ranking for top-n recommendations using 832
linked open data. ACM Transactions on Intelligent 833
Systems and Technology (TIST), 8(1):1–34. 834

10

https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://www.aclweb.org/anthology/D11-1072
https://www.aclweb.org/anthology/D11-1072
https://www.aclweb.org/anthology/D11-1072
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://doi.org/10.18653/v1/K18-1050
https://doi.org/10.1162/tacl_a_00154
https://doi.org/10.1162/tacl_a_00154
https://doi.org/10.1162/tacl_a_00154
https://doi.org/10.18653/v1/P18-1148
https://doi.org/10.18653/v1/P18-1148
https://doi.org/10.18653/v1/P18-1148
https://doi.org/10.18653/v1/P17-2085
https://doi.org/10.18653/v1/P17-2085
https://doi.org/10.18653/v1/P17-2085
https://doi.org/10.1162/tacl_a_00141
https://doi.org/10.18653/v1/2020.acl-main.196
https://doi.org/10.18653/v1/2020.acl-main.196
https://doi.org/10.18653/v1/2020.acl-main.196
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/P19-1335


Adam Paszke, Sam Gross, Francisco Massa, Adam835
Lerer, James Bradbury, Gregory Chanan, Trevor836
Killeen, Zeming Lin, Natalia Gimelshein, Luca837
Antiga, Alban Desmaison, Andreas Kopf, Edward838
Yang, Zachary DeVito, Martin Raison, Alykhan Te-839
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,840
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An841
imperative style, high-performance deep learning li-842
brary. In Advances in Neural Information Processing843
Systems.844

Jonathan Raiman and Olivier Raiman. 2018. Deeptype:845
multilingual entity linking by neural type system evo-846
lution. In Proceedings of the AAAI Conference on847
Artificial Intelligence, volume 32.848

James Ravenscroft, Arie Cattan, Amanda Clare, Ido Da-849
gan, and Maria Liakata. 2021. Cd2cr: Co-reference850
resolution across documents and domains. arXiv851
preprint arXiv:2101.12637.852

Sameer Singh, Amarnag Subramanya, Fernando Pereira,853
and Andrew McCallum. 2011. Large-scale cross-854
document coreference using distributed inference and855
hierarchical models. In Proceedings of the 49th An-856
nual Meeting of the Association for Computational857
Linguistics: Human Language Technologies, pages858
793–803, Portland, Oregon, USA. Association for859
Computational Linguistics.860

Mujeen Sung, Hwisang Jeon, Jinhyuk Lee, and Jae-861
woo Kang. 2020. Biomedical entity representa-862
tions with synonym marginalization. arXiv preprint863
arXiv:2005.00239.864

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian865
Riedel, and Luke Zettlemoyer. 2020. Zero-shot entity866
linking with dense entity retrieval. In EMNLP.867

Nishant Yadav, Ari Kobren, Nicholas Monath, and An-868
drew Mccallum. 2019. Supervised hierarchical clus-869
tering with exponential linkage. In Proceedings of870
the 36th International Conference on Machine Learn-871
ing, volume 97 of Proceedings of Machine Learning872
Research, pages 6973–6983. PMLR.873

Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff874
Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Nau-875
mann, Jianfeng Gao, and Hoifung Poon. 2021.876
Knowledge-rich self-supervised entity linking. arXiv877
preprint arXiv:2112.07887.878

Wenzheng Zhang and Karl Stratos. 2021. Understand-879
ing hard negatives in noise contrastive estimation.880
arXiv preprint arXiv:2104.06245.881

A Appendix882

A.1 Experiment Details883

Our experiments are run on top of BLINK (Wu884

et al., 2020), a PyTorch (Paszke et al., 2019) im-885

plementation of dual- and cross-encoder architec-886

tures for entity linking, with model fine-tuning per-887

formed over only BERT-base, since gains from888

pre-trained LM size are unrelated to our approach. 889

Each training procedure is run on a single machine 890

using 2 NVIDIA Quadro RTX 8000 GPUs. Our 891

dual-encoder models for ZeShEL and MedMen- 892

tions have 218M and 230M parameters, respec- 893

tively. Each variant is optimized using mini-batch 894

gradient descent using the Adam optimizer for 5 895

epochs using a mini-batch size of 128 to accumu- 896

late the gradients. Experiments with batch sizes < 897

128 performed poorly, possibly due to increased 898

fluctuation of gradients, and sizes > 128 were com- 899

putationally infeasible to run with our available 900

compute resources. For ZeShEL, the dual-encoder 901

models are trained using 192 warm-up steps and 902

learning rates of 1e-5, 3e-5, and 3e-5 for In-batch, 903

k-NN, and Arborescence-based models, respec- 904

tively. For MedMentions, each model is trained 905

using 464 warm-up steps and a learning rate of 3e- 906

5. All cross-encoder models are trained with a mini- 907

batch size of 2, learning rate of 2e-5, and an addi- 908

tional linear layer. Our MedMentions and ZeShEL 909

cross-encoder models have 108M and 109M pa- 910

rameters, respectively. We use FAISS1 (Johnson 911

et al., 2017) for fast nearest-neighbor search dur- 912

ing graph construction at both training and infer- 913

ence. For MedMentions, the execution time was 914

70 mins to embed and index 2M entities and 120K 915

mentions, and 20 mins to perform exact nearest- 916

neighbor search for the 120K mentions. 917

A.2 Dual-Encoder Inference Procedure 918

Building the Graph The structure of the graph 919

G impacts the dissimilarity function by changing 920

the paths between pairs of nodes in addition to 921

changing which pairs of nodes are connected. We 922

advocate for a simple, deterministic approach to 923

construct this graph. For each mentionm, construct 924

Em by (1) adding edges from m’s k-nearest neigh- 925

bor mentions in M to m, and (2) adding an edge 926

from m’s nearest entity to m: 927

Em =

{
(u,m)

∣∣∣ u ∈ argmink
m′ ∈ M

wm′,m

∨ u = argmin
e ∈ E

we,m

} (7) 928

The complete collection of edges E in G is given 929

by E(G) =
⋃

m∈MEm. There are other ways that 930

one could conceivably pick the pairs of mentions to 931

be connected in the graph. For example, one could 932

use the minimum spanning tree over the mentions. 933

This approach, however, has several drawbacks: (1) 934

1https://github.com/facebookresearch/faiss
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MedMentions ZeShEL
Training Inference Overall Seen Unseen Inference Overall

IN-BATCH NEGATIVES Clustering (UNDIRECTED) 59.11 61.88 49.45 Independent 39.27
K-NN NEGATIVES Independent 56.86 64.03 31.88 Independent 49.81

ARBORESCENCE † Clustering (DIRECTED) 72.19 77.48 53.79 Independent 50.31
1-NN ARBORESCENCE† Clustering (DIRECTED) 72.00 77.29 53.60 Clustering (DIRECTED) 51.09
1-RAND ARBORESCENCE† Clustering (DIRECTED) 71.33 77.02 51.51 Clustering (DIRECTED) 50.85

Table 6: Dual-Encoder Linking Results: Accuracy % (†Procedures incorporating explicit mention-to-mention
coreference relationships)

the directionality of nearest neighbor relationships935

is ignored leading to added noise in the graph, and936

(2) the resultant graph includes edges that clearly937

cross cluster boundaries due to this approach forc-938

ing all pairs of mentions to be connected.939

Forming Clusters & Making Predictions To940

make linking decisions for each mention md
i , we941

assign the ID of the entity present in the mention’s942

cluster as the linking label (or NIL if there is no943

entity in the cluster). Let C(md
i ) be the predicted944

cluster of mention md
i , then:945

edi =

{
C(md

i ) ∩ E , if |C(md
i ) ∩ E| = 1

NIL, otherwise
. (8)946

Furthermore, the clusters we predict for in the en-947

tity discovery setting are exactly C.948

A.3 Experiment: Dual-Encoder Linking949

Each model is evaluated using three inference pro-950

cedures. Independent refers to predictions made951

using only mention-entity edges. This method was952

used by Wu et al. (2020) to generate candidates for953

a cross-encoder model trained on ZeShEL. Cluster-954

ing (UNDIRECTED) refers to a hierarchical agglom-955

erative clustering (HAC) procedure, following pre-956

vious work by Angell et al. (2021), which is akin to957

the procedure for positive sampling used for train-958

ing our arborescence-based models, but with no959

edge directionality. Clustering (DIRECTED) adds960

directed edges to the previous method. For each961

model, we pick the best performing inference pro-962

cedure on the dev set and report the test set perfor-963

mance.964

We report the linking accuracy in Table 6 but965

leave out models from previous works since they966

do not report linking accuracy of their candidate967

generators. We specify the inference method used968

in each case, chosen based on the dev set accuracy969

of the models. Similar to our cross-encoder results970

in Table 3, we report the "seen" and "unseen" per-971

formance for MedMentions.972
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Mention [...] Mutations of critical amino acids affected either dsDNA recombination or both ssDNA and dsDNA
recombination indicating two separable functions , one of which is critical for dsDNA recombination
and the second for recombination per se [...]

(Angell et al., 2021) DNA (C0012854): ( Chemical , DNA , Deoxyribonucleic Acid , substance : dna molecules ; dsDNA ;
Deoxyribonucleic acid ; dna / desoxyribonucleic acid ; DNA / desoxyribonucleic acid ; DNA molecule
; DNA - Deoxyribonucleic acid [...]

Ours DNA , Double - Stranded (C0311474): Chemical , substance : double stranded dna ; DNA , Double
Stranded ; Double - Stranded DNA ; ds dna ; deoxyribonucleic acid double strand [...]

Mention [...] mean dose , and maximum dose were significantly associated with parotid gland atrophy . Multi-
variate analysis indicated that only V5 was significantly associated with atrophy. Increasing V5 was a
significant risk factor for parotid gland atrophy after carbon ion radiotherapy [...]

(Angell et al., 2021) Muscular Atrophy (C0026846): Biologic Function , Muscular , diagnosis , disorder , finding , physical
finding : atrophy ; muscle ; amyotrophy ; muscle atrophy was seen ; Wasting ; muscle ; Atrophies ,
Muscle ; Muscle thinning [...]

Ours Atrophy of parotid gland (C0341045): ( Biologic Function , disorder : atrophy ; parotid gland )
Mention [...] This study aimed to determine the methylation phenotype in colorectal cancer for identification of

predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non
- recurrent and five recurrent colorectal cancer patients using the Illumina Infinium HumanMethyla-
tion450 Beadchip assay [...]

(Angell et al., 2021) Disease Response (C1704632): Finding : Response ; response
Ours Response to treatment (C0521982): Clinical Attribute , context - dependent category , finding , func-

tion , observable entity , situation : response to treatment ; response treatments ; Therapeutic response;
successful treatment [...]

Table 7: Improved Candidate Generation Yields Correct Entity Linking. Above are examples of mentions
where the candidate generation procedure from (Angell et al., 2021) fails to retrieve the correct entity, and thus, the
cross-encoder is not able to correctly link the mention. Our dual-encoder is able to retrieve the correct entity in the
candidate set of 64 entities, and then the cross-encoder is able to link each mention to the correct entity.
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