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ABSTRACT

Although distributional reinforcement learning (DRL) has been widely examined
in the past few years, there are two open questions people are still trying to ad-
dress. One is how to ensure the validity of the learned quantile function, the other
is how to efficiently utilize the distribution information. This paper attempts to
provide some new perspectives to encourage the future in-depth studies in these
two fields. We first propose a non-decreasing quantile function network (NDQFN)
to guarantee the monotonicity of the obtained quantile estimates and then design
a general exploration framework called distributional prediction error (DPE) for
DRL which utilizes the entire distribution of the quantile function. In this pa-
per, we not only discuss the theoretical necessity of our method but also show the
performance gain it achieves in practice by comparing with some competitors on
Atari 2600 Games especially in some hard-explored games.

1 INTRODUCTION

Distributional reinforcement learning (DRL) algorithms (Jaquette, 1973; Sobel, 1982; White, 1988;
Morimura et al., 2010; Bellemare et al., 2017), different from the value based methods (Watkins,
1989; Mnih et al., 2013) which focus on the expectation of the return, characterize the cumulative
reward as a random variable and attempt to approximate its whole distribution. Most existing DRL
methods fall into two main classes according to their ways to model the return distribution. One
class, including categorical DQN (Bellemare et al., 2017), C51, and Rainbow (Hessel et al., 2018),
assumes that all the possible returns are bounded in a known range and learns the probability of each
value through interacting with the environment. Another class, for example the QR-DQN (Dabney
et al., 2018b), tries to obtain the quantile estimates at some fixed locations by minimizing the Huber
loss (Huber, 1992) of quantile regression (Koenker, 2005). To more precisely parameterize the
entire distribution, some quantile value based methods, such as IQN (Dabney et al., 2018a) and FQF
(Yang et al., 2019), are proposed to learn a continuous map from any quantile fraction τ ∈ (0, 1) to
its estimate on the quantile curve.

The theoretical validity of QR-DQN (Dabney et al., 2018b), IQN (Dabney et al., 2018a) and FQF
(Yang et al., 2019) heavily depends on a prerequisite that the approximated quantile curve is non-
decreasing. Unfortunately, since no global constraint is imposed when simultaneously estimating
the quantile values at multiple locations, the monotonicity can not be ensured by using any existing
network design. At early training stage, the crossing issue is even more severe given limited training
samples. Another problem to be solved is how to design an efficient exploration method for DRL.
Most existing exploration techniques are originally designed for non-distributional RL (Bellemare
et al., 2016; Ostrovski et al., 2017; Tang et al., 2017; Fox et al., 2018; Machado et al., 2018), and
very few of them can work for DRL. Mavrin et al. (2019) proposes a DRL-based exploration method,
DLTV, for QR-DQN by using the left truncated variance as the exploration bonus. However, this
approach can not be directly applied to quantile value based algorithms since the original DLTV
method requires all the quantile locations to be fixed while IQN or FQF resamples the quantile
locations at each training iteration and the bonus term could be extremely unstable.

To address these two common issues in DRL studies, we propose a novel algorithm called Non-
Decreasing Quantile Function Network (NDQFN), together with an efficient exploration strategy,
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distributional prediction error (DPE), designed for DRL. The NDQFN architecture allows us to
approximate the quantile distribution of the return by using a non-decreasing piece-wise linear func-
tion. The monotonicity ofN+1 fixed quantile levels is ensured by an incremental structure, and the
quantile value at any τ ∈ (0, 1) can be estimated as the weighted sum of its two nearest neighbors
among the N + 1 locations. DPE uses the 1-Wasserstein distance between the quantile distributions
estimated by the target network and the predictor network as an additional bonus when selecting
the optimal action. We describe the implementation details of NDQFN and DPE and examine their
performance on Atari 2600 games. We compare NDQFN and DPE with some baseline methods
such as IQN and DLTV, and show that the combination of the two can consistently achieve the op-
timal performance especially in some hard-explored games such as Venture, Montezuma Revenge
and Private Eye.

For the rest of this paper, we first go through some background knowledge of distributional RL in
Section 2. Then in Sections 3, we introduce NDQFN, DPE and describe their implementation de-
tails. Section 4 presents the experiment results using the Atari benchmark, investigating the empiri-
cal performance of NDQFN, DPE and their combination by comparing with some baseline methods.

2 BACKGROUND AND RELATED WORK

Following the standard reinforcement learning setting, the agent-environment interactions are mod-
eled as a Markov Decision Process, or MDP, (X , A, R , P , γ) (Puterman, 2014). X and A denote a
finite set of states and a finite set of actions, respectively. R : X × A → R is the reward function,
and γ ∈ [0, 1) is a discounted factor. P : X ×A×X → [0, 1] is the transition kernel.

On the agent side, a stochastic policy π maps state x to a distribution over action a ∼ π(·|x)
regardless of the time step t. The discounted cumulative rewards is denoted by a random variable
Zπ(x, a) =

∑∞
t=0 γ

tR(xt, at), where x0 = x, a0 = a, xt ∼ P (·|xt−1, at−1) and at ∼ π(·|xt).
The objective is to find an optimal policy π∗ to maximize the expectation of Zπ(x, a), EZπ(x, a),
which is denoted by the state-action value function Qπ(x, a). A common way to obtain π∗ is to find
the unique fixed point Q∗ = Qπ

∗
of the Bellman optimality operator T (Bellman, 1966):

Qπ(x, a) = T Qπ(x, a) := E[R(x, a)] + γEP max
a′

Q∗(x′, a′). (1)

The state-action value functionQ can be approximated by a parameterized functionQθ (e.g. a neural
network). Q -learning (Watkins, 1989) iteratively updates the network parameters by minimizing the
squared temporal difference (TD) error

δ2
t =

[
rt + γ max

a′∈A
Qθ(xt+1, a

′)−Qθ(xt, at)
]2

,

on a sampled transition (xt, at, rt, xt+1), collected by running an ε-greedy policy over Qθ.

Distributional RL algorithms, instead of directly estimating the mean EZπ(x, a), focus on the dis-
tribution Zπ(x, a) to sufficiently capture the intrinsic randomness. The distributional Bellman oper-
ator, which has a similar structure with (1), is defined as follows,

T Zπ(x, a)
D
= R(x, a) + γZπ(X ′, A′),

where X ′ ∼ P (·|x, a) and A′ ∼ π(·|X ′). A D
= B denotes the equality in probability laws.

3 NON-MONOTONICITY IN DISTIRBUTIONAL REINFORCEMENT LEARNING

In Distributional RL studies, people usually pay attention to the quantile function F−1
Z (τ) = inf{z ∈

R : τ ≤ FZ(z)} of total return Z, which is the the inverse of the cumulative distribution function
FZ(z) = Pr(Z < z). In practice, with limited observations at each quantile level, it is much
likely that the obtained quantile estimates F−1

Z (τ) at multiple given locations {τ1, τ2, . . . , τN} for
some state-action pair (x, a) are non-monotonic as Figure 1 (a) illustrates. The key reason behind
this phenomenon is that the quantile values at multiple quantile fractions are separately estimated
without applying any global constraint to ensure the monotonicity. Ignoring the non-decreasing
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property of the learned quantile function leaves a theory-practice gap, which results in the potentially
non-optimal action selection in practice. Although the crossing issue has been broadly studied by
the statistics community (He, 1997; Chernozhukov et al., 2010; Dette & Volgushev, 2008), how to
ensure the monotonicity of the approximated quantile function in DRL still remains challenging,
especially to some quantile value based algorithms such as IQN and FQF, which do not focus on
fixed quantile locations during the training process.
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𝜏′= {𝜏1
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′ }
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Figure 1: Quantile estimates obtained by (a) IQN, (b) mere incremental structure and (c) NDQFN
under 50M training on Breakout. τ and τ ′ denote two sets of sampled quantile fractions from two
different training iterations.

4 NON-DECREASING QUANTILE FUNCTION NETWORK

To address the crossing issue, we introduce a novel Non-Decreasing Quantile Function Network
(NDQFN) with two main components: (1). an incremental structure to estimate the increase of
quantile values between two pre-defined nearby supporting points pi−1 ∈ (0, 1) and pi ∈ (0, 1), i.e.,
∆i(x, a;p) = F−1

Z (pi)−F−1
Z (pi−1), and subsequently obtain each F−1

Z (pi) for i ∈ {0, . . . , N} as
the cumulative sum of ∆′is; (2). a piece-wise linear function which connects the N + 1 supporting
points to represent the quantile estimate F−1

Z(x,a)(τ) at any given fraction τ ∈ (0, 1). Figure 2
describes the whole architecture of NDQFN.

We first describe the incremental structure. Let p = {p0, · · · , pN} be a set of N + 1 supporting
points, satisfying 0 <≤ pi ≤ pi+1 < 1 for each i ∈ {1, 2, . . . , N − 1}. Thus, Z(x, a) can be
parameterized by a mixture of N Diracs, such that

Zθ,p(x, a) :=

N−1∑
i=0

(pi+1 − pi)δθi(x,a), (2)

where each θi denotes the quantile estimation at p̂i = pi+pi+1

2 , and θ = {θ0, . . . , θN−1}. Let
ψ : X → Rd and φ : [0, 1] → Rd represent the embeddings of state x and quantile fraction τ ,
respectively. The baseline value ∆0(x, a;p) := F−1

Z(x,a)(p0) at p0 and the followingN non-negative
increments ∆i(x, a;p) for i ∈ {1, · · · , N} can be represented by

∆0(x, a;p) ≈ ∆0,ω(x, a;p) = f(ψ(x))a, (3)
∆i(x, a;p) ≈ ∆i,ω(x, a;p) = g(ψ(x), φ(pi), φ(pi−1))a, i = 1, · · · , N.

where f : Rd → R|A| and g : R2d → [0,∞)|A| are two functions to be learned. ω includes all the
parameters of the network.
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Then, we use Πp,∆ω
to denote a projection operator that projects the quantile function onto a piece-

wise linear function supported by p and the incremental structure ∆ω = {∆0,ω, · · · ,∆N,ω} above.
For any quantile level τ ∈ (0, 1), its projection-based quantile estimate is given by

F−1,p,∆ω

Z(x,a) (τ) = Πp,∆ω
F−1
Z(x,a)(τ) = ∆0,ω(x, a;p) +

1

N

N−1∑
i=0

Gi,∆ω
(τ, x, a;p), (4)

where Gi,∆ω
could be regarded as a linear combination of quantile estimates at two nearby support-

ing points satisfying

Gi,∆ω (τ, x, a;p)=


i∑

j=1

∆j,ω(x, a;p) +
τ − pi
pi+1 − pi

∆i+1,ω(x, a;p)

I(pi ≤ τ < pi+1).

By limiting the output range of ga in (3) to be [0,∞), the obtained N + 1 quantile estimates are
non-decreasing. Under the NDQFN framework, the expected future return starting from (x, a), also
known as the Q-function can be empirically approximated by

Qω =

∫ pN

p0

F−1,p,∆ω

Z(x,a) (τ)dτ =

N−1∑
i=0

(pi+1 − pi)F−1,p,∆ω

Z(x,a) (
pi + pi+1

2
)

=

N−1∑
i=0

(pi+1 − pi)
2

[
F−1,p,∆ω

Z(x,a) (pi+1) + F−1,p,∆ω

Z(x,a) (pi)
]
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Figure 2: The network architecture of NDQFN.

For notational simplicity, we let Pτ,ω(x, a) = F−1,p,∆ω

Z(x,a) (τ), given the support p. Following the
idea of IQN, two random sets of quantile fractions τ = {τ1, · · · , τN1

}, τ ′ = {τ ′1, · · · , τ ′N2
} are

independently drawn from a uniform distribution U(0, 1) at each training iteration. In this case, for
each i ∈ {1, . . . , N1} and each j ∈ {1, . . . , N2}, the corresponding temporal difference (TD) error
(Dabney et al., 2018a) with n-step updates on (xt, at, rt, · · · , rt+n−1, xt+n) is computed as follows,

δi,j =

n−1∑
i=0

γirt+i + γnPτ ′j ,ω′

(
xt+n, arg max

a′∈A
Qω′(xt+n, a

′)

)
− Pτi,ω(xt, at), (5)

where ω and ω′ denote the online network and the target network, respectively. Thus, we can train
the whole network by minimizing the Huber quantile regression loss (Huber, 1992) as follows,

L(xt, at, rt, · · · , rt+n−1, xt+n) =
1

N2

N1∑
i=1

N2∑
j=1

ρκτi (δi,j) , (6)

where

ρκτ (δi,j) = |τ − I (δi,j < 0)| Lκ (δi,j)

κ
, (7)

Lκ (δi,j) =


1

2
δ2
i,j , if |δi,j | ≤ κ

κ

(
|δi,j | −

1

2
κ

)
, otherwise

,
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κ is a pre-defined positive constant, and | · | denotes the absolute value of a scalar.

Remark: As shown by Figure 1 (c), the piece-wise linear structure ensures the monotonicity within
the union of any two quantile sets τ and τ ′ from two different training iterations regardless of
whether they are included in the p or not. However, as Figure 1 (b) demonstrates, directly applying
a similar incremental structure onto IQN without using the piece-wise linear approximation may
result in the non-monotonicity of τ ∪ τ ′ although each of their own monotonicity is not violated.

To investigate the convergence of the proposed algorithm, we introduce the following theorem,
which can be seen an extension of Proposition 2 in Dabney et al. (2018b)

Theorem 1. Let Πp,∆ω
be the quantile projection defined as above with non-decreasing quantile

function F−1,p,∆ω

Z . For any two value distribution Z1, Z2 ∈ Z for an MDP with countable state
and action spaces and enough large N ,

d̄∞

(
Πp,∆ωT F

−1,p,∆ω

Z1
,Πp,∆ωT F

−1,p,∆ω

Z2

)
≤ γd̄∞

(
F−1,p,∆ω

Z1
, F−1,p,∆ω

Z2

)
, (8)

where T denotes the distributional bellman operator, d̄k(F−1
Z1
, F−1

Z2
) := supx,aWk(F−1

Z1(x,a),

F−1
Z2(x,a)) and Wk(·, ·) denotes the k-Wasserstein metric.

By Theorem 1, we conclude that Πp,∆ωT have a unique fixed point and the repeated application of
Πp,∆ω

T converges to the fixed point. With d̄k ≤ d̄∞, the convergence occurs for all k ∈ [1,∞). It
ensures that we can obtain a consistent estimator for F−1

Z , denoted as F−1,p,∆ω

Z , by minimizing the
Huber quantile regression loss defined in (6).

Now we discuss the implementation details of NQDFN. For the support p used in this work, we
let pi = i/N for i ∈ {1, · · · , N − 1}, p0 = 0.001 and pN = 0.999. NDQFN models the state
embedding ψ(x) and the τ -embedding φ(τ) in the same way as IQN. The baseline function f in
(3) consists of two fully-connected layers and a sigmoid activation function, which takes ψ(x) as
the input and returns an unconstrained value for ∆0(x, a;p). The incremental function g shares the
same structure with f but uses the ReLU activation instead to ensure the non-negativity of all the
N increments ∆i(x, a;p)’s. Let � denote the element-wise product and g take ψ(x) � φ(pi) and
φ(pi)− φ(pi−1) as input, such that

∆i,ω(x, a;p) = g(ψ(x)� φ(pi), φ(pi)− φ(pi−1))a, i = 1, · · · , N, (9)
which to some extent captures the interactions among ψ(x), φ(pi) and φ(pi−1). Although ψ(x) �
φ(pi)�φ(pi−1) may be another potential input form, the empirical results show that the combination
of ψ(x) � φ(pi) and φ(pi) − φ(pi−1) is more preferred in practice considering its outperformance
in Atari games. More details are provided in Section C of the Supplement file.

5 EXPLORATION USING DISTRIBUTIONAL PREDICTION ERROR

To further improve the learning efficiency of NDQFN, we introduce a novel exploration approach
called distributional prediction error (DPE), motivated by the Random Network Distillation (RND)
method (Burda et al., 2018), which can be extended to most existing DRL frameworks. The proposed
method, DPE, involves three networks, online network, target network and predictor network, which
have the same architecture but different network parameters. The online network ω and the target
network ω′ use the same initialization, while the predictor network ω∗ is separately initialized. To
be more specific, the predictor network are trained on the sampled data using the quantile Huber
loss defined as follows:

L(xt, at) =
1

N2

N1∑
i=1

N2∑
j=1

ρκτ̃i
(
δ∗i,j
)
,

where δ∗i,j = Pτ∗j ,ω′(xt, at)−Pτ̃i,ω∗(xt, at) and ρκτ (·) are defined in (7). On the other hand, follow-
ing Hasselt (2010) and Pathak et al. (2019), the target network of DPE is periodically synchronized
by the online network. DPE employs the 1-Wasserstein metric W1(·, ·) to measure the distance be-
tween the two quantile distributions associated with the predictor network and the target network.
And its empirical approximation based on NDQFN is defined as follows,

i(xt, at) =

∫ pN

p0

W1 (Pτ,ω′(xt, at)− Pτ,ω∗(xt, at)) dτ. (10)
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Since the minimum of L(xt, at) is a contraction of the 1-Wasserstein distance (Bellemare et al.,
2017), the prediction error would be higher for an unobserved state-action pair than for a frequently
visited one. Therefore, i(xt, at) can be treated as the exploration bonus when selecting the optimal
action, which encourages the agent to explore unknown states. With i(xt, at) being the exploration
bonus, the optimal action is determined by

at = arg max
a

[Qω(xt, a) + cti(xt, a)], (11)

where ct is the bonus rate. As might be expected, a more reasonable quantile estimate would highly
enhance the exploration efficiency according to our exploration setting. To more clearly demonstrate
this point, we compare the performance of DPE based on NDQFN and IQN in Section 6.2.

On the other hand, we compared the exploration efficiency of distributional prediction error and
value-based prediction error in Section D of supplement, where value-based prediction error is de-
fined as i′(xt, at) = |Qω∗(xt, at) − Qω′(xt, at)|. As might be expected, DPE enhances the explo-
ration efficiency by utilizing more distributional information.

6 EXPERIMENTS

In this section, we evaluate the empirical performance of the proposed NDQFN with DPE on 55
Atari games using the Arcade Learning Environment (ALE) (Bellemare et al., 2013). The baseline
algorithms we compare include IQN (Dabney et al., 2018a), QR-DQN (Dabney et al., 2018b), C51
(Bellemare et al., 2017), prioritized experience replay (Schaul et al., 2015) and Rainbow (Hessel
et al., 2018). The whole architecture of our method is implemented by using the IQN baseline in the
Dopamine framework (Castro et al., 2018). Note that the whole method could be built upon other
quantile value based baselines such as FQF.

Our hyper-parameter setting is aligned with IQN for fair comparison. Furthermore, we incorporate
n-step updates (Sutton, 1988), double Q learning (Hasselt, 2010), quantile regression (Koenker,
2005) and distributional Bellman update (Dabney et al., 2018b) into the training for all compared
methods. The size of p and the number of sampled quantile levels ,τ and τ ′, are 32, i.e. N = N1 =
N2 = 32. We use ε-greedy policy with ε = 0.01 for training. At the evaluation stage, we test the
agent for every 0.125 million frames with ε = 0.001.

For the DPE exploration, we fix ct = 1 without decay (which is the optimal setting based on
experiment results). As a comparison, we extend DLTV (Mavrin et al., 2019), an exploration ap-
proach designed for DRL algorithms based on fixed quantile locations such as QR-DQN, to quan-
tile value based methods by modifying the original left truncated variance used in their paper to
σ2

+ =
∫ 1

1
2
[F−1
Z (τ) − F−1

Z ( 1
2 )]2dτ . All training curves in this paper are smoothed with a moving

average of 10 to improve the readability. With the same hyper-parameter setting, NDQFN with DPE
is about 25% slower than IQN at training stage due to the added predictor network.

6.1 NDQFN VS IQN

In this part, we compare NDQFN with its baseline IQN (Dabney et al., 2018a) to verify the improve-
ment it achieves by employing the non-decreasing structure. The two methods are fairly compared
without employing any additional exploration strategy.

Figure 3 visualizes the training curves of eleven randomly selected easy explored Atari games.
NDQFN significantly outperforms IQN in most cases, including Berzerk, KungFu Master, Ms. Pac-
Man, Qbert, River Raid, Up and Down, Video Pinball and Zaxxon. Although NDQFN achieves
similar final scores with IQN in Battle Zone and Tennis, it learns much faster. This tells that the
crossing issue, which usually happens in the early training stage with limited training samples,
can be sufficiently addressed by the incremental design in NDQFN to ensure the monoticity of the
quantile estimates. More related results could be seen in Section E of the supplement.

6.2 EFFECTS OF NDQFN ON DPE

In this section, we show how the NDQFN design can help improve the exploration efficiency of DPE
compared to using the IQN baseline. We pick three hard explored games, Montezuma Revenge,
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Figure 3: Training curve on Atari games for NDQFN and IQN.

Private Eye, Venture, and three easy explored games, Ms. Pac-Man, River Raid and Up and Down.
The main results are summarized in Figure 4.

Figure 4: Comparison between NDQFN+DPE and IQN+DPE.

As Figure 4 illustrates, DPE is an effective exploration method which highly increases the training
performance of both IQN and NDQFN in three hard explored games. In the three easy-explored
games, DPE still performs slightly better than the baseline methods, which to some extent demon-
strates the stability and robustness of DPE. On the other hand, we find that NDQFN + DPE sig-
nificantly outperforms IQN + DPE especially in some hard-explored games. This agrees with our
conclusion in Section 5 that NDQFN obtains a more reasonable quantile estimate by adding the
non-decreasing constraint which helps to increase the exploration efficiency.
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6.3 DPE VS DLTV

We do some more experiments to show the advantage of DPE over DLTV when applying both of
the two exploration approaches to quantile value based DRL algorithms. To be specific, we evaluate
the performance of NDQFN+DPE and NDQFN+DLTV on the six games examined in the previous
subsection. Figure 5 shows that DPE achieves a much better performance than DLTV especially
in the three hard explored games. DLTV does not achieve significant performance gain over the
baseline NDQFN without doing exploration.

Figure 5: Comparison between DPE and DLTV.

This result tells that DLTV, which computes the exploration bonus based on some discrete quantile
locations, performs extremely unstable for quantile value based methods such as IQN and NDQFN
since the quantile locations used to train the model are changed each time. As a contrast, DPE
focuses on the entire distribution of the quantile function, which relies less on the selection of the
quantile fractions, and thus performs better in this case.

6.4 FULL ATARI RESULTS

In this part, we evaluate the performance of the whole network which incorporates NDQFN with
DPE in all the 55 Atari games. Following the IQN setting (Dabney et al., 2018a), all evaluations
start with 30 non-optimal actions to align with previous distributional RL works. ’IQN’ in the table
tries to reproduce the results presented in the original IQN paper, while ‘IQN*’ corresponds to the
improved version of IQN by using n-step updates and some other tricks mentioned above.

Mean Median >Human
DQN 221% 79% 24
PRIOR. 580% 124% 39
C51 701% 178% 40
RAINBOW 1213% 227% 42
QR-DQN 902% 193% 41
IQN 1112% 218% 39
IQN* 1207% 224% 40
NDQFN+DPE 1959% 237% 42

Table 1: Mean and median of scores across 55 Atari 2600 games, measured as percentages of human
baseline. Scores of previous work are referenced from Castro et al. (2018) and Yang et al. (2019).

Table 1 presents the mean and median human normalized scores by the seven compared methods
across 55 Atari games, which shows that NDQFN with DPE significantly outperforms the IQN
baseline and other state-of-the-art algorithms such as Rainbow. In particular, Figure 6 plots the

8



Under review as a conference paper at ICLR 2021

relative improvement of NDQFN+DPE over IQN ((NDQFN-random)/(IQN-random)-1) in testing
score for all the 55 Atari games. We observe that our method consistently outperforms the IQN
baseline in most situations, especially for some hard games with extremely sparse reward spaces,
such as Private Eye and Montezuma Revenge. More comparison results including the training curves
for all the 55 games and the raw scores are provided in Sections F and G in the supplement.

Figure 6: Cumulative rewards performance comparison between our method and IQN with 200M
training frames. The bars represent relative gain/loss of NDQFN+DPE over IQN.

7 CONCLUSION AND DISSCUSION

In this paper, we make some attempts to address two important issues people care about for distribu-
tional reinforcement learning studies. We first propose a Non-decreasing Quantile Function Network
(NDQFN) to ensure the validity of the learned quantile function by adding the monotonicity con-
straint to the quantile estimates at different locations via a piece-wise linear incremental structure.
We also introduce DPE, a general exploration method for all kinds of distributional RL frameworks,
which utilizes the information of the entire distribution and performs much more efficiently than
the existing methods. Experiment results on more than 50+ Atari games illustrates NDQFN can
more precisely model the quantile distribution than the baseline methods. On the other hand, DPE
perform better in both hard-explored Atari games and easy ones than DLTV. Some ablation studies
show that the combination of NDQFN with DPE achieves the best performance than all the others.

There are some questions remain unsolved. First, since lots of non-negative functions are available,
is Relu a good choice for function g? Second, will a better approximated distribution affect agent’s
policy? If so, how does it affect the training process as NDQFN can provide a potentially better dis-
tribution approximation. More generally, how to analytically compare the optimal policies NDQFN
and IQN converge to. Third, how much does the periodically synchronized target network affect the
efficiency of the DPE exploration.

For the future work, we first want to apply NDQFN to other quantile value based methods such
as FQF to see if the incremental structure can help improve the performance of all the existing
DRL algorithms. Second, as there exists some other kind of DRL methods which naturally ensures
the monotonicity of the learned quantile function (Yue et al., 2020) but requies extremely large
computation cost, it may be interesting to integrate our method with these methods to obtain an
improved empirical performance and training efficiency.
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