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Abstract: Endowing robots with the ability to learn novel tasks via demonstra-
tions will increase the accessibility of robots for non-expert, non-roboticists. How-
ever, research has shown that humans can be poor teachers, making it difficult for
robots to effectively learn from humans. If the robot could instruct humans how
to provide better demonstrations, then humans might be able to effectively teach
a broader range of novel, out-of-distribution tasks. In this work, we introduce Re-
ciprocal MIND MELD, a framework in which the robot learns the way in which
a demonstrator is suboptimal and utilizes this information to provide feedback to
the demonstrator to improve upon their demonstrations. We additionally develop
an Embedding Predictor Network which learns to predict the demonstrator’s sub-
optimality online without the need for optimal labels. In a series of human-subject
experiments in a driving simulator domain, we demonstrate that robotic feedback
can effectively improve human demonstrations in two dimensions of suboptimal-
ity (p < .001) and that robotic feedback translates into better learning outcomes
for a robotic agent on novel tasks (p = .045).

Keywords: meta-learning, personalization, imitation learning

1 Introduction

When an individual purchases an in-home cleaning robot, the robot will have to be taught many
novel tasks over an extended period of time. The user may have to teach the robot how to move
dishes from the dishwasher to the proper location in the cabinets or how to wash the windows
and take out the trash. Simply pre-programming these tasks may not be an adequate solution as
different users may have differing preferences for how their robot should operate. Therefore, to
effectively meet the needs of the end-user, the robot must be capable of successfully learning new
tasks quickly via demonstration. Prior work has shown that robots learn well via robot-centric (RC)
learning from demonstration (LfD), compared to human-centric LfD [1]. In RC LfD, the human
demonstrator provides corrective feedback at each timestep while the robot is rolling out its current
policy, which helps the robot learn how to recover from mistakes. While RC LfD works well when
the demonstrations are high quality, prior work has also shown that humans find RC LfD unintuitive
and tend to provide low-quality corrective demonstrations [2, 3, 4, 5]. Such suboptimality, if left
uncorrected, is likely to hinder the robot’s ability to learn from end-users.

While several approaches have attempted to improve upon a teacher’s ability to provide high quality
demonstrations via tutorials and videos [6, 7, 8], prior work has primarily focused on correcting
for suboptimality after-the-fact rather than directly improving teaching abilities. For example, prior
work introduced MIND MELD [9]. MIND MELD meta-learns a personalized embedding describing
the way in which a demonstrator is suboptimal in providing feedback in RC LfD via calibration
tasks. The calibration tasks are a curated, pre-defined set of policy rollouts with known optimal
demonstrations and are meant to capture the way in which a demonstrator is suboptimal. However,
we hypothesize that correcting for suboptimal demonstrations under-the-hood as MIND MELD does
may not be the best long-term strategy because doing so may 1) contribute to end-users’ lack of
functional understanding, 2) reinforce suboptimal tendencies, and 3) result in poor performance on
out-of-distribution tasks and novel robotic platforms [2, 10, 11].
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Figure 1: This figure illustrates an overview of our methodology and study designs. Figs 1a, 1b, and
1c show the methodology for Studies 1 and 2 and Figs 1d, 1e, and 1f the methodology for Study 3.

Consequently, there is a need for a framework that can coach demonstrators to become better teach-
ers. To solve this problem, we propose Reciprocal Mutual Information Driven Meta-Learning from
Demonstration (Reciprocal MIND MELD). Reciprocal MIND MELD is based upon the MIND
MELD framework but is meant to guide the human demonstrator to proactively improve their feed-
back. Reciprocal MIND MELD differs from MIND MELD in three significant ways. First, Recip-
rocal MIND MELD learns a semantically meaningful personalized embedding via calibration tasks
that describes the way in which a demonstrator is suboptimal (Fig. 1b and e). Second, based upon
this personalized embedding, Reciprocal MIND MELD provides robotic feedback to the demonstra-
tor to improve their teaching abilities (Fig. 1c and f) and consequently improve learning outcomes
for the agent rather than correcting for suboptimality retroactively. Third, we introduce an Embed-
ding Predictor Network (EPN) which dynamically updates the demonstrator’s personalized embed-
ding by estimating its new location (Fig. 1e), thus eliminating the need to repeat the calibration
tasks. In our work, we contribute the following:

1. We propose Reciprocal MIND MELD, a novel method for providing feedback to demon-
strators to improve their teaching abilities via a personalized embedding.

2. We develop an EPN to dynamically update the demonstrator’s personalized embedding
without the need to repeat the time-consuming calibration tasks (Fig. 1e).

3. We demonstrate that Reciprocal MIND MELD can improve an individual’s demonstrations
(p < .001), accurately estimate a demonstrator’s new embedding (p = .002), and improve
learning outcomes of the robot (p = .045) in a driving simulator domain.

2 Related Work

Researchers are increasingly designing new algorithms to learn from suboptimal demonstrations
[12, 13, 14, 15, 16, 17] as well as make LfD more user-friendly [3, 18, 19, 20]. In Chen et al.,
the authors introduce SSRR which improves upon an agent’s ability to learn from suboptimal
demonstrations by characterizing the relationship between noise and performance [21]. Brown et
al. [16, 22] and Myers et al. [23] improve upon the ability to learn from suboptimal demonstrations
by learning a reward function from a ranked set of demonstrations. Schrum et al. introduced MIND
MELD [5, 9] which meta-learns a personalized embedding describing a teacher’s suboptimal
tendencies and was shown to outperform prior work in LfD.

Several approaches have also investigated how best to provide feedback to a demonstrator to im-
prove their demonstrations [6, 7, 8, 24, 25]. Cakmak and Takayama conducted a study investigating
several modalities for communicating improvements to a demonstrator. The authors found instruc-
tional videos to be the best modality for improving teaching [6]. Sena et al. investigated video
feedback with and without rule guidance and found that both modalities produced better results than
no feedback [7]. A more extensive discussion of related work can be found in the Appendix.

3 Preliminaries

Reciprocal MIND MELD is inspired by the MIND MELD architecture demonstrated in previous
work [5]. The objective of MIND MELD is to learn a personalized embedding to describe the way
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in which a demonstrator is suboptimal in an RC LfD paradigm, where the demonstrator provides
corrective feedback to the robot. MIND MELD then utilizes this embedding to map a demonstra-
tor’s suboptimal demonstrations to demonstrations closer to optimal. The MIND MELD architecture
(shown in gray in Fig. 2) is trained via calibration tasks, which are used to learn the mapping (fθ,
Eφ′ , and qφ) from suboptimal labels, a(p)

t−∆t:t+∆t, to better labels, d̂(p)
t , and learn the personalized

embedding, w(p), representing an individual demonstrator. The calibration tasks consist of a set
of pre-recorded policy rollouts with known optimal labels. Participants provide corrective demon-
strations to the robot during these rollouts to direct the robot to a goal. MIND MELD learns to
map the participant’s corrective labels to higher-quality labels while simultaneously inferring the
personalized embedding, w(p), representing an individual, p’s, suboptimal style. To ensure that w(p)

can represent various and distinct feedback styles, MIND MELD maximizes a lower bound on mu-
tual information between the way in which a demonstrator is suboptimal and w(p) via variational
inference [26]. Additional details can be found in the Appendix.

Figure 2: MIND MELD archi-
tecture [9] (gray) and additional
network head, pψ , (blue) for learn-
ing a semantically meaningful
embedding space (see Section 4.1).

While prior work demonstrated that MIND MELD is capable
of improving upon suboptimal demonstrations, MIND MELD
suffers from several key limitations: 1) MIND MELD cor-
rects for suboptimality under-the-hood and does not convey
to the demonstrator how best to improve their suboptimal ten-
dencies, and 2) MIND MELD assumes that demonstrators are
static (i.e., the way in which they are suboptimal does not
change over time). Reciprocal MIND MELD overcomes these
limitations by 1) providing actionable robotic feedback to the
demonstrator to improve upon the quality of their demonstra-
tions and 2) dynamically updating the estimate of their person-
alized embedding online via our EPN in order to account for
changes in suboptimal tendencies and teaching ability.

Driving Simulator Domain - In keeping with prior work [9],
we utilize a driving simulator domain based on the high-fidelity physics simulator, Airsim, and an
Xbox steering wheel to evaluate Reciprocal MIND MELD. Driving simulators allow researchers to
study novel algorithms in an environment that is safe for human subjects. In this domain, participants
are tasked with teaching a car to drive from a start location to a goal in various environments while
avoiding obstacles. The action space consists of the position of the wheel (-540° to 540°), and
the state space consists of images, position, velocity, and acceleration. Feedback is provided to
demonstrators via verbal instructions.

4 Methodology

Because humans have a greater ability to generalize to novel tasks and domains than a machine-
learning algorithm [11], our objective is to provide demonstrators with knowledge about how to
improve their demonstrations rather than correcting suboptimality under-the-hood. We propose an
approach to reason about a demonstrator’s embedding and provide robotic feedback derived from
their embedding that is intended to improve upon their demonstration abilities. In keeping with prior
work [9], we investigate the abilities of our approach in a driving simulator domain. We break the
problem of improving upon a demonstrator’s teaching abilities into three research questions.

RQ1: Can robotic feedback improve upon a demonstrator’s teaching abilities?
RQ2: What is the best method to provide robotic feedback to improve teaching abilities?
RQ3: Does robotic feedback result in improved learning outcomes on novel tasks and over time?

4.1 Semantically Meaningful Embedding Space

Prior work [5, 9] has illustrated that MIND MELD learns embeddings that correlate with suboptimal
tendencies and that demonstrators tend to over-/under-correct and provide anticipatory/delayed
feedback in a driving simulator domain. We note that domain expertise is required to determine
these dimensions of suboptimality. This suboptimality is related to the unintuitive nature of RC LfD
as well as the correspondence problem [4, 27] which arises from differences in embodiment between
humans and robots. These suboptimal tendencies are unrelated to the specific task itself, but are
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related to the task specifications (e.g., providing corrective feedback via a steering wheel). While
there may be additional dimensions of suboptimality depending on the robotic domain, we focus
our investigation on the over-/under-correcting (o/u) and anticipatory/delayed (a/d) dimensions, as
these were determined in prior work to be principle dimensions of suboptimality [9]. We posit that
these two dimensions will be common across RC LfD paradigms which require continuous control
input and plan to test this hypothesis in future work. Our goal is to learn a semantically meaningful
embedding space (i.e., a space that can be translated into actionable feedback) and then utilize the
location of the demonstrator’s embedding within the embedding space to provide robotic feedback.

Figure 3: The learned embedding space
and decision boundaries. Q1-Q4 indi-
cate quartiles 1-4 for the o/u dimension.

To learn a semantically meaningful embedding space
whose dimensions reflect suboptimal tendencies, we add
an additional network head, pψ(w(p)) = ~̂m(p), (Fig. 2,
shown in blue) to the MIND MELD architecture to esti-
mate the suboptimal tendency, ~m(p), (i.e., the magnitude
by which the demonstrator over-/under-corrects and is
anticipatory/delayed). We utilize a mean squared error
(MSE) loss, L(ψ,w) = 1

N

∑
i

∥∥pψ(w(i)) − ~m(i)
∥∥2

2
, to

train the network to predict the suboptimal tendency,
~m(p), given the personalized embedding. This loss helps
to ensure that the dimensions of the embedding space are
semantically meaningful and can therefore be translated
into actionable robotic feedback. Under IRB approval,
we leverage the calibration dataset collected in Schrum
et al. [9] to learn a semantically meaningful embedding
space. This dataset consists of 76 participants who provided demonstrations on a set of calibration
tasks. The suboptimal magnitude, ~m(p), is determined via dynamic time warping (DTW) [28]
between the participants’ feedback and optimal labels from the calibration tasks. Because MIND
MELD outputs the difference between the participant’s corrective label and the optimal label, the
perfect demonstrator’s embedding, w∗, is defined as the embedding which minimizes the output
of the MIND MELD architecture, w∗ = argminw(p)

∑
t,p fθ

(
Eφ′(a

(p)
(t−∆t:t+∆t)), w

(p)
)

, where

a
(p)
t−∆t:t+∆t is a sequence of demonstrations.

Our next objective is to determine the semantically meaningful dimensions of the embedding space.
We train a support vector machine (SVM) with a linear kernel to learn the decision boundaries
which best separate the demonstrators into their respective suboptimal categories (o/u and a/d).
The SVM training labels are determined via DTW between the participant labels and the optimal
labels from the calibration tasks. We utilize an SVM to learn the decision boundaries so that we
can add the additional constraint that the classifier must pass through the point representing the
perfect demonstrator, w∗. The distance between the embedding and the decision boundary along
the suboptimal dimension determines the magnitude by which the demonstrator is suboptimal.

Fig. 3 depicts our embedding space with linear classifiers separating over-correctors from under-
correctors and delayed from anticipatory. The size of the point represents the magnitude by which
the demonstrator is suboptimal in the o/u dimension as determined by DTW. The plot illustrates that
demonstrators who are more suboptimal in o/u (as represented by larger points) are farther from the
o/u decision boundary, supporting our hypothesis that distance from the decision boundary can be
used to measure the degree of suboptimality. To further support our claim, we apply Spearman’s
correlation and find that distance from the decision boundary strongly correlates with magnitude of
suboptimality in both the o/u (ρ = .84, p < .001) and in a/d dimensions (ρ = .93, p < .001).

4.2 Robotic Feedback

To determine the feedback the robot should provide, we calculate the distance, ε, along the
semantically meaningful dimension between the personalized embedding, w(p), and perfect
embedding, w∗, as shown in Fig. 1c and f. In the driving domain, we are interested in ε(i)o/u and

ε
(i)
a/d, which define the distance between the demonstrator’s embedding and the hypothetical perfect

demonstrator’s embedding in the o/u dimension and the a/d dimension respectively after the ith
round of feedback. In our framework, the feedback is proportional to the distance from w∗.
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(a) Embedding Predictor Network (b) Over-/under-correcting (c) Anticipatory/delayed

Figure 4: Fig. 4a illustrates our EPN architecture. Fig. 4b and 4c show the confusion matrices for
predicting the quartile that the embedding falls within on holdout test tasks.

To convert ε(i)o/u into actionable and intelligible robotic feedback, we discretize the range of ε(i)o/u
by splitting the embeddings from the previously collected calibration participants into quartiles as
shown in Fig. 3. Our objective is to move a participant’s embedding so that they are in the range
denoting the 25% of calibration participants who are the least suboptimal (i.e., quartile one). Partici-
pants who fall in a quartile farther from the decision boundary receive feedback proportional to their
quartile. For example, if a participant falls in the fourth quartile in the o/u dimension, the robot will
instruct the participant to turn the wheel a lot less compared to slightly less in the second quartile.
A table showing the feedback for each quartile and dimension can be found in Appendix Table 1.

4.3 Online Embedding Estimate

To determine if additional feedback should be provided to the demonstrator and if so, the form of
the feedback, we must update our estimate of w(p) after each iteration of robotic feedback. One
option to update our estimate of the embedding is to have the demonstrator redo the calibration
tasks. However, doing so is time consuming and increases the workload of the demonstrator.

Instead, we propose to dynamically update the embedding online using an LSTM-based architecture
which extracts salient features from the demonstrations to estimate the personalized embedding
rather than relying on calibration tasks which require known, optimal labels. For example, the
velocity and magnitude with which the demonstrator turns the steering wheel are two salient
features which can inform the estimate of the new embedding. We call this network the Embedding
Predictor Network (EPN) (Fig. 4a). The input to the EPN is the set of new demonstrations, τ (p)

0:m, the
demonstrator’s previous embeddings, w(p)

0:i−1, and the robotic feedback that was previously provided

to the demonstrator, r(p)
0:i−1. The output of the EPN is an estimate of the new personalized embed-

ding, ŵ(p)
i . This network utilizes two LSTM subnetworks, hφ and dθ, the output of which is then fed

into subnetwork, gφ′ , made up of linear layers with ReLU activations. The inputs to hφ are w(p)
0:i−1

and r(p)
0:i−1. Each trajectory, τ (p)

t , is fed into an LSTM subnetwork, dθ. We then average across the

outputs of dθ and feed the result into gφ′ which produces our embedding estimate, w(p)
i . We choose

to average across the outputs of dθ so that our network is agnostic to the number of trajectory inputs.

We train our EPN on the data collected in Studies 1 and 2 as described in Section 5. Fig. 4b and
4c show confusion matrices depicting the ability of the network to accurately predict the quartile of
suboptimality in the o/u dimension and the a/d dimension respectively on holdout test tasks.

5 Human-Subjects Studies, Results, and Discussion

To determine if Reciprocal MIND MELD is able to improve upon a demonstrator’s ability to provide
high-quality demonstrations, we conduct three human-subjects studies. The objective of Study 1 is
to determine if we are able to shift a demonstrator’s embedding via verbal robotic feedback in the
o/u dimension (RQ1). In Study 2, we investigate if, and how best, we can shift a demonstrator’s
embedding in two dimensions (RQ2). In Study 3, we determine if 1) robotic feedback derived from
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(a) Study 1 (b) Study 2 (c) Study 3

Figure 5: Fig. 5a and 5b show the difference between the embedding distance at round i and the
embedding distance at round one for Study 1 and Study 2 respectively. Fig. 5c shows the final
distance from the goal for the robot after each round of Study 3.

our EPN rather than the calibration tasks is a good metric of teacher suboptimality and 2) if robotic
feedback improves teaching outcomes over time (RQ3). During each study, we employed surveys
to measure how robotic feedback altered participants’ subjective attitude towards each agent. In our
analysis, we check parametric models for normality and homoscedasticity. Model details, tests for
assumptions, and additional results are in the Appendix.

5.1 Study 1 (RQ1)

Our objective in Study 1 is to demonstrate that robotic feedback can effectively modulate a partic-
ipant’s teaching. In this study, we start by investigating feedback only in the o/u dimension. After
completing pre-study surveys, participants complete four rounds of the calibration tasks to measure
how their embedding is changing. Participants receive robotic feedback between each round and
complete trust [29] and fluency [30] surveys to determine their subjective perceptions of the robot.

Conditions: In the Cooperative condition, the robot provides feedback to improve the demonstra-
tor’s teaching. In the Adversarial condition, the robot provides feedback to make the participant a
worse demonstrator. In the None condition, the participant does not receive any feedback.

Results: We recruited 27 participants (Mean age = 24.15, SD = 3.4; 37.0% Female). Fig. 5a
shows the change in the distance (ε(i)o/u − ε

(1)
o/u) in the o/u dimension between round one and rounds

one through four. We plot ε(i)o/u − ε
(1)
o/u to show how participants change irrespective of their initial

teaching skill. We find that the distance at round one, ε(1)
o/u, is significantly greater from the distance,

ε
(4)
o/u, at round four in Cooperative (χ2(1) = 5.44, p = .020) and significantly less in Adversarial

(F (1, 8) = 20.1, p = .002).

We additionally find that Adversarial results in the embedding shifting significantly farther from
the perfect embedding between rounds one to four (F (2, 24) = 20.2, p < .001) compared to
Cooperative (p < .001) and None (p = .014). Cooperative shifts the embedding significantly
closer to the perfect embedding (p = .009) compared to None. Together, these findings indicate
that our approach is capable of modulating teaching style in either direction along the suboptimal
dimension. Further, the results in None shows that participants are not simply improving due to
repeated interactions. Interestingly, we find that participants become significantly worse in the a/d
dimension when they only receive feedback in the o/u dimension. We also find that participants’ trust
increased significantly more (F (2, 24) = 5.15, p = .014) in Cooperative compared to Adversarial
(p = .020) and None (p = .038). Additionally, we find a positive change in fluency (F (2, 24) =
5.10, p = .014) in Cooperative compared to Adversarial (p = .017). Takeaway: Robotic feedback
can effectively improve a participant’s teaching abilities in a driving simulator domain.

5.2 Study 2 (RQ2)

In Study 2, we next determine how best to provide robotic feedback to both prevent cognitive over-
load and efficiently improve upon a participant’s teaching abilities. Our study design follows the
same procedure as Study 1, in which participants complete five rounds of the calibration tasks and
receive robotic feedback between each round.
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Conditions: In Simultaneous, the robot provides feedback related to both the o/u and the a/d dimen-
sions. In Greedy, the robot only provides feedback related to the condition in which the participant
is worst (i.e., farthest from w∗). In None, the participant receives no feedback.

Results: We recruited 39 participants (Mean age = 22.46, SD = 3.3; 38.5% Female). Fig. 5b shows
the overall change in the distance (ε(i)o/u+a/d − ε

(1)
o/u+a/d) in the two dimensions of suboptimality

between round one and rounds one through five. We find that the distance at round one, ε(1)
o/u+a/d, is

significantly greater from the distance, ε(5)
o/u+a/d, at round five in Simultaneous (F (1, 12) = 22.3),

p < .001). We next compare ∆εo/u+a/d across conditions (F (2, 36) = 3.77, p = .033). We find
that Simultaneous results in the embedding shifting significantly closer to the perfect embedding
between rounds one to five compared to None (p = .034). We do not find significance between
None and Greedy or Simultaneous and Greedy. Participants’ trust (F (2, 36) = 3.81, p = .032)
and team fluency (F (2, 36) = 7.23, p = .002) significantly increased in Simultaneous compared
to None (p = .029, p = .002 respectively). Lastly, although the result is not significant, we find
that participant’s understanding [31] of the robot increased more in the Simultaneous (M = 0.61,
SD = 0.62) condition compared to None (M = 0.14, SD = 0.69) and Greedy (M = .15,
SD = 0.58). Takeaway: Providing feedback in both dimensions simultaneously produces
better results for both objective and subjective metrics.

5.3 Study 3 (RQ3)

In Study 3, we aim to show that our approach and the results from Study 1 and 2 translate to improved
learning outcomes for an LfD agent on novel tasks. Participants first complete the calibration tasks
to obtain an initial estimate of their embedding, w(p)

0 , and determine ε(0)
o/u and ε(0)

a/d. Next, the robot
provides feedback to the participant intended to improve their demonstrations in both the o/u and the
a/d dimensions given our positive findings for the Simultaneous condition in Study 2. Participants
then train the robot for three rounds in three different novel environments (i.e., new start and goal
locations) for six demonstrations each. Between each environment, we estimate the participant’s
new embedding, w(p)

i , via the EPN, and calculate ε(i)o/u and ε(i)a/d after each round, i ∈ {1, 2, 3}. The
robot provides robotic feedback based upon the new estimate of the participant’s embedding derived
from the EPN. At the end of the study, the participants redo the calibration tasks to determine ε(4)

o/u

and ε(4)
a/d. By redoing the calibration tasks, we are able to obtain a ground truth estimate of how the

quality of their demonstrations has changed over the course of the study.

Conditions: In Feedback, the robot provides feedback to the participant about their demonstrations.
In No Feedback, the robot still interacts with the participant but does not provide feedback.

Results: We recruited 60 participants (Mean age = 21.9, SD = 2.89; 28.3% Female). Fig. 5c shows
the robot’s final distance from the goal for Feedback and No Feedback for rounds 1-3. Participants
in Feedback achieve a lower final distance to the goal in round one despite starting off as worse
demonstrators on average, as measured via the initial calibration tasks (Mean ε(0)

o/u+a/d in Feedback:

0.93, Mean ε(0)
o/u+a/d in No Feedback: 0.89). Additionally, the final distance of the robot improves

over the rounds in Feedback whereas in No Feedback, the robot improves slightly then gets worse in
the final round. In round three, the robot achieves a significantly lower final distance from the goal
(Z = −2.0, p = .045) compared to No Feedback.

To determine if the embedding as estimated by the EPN is a good metric of performance, we com-
pute the correlation between the distance, ε(i)o/u+a/d, of the estimated embedding from the perfect
embedding and performance, as measured by the average distance from the goal for each round, i.
Fig. 6 shows a significant correlation (ρ = .23, p = .002) between embedding distance and perfor-
mance, suggesting that the embedding estimated by the EPN is a good measure of suboptimality.

Next, we investigate the overall change in the quality of the participants’ demonstrations as measured
via the first set of calibration tasks (conducted at the beginning) and last set (conducted at the end).
Fig. 7 shows the change, ε(0) − ε(4), for the o/u dimension and the a/d dimension. We find that
participants became significantly better in Feedback (t(52) = 2.62, p = .006) compared to No
Feedback in the o/u dimension. While we do not find significance in a/d, we do find that participants
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Figure 6: Correlation between the embedding
distance, ε(i)o/u+a/d, and distance from the goal.

Figure 7: Change in εo/u and εa/d between first
and last calibration tasks.

improve in Feedback whereas they become worse in No Feedback in this dimension. Lastly, we
investigate Feedback versus No Feedback in terms of subjective metrics. Feedback significantly
increases trust (Z = −2.34, p = .019) and decreases workload [32] (t(58.0) = −1.79, p = .039)
compared to No Feedback. Takeaway: Feedback derived from our EPN improved participant
teaching and resulted in better learning outcomes for the robot in novel tasks.

5.4 Discussion and Limitations

In Study 1, we demonstrated we can shift a demonstrator’s embedding both farther from and closer
to the perfect embedding depending on whether the demonstrator received feedback from an Ad-
versarial or a Cooperative robot respectively (p < .001) (RQ1). In Study 2, we found that pro-
viding feedback intended to improve upon both dimensions of suboptimality simultaneously is the
best strategy and does not cause participants to suffer from an undue level of cognitive overload
(p < .001) (RQ2). Studies 1 and 2 present strong evidence that robotic feedback is capable of
improving upon demonstration quality, suggesting that a robot will learn better from a teacher who
has received robotic feedback. In Study 3, we test this hypothesis and investigate the abilities of
our EPN to update our estimate of the participant’s embedding during novel tasks. We found that
final distance of the robot from the goal improves as the demonstrator receives more feedback about
their demonstrations (p = .045). Overall, we demonstrated that robotic feedback derived from our
Reciprocal MIND MELD architecture results in better learning outcomes for a robot in a driving
simulator domain.

Limitations: A limitation of Reciprocal MIND MELD is that domain knowledge is required to
determine the dimensions of suboptimality. However, robotic domains share many similarities in
terms of the control interfaces and the potential for suboptimality, suggesting that the dimensions in
one domain will likely be similar in others. In this work, we investigate verbal feedback to improve
upon demonstration quality. However, prior work has suggested that alternative methods of provid-
ing feedback may be more effective at improving teaching abilities [6]. We leave to future work an
investigation of the best modality for providing demonstrator feedback in the context of Reciprocal
MIND MELD. Furthermore, in this work, we only investigate two dimensions of suboptimality in a
driving simulator domain. We plan to investigate, in future work, Reciprocal MIND MELD’s abil-
ity to generalize to additional dimensions of suboptimality in other domains. Lastly, our population
consisted mostly of college aged students. In future work, we propose to sample from a more diverse
participant pool.

6 Conclusion

We introduce Reciprocal MIND MELD, a novel LfD framework for providing robotic feedback
to a human demonstrator based upon a personalized embedding to improve suboptimal teaching
tendencies. We demonstrate our approach in a series of three human-subject experiments in which
we show that robotic feedback can improve upon the quality of a teacher’s demonstrations, providing
feedback in multiple dimensions simultaneously is the most effective method, and robotic feedback
results in improved learning outcomes for a robot. Additionally, we show that our Embedding
Predictor Network is capable of accurately estimating the updated personalized embedding online,
thus enabling continuous feedback to be provided to the demonstrator.
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