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Abstract

The current state-of-the-art for few-shot cross-001
lingual transfer learning first trains on abundant002
labeled data in the source language and then003
fine-tunes with a few examples on the target004
language, termed target-adapting. Though this005
has been demonstrated to work on a variety of006
tasks, in this paper we show some deficiencies007
of this approach and propose a one-step co-008
training method that trains on both source and009
target data with stochastic gradient surgery, a010
novel gradient-level optimization. Unlike the011
previous studies that focus on one language at012
a time when target-adapting, we use one model013
to handle all target languages simultaneously014
to avoid excessively language-specific models.015
Moreover, we discuss the unreality of utilizing016
large target development sets for model selec-017
tion in previous literature, and further show018
that our method is development-free for tar-019
get languages and also able to escape from020
overfitting issues. We conduct a large-scale021
experiment on 4 diverse NLP tasks across up to022
48 languages. Our proposed method achieves023
state-of-the-art performance on all tasks and024
outperforms target-adapting by a large margin1,025
especially for languages that are linguistically026
distant from the source language, e.g., an aver-027
age of 7.36% absolute F1 improvement on the028
NER task, up to a gain of 17.60% on Punjabi.029

1 Introduction030

The cost of linguistic data annotation and a plethora031

of differences across language resources and struc-032

tures of natural language processing (NLP) tasks033

result in the problem that sufficient labeled data034

is only for a handful of high-resource languages035

(Bender, 2011). The lack of data for low-resource036

languages leads to the need for effective cross-037

lingual transfer learning, which aims to leverage038

abundant labeled high-resource languages to learn039

low-resource ones. The majority of methods for040

1Code is available at: https://github/REDACTED.

cross-lingual transfer are mainly based on multilin- 041

gual language models (LMs) (Devlin et al., 2019; 042

Conneau et al., 2020; Xue et al., 2021) which are 043

pre-trained on massive multilingual data. Zero-shot 044

cross-lingual transfer is widely explored where a 045

multilingual LM is trained on a large amount of 046

labeled data in the source language without any 047

target data, and then is directly evaluated on the tar- 048

get test set, frequently achieving surprisingly good 049

performance (Wu and Dredze, 2019; Pires et al., 050

2019; Conneau et al., 2020). Recently, Lauscher 051

et al. (2020) emphasize the effective mechanism 052

of few-shot cross-lingual transfer for improving 053

target-language performance, where only a few 054

(such as 10) extra target examples can obtain sub- 055

stantial improvements. The current state-of-the-art 056

methods for few-shot cross-lingual transfer learn- 057

ing (Lauscher et al., 2020; Hedderich et al., 2020; 058

Maurya et al., 2021; Zhao et al., 2021) utilize the 059

source-trained model (the same model training on 060

the source data in zero-shot learning) to fine-tune 061

on small target examples, which is termed target- 062

adapting. 063

In this paper, we dissect the potential weaknesses 064

of the ubiquitous target-adapting method and pro- 065

pose a one-step co-training method that trains on 066

both source and target data with a novel gradient- 067

level optimization, stochastic gradient surgery. 068

Specifically, we highlight 6 benefits (contributions) 069

of our method in this paper as follows: 070

(1) State-of-The-Art Performance: Our proposed 071

method achieves significant improvements com- 072

pared to target-adapting on 4 diverse NLP tasks 073

across up to 48 languages. For instance, averaged 074

over all target languages, we demonstrate an ab- 075

solute F1 improvement of 7.36% on NER using 076

5-shot learning, with our best performance gains 077

on Punjabi where the gap is 17.60% (Section 4). 078

(2) One Model for All Languages: The target- 079

adapting step generally focuses on only one target 080

language. With the proposed method, we do not 081
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need to fine-tune specialized models for every tar-082

get language, which is of particular interest when083

scaling to dozens or even hundreds of languages.084

We discuss the benefits of co-training examples of085

all target languages on one model to handle all lan-086

guages in our method, even though their number of087

shots is extremely small (Section 3.2).088

(3) Efficient Gradient De-Conflicting and Infor-089

mation De-Dilution: Two issues arise when co-090

training using data from all target languages in addi-091

tion to the source language — conflicting gradients092

among languages and target information dilution.093

Stochastic gradient surgery efficiently de-conflicts094

gradients and de-dilutes the target information (Sec-095

tion 3.4 and 3.5).096

(4) Single Language Friendly: Though our pro-097

posed method normally uses information from mul-098

tiple target languages, in the simplest setting, where099

we only have a single target language, stochas-100

tic gradient surgery co-trained on source and tar-101

get still substantially outperforms standard target-102

adapting. The improvement is especially pro-103

nounced for languages linguistically distant from104

the source language (Section 5.3).105

(5) The Same Script Helps: For a specific lan-106

guage, the model is able to use information learned107

from other languages. In Section 5.4, we show that108

this gain is most pronounced in languages that use109

the same script.110

(6) Development-Free for Target Languages:111

Target development (dev) set used by previous stud-112

ies (Hsu et al., 2019; Zhao et al., 2021) significantly113

outnumber training examples in few-shot cross-114

lingual learning, which is not realistic in the true115

low-resource settings. However, target-adapting is116

easily to overfit on small examples without target117

dev sets. In comparison, our proposed method is118

development-free for target languages and able to119

escape overfitting issues (Section 5.5).120

2 Background and Related Works121

2.1 Cross-Lingual Transfer Learning122

Cross-lingual transfer learning enables us to co-123

learn the meaning of words across languages and124

facilitates model transfer between languages, par-125

ticularly from high-resource to low-resource lan-126

guages (Ruder et al., 2019). Language transfer127

is based on finding a shared cross-lingual space128

for source and target languages. One of the most129

common methods is to align the source and target130

embedding spaces, termed cross-lingual word em-131

beddings (CLWEs) (Mikolov et al., 2013; Artetxe 132

et al., 2016; Conneau et al., 2018a; Vulić et al., 133

2019). Recently, multilingual pre-trained encoders 134

have shown stronger effectiveness over CLWEs 135

of cross-lingual transfer in various tasks (Artetxe 136

and Schwenk, 2019; Wu and Dredze, 2019), where 137

some studies utilize static pre-trained encoders for 138

transfer learning (Wang et al., 2019; Xu and Koehn, 139

2021), while more studies continuously train en- 140

coders for cross-lingual transfer (Conneau et al., 141

2020; Luo et al., 2021; Xue et al., 2021) based on 142

the finding that source and target representations 143

are still aligned after only fine-tuning on the source 144

data (Hsu et al., 2019). 145

2.2 Few-Shot Learning 146

Few-shot learning was firstly investigated in com- 147

puter vision (Fei-Fei et al., 2006). Currently, the 148

majority of studies for NLP tasks are designed for 149

one single language (usually English), e.g., model 150

agnostic meta-learning (Finn et al., 2017) and proto- 151

typical networks (Snell et al., 2017). However, lim- 152

ited few-shot studies are explored in cross-lingual 153

settings. Recent works mainly focus on zero-shot 154

cross-lingual transfer to evaluate the cross-lingual 155

generalization capabilities of multilingual represen- 156

tations, e.g., XTREME (Hu et al., 2020; Ruder 157

et al., 2021) and XGLUE (Liang et al., 2020). 158

Lauscher et al. (2020) further emphasize that ad- 159

ditional fine-tuning on a few inexpensive labeled 160

target-language instances is surprisingly effective 161

across broad NLP tasks. Zhao et al. (2021) high- 162

light the sensitivity to the selection of a few shots 163

and suggest using the same shots for fair compar- 164

isons. State-of-the-art methods for few-shot cross- 165

lingual learning follow the source-training + target- 166

adapting paradigm. In this paper, we investigate 167

deficiencies of this approach and propose more ef- 168

fective methods which significantly improve the 169

transfer performance compared to target-adapting. 170

2.3 Gradient Surgery 171

Previous works on gradient optimization (Chen 172

et al., 2018; Sener and Koltun, 2018; Yu et al., 173

2020) have successfully utilized gradient-level tech- 174

niques to improve the performance of multi-task 175

models. In fact, co-training multilingual data can 176

be categorized into multi-task learning (Zhang and 177

Yang, 2018) but in a monolithic manner by using a 178

single language-agnostic objective on the concate- 179

nated data from all languages. Recently, multilin- 180

gual machine translation utilizes gradient-level reg- 181
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ularization to improve the translation performance182

(Wang et al., 2020; Yang et al., 2021; Wang et al.,183

2021b). In this paper, our experiments mainly fo-184

cus on co-training multiple target languages, so we185

propose stochastic gradient surgery (Section 3.5)186

based on original gradient surgery (Yu et al., 2020)187

to improve the overall performance.188

3 Methods189

3.1 Ordinary Few-Shot Learning190

The current state-of-the-art few-shot cross-lingual191

transfer learning method (Lauscher et al., 2020;192

Hedderich et al., 2020; Zhao et al., 2021) includes193

two stages, source-training and target-adapting. In194

the source-training stage, a pre-trained LM such195

as mBERT (Devlin et al., 2019) or XLM-R (Con-196

neau et al., 2020) is fine-tuned with sufficient la-197

beled data in the source language (which is usually198

English). In the target-adapting stage, the source-199

trained model is then fine-tuned only with a few200

examples in the target language. We abbreviate the201

name of this method to ord-FS.202

3.2 Co-Fine-Tuning all Target Languages203

The ord-FS method brings up a question: is it nec-204

essary to fine-tune a language-specific model for205

each target language? Can we use one model206

to handle all target languages to avoid excessively207

language-specific models? One straightforward208

method to have such a model is fine-tuning the209

source-trained model on concatenated examples210

of all target languages, instead of only one target.211

Here, we are interested in whether more few exam-212

ples of other target languages will improve/degrade213

the overall performance. We abbreviate the name214

of this method to co-FT.215

3.3 Co-Training Source and Target216

Languages217

Ord-FS and co-FT follow the transductive trans-218

fer2 learning method that first trains on the source219

domain and then fine-tunes on the target domain220

(Pan and Yang, 2009). However, recently, Xu et al.221

(2021) show that abruptly shifting the source do-222

main to the target domain is not an optimized solu-223

tion due to catastrophic forgetting (McCloskey and224

Cohen, 1989). Thus, we should be carefully about225

the language domain gaps between the source and226

target languages, especially for distant languages.227

2The pre-training (source-training) and the fine-tuning
(target-adapting) are the same task.

One naive but effective approach to preserve the 228

source knowledge and escape catastrophic forget- 229

ting is simply co-training both the source and tar- 230

get data3 (all target languages), where we simplify 231

source-training and target-adapting into only one 232

co-training step. We abbreviate the name of this 233

method to naive-co-train. 234

3.4 Gradient Surgery in Co-Training 235

One issue of naive-co-train is conflicting gradients 236

(Yu et al., 2020) among languages, which makes 237

training more difficult because gradients point away 238

from one another. We define that two gradients are 239

conflicting if they have a negative cosine similarity. 240

Another issue is that the information of the target 241

domain will be diluted due to the overwhelming 242

source data. Specifically, the gradient of source 243

data is much larger in magnitude than the other 244

languages in one batch training due to the small 245

or even no target training instances in this batch. 246

Hence, the source gradients will dominate the av- 247

erage gradient and result in information dilution 248

of the target data and underestimation of the target 249

language performance. 250

The main idea of using gradient surgery (Yu 251

et al., 2020) to mitigate two issues above is, in 252

each backpropagation step, projecting the dominant 253

gradient to the normal plane of a target gradient to 254

de-conflict their gradients and ‘remind’ the model 255

of target instances. Specifically, we denote gs as 256

the gradient for the source language and gt as the 257

gradient for the target language. We first compute 258

the cosine similarity between gs and gt and judge 259

gs and gt are conflicting gradients if their similarity 260

is negative. Next, we project gs into the normal 261

plane of gt only if they are conflicting: 262

g′s = gs −
gs · gt
∥ gt ∥2

gt (1) 263

The modified g′s replace the original dominant 264

source gradient to update the model parameters. 265

3.5 Stochastic Gradient Surgery 266

However, target data is usually not guaranteed to 267

exist in the batch due to the small training size. 268

Even though we assume that we have target data 269

for all target languages in each batch training, we 270

should detect conflicting gradients not just between 271

source and target languages, but also between every 272

target language. However, this is extremely com- 273

putationally expensive, especially when it comes 274

3Target data is randomly interpolated in the source data.
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to large-scale languages for training. Based on this,275

we propose stochastic gradient surgery approach,276

composed of two parts, oracle dataset creation277

and stochastic training.278

Oracle Dataset Creation In the case of K-shot279

learning, the oracle dataset comprises K training280

instances4 for each target language. To not use any281

external information, the oracle datasets of target282

languages are the same as their training examples283

but only used for gradient surgery. Similar to Wang284

et al. (2020, 2021a); Yang et al. (2021), we create285

an oracle dataset to ensure that we can pair any one286

of the target languages with the source language to287

operate gradient surgery.288

Stochastic Training In each batch training, we289

randomly pick oracle data of a random target lan-290

guage in a uniform distribution to conduct gra-291

dient surgery with the source batch data. More-292

over, in order to avoid that small number of tar-293

get examples constrain the source gradients into a294

sub-optimal place (especially for tasks which need295

higher-level semantic understanding), we also have296

a pre-set threshold α to control the probability of297

gradient surgery in each training step. The gradi-298

ent surgery is conducted only if a sampled value299

p ∼ uniform[0, 1] is smaller than α.300

The advantages of this method are that 1) we301

only focus on gradient de-conflicting between the302

source and one of the target languages, which only303

computes the gradient one additional time to avoid304

expensive computation, 2) and more importantly,305

the source language could be a pivot language306

which also helps gradients of target languages de-307

conflict between each other (more discussion in308

Section 5.2 ). The detailed workflow is shown309

in Algorithm 1. We abbreviate the name of this310

method to gradient-co-train.311

4 Experiments312

4.1 Development-Free Training313

Importantly, Zhao et al. (2021) notice that few-shot314

learning easily tends to overfit quickly at a small315

number of shots, where the model performs best316

on the dev set at the beginning of training. One317

good solution to avoid overfitting is using target318

dev set for early stopping. Previous studies (Hed-319

derich et al., 2020; Zhao et al., 2021) utilize a large320

amount of dev sets for each target language for321

4XNLI use K examples from every class followed by the
“N-way K-shot" discussion in Section 4.3.

Algorithm 1: Stochastic Gradient Surgery
Input :Language Set L; Pre-Trained Model

θ; Co-Training Data Dtrain; Oracle
Data Dl

oracle, l ∈ L; Pre-Set
Threshold α.

1 Initialize θ0 = θ, step t = 0
2 while not converged do

▷ Iterate batches Btrain from data Dtrain

3 for Btrain in Dtrain do
4 gtrain = ∇θtL(θt,Btrain)
5 Sample a language l from set L
6 goracle = ∇θtL(θt,Dl

oracle)
7 Sample a value p ∼ uniform[0, 1]

▷ Gradient surgery
8 if goracle · gtrain < 0 and p < α then
9 gtrain = gtrain − gtrain·goracle

∥goracle∥2 goracle

10 end
11 Update t← t+ 1
12 Update θt with gradient gtrain

13 end
14 end

model selection, e.g., even around 10K dev exam- 322

ples for Arabic in the NER task. However, it is 323

unlikely that such a dev set would be available 324

in reality, especially for the extreme low-resource 325

training such as 1-shot and 5-shot learning, since it 326

would be more effective to use it for training instead 327

(Kann et al., 2019). The true standard setup of zero- 328

shot cross-lingual learning only uses the source 329

dev set (Zhao et al., 2021), and few-shot learn- 330

ing should also follow this setup, particularly at a 331

small value of shots. Thus, we suggest only using 332

the source dev set for model selection. However, 333

target-adapting is appropriate to use the source dev 334

for model selection due to different languages in 335

the training and dev steps. Hence, the two-step 336

methods, ord-FS and co-FT, use the last checkpoint 337

for evaluation. Since naive-co-train and gradient- 338

co-train train on both source and target data, they 339

are suitable for using the source dev set for target 340

model selection. We show that our methods sub- 341

stantially outperform target-adapting whatever 342

it uses unrealistic dev sets or not in Section 4.4. 343

We consider all introduced methods in the ex- 344

periment, including two-step methods — ord-FS, 345

co-FT, and one-step methods — naive-co-train and 346

gradient-co-train. Moreover, in order to investigate 347

the difference between using and not using dev sets, 348

we add another baseline, ord-FS+dev, ord-FS with 349
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unrealistically large dev sets5 for model selection350

as Zhao et al. (2021) conduct.351

4.2 Tasks and Datasets352

We consider two lower-level (structured prediction)353

tasks, Wikiann Named-Entity Recognition (NER)354

task (Pan et al., 2017) and Part-of-Speech Tagging355

(POS) (Nivre et al., 2018) and two different types356

of higher-level tasks, Typologically Diverse Ques-357

tion Answering-Gold Passage6 (TyDiQA-GoldP)358

(Clark et al., 2020) and Cross-lingual Natural Lan-359

guage Inference (XNLI) (Conneau et al., 2018b).360

We download datasets from the XTREME-R bench-361

mark (Hu et al., 2020; Ruder et al., 2021). NER and362

POS cover 48 and 38 languages, respectively. Our363

experiments use 35 languages on POS because the364

remaining three languages, Thai(th), Tagalog(tl)365

and Yoruba(yo), do not have target training data366

in XTREME-R. TydiQA and XNLI cover 9 and367

15 languages, respectively. We conduct aforemen-368

tioned methods on all tasks for all languages. En-369

glish is the source language and the others are tar-370

gets. Statistics about languages are listed in Ap-371

pendix B.372

4.3 Settings373

Two-step training methods, ord-FS(+dev) and co-374

FT, have two different settings for source-training375

and target-adapting. For one-step methods, naive-376

co-train and gradient-co-train, their settings are the377

same as source-training in the two-step methods.378

We run 10 epochs for NER and POS, 60 for Ty-379

DiQA, and 10 for XNLI in both source-training and380

target-adapting. The batch size of all tasks is 32 for381

source-training and K for target-adapting with a382

2e-5 learning rate. Pre-set threshold α is 1 for NER383

and POS and 0.1 for TyDiQA and XNLI unless384

otherwise noted. The values of α are empirically385

selected, which might not be optimal but strongly386

effective. The model architecture of NER and POS387

is based on pre-trained XLM-Rlarge attached with388

a feed-forward token-level classifier. For TydiQA,389

the representations of all subwords in XLM-Rbase390

are input to a span classification head —- a linear391

layer computing the start and the end of the answer.392

For XNLI, the model architecture is XLM-Rbase393

with a simple softmax classifier on the vector of the394

start token. The number of examples we consider395

5Detail information of dev sets are shown in Appendix A
6We try to not use translated data such as XQuAD (Artetxe

et al., 2020) to avoid unrealistic artifacts such as preserving
source words (Clark et al., 2020).

is K ∈ {1, 5, 10}. The sampling method is simply 396

extracting random K shots. The only exception 397

is XNLI, where we adopt the sampling method 398

of conventional few-shot classification learning — 399

“N -way K-shot" (Fei-Fei et al., 2006) — we sam- 400

ple K examples for N classes. Here, N is the total 401

number of classes in XNLI. We repeat every ex- 402

periment 5 times with 5 different random seeds7 403

suggested by Lauscher et al. (2020). All methods 404

use the same K shots for a fair comparison. We 405

finally report the average accuracy (XNLI) or F1 406

scores (other tasks) and their standard deviation. 407

4.4 Results 408

The main results on each task, conditioned on the 409

number of examples K and averaged across all 410

languages, are presented in Table 1. The full 411

results with each target language are shown in 412

Appendix C. For all values of K and all tasks, 413

gradient-co-train performs the best among all 414

introduced few-shot learning methods. 415

The zero-shot cross-lingual transfer results 416

(K = 0) deliver similar results comparable to 417

Ruder et al. (2021). Similar to the findings in 418

Lauscher et al. (2020); Zhao et al. (2021), we notice 419

substantial improvements with ord-FS(+dev) on 420

lower-level tasks (NER and POS) and modest im- 421

provement on XNLI over zero-shot performance. 422

However, ord-FS significantly degrades the zero- 423

shot performance on TyDiQA because it suffers 424

from a tendency of overfitting on target training 425

instances (more discussion in Section 5.5). On 426

the other hand, with the help of dev sets in model 427

selection, ord-FS+dev achieves higher performance 428

than ord-FS on all tasks and particularly solve the 429

overfitting issue. 430

Compared to ord-FS, NER and TyDiQA benefit 431

most from co-FT, e.g., from 65.91% to 70.60% 432

with K = 5 in NER. However, it still suffers 433

from the overfitting issue but the impact decrease 434

with more target examples. Co-training source 435

sentences with target data (naive-co-train) seems 436

a better solution. It consistently outperforms co- 437

FT on all tasks with various K, and importantly, 438

overcomes the serious overfitting on the TyDiQA 439

task and highly boosts the performance (e.g., from 440

48.73% of co-FT to 57.03% of naive-co-train in 441

1-shot learning). Furthermore, applying stochastic 442

gradient surgery on co-training (gradient-co-train) 443

further achieves the best performance on all tasks 444

7Shots are different with different seeds.
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K Methods NER POS TyDiQA XNLI
Avg. F1 (%) sd. Avg. F1 (%) sd. Avg. F1 (%) sd. Avg. Acc. (%) sd.

K = 0 Zero-Shot 64.56 - 77.32 - 55.80 - 73.55 -

K = 1

ord-FS+dev 65.92 0.84 80.37 0.16 55.81 1.01 73.95 0.19

ord-FS 64.11 0.98 80.24 0.19 47.44 1.47 73.70 0.17

co-FT (Ours) 65.71 0.90 79.37 0.12 48.73 2.15 73.54 0.61

naive-co-train (Ours) 67.31 0.58 80.04 0.23 57.03 0.56 73.29 0.43

gradient-co-train (Ours) 69.58 0.99 81.14 0.27 57.64 1.02 74.09 0.54

K = 5

ord-FS+dev 68.22 0.69 83.15 0.23 55.60 1.07 74.08 0.36

ord-FS 65.91 0.91 82.95 0.20 51.19 1.29 73.73 0.60

co-FT (Ours) 70.60 0.85 81.95 0.16 54.49 1.76 73.13 0.74

naive-co-train (Ours) 72.06 0.68 82.79 0.19 58.59 1.45 73.69 0.80

gradient-co-train (Ours) 73.27 0.60 83.48 0.24 59.34 1.04 74.41 0.26

K = 10

ord-FS+dev 69.85 0.60 84.92 0.07 55.59 1.62 74.19 0.39

ord-FS 68.75 0.67 84.66 0.08 53.17 1.56 74.03 0.38

co-FT (Ours) 73.89 0.56 83.54 0.07 55.54 1.05 73.62 0.98

naive-co-train (Ours) 74.13 0.45 84.52 0.17 58.88 1.37 74.23 0.37

gradient-co-train (Ours) 75.92 0.61 85.03 0.16 59.47 1.73 74.44 0.38

Table 1: Main results of all methods with their standard deviation (sd.) of 5 repetitive experiments for all tasks with
K ∈ 1, 5, 10. Scores are averaged by all target languages. Best scores are bold. Cells are colored by performance
difference over zero-shot baseline: +3 or more , +0 to +3 , -0 to -3 , -3 or more . ord-FS+dev: ordinary few-shot
learning that fine-tunes on one target language each time with development set; ord-FS: the ord-FS+dev method
without development set; co-FT: co-fine-tuning concatenated target examples together; naive-co-train: naively
co-training both source and all target examples together; gradient-co-train: utilizing stochastic gradient surgery
during the naive-co-train.

NER POS TyDiQA XNLI
lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ Acc. (%)

pa 17.60 wo 3.82 bn 12.27 sw 2.36
zh 15.24 mr 3.51 te 11.14 ur 1.95
ar 14.14 hi 2.60 sw 10.58 ru 1.68
vi 13.22 tr 2.18 ar 9.45 fr 0.91
hi 12.68 fi 1.55 fi 9.05 zh 0.78

Table 2: Top-5 languages that achieve the highest im-
provement by using gradient-co-train methods com-
pared to ord-FS on all tasks in 5-shot learning. Most
languages are distant from English.

with all settings of K and outperforms ord-FS by a445

significant margin, such as up to 7.36% averaged446

absolute improvement on NER in 5-shot learning.447

On the other hand, the gap between our methods448

and ord-FS in POS is smaller than in NER (the449

same type of task). The reason could be that the450

POS task has already left less room for further im-451

provement.452

5 Analysis and Discussion453

5.1 Which Language Benefits Most?454

Table 1 shows the strong effectiveness of gradient-455

co-train in improving the overall performance of456

each task. Here, we are interested in taking a closer457

look at the results of specific languages and investi-458

gating which language benefits most. Take 5-shot459

learning as an example. Table 2 illustrates the top-5460

languages which boost most by using gradient-co-461

train over ord-FS in all tasks8, where the improve-462

8For the languages that benefit the least, gradient-co-train
still yields large gains over the baseline on NER and TyDiQA.
We discuss this further in Appendix D.

ment is up to 17.60% absolute F1 scores for pa in 463

the NER task. Most of the languages in the top- 464

5 list are linguistically distant from English. We 465

hypothesize that for such distant languages, the 466

model has difficulty in learning the target training 467

instances by abruptly shifting to the target domain. 468

And for closely related languages, the model is able 469

to extrapolate the target-specific knowledge whose 470

priors are close to English so that the model is less 471

sensitive to these few target training examples than 472

distant languages. However, gradient-co-train is 473

able to smoothly learn the distribution of source 474

domain and extrapolate (distant) target domains by 475

co-training and gradient-level optimization. 476

5.2 Visualization of Gradient De-Conflicting 477

We take the NER task as an example to analyze 478

the gradient de-conflicting of stochastic gradient 479

surgery since it covers the most languages among 480

all tasks. In Figure 1, we use a symmetric heatmap 481

to visualize pair-wise gradient similarities, aver- 482

aged by all 5 checkpoints in 5-shot learning. Note 483

that languages in the figure are adjacent to other lan- 484

guages in the same linguistic language family. The 485

gradient of English is calculated by the randomly 486

picked 100 batches on average, and gradients of 487

the other target languages are calculated by their 488

5 training instances. To highlight the conflicting 489

gradients across languages, we directly mark the 490

cells with negative similarities as pure white color. 491

Figure 1a shows the gradient similarities of the 492

naive-co-train model. As expected, gradient sim- 493
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(a) Gradient similarity across languages without gradient surgery (b) Gradient similarity across languages with gradient surgery

Figure 1: Gradient similarities across 48 languages in the NER task with 5 shots. Deeper colors represent higher
cosine similarities. Conflicting gradients are directly marked as while cells in the heatmap. The similarities are
highly improved after stochastic gradient surgery. Better view in color.

(a) Performance on various subsets of languages in NER (b) Performance on various subsets of languages in TyDiQA

Figure 2: Performance of gradient-co-train on different sets of languages compared to ord-FS for (a) NER and (b)
TyDiQA. gradient-{all,subset,single} represents training on all/subset/single languages by using graident-co-train.

ilarities of many language pairs are conflicting494

(white color cells), and gradients of most languages495

are approximately orthogonal, where their similar-496

ities are close to 0. It is worth mentioning that497

gradients similarities between English and most498

languages are conflicting. In comparison, in Fig-499

ure 1b, we illustrates the gradient similarities of500

gradient-co-train, and the gradient similarities be-501

tween English and most of the target languages are502

positive. Moreover, gradients of most target lan-503

guage pairs have higher similarities (deeper colors),504

which also verifies the correctness of our statement505

that target languages utilize English as a pivot lan-506

guage to de-conflict and even improve their sim-507

ilarities. The only two exceptions are th and ja,508

the two hardest task in NER, whose F1 in zero-509

shot learning is only 1.02% and 18.31%. Their510

similarities with other languages are negative but511

positive between themselves. However, gradient-512

co-train still achieve impressive improvement on513

th (∆ = 3.13%) and ja (∆ = 5.40%) compared to514

naive-co-train (see the full results in Appendix C). 515

Figure 3: Dev F1 scores of ord-FS+dev in TyDiQA. 6
out of 8 target languages overfit quickly, where they
achieve the best performance at the first epoch.

5.3 Co-Training with One Single Language 516

In some cases, people are only interested in one 517

target language and do not have resources for other 518

languages. Hence, we further explore the effec- 519

tiveness of gradient-co-train in one target language 520

7



case. We conduct experiments on the NER and Ty-521

DiQA tasks that show larger gaps among different522

methods than other two tasks. Considering the high523

expense of training the source data from scratch for524

every target language, we run experiments on sub-525

sets of languages for each task. For the NER task,526

we test on 8 languages: ar, hi, my, pa, which are527

distant from English, hu, nl, fr, tr, which are similar528

to English. Figure 2a shows the results for NER.529

Gradient-co-train with only one single language is530

labeled as gradient-single9 in the figure (blue, the531

second bar). We can focus on comparing ord-FS532

(green, the first bar). We notice that gradient-single533

still outperforms ord-FS by a large margin for 4 dis-534

tant languages (e.g., 14.29% improvement for ar).535

In comparison, their gap becomes smaller when536

it comes to 4 languages related to English (e.g.,537

1.78% improvement for nl). Numeric results are538

shown in Appendix E. For the TyDiQA task, We539

pick 5 languages: ar, fi, id, sw, te. We still note540

that gradient-single highly boost the performance541

compared to ord-FS.542

5.4 Do the Same Scripts Help?543

Continuing the previous discussions in Section544

5.3, we add a new baseline, gradient-all (red, the545

last bar in Figure 2), which uses gradient-co-train546

method with all languages (original settings). Inter-547

estingly, gradient-all outperforms gradient-single548

on all selected languages except for ar in NER, and549

a similar phenomenon also happens in TyDiQA.550

Note that ar is the only language that uses Arabic551

script in TyDiQA and only shares the same script552

with yo and kk among 48 languages in NER. It553

brings a question that do small examples of other554

languages which use the same scripts help in few-555

shot learning? Hence, we move our experiments556

further on using gradient-co-train with subsets of557

languages. We still consider the languages used in558

Section 5.3. Note that these languages are carefully559

selected. In NER, only my and pa share the same560

script (Brahmic) among 4 distant languages, and561

hu, nl, fr, tr share the Latin script from different562

language families. In TyDiQA, only fi,id and sw563

use the same script (Latin). We co-train 4 similar564

languages and 4 distant languages in NER, respec-565

tively. For TyDiQA, we co-train all 5 languages.566

The results of co-training subset of languages is567

9We reduce α for NER to 0.1 due to only one language
considered.

denoted as gradient-subset10 (pink, the third bar) 568

in Figure 2. As expected, gradient-subset achieves 569

better performance than gradient-single on all simi- 570

lar languages and on my among distant languages 571

in the NER task. As for other languages using 572

distinct scripts, their performance slightly degener- 573

ates compared to gradient-single. A similar discus- 574

sion also holds for the high-level TyDiQA task, but 575

gaps between gradient-single and gradient-subset 576

are smaller. In conclusion, to pursue the best per- 577

formance, we recommend using gradient-co-train 578

with languages that share the same script or only a 579

single language that uses a distinct script. 580

5.5 Escaping from Overfitting 581

The overfitting causes the significant degeneration 582

of ord-FS performance in TydiQA. Figure 3 shows 583

that 6 out of 8 target languages achieve the best 584

dev score at the first epoch and decrease signifi- 585

cantly afterwards. However, the phenomenon of 586

degeneration is imperceptible in other tasks be- 587

cause only a few languages hit the same overfitting 588

issue, e.g., 6.38% languages achieve the best score 589

at the first epoch in 1-shot learning for NER, and 590

even none of them has the issue in 10-shot learn- 591

ing. Different from two-step methods, one of the 592

biggest benefits of gradient-co-train is the perfect 593

fit for only using the source dev set to avoid over- 594

fitting (for model selection) because training and 595

dev steps use the same (dominant) language. Thus, 596

although gradient-co-train can also be further im- 597

proved by using unrealistic target dev sets, the gaps 598

are smaller compared to ord-FS (Appendix F). 599

6 Conclusion 600

We study the deficiencies of target-adapting in 601

few-shot cross-lingual transfer and propose a co- 602

training method with gradient-level optimization. 603

Our best model achieves state-of-the-art on four 604

diverse NLP tasks with all values of K. Moreover, 605

we are the first to use a single model to co-train all 606

target languages and find that languages can benefit 607

from others that share the same scripts. We also 608

show the effectiveness of our method compared to 609

target-adapting in a single target language case, and 610

the gaps are still significant. Finally, we propose 611

only using source dev set in few-shot settings and 612

show that our method is development-free for tar- 613

gets and also able to escape from overfitting issues. 614

10α is 0.4 for NER to ensure that each language has the
same chance of explosion as gradient-single during training.
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A Size of Dev Sets877

In Figure 4, we show the size of dev sets that we878

used in our experiments, which are also the dev sets879

used by Zhao et al. (2021). Data of all tasks are880

downloaded from the XTREME-R benchmark (Hu881

et al., 2020; Ruder et al., 2021), where train/dev/test882

sets are already split. We can notice that the dev883

size of all languages in all tasks are tremendously884

higher than the largest number (10) of shots we885

pick in few-shot cross-lingual learning. However,886

in reality, if we only have access to a few training887

instance, we usually do not have a such large dev888

set. For tasks such as NER, POS and XNLI, we889

sample shots from the target training sets and di-890

rectly use their supported dev sets. For TyDiQA891

which only supports train and dev sets in XTREME-892

R, we sample shots from the target training sets but893

use the remaining training data as dev sets, and we894

use dev sets for test.895

B Language Statistics896

In this paper, we cover a total of 49 languages897

in our whole experiments, including NER, POS,898

TyDiQA, and XNLI tasks. The list of full names of899

languages is shown in Table 3, with their ISO 639-1900

code, script, and language families. We checkmark901

under the column of the task in the Table if the902

language is involved in the task.903

C Full Results904

The full results of NER, POS, TyDiQA and XNLI905

are shown in Table 4, Table 5, Table 6 and Table 7,906

respectively. In each task, we report F1 scores (or907

accuracy) of all covered languages in 1-,5-, or 10908

shot learning by using all introduced methods. Best909

score among methods in each language is bold.910

D Languages Benefits Least911

In Table 8, we show the list of top-5 language912

which benefits least by using gradient-co-train in913

5-shot learning. In NER and XNLI, we can no-914

tice a reverse phenomenon in the top-5 languages915

which benefit most — most of the languages are916

linguistically closer to English, at least using the917

same (Latin) script. In NER and TyDiQA tasks,918

although the gap left by gradient-co-train is much919

smaller than top-5 languages which benefits most,920

the improvements are still significant.921

E Co-Training with Subsets of Languages 922

Here, we show the numeric results of Figure 2a and 923

Figure 2b in Table 9 and Table 10, respectively. 924

F Our Methods with Dev Sets 925

We take ar in the NER task as an example to show 926

that gradient-co-train can be further improved by 927

utilizing large dev sets (around 10K). Figure 5 928

shows F1 scores of gradient-co-train and ord-FS 929

both with and without dev sets with increasing 930

epoch numbers. Methods with the help of the dev 931

set start showing its effectiveness in model selec- 932

tion when it comes to large enough epoch num- 933

bers. Importantly, the gap led by the dev set in 934

gradient-co-train is smaller than the one in ord- 935

FS, which shows that gradient-co-train is able to 936

select approximately optimal model even without 937

target dev sets by using the source dev set. It is 938

also worth mentioning that gradient-co-train even 939

significantly outperforms the best performance of 940

ord-FS with only 2 epoch of source (and target) 941

data training. Still, ord-FS starts training based on 942

10-epoch source-trained model. 943
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Langugae ISO 639-1 code Script Language Family NER POS TyDiQA XNLI
Afrikaans af Latin IE:Germanic
Arabic ar Arabic Afro-Asiatic
Azerbaijani az Latin Turkic
Bulgarian bg Cyrillic IE:Slavic
Bengali bn Brahmic IE:Indo-Aryan
German de Latin IE:Germanic
Greek el Greek IE:Greek
English en Latin IE:Germanic
Spanish es Latin IE:Romance
Estonian et Latin Uralic
Basque eu Latin Basque
Persian fa Perso-Arabic IE:Iranian
Finnish fi Latin Uralic
French fr Latin IE:Romance
Gujarati gu Brahmic IE:Indo-Aryan
Hebrew he Jewish Afro-Asiatic
Hindi hi Devanagari IE:Indo-Aryan
Hungarian hu Latin Uralic
Indonesian id Latin Austronesian
Italian it Latin IE:Romance
Japanese ja Ideograms Japonic
Javanese jv Brahmic Austronesian
Georgian ka Georgian Kartvelian
Kazakh kk Arabic Turkic
Korean ko Hangul Koreanic
Lithuanian lt Latin IE:Baltic
Malayalam ml Brahmic Dravidian
Marathi mr Devanagari IE:Indo-Aryan
Malay ms Latin Austronesian
Burmese my Brahmic Sino-Tibetan
Dutch nl Latin IE:Germanic
Punjabi pa Brahmic IE:Indo-Aryan
Polish pl Latin IE:Slavic
Portuguese pt Latin IE:Romance
CuscoQuechua qu Latin Quechuan
Romanian ro Latin IE:Romance
Russian ru Cyrillic IE:Slavic
Swahili sw Latin Niger-Congo
Tamil ta Brahmic Dravidian
Telugu te Brahmic Dravidian
Thai th Brahmic Kra-Dai
Tagalog tl Brahmic Austronesian
Turkish tr Latin Turkic
Ukrainian uk Cyrillic IE:Slavic
Urdu ur Perso-Arabic IE:Indo-Aryan
Vietnamese vi Latin Austro-Asiatic
Wolof wo Latin Niger-Congo
Yoruba yo Arabic Niger-Congo
Mandarin zh Chinese ideograms

Table 3: Statistics about languages considered in this paper, including the scripts and language family of every
language. A language used in a task is checkmarked under the column of the task.
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K Methods ar he vi id jv ms tl eu ml ta te af nl en de el bn hi mr ur fa fr it pt es
K = 0 Zero-Shot 45.75 55.35 78.67 52.47 61.35 69.65 71.95 56.37 65.79 55.82 52.85 78.34 83.76 84.50 78.78 78.38 74.39 69.71 61.87 54.85 56.82 79.78 81.39 81.91 76.64

K = 1

ord-FS+dev 51.62 55.86 78.10 55.51 63.32 69.18 72.27 59.12 65.27 57.92 53.39 78.53 83.43 84.50 78.72 78.91 74.15 70.84 63.66 61.52 65.64 79.17 81.63 81.81 76.82
ord-FS 50.16 52.98 72.25 55.23 60.88 65.05 70.08 58.26 64.64 55.85 52.89 77.77 82.14 84.50 77.76 77.49 68.87 69.8 62.5 54.33 65.63 77.89 80.46 78.71 75.4
co-FT 51.24 57.53 77.55 51.46 61.81 64.44 70.2 62.64 67.17 59.58 57.46 80.05 83.33 84.50 79.21 78.46 73.12 72.0 64.64 56.95 63.56 80.23 80.80 81.61 77.51
naive-co-train 54.59 58.21 77.06 58.38 63.38 69.92 73.94 64.31 66.27 61.48 57.47 78.27 83.78 84.40 78.84 79.25 77.01 72.43 66.41 67.16 72.43 80.90 81.33 82.37 80.14
gradient-co-train 61.75 60.39 79.41 60.49 65.86 71.00 74.98 67.32 69.45 63.69 61.08 79.74 84.12 83.91 79.75 80.69 78.82 74.32 67.9 72.77 77.33 82.39 81.30 83.37 82.20

K = 5

ord-FS+dev 60.99 58.72 77.29 73.27 70.44 75.17 73.62 67.96 68.10 56.88 53.58 81.31 83.16 84.50 78.37 78.41 73.30 65.69 67.31 72.02 75.58 78.91 80.30 81.03 81.07
ord-FS 57.69 58.18 68.01 72.43 68.12 73.99 68.57 67.54 65.51 56.05 52.08 79.26 82.11 84.50 75.87 74.11 68.42 64.08 66.31 69.54 75.45 76.99 72.38 77.95 78.36
co-FT 65.90 64.45 76.80 80.09 69.41 71.63 71.67 71.12 71.58 66.29 63.55 82.30 83.81 84.50 80.20 80.08 73.31 75.09 71.49 74.32 76.00 82.24 81.72 82.69 83.11
naive-co-train 67.65 64.92 79.34 82.51 70.17 75.84 75.68 70.91 72.17 67.09 63.15 82.15 84.95 84.42 80.34 80.96 77.97 75.80 74.13 76.77 80.31 83.44 82.30 84.20 84.84
gradient-co-train 71.83 66.04 81.23 83.90 72.42 75.51 76.41 71.64 72.55 67.42 63.42 81.99 84.77 83.98 80.84 81.17 79.29 76.76 73.76 79.96 82.50 83.64 82.04 84.52 85.47

K = 10

ord-FS+dev 64.33 61.77 76.13 78.96 71.28 77.80 72.29 71.66 69.27 57.31 58.84 81.54 82.60 84.50 79.39 79.08 74.60 70.97 66.89 78.05 80.47 79.32 81.07 81.40 80.76
ord-FS 64.59 60.97 74.65 77.72 70.99 77.61 68.58 69.94 67.30 55.03 57.81 81.35 81.88 84.50 78.67 75.63 70.77 71.42 67.31 72.86 80.28 77.75 80.27 79.70 82.13
co-FT 71.84 66.90 79.75 85.57 73.82 79.83 74.90 73.73 74.59 70.69 65.88 83.43 85.02 84.50 81.38 81.30 78.22 77.29 76.38 79.25 82.25 82.76 82.97 84.77 85.68
naive-co-train 74.96 67.46 81.15 85.21 73.61 76.39 76.41 74.74 74.42 69.22 65.55 82.71 84.82 84.54 80.70 81.81 79.61 77.71 75.17 80.18 84.23 83.86 82.75 84.75 85.30
gradient-co-train 75.48 69.17 82.01 86.89 77.93 77.53 77.87 77.35 76.58 72.33 66.69 82.68 85.42 84.05 81.86 82.72 80.90 78.93 77.55 83.87 84.32 83.91 83.51 85.35 86.40

bg ru ja ka ko th sw yo my zh kk tr et fi hu qu pl uk az lt pa gu ro Avg.
K = 0 Zero-Shot 81.32 70.60 18.31 66.37 57.28 1.02 69.86 32.90 51.97 27.06 50.46 79.30 77.79 79.65 80.13 54.62 80.89 74.48 67.61 76.87 48.62 61.59 82.98 64.56

K = 1

ord-FS+dev 80.68 72.08 17.81 66.20 57.77 3.46 72.22 46.61 51.38 26.05 50.25 81.53 78.59 80.27 80.05 55.60 81.46 75.29 68.35 77.16 54.64 62.68 83.13 65.92
ord-FS 79.22 68.02 14.92 64.82 54.94 2.13 72.07 45.24 49.72 20.68 49.60 81.51 76.79 79.48 79.08 56.06 81.15 71.14 67.59 76.28 53.96 60.03 81.16 64.11
co-FT 80.24 72.60 18.37 69.36 60.02 2.09 69.35 36.54 55.52 26.62 53.28 80.70 79.95 80.77 80.87 52.46 81.22 75.83 69.49 77.50 51.92 61.08 81.05 65.71
naive-co-train 82.06 72.01 21.64 71.42 60.67 2.04 70.59 39.90 54.99 31.24 53.36 81.14 78.80 79.99 80.54 56.13 81.02 77.47 69.29 77.87 55.29 61.95 81.89 67.31
gradient-co-train 82.85 73.12 26.49 73.23 62.33 2.81 74.03 50.45 58.66 34.47 56.00 82.57 80.78 81.34 82.16 54.53 82.37 78.78 73.09 79.16 63.03 61.79 81.62 69.58

K = 5

ord-FS+dev 80.49 72.83 19.34 69.44 58.08 3.59 75.25 56.54 58.57 25.20 58.83 81.56 80.05 80.82 80.75 52.71 82.53 77.52 68.75 76.87 54.93 59.56 83.37 68.22
ord-FS 76.01 70.96 18.51 65.33 54.57 3.03 74.72 55.88 52.44 24.12 56.66 79.97 76.98 79.56 79.91 53.11 82.58 74.82 68.62 75.71 52.28 54.96 79.41 65.91
co-FT 82.69 73.77 21.58 73.08 65.44 3.83 74.02 53.59 59.82 30.89 61.81 83.57 80.85 82.15 82.42 58.27 82.34 78.17 72.04 79.55 60.23 62.71 82.81 70.60
naive-co-train 84.34 74.12 25.05 73.91 64.09 4.64 74.68 57.02 59.00 35.55 61.40 84.09 80.86 81.95 82.62 61.85 82.63 80.27 72.37 80.09 65.26 65.56 85.71 72.06
gradient-co-train 84.36 74.91 30.45 73.99 65.82 7.77 77.48 60.97 63.78 39.37 61.47 85.21 82.16 82.88 83.06 62.66 83.48 80.27 73.78 81.43 69.89 63.57 85.28 73.27

K = 10

ord-FS+dev 78.95 72.32 22.54 71.23 62.22 5.82 76.51 57.17 58.48 31.20 65.38 80.82 81.30 80.94 81.13 50.86 81.05 78.40 69.38 78.37 62.70 62.31 83.58 69.59
ord-FS 77.27 68.68 22.70 70.97 60.73 4.89 78.16 59.85 57.31 30.01 64.89 78.57 80.14 80.49 79.04 51.5 80.25 76.07 69.59 77.89 60.36 59.63 81.46 68.75
co-FT 84.78 75.28 27.05 75.88 68.80 5.78 75.87 56.57 64.89 38.63 65.73 85.45 82.24 84.23 83.78 63.32 83.44 81.21 74.86 82.03 70.85 67.14 86.27 73.89
naive-co-train 85.28 75.49 27.50 77.33 67.66 6.28 78.48 60.32 63.25 39.60 67.08 84.93 81.73 82.71 82.98 63.05 83.12 82.14 73.96 81.21 70.65 69.77 86.61 74.13
gradient-co-train 86.11 76.30 35.52 77.96 69.77 10.10 79.95 64.32 68.17 45.48 68.42 86.53 83.29 84.15 84.28 66.84 83.94 83.22 75.57 82.85 75.97 67.29 86.84 75.92

Table 4: Full results (F1) of the NER task.

K Methods af ar bg de el en es et eu fa fi fr he hi hu id it ja
K = 0 Zero-Shot 89.39 69.52 88.65 88.50 86.40 96.12 89.18 86.74 73.20 74.49 86.22 87.79 68.91 75.50 83.75 83.32 89.63 27.82

K = 1

ord-FS+dev 89.76 73.91 89.62 89.02 86.55 96.12 90.04 87.02 76.72 79.17 86.51 88.60 77.14 80.28 84.67 83.45 90.73 64.19
ord-FS 89.76 73.91 89.55 89.01 86.30 96.12 90.04 86.86 76.72 79.16 86.38 88.60 77.16 80.25 84.63 83.49 90.62 64.19
co-FT 90.16 71.58 89.33 88.81 86.46 96.12 89.85 86.90 75.72 76.14 86.57 88.63 72.06 77.97 83.81 82.88 89.99 52.06
naive-co-train 90.14 72.17 89.16 88.73 86.79 96.10 89.65 87.69 76.50 76.55 86.86 88.16 72.93 79.56 83.70 83.55 90.08 58.95
gradient-co-train 90.10 75.40 90.58 88.98 86.83 96.09 90.37 88.34 77.76 76.97 87.41 89.41 74.24 82.05 84.61 84.22 90.98 64.58

K = 5

ord-FS+dev 91.15 77.74 91.65 89.63 90.24 96.12 91.30 88.19 80.37 81.47 86.63 90.54 83.02 82.80 86.59 83.94 92.54 74.72
ord-FS 91.11 77.60 91.75 89.68 90.15 96.12 91.31 88.07 80.02 81.37 86.54 90.61 82.72 82.75 86.63 83.96 92.48 75.38
co-FT 89.86 72.07 91.95 89.34 88.27 96.12 91.36 87.56 79.36 79.68 87.14 90.33 79.35 82.58 85.25 83.44 90.85 70.14
naive-co-train 90.27 77.85 91.81 89.25 89,39 96,09 91.07 87.76 80.61 80.45 87.20 90.02 80.97 85.08 84.98 84.31 91.12 72.96
gradient-co-train 90.65 79.40 93.13 89.58 89.97 96.07 91.55 88.73 81.08 81.05 87.89 90.67 81.36 85.77 85.61 84.67 91.98 73.53

K = 10

ord-FS+dev 92.72 80.16 93.03 90.63 91.94 96.12 91.95 89.12 81.84 83.81 87.21 91.77 85.41 84.62 88.82 85.20 93.44 80.64
ord-FS 92.85 80.26 93.23 90.56 91.76 96.12 91.89 89.10 81.80 83.66 86.92 91.83 85.23 84.68 88.72 85.12 93.30 80.11
co-FT 90.67 79.62 93.12 89.55 90.23 96.12 91.90 88.48 82.35 83.17 87.91 91.10 84.15 87.05 86.57 84.73 92.39 78.85
naive-co-train 91.28 80.67 93.24 89.58 90.96 96.07 91.90 88.48 82.35 83.17 87.91 91.10 84.15 87.05 86.57 84.73 92.39 78.85
gradient-co-train 91.69 81.36 93.94 89.96 91.13 96.11 92.03 89.27 82.76 83.18 88.47 91.72 84.51 87.29 87.39 85.42 92.92 78.26

kk ko mr nl pt ru ta te tr ur vi zh lt pl uk wo ro Avg.
K = 0 Zero-Shot 78.97 54.11 83.51 89.67 89.69 89.71 77.81 86.78 75.45 67.45 58.83 39.67 84.40 85.01 85.69 28.89 85.58 77.32

K = 1

ord-FS+dev 78.81 54.16 82.99 89.65 90.19 89.93 77.72 86.54 75.86 73.50 60.30 60.76 84.73 85.18 86.14 36.85 86.16 80.37
ord-FS 79.42 53.42 81.76 89.41 90.20 89.88 76.86 86.27 75.73 73.24 60.02 60.71 84.59 84.94 86.13 36.84 86.07 80.24
co-FT 79.78 55.04 83.97 89.56 89.85 90.10 77.37 86.08 76.13 70.46 58.50 59.48 84.72 84.85 86.37 34.76 85.89 79.37
naive-co-train 79.72 54.68 83.90 89.62 90.29 90.10 77.17 85.56 76.18 74.15 59.17 61.71 85.07 85.61 86.27 38.06 86.36 80.04
gradient-co-train 80.43 55.26 83.74 89.65 90.58 90.59 78.70 86.85 76.62 77.67 59.89 63.52 85.49 86.75 87.32 40.92 87.15 81.14

K = 5

ord-FS+dev 85.88 55.33 83.94 89.81 90.85 91.12 78.44 85.12 75.97 82.00 68.23 73.88 85.49 85.98 87.04 44.40 87.97 83.15
ord-FS 80.86 55.28 82.39 89.90 90.81 91.03 78.62 85.72 75.91 81.86 68.24 73.58 85.58 85.86 87.03 44.29 88.07 82.95
co-FT 81.27 55.92 85.46 89.43 90.75 90.71 77.66 85.76 77.04 76.94 60.85 69.91 85.31 86.98 87.45 40.07 87.22 81.95
naive-co-train 81.81 55.95 84.65 89.75 90.98 90.89 78.45 85.62 77.40 81.83 62.91 72.95 85.85 87.06 87.27 45.76 87.57 82.79
gradient-co-train 82.09 56.34 85.12 89.68 91.25 91.32 80.07 86.26 77.50 83.93 63.90 72.87 86.47 87.99 88.21 48.09 88.03 83.48

K = 10

ord-FS+dev 91.13 56.19 83.02 90.05 91.48 91.68 79.25 86.21 76.31 85.11 72.46 77.33 86.81 88.41 88.24 51.06 89.02 84.92
ord-FS 82.21 56.46 83.39 90.07 91.40 91.48 79.49 86.25 76.03 85.22 72.38 77.76 86.83 88.44 88.10 51.44 89.02 84.66
co-FT 82.16 57.34 85.73 89.57 91.24 81.37 78.80 86.29 77.58 81.88 63.35 74.73 86.11 87.82 88.44 46.80 87.75 83.54
naive-co-train 82.80 57.35 84.80 89.74 91.66 91.65 79.39 86.34 77.88 85.50 67.98 77.19 86.95 88.42 88.42 53.09 88.62 84.52
gradient-co-train 83.23 57.46 86.90 89.83 91.75 92.30 79.84 86.77 78.21 85.77 69.94 77.05 87.63 88.97 89.11 55.26 88.70 85.03

Table 5: Full results (F1) of the POS task.
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K Methods ar bn fi id ko ru sw te en Avg.
K = 0 Zero-Shot 62.53 42.24 61.82 70.62 42.99 57.75 56.40 43.23 65.51 55.80

K = 1

ord-FS+dev 62.20 45.92 59.33 71.15 38.70 58.70 53.63 47.12 65.51 55.81
ord-FS 48.53 33.91 54.56 63.36 40.43 49.59 47.56 23.49 65.51 47.44
co-FT 50.93 36.83 54.04 61.72 38.46 51.35 46.26 33.48 65.51 48.73
naive-co-train 62.46 42.52 62.32 72.32 43.44 58.28 54.87 49.86 67.17 57.03
gradient-co-train 62.60 45.07 62.88 72.43 46.05 58.82 55.47 47.64 67.81 57.64

K = 5

ord-FS+dev 58.59 46.68 59.23 69.87 41.19 59.33 54.47 45.50 65.51 55.60
ord-FS 54.07 36.85 54.82 65.39 40.91 53.46 47.61 42.04 65.51 51.19
co-FT 58.67 43.59 57.46 67.09 44.04 54.65 56.17 43.23 65.51 54.49
naive-co-train 62.42 47.51 61.64 72.39 46.06 59.16 57.62 53.96 66.58 58.59
gradient-co-train 63.52 49.11 63.87 73.29 46.17 59.09 58.20 53.19 67.58 59.34

K = 10

ord-FS+dev 61.78 44.67 59.32 69.96 41.29 59.23 52.73 45.79 65.51 55.59
ord-FS 59.46 43.21 56.21 65.88 40.67 52.64 53.45 41.61 65.51 53.17
co-FT 60.51 44.64 58.42 67.23 44.99 56.39 58.12 44.09 65.51 55.54
naive-co-train 64.87 48.02 62.12 72.63 47.91 60.43 60.44 46.18 67.32 58.88
gradient-co-train 64.17 47.46 63.37 72.77 47.26 60.48 60.13 52.73 66.85 59.47

Table 6: Full results (F1) of the TyDiQA task.

K Methods ar bg de el es fr hi ru sw th tr ur vi zh en Avg.
K = 0 Zero-Shot 72.28 77.15 75.97 74.71 78.56 77.19 69.10 73.95 62.08 71.52 72.32 65.39 74.15 73.67 85.19 73.55

K = 1

ord-FS+dev 72.08 77.49 76.19 75.47 79.21 77.99 69.16 74.69 62.29 72.31 72.46 66.00 74.60 74.20 85.19 73.95
ord-FS 71.60 77.43 76.09 75.29 78.95 77.64 69.42 74.47 61.46 72.27 72.10 65.55 74.72 74.20 85.19 73.70
co-FT 71.56 77.28 75.88 74.81 78.42 77.33 69.34 74.39 61.58 71.64 72.08 65.40 74.33 73.84 85.19 73.54
naive-co-train 71.52 76.83 75.89 74.74 77.88 77.25 68.99 74.67 62.80 71.07 71.77 65.17 73.74 72.23 83.84 73.29
gradient-co-train 71.97 77.76 76.12 75.27 78.47 77.74 70.06 75.47 64.08 72.49 72.10 66.25 74.90 74.48 84.20 74.09

K = 5

ord-FS+dev 71.98 77.72 76.55 75.48 78.69 77.48 70.16 74.76 62.29 72.68 72.30 65.82 75.31 74.77 85.19 74.08
ord-FS 71.57 77.25 76.18 75.39 78.64 77.03 69.94 74.44 61.59 72.33 71.92 65.21 74.93 74.37 85.19 73.73
co-FT 70.85 76.37 75.23 74.20 77.41 76.79 69.09 74.19 61.89 71.27 71.13 65.28 74.00 74.05 85.19 73.13
naive-co-train 72.02 77.43 76.12 74.74 78.19 77.41 69.63 74.67 62.95 72.02 72.22 65.86 74.33 73.86 83.90 73.69
gradient-co-train 72.05 77.89 76.54 75.48 78.83 77.94 70.64 76.12 63.94 72.83 72.40 67.15 75.31 75.15 83.90 74.41

K = 10

ord-FS+dev 71.74 77.51 76.73 75.33 79.03 77.69 70.11 75.09 62.46 72.92 72.76 66.00 75.28 75.03 85.19 74.19
ord-FS 71.31 77.65 76.38 74.83 79.20 77.43 70.12 75.20 62.43 72.77 72.72 65.58 75.14 74.84 85.19 74.03
co-FT 71.32 76.77 75.80 74.58 77.77 77.11 69.72 74.73 62.15 72.36 71.78 65.96 74.44 74.67 85.19 73.62
naive-co-train 72.22 77.67 76.47 75.39 78.29 77.52 70.53 75.57 63.05 72.51 72.35 66.76 74.69 74.65 84.23 74.23
gradient-co-train 71.74 78.04 76.61 75.29 78.89 77.79 70.95 75.90 63.74 73.15 72.41 67.07 75.48 75.43 84.10 74.44

Table 7: Full results (accuracy) of the XNLI task.

NER POS TyDiQA XNLI
lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ F1 (%) lang. ∆ Acc. (%)

pl 0.90 vi -4.35 ko 5.25 es -0.32
ms 1.51 ja -1.85 ru 5.62 tr -0.31
nl 2.66 he -1.36 id 7.90 de 0.23
af 2.73 hu -1.02 fi 9.05 vi 0.34
sw 2.76 zh -0.71 ar 9.45 fr 0.36

Table 8: Top-5 languages that achieve the least improvement by using gradient-co-train compared to ord-FS on all
tasks in 5-shot learning.

ar hi my pa hu nl fr tr
ord-FS 57.69 64.08 52.44 52.28 79.91 82.11 76.99 79.97
gradient-single 71.98 72.82 57.67 63.60 80.28 83.89 81.51 80.10
gradient-subset 70.57 71.79 61.18 62.99 81.65 83.96 81.90 82.37
gradient-all 71.83 76.76 63.78 69.88 83.06 84.77 83.64 85.21

Table 9: Numeric results of Figure 2a.
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Figure 4: The size of dev sets that we use in the experiments for each language in each task.

ar fi id sw te
ord-FS 54.07 54.82 65.39 47.61 42.04
gradient-single 64.43 62.52 72.78 56.91 54.28
gradient-subset 64.04 63.17 72.44 57.48 54.49
gradient-all 63.52 63.87 73.29 58.20 53.19

Table 10: Numeric results of Figure 2b.

Figure 5: F1 scores of gradient-co-train(+dev) and ord-FS(+dev) with increasing number of epochs. The large dev
set helps model selection after certain epochs. Gradient-co-train shows less gap led by the dev set than ord-FS and
can select approximately optimal model by only using the source dev set.
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