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ABSTRACT

Recent self-supervised methods are mainly designed for representation learning
with the base model, e.g., ResNets or ViTs. They cannot be easily transferred to
DETR, with task-specific Transformer modules. In this work, we present Siamese
DETR, a Siamese self-supervised pretraining approach for the Transformer ar-
chitecture in DETR. We consider learning view-invariant and detection-oriented
representations simultaneously through two complementary tasks, i.e., localiza-
tion and discrimination, in a novel multi-view learning framework. Two self-
supervised pretext tasks are designed: (i) Multi-View Region Detection aims at
learning to localize regions-of-interest between augmented views of the input, and
(ii) Multi-View Semantic Discrimination attempts to improve object-level dis-
crimination for each region. The proposed Siamese DETR achieves state-of-the-
art transfer performance on COCO and PASCAL VOC detection using different
DETR variants in all setups. Code will be made available.

1 INTRODUCTION

Object detection with Transformers (DETR) (Carion et al., [2020) combines convolutional neural
networks (CNN5s) and Transformer-based encoder-decoders, viewing object detection as an end-to-
end set prediction problem. Despite its impressive performance, DETR and its variants still rely
on large-scale, high-quality training data. It generally requires huge cost and effort to collect such
massive well-annotated datasets, which can be prohibited in some privacy-sensitive applications
such as medical imaging and video surveillance.

Recent progress in multi-view self-supervised representation learning (Chen et al., [2020a; He et al.,
2020;|Chen et al., 2020b; [Caron et al.||2020a; |(Chen & Hel [2021} L1 et al ., 2021} |Grill et al., 2020) can
potentially alleviate the appetite for labeled data in training DETR for object detection. However,
these self-supervised learning approaches mainly focus on learning generalizable representations
with base models, such as ResNets (He et al.| 2016) and ViTs (Dosovitskiy et al., 2020). It is
unclear how these approaches can be effectively extended to DETR with task-specific Transformers
modules that are tailored for end-to-end object detection.

Designing self-supervised pretext tasks for pretraining the Transformers in DETR is a challenging
and practical problem, demanding representations that could benefit object detection, beyond just
learning generic representation. Several attempts have been made to address this issue. For example,
UP-DETR (Dai et al., [2021) introduces an unsupervised pretext task based on random query patch
detection, predicting bounding boxes of randomly-cropped query patches in the given image. Recent
DETReg Bar et al.| (2022)) employs a pre-trained SwAV (Caron et al., 2020b) and offline Selective
Search proposals (Uijlings et al.l [2013) to provide pseudo labels for DETR pertaining. In general,
both UP-DETR and DETReg follow a single-view pretraining paradigm (see Figure[I] (a)), without
exploring the ability of learning transferable representations demonstrated in existing multi-view
self-supervised approaches.

In this work, we are interested in investigating the effectiveness of multi-view self-supervised learn-
ing for DETR pre-training. To this end, we present a Siamese self-supervised pretraining approach
for the Transformers in DETR, named Siamese DETR, with two proposed self-supervised pretext
tasks dedicated to view-invariant representation learning. Specifically, given each unlabeled image,
we follow (Wei et al., 2021} [Bar et al.,[2022) to obtain the offline object proposals and generate two
augmented views guided by Intersection over Union (IoU) thresholds. As illustrated in Figure (b),
by directly locating the query regions between augmented views and maximizing the discriminative
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Figure 1: Comparison between single-view and multi-view detection pretraining for DETR. (a) The
single-view framework, e.g., UP-DETR (Dai et al., 2021)) and DETReg (Bar et al.l |2022), perform
self-supervised representation learning using unsupervised objectives generated on the single view,
leading to a small information gain during pretraining. (b) The proposed multi-view Siamese DETR

for DETR pretraining. Here, b and p denote box and semantic predictions, respectively.

information at both global and regional levels, Siamese DETR can learn view-invariant representa-
tions with localization and discrimination that are aligned with downstream object detection tasks
during pretraining. Our contributions can be summarized as below:

* We propose a novel Siamese self-supervised approach for the Transformers in DETR,
which jointly learns view-invariant representations with discrimination and localization.
In particular, we contribute two new designs of self-supervised pretext tasks specialized for
multi-view detection pretraining.

* Without bells and whistles, Siamese DETR outperforms UP-DETR (Dai et al., 2021) and
DETReg (Bar et al.,|2022) with multiple DETR variants, such as Conditional (Meng et al.,
2021) and Deformable (Zhu et al.,[2020) DETR, on the COCO and PASCAL VOC bench-
marks, demonstrating the effectiveness and versatility of our designs.

2 RELATED WORK

Object Detection with Transformers. DETR (Carion et al., 2020) integrates CNNs with Trans-
formers (Vaswani et al., [2017), effectively eliminating the need for hand-crafted components, such
as rule-based training target assignment, anchor generation, and non-maximum suppression. Sev-
eral recent DETR variants (Zhu et al.| [2020; Meng et al) 2021} |Gao et al., 2021} [L1 et al., 2022}
Zhang et al., 2022) have been proposed to improve the attention mechanism and bipartite matching
in Transformers. For example, [Zhu et al.| (2020) only attend to a small set of key sampling points
around a reference for faster convergence. Meng et al.|(2021) learn a conditional spatial query from
the decoder embedding for decoder multi-head cross-attention. [Li et al.|(2022) introduce a denoising
pipeline to reduce the difficulty of bipartite matching.

In contrast, we explore another paradigm to improve the representations of Transformers for DETR
via self-supervised pretraining. |Dai et al.[(2021) design a pretext task based on random query patch
detection. Bar et al.|(2022) train DETR using pseudo labels generated by pretrained SwAV (Caron
et al.,[2020b)) and offline Selective Search proposals (Uijlings et al.,[2013). While similarly following
the existing pre-train and fine-tune paradigm, our work significantly differs from UP-DETR and
DETReg. Specifically, (a) we perform view-invariant representation learning for the Transformers
in DETR, and (b) to our knowledge, we make the first attempt to combine the Siamese network with
the cross-attention mechanism in DETR in a self-supervised pretraining framework.

Self-supervised Pretraining. One of the main approaches for self-supervised learning is to com-
pare different augmented views of the same data instances in the representation space. Some notable
studies include that by (Chen et al.| (2020a)), which presents a simple framework by removing the re-
quirements of specialized architectures or memory banks. [He et al.| (2020) employ a momentum
encoder with a dynamic dictionary look-up and retrieve more negative samples by using large dic-
tionary sizes. [Chen & He| (2021)) explore simple Siamese networks to learn meaningful representa-
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Figure 2: (a) Overall architecture of proposed Siamese DETR. (b) The forward process of one view
in our symmetrical pipeline. We perform region detection (£;,.) and semantic discrimination (£,
and £,) in a multi-view fashion. Given the conditional input of region features in one view, we aim
at locating and discriminating their corresponding regions in another view.

tions with positive pairs only. |Caron et al.|(2020a) enforce consistency between cluster assignments
produced for different augmentations of the same image. In addition, several attempts (Xie et al.,
2021a;|Zhao et al.l 2021} Wang et al., [2021}; Wei et al., [2021}; Hénaff et al., [2021) have been made
to learn detection-oriented representations directly using intrinsic cues, such as mask predictions
(Zhao et al., 2021; [Hénaff et al.,|2021)), offline region proposals (Wei et al., 2021} |Xie et al.,[2021b)),
and joint global-local partitions (Wang et al., 2021} Xie et al.,|2021a). While different in the specific
learning strategies, all these works focus on learning discriminative representations for base models,
which are insufficient for transfer learning in DETR. In addition, the pretext tasks in these methods
cannot be directly applied to the Transformers in DETR.

Siamese Networks. Siamese networks (Bromley et al. [1993) are weight-sharing neural networks
and usually take two inputs for comparison, which are widely adopted in many applications, such as
face verification (Taigman et al., 2014), person re-identification (Zheng et al., 2019), and one-shot
learning (Koch et al.|[2015). Recent advances in self-supervised learning (Chen et al.,[2020bjaj; Chen
& He, 2021} |Grill et al., |2020) are also built upon Siamese networks, motivating us to explore the
Siamese architecture for pretraining the Transformers in DETR.

3 SIAMESE DETR

An overview of our Siamese DETR architecture is presented in Figure|2| which illustrates the main
pipeline of our multi-view detection pretraining. We first revisit the DETR in Section[3.1] We then
describe the view construction algorithm in Section[3.2]and the multi-view pretraining paradigm of
Siamese DETR in Section [3.3] powered by two specially designed self-supervised pretext tasks for
learning to detect objects.

3.1 REVISITING DETR

A typical DETR model consists of two modules: (i) a backbone model, i.e., CNNs, for feature
extraction, (ii) Transformers with encoder-decoders architecture for set prediction, built by stacking
multi-head attentions (Vaswani et al.| 2017). The backbone model extracts the image-level features
h = Backbone(x) for a given image x € R**H0*Wo_ Then, the Transformer encoder takes the
image-level features h as inputs, encoding the image features as global context ¢ € RE > 1<

¢ = Encoder(h). (1)

Note that we omit the positional embedding ¢,, in the subsequent description for clarity. The cross-
mechanism is a general form of multi-head attention (MHA) in the Transformer decoder, which cal-
culates the weighted sum ¢ € RV*® between the flattened global context ¢ € R7tW1xC and N
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Figure 3: View construction using an IoU-constrained policy. (a) Generate a random rectangle
within the image. (b) Generate two sub-rectangles on both sides of the center point ¢. Expand
two rectangles along the diagonal while keeping the IoU larger than a threshold 7. Crop two sub-
rectangles and apply augmentations. (¢) Generate offline object proposals in the overlapping area.

object queries ¢, € R for further box and categorical prediction.

ak’

Vdy,

The attention weights and summations are obtained by the query q, key k, and value v, which are
the linear mapping of the context ¢ and the object queries ¢,:

q= ,fq(¢r1):, k= fls‘(c); v = f’u(c)' (3)

g = CrossAtten(c, ¢,) = MHA(g, k,v) = Z Softmax( Y. ()

Here f,, fi, fv denote the projection for query, key and value in the cross-attention module. More
details of DETR are provided in Appendix [A]

In this work, we aim to pre-train the Transformers of DETR in a self-supervised way, extending
the boundary of existing self-supervised pretraining. Motivated by recent advances in this paradigm
(Chen et al., [2020bza; |(Chen & He, 2021} |Grill et al., |2020), we propose Siamese DETR, a Siamese
multi-view self-supervised framework designed for Transformers in DETR, in which the model
parameters and the learnable object queries in two DETRs are all shared. Following UP-DETR (Dai
et al., [2021), Siamese DETR aims at learning representations with Transformers in self-supervised
pretraining while keeping the backbone model frozen.

3.2 VIEW CONSTRUCTION

We start with generating two views {x, x5} for each unlabeled image x, allowing the model to
learn view-invariant object-level representations in self-supervised detection pretraining. As illus-
trated in Figure[3] we introduce an IoU-constrained policy to balance the shared information between
two views. First, we generate a random rectangle within the image, which covers most content (50%
to 100%). Then we use the center point of the rectangle as the anchor to create two sub-rectangles.
By randomly expanding the sub-rectangles along the diagonal, we obtain two rectangles with the
IoU larger than a threshold 7 = 0.5. Two rectangles are cropped from the image as the final two
views {x1,x2}. We further apply randomly and independently sampled transformations on two
views {x1, 2} following the existing augmentation pipeline in Chen & He, (2021)). We also apply
a box jitter processing following [Wei et al.|(2021)) to encourage variance of scales and locations of
object proposals across views.

The two augmented views {x1, 2} are visually distinct but share adequate semantic content. Fol-
lowing (Bar et al., 2022} /Wei et al., |2021)), we generate offline object proposals b using unsupervised
EdgeBoxes (Zitnick & Dollér, [2014) in the overlapping area between the two views and randomly
select n = 10 corresponding object proposals in two views {b1, b2} from b. These object proposals
can provide proper objectness priors to learn object-level representations during pretraining.

3.3 MULTI-VIEW DETECTION PRETRAINING

Given a region extracted from one view, we aim to train the model to answer two questions: (1)
where is the corresponding region in another view? (2) what is the located region, i.e., does it

"https://github.com/opencv/opencv_contrib. Apache-2.0 License.
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semantically similar? In the following, we describe two pretext tasks designed in Siamese DETR:
(1) learning to locate by Multi-View Region Detection and (2) learning to discriminate by Multi-
View Semantic Discrimination.

Preparation. We take the augmented views {x1, 22} as inputs to the backbone model to obtain
the image-level features: {h;,ho} = Backbone({@,x2}). Then, the object-level region fea-
tures {z1, 2o} are extracted from the image-level features {h1, ho} based on each object proposal
{b1, by} using RolAlign (He et al., 2017):

z1 =RoIAlign(hi,b1); zo = RoIAlign(he,bs). 4)

We also obtain the corresponding crop-level region features {p;, po} € RE*H3*Ws by first crop-
ping from the augmented views and then extraction:

p1 = Backbone(Crop(x1,b1)); p2 = Backbone(Crop(xs, bs)). )

By default, both {21, zo} and {p;, p2} are processed with global average pooling before further us-
age. Only the forward pass is involved in preparations, as we focus on pretraining the Transformers.

Multi-View Cross-Attention. We propose a Multi-View Cross-Attention (MVCA) mechanism that
extends the cross-attention module in DETR for multi-view representation learning. With the in-
troduced notions for two views {(c1, 21, p1, b1), (c2, 22, P2, b2)}, we formulate the cross-attention
from view x to view x as follows:

62 = MVCA(CQ, ¢)q7 Zl) = MHA(CIL k:2a 'UQ), (6)
where the query g1, key ko and value v, are given by:

q1 = fq(z1 + @q); ka2 = fr(ca); va = fu(ca) @)

We add the region features z; from view x; to the object queries ¢, so that with conditional input of
region features z1, the object queries ¢, can extract the relevant features g» from the global context
¢, of view xo. Here, @» is supposed to be aggregated features on view o that are semantically
consistent with the corresponding region features z; on view ;.

Learning to locate: The MVCA mechanism allows us to conduct Multi-View Region Detection
directly. Specifically, with the input of each region feature z; from view x; and its extracted feature
@2, our goal is to locate the region in view x5 that is relative to the region feature z;. We apply a
prediction head f,, for box prediction:

52 - fbo;z:(‘/jZ) S RNX_Q. (8)

After performing bipartite matching (Carion et al., 2020), we calculate the multi-view symmetrical
localization loss as: R R
»Cloc - gbox(an b2) + Ebom(bla bl)a (9)

where ¢, is a combination of generalized IoU loss and ¢; loss the same as|Carion et al.|(2020).

Learning to discriminate: Due to the unavailability of semantic label information, we propose
Multi-View Semantic Discrimination to learn to discriminate at both global and regional levels.
First, we apply a prediction head f.,, for further discriminative learning:

ﬁ2 - fsem(a2) S RNXC/~ (10)

Considering that the context ¢ of each view contains global contextual information, we maximize
the similarity of the encoded context between two augmented views. Following |Chen & Hel(2021),
we apply a three-layer MLP (FC-BN-ReLU) and compute the global discrimination loss £, sym-
metrically as:

Ly =C[MLP(c1),detach(ez)] + C[MLP(cz), detach(e)], (11)

where C is the negative cosine similarity. In addition, due to the semantic consistency between
the input region features z; and the extracted features g», we consider maximizing the semantic
consistency for each region. Here, despite representing the same instances, the crop-level region
features p; can provide more discriminative information than object-level region features z;. It is
because the object-level region features z; are extracted from the image-level features (See Equation
and [3) and contain an aggregate of surrounding contexts with less discriminative information on
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themselves, especially for small regions. It motivates us to replace object-level region features z;
with crop-level region features p; as the learning objectives. Besides, reconstruction with crop-level
region features p; can avoid potential degeneration problems in UP-DETR. Finally, we formulate
the semantic consistency objective to improve the region discrimination as:

L, = D(p2, p1) + D(p1,p2), (12)
where D is the normalized ¢5 distance.
Loss Function. Formally, the overall loss function for Siamese DETR is formulated as:

L= L+ MLy+ XLy, (13)

where \g/1 /7 are the loss weighting hyper-parameters.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Architecture. Siamese DETR consists of a frozen ResNet-50 backbone, pretrained by SwAV
(Caron et al. |2020b) on ImageNet, and a Transformer with encoder-decoder architecture. Both
the Transformer encoder and decoder are stacked with 6 layers of 256 dimensions and 8 attention
heads. To verify the performance and generalization of our design, we compare Siamese DETR with
a baseline model without pretraining (denoted as from scratch), UP-DETR (Dai et al., 2021), and
DETReg (Bar et al.l [2022)). We use three DETR variants, i.e., original DETR (Carion et al., [2020)
(denoted as Vanilla DETR), Conditional DETR (Meng et al., 2021), and Deformable DETR (Single-
Scale and Multi-Scale, denoted as Deform-SS and Deform-MS, respectively) (Zhu et al.|[2020). For
a fair comparison, the number of object queries is 100 in Vanilla DETR and Conditional DETR. We
also use 300 queries in Conditional DETR and Deformable DETR following their default setup. We
implement Siamese DETR based on the MMSelfSup codebas

Evaluation Protocol. We follow the evaluation protocol in UP-DETR. Specifically, we first pretrain
DETR variants on ImageNet (~1.28 million images) (Deng et al., 2009) or COCO train2017
(~118k images) (Lin et al., |2014) separately. Then, the ImageNet-pretrained models are fine-
tuned on COCO train2017 or PASCAL VOC trainval07+12 (~16.5k images) (Evering-
ham et al., |2010) separately, while COCO-pretrained models are finetuned on PASCAL VOC
trainval07+12. We report COCO-style metrics, including AP, AP5y, AP75, AP, AP,,, AP;, in
both COCO val2017 and PASCAL VOC test 2007 benchmarks.

Pretraining. We use an AdamW (Loshchilov & Hutter] 2017)) optimizer with a total batch size
of 256 on ImageNet and 64 on COCO, a learning rate of 1 x 10~* and a weight decay of 1 x
10~%. We adopt a full schedule of 60 epochs, and the learning rate decays at 40 epochs, denoted
as the 40/60 schedule for brevity. Unless specified, UP-DETR uses random boxes, DETReg uses
proposals generated by Selective Search (Uijlings et al.l 2013), and Siamese DETR uses Edgeboxes
in experiments.

Finetuning. For Vanilla DETR, we adopt 120/150 and 40/50 schedules in COCO and PASCAL
VOC benchmarks. The initial learning rates of the Transformer and backbone are set to 1 x 10~% and
5x 10~°. For the other two DETR variants, we report the result under the 40/50 schedule. The initial
learning rates of the Transformer and backbone are set to 1 x 1074/2 x 10™% and 5 x 1075/2 x 107
in Conditional/Deformable DETR, respectively. For fair comparison, the batch size in all setup is
set to 32.

4.2 MAIN RESULTS

COCO Object Detection. Table[I|shows the transfer results on COCO. Siamese DETR achieves the
best performance using three different DETR variants on all setups. Especially for DETR variants
like Deformable DETR of Multi-Scale, Siamese DETR boosts the model upon baseline more signif-
icantly than UP-DETR and DETReg, demonstrating the compatibility of our design with different
DETR architectures.

“https://github.com/open-mmlab/mmselfsup. Apache-2.0 License.
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Table 1: Comparisons of Siamese DETR with supervised/UP-DETR/DETReg in the COCO de-
tection benchmark. The results of all models are achieved by officially-released repositories and
pretrained models. Here “#epoch” denotes the number of epochs in downstream finetuning.

Method Backbone DETR #query | #epoch | AP | AP5q | AP75 | AP, | AP, | AP,
from scratch | Sup. R50 Vanilla 100 150 395 ] 60.3 | 414 | 175 | 43.0 | 59.1
from scratch | SWAV R50 Vanilla 100 150 39.7 | 60.3 | 41.7 | 185 | 43.8 | 57.5
UP-DETR SwAV R50 Vanilla 100 150 40.5 | 60.8 | 42.6 | 19.0 | 44.4 | 60.0
DETReg SwAV R50 Vanilla 100 150 419 | 619 | 44.1 | 19.1 | 45.7 | 61.5
ours SwAV R50 Vanilla 100 150 42.0 | 62.7 | 44.5 | 194 | 46.0 | 62.1
from scratch | SWAV R50 | Conditional 100 50 3771 59.6 | 39.2 | 17.1 | 41.7 | 56.3
UP-DETR SwAV R50 | Conditional 100 50 394 | 61.2 | 41.0 | 18.1 | 43.0 | 58.7
ours SwAV R50 | Conditional 100 50 40.5 | 61.6 | 42.6 | 19.5 | 44.2 | 60.1
from scratch | SWAV R50 | Conditional 300 50 41.1 | 623 | 434 | 206 | 45.0 | 594
UP-DETR SwAV R50 | Conditional 300 50 415 | 63.2 | 43.6 | 21.3 | 454 | 60.2
ours SwAV R50 | Conditional 300 50 43.0 | 64.2 | 45.6 | 22.0 | 47.2 | 61.8
from scratch | SWAV R50 | Deform-SS 300 50 403 | 60.9 | 429 | 20.1 | 448 | 57.2
UP-DETR SwAV R50 | Deform-SS 300 50 40.8 | 61.8 | 434 | 204 | 45.1 | 59.1
ours SwAV R50 | Deform-SS 300 50 42.1 | 62.8 | 44.7 | 22.3 | 46.6 | 59.9
from scratch | SWAV R50 | Deform-MS 300 50 455 | 642 | 494 | 278 | 49.2 | 594
UP-DETR SwAV R50 | Deform-MS 300 50 453 | 645 | 49.6 | 26.0 | 49.2 | 59.9
DETReg SwAV R50 | Deform-MS 300 50 455 | 64.1 | 499 | 269 | 495 | 59.6
ours SwAV R50 | Deform-MS 300 50 46.3 | 64.6 | 50.5 | 28.1 | 50.1 | 61.5

All L6 Small Medium
63 10

30
>

10

0 35 g
06 065 07 075 08 0.6 065 07 075 08 “T06 06507 0.5 08 0.6 065 07 075 08
IoU Threshold IoU Threshold ToU Threshold IoU Threshold

Figure 4: AP on COCO using different IoU Thresholds.

Besides, when adopting a stricter IoU threshold in metrics, e.g., from AP5( to AP75, Siamese DETR
achieves a more considerable performance lead in most cases. It suggests the representations learned
by Siamese DETR provide a stronger localization prior. We further illustrate AP metrics of Siamese
DETR and UP-DETR using different IoU thresholds in Figure[d Specifically, Siamese DETR per-
forms well in localizing small objects and draws the gap against UP-DETR for medium and large
objects when the IoU threshold is greater than 0.7.

PASCAL VOC Detection. Table[2|shows the transfer results on PASCAL VOC. Similar to conclu-
sions on COCO, Siamese DETR achieves the best performance among all approaches on PASCAL
VOC. We also report the result of COCO-pretrained models. Siamese DETR is 6.4 AP better than
UP-DETR and 1.8 AP better than DETReg, which verifies the compatibility of Siamese DETR with
different pretraining datasets, especially the scene-centric COCO.

4.3 ABLATIONS

Effectiveness of Two Proposed Pretext Tasks. We train five Siamese DETR variants using Con-
ditional DETR on ImageNet and finetune them on PASCAL VOC. Results are shown in Table [3]
We treat UP-DETR as the baseline (56.9 AP on PASCAL VOC), which performs single-view patch
detection with Transformer and reconstructs the decoder’s output with its input patches.

By extending single-view detection into a multi-view manner, (a) obtains a competitive result of
57.1 AP, suggesting that the view-invariant representations can perform better in downstream detec-
tion tasks. We further maximize the multi-view semantic consistency in terms of global and region
discrimination, improving the transfer performance by 0.2 AP and 0.6 AP in (b) and (d), respec-
tively. Global discrimination (b) brings smaller performance gains than region discrimination (d)
in detection tasks, suggesting that it is impractical to directly apply existing instance discrimination
pretext tasks (He et al.l [2020; Koch et al. 2015) on Transformers of DETR in detection-oriented
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Table 2: Comparisons of Siamese DETR with supervised/UP-DETR/DETReg in the PASCAL VOC
detection benchmark. The results of all models are achieved by officially-released repositories and
pretrained models. Here “#epoch” denotes the number of epochs in downstream finetuning.

Method Backbone DETR Pretrain Dataset | #query | #epoch | AP | APsy | AP75 | APy | AP, | AP,
from scratch | SWAV R50 Vanilla - 100 50 285 ] 475 | 294 | 1.3 7.4 | 403
UP-DETR SwAV R50 Vanilla ImageNet 100 50 50.0 | 73.5 | 534 | 6.5 | 295 | 64.1
DETReg SwAV R50 Vanilla ImageNet 100 50 538 | 765 | 573 | 83 | 354 | 675
ours SwAV R50 Vanilla ImageNet 100 50 544 | 774 | 57.6 | 7.7 | 350 | 68.4
from scratch | SWAV R50 Vanilla - 100 150 478 738 | 509 | 54 | 276 | 614
UP-DETR SwAV R50 Vanilla ImageNet 100 150 544 | 78.1 | 58.6 | 10.5 | 358 | 675
DETReg SwAV R50 Vanilla ImageNet 100 150 570 | 797 | 61.6 | 11.5 | 39.5 | 70.2
ours SwAV R50 Vanilla ImageNet 100 150 57.3 | 80.3 | 62.2 | 11.6 | 39.3 | 71.0
from scratch | SWAV R50 | Conditional - 100 50 499 | 782 | 553 | 8.1 | 335 | 65.1.
UP-DETR SwAV R50 | Conditional ImageNet 100 50 569 | 81.5 | 61.6 | 11.3 | 392 | 69.8
ours SwAV R50 | Conditional ImageNet 100 50 58.1 | 81.6 | 62.8 | 12.2 | 40.6 | 71.5
from scratch | SWAV R50 | Deform-SS - 300 50 53.8 | 795 | 59.1 | 11.8 | 39.8 | 65.7
UP-DETR SwAV R50 | Deform-SS ImageNet 300 50 540 | 793 | 588 | 114 | 38.6 | 66.1
ours SwAV R50 | Deform-SS ImageNet 300 50 58.0 | 81.8 | 64.0 | 14.0 | 433 | 70.3
from scratch | SWAV R50 | Deform-MS - 300 50 56.1 | 80.7 | 619 | 17.4 | 42.7 | 66.4
UP-DETR SwAV R50 | Deform-MS ImageNet 300 50 564 | 809 | 623 | 173 | 413 | 674
DETReg SWAV R50 | Deform-MS ImageNet 300 50 59.7 | 82.0 | 66.4 | 182 | 464 | 704
ours SwAV R50 | Deform-MS ImageNet 300 50 61.2 | 829 | 67.7 | 193 | 47.1 | 72.2
from scratch | SWAV R50 | Conditional - 100 50 499 | 782 | 553 | 8.1 | 335 | 65.1
UP-DETR SwAV R50 | Conditional COCO 100 50 513 | 79.0 | 553 | 95 | 353 | 63.7
DETReg SwAV R50 | Conditional COCO 100 50 559 | 80.0 | 61.6 | 11.0 | 393 | 68.5
ours SwAV R50 | Conditional COCO 100 50 57.7 | 809 | 62.5 | 11.0 | 404 | 70.9

Table 4: Comparisons of using different object
Table 3: Ablations on two proposed pretext proposals in Siamese DETR and its counterparts.
tasks, i.e., Multi-View Region Detection and The notation “A—B” denotes that the model is
Multi-View Semantic Discrimination. The nota- pretrained on dataset “A” and then finetuned on
tion “R-O” denotes region discrimination using dataset “B”.

object-level region features, “R-C” denotes re- Method Dataset Proposals AP
gion discrimination using crop-level region fea- UP-DETR }magegetﬁgggg Eangom Zgi
[Tkl : : : : ours mage et— andaom B
tures, and “G” denotes global discrimination. UP-DETR | TmageNet 5COCO Edgeboxes 303
Method | Region Det. | Semantic Disc. | AP ours ImageNet—»COCO | Edgeboxes | 40.5
UP-DETR | single-view R-O 56.9 UP-DETR COCO—VOC Random 51.3
ours (a) multi-view - 57.1 DETReg gggg_wgg Rangom gig
. P ours —V Random .
o ?g; g’;ﬁgzizz R?o g;g DETReg | COCO—VOC | SelectiveSearch | 55.9
@ ltiovi R-C 57'7 ours COCO—VOC SelectiveSearch | 56.2
ours mutl-view : UP-DETR | COCO—VOC Edgeboxes | 57.0
ours (¢) | multi-view RC+G 58.1 DETReg | COCO-VOC Edgeboxes | 56.3
ours COCO—VOC Edgeboxes 57.7

pretraining tasks. We also notice that (d) using crop-level region features achieves better perfor-
mance than (c) using object-level region features, which verifies more discriminative information
in crop-level region features. Finally, (e) with both Multi-View Region Detection and Multi-View
Semantic Discrimination yields the best result of 58.1 AP.

Object Proposals. Edgeboxes (Zitnick & Dollar,2014) in Siamese DETR provide objectness priors
during pretraining. We attempt to replace it with boxes generated randomly or by Selective Search.
All experiments are conducted using Conditional DETR. The results are shown in Table[d]

When pre-trained on object-centric datasets like ImageNet, which contains one single object in the
center of the image, better objectness priors bring little improvement. In this case, our Siamese
DETR still outperforms its counterparts by about 1.0 AP using random proposals or Edgeboxes.

When pre-trained on scene-centric datasets like COCO, which contains multiple objects in the im-
age, great improvements are found in all methods after applying better objectness priors from pro-
posals. Specifically, using random proposals, Siamese DETR outperforms UP-DETR by 3.6 AP
and DETReg by 3.0 AP in the COCO—VOC setup, which suggests that Siamese DETR learns bet-
ter detection-oriented representations without any objectness priors. When replaced with Selective
Search and Edgeboxes, the performance gaps are alleviated. In this case, our Siamese DETR with
Edgeboxes achieves the best performance among all setups.
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ImageNet - COCO ImageNet - COCO ImageNet » VOC COCO - vVOC
Vanilla Deformable-MS (300 Queries) Deformable-MS (300 Queries) Conditional (100 Queries)
45 45 60 60
40 40 % %
50 50
35 35 &5 e M
=9
<< 30 30 40 40
I ) from scratch
2 25 5" 3 — UP-DETR
30 30 DETReg
0 20 25 25 —— Siamese DETR
15 15 20 20
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Figure 5: Illustration of convergence curves when fine-tuned on COCO or PASCAL VOC.

UP-DETR #1 UP-DETR #2 UP-DETR #3 UP-DETR #1 UP-DETR #2 UP-DETR #3

b O7al

DETReg #2

Figure 6: Visualization of box predictions and attention maps in downstream tasks. All these
models (Vanilla DETRs) are initialized by Siamese DETR, UP-DETR, and DETReg without fine-
tuning.

Convergence. The convergence curves of three DETR variants on downstream COCO and PASCAL
VOC are illustrated in Figure 5] Compared with UP-DETR, DETReg, and the from scratch model,
Siamese DETR converges faster and outperforms its counterparts by significant margins in all setups.
More convergence curves are provided in Appendix [C.1}

Visualization. We provide some qualitative results for further understanding the advantage of
Siamese DETR. In downstream tasks, we use three Vanilla DETRs, initialized by Siamese DETR,
UP-DETR, and DETReg pretraining models. Figure (6| illustrates their box predictions and corre-
sponding attention maps in the decoder. Queries in Siamese DETR have stronger objectness priors,
predicting more available box proposals overlapped with objects in the image. Meanwhile, bene-
fitting from discriminative representations, cross-attention in Siamese DETR places more focus on
the objects in the proposals. These qualitative results verify the transferability of Siamese DETR in
downstream tasks. More visualizations are provided in Appendix [C.2]

5 CONCLUSION AND LIMITATIONS

In this paper, we propose Siamese DETR, a novel self-supervised pretraining method for DETR.
With two newly-designed pretext tasks, we directly locate the query regions in a cross-view manner
and maximize multi-view semantic consistency, learning localization and discrimination representa-
tions transfer to downstream detection tasks. Siamese DETR achieves better performance with three
DETR variants in COCO and PASCAL VOC benchmark against its counterpart. Despite the great
potential for pretraining DETR, Siamese DETR has a limitation in that it still relies on a pre-trained
CNN, e.g., SWAYV, without integrating CNN and Transformer into a unified pretraining paradigm. In
our future work, a more efficient schedule for the end-to-end DETR pretraining is desirable.
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A MORE DETAILS OF DETR

A.1 MULTI-HEAD ATTENTION

Single-head Attention (SHA) . We start with the attention mechanism with single head. Given the
key-value sequence x,, query sequence x,, and parameters of the attention head 8 = {0,,, 0, 6,},
we can compute so-called query g, key k, and value v embeddings:

q=f(xqg+ ¢q;04):k = f(@po + Pp; 01);v = f(Xro; 00), (14)

where ¢, is the positional embedding for the key-value sequences, and ¢, is the positional em-
bedding for the query sequences. And the attention outputs ¢ are computed by the aggregation of
weighted values:

q = SHA(q, k,v;0) = Zaid%7 (15)
J

where the attention weights is based on softmax of scaled dot products between i-th query and j-th
key:

T
ikj

Vdy,

), (16)

Qg5 = Softmax(

where dj, is a scaling factor.

Multi-head Attention (MHAZ) . Through concatenating N single-head attentions followed by a pro-
jection parameterized by Oy, we can compute the multi-head attention:
q= MHA(‘L k,v;0q. N, OMHA)
(I7)
= f([SHA(ch,’v;HO),...,SHA(q,k,v;GN)];BMHA).

Note that the output g is the same size as the input query sequences .

A.2 BIPARTITE MATCHING

Following Carion et al.|(2020); Dai et al.[(2021)), we apply the Hungarian algorithm |[Kuhn| (1955) to
match the V predictions 7 with the ground truth y. The matching loss H is defined as:

N
H(y,y) = Z [* no log k5 iy + 11i=1} Loz (b, ba(i))], (18)

i=1
where k is the binary classification indicating whether each query is matched (k; = 1) or not

(k; = 0), Lpoy 1s a combination of generalized IoU loss |[Rezatofighi et al.| (2019) and ¢; loss, and
o(7) is the index of prediction that matching with i-th ground truth optimally. The coefficients of
binary classification 7, generalized IoU loss 71, and ¢; loss 7y in Equation aresetto 1,2, 5
following Carion et al.| (2020), respectively.

B MORE ABLATIONS

Hyper-parameters. We follow [Carion et al.|(2020) to set loss weight of L;,. (A2, see Equation 13)
to 1.0 in all setups and further ablate the Ag and A\; using Conditional DETR on COCO. Figu
illustrates the sensitivity of Ao and A;. It suggests that the transfer performance is robust to Ay and
A1 variation. To yield the best performance, we set A\g, A1 to 3, 10 on ImageNet, and Ay, A\; to 0.3,
3 on COCO. For other novel datasets, a simple selection (e.g., A\; = 1.0, A, = 1.0) will be okay.

Downstream initialization. To investigate the downstream initialization of Siamese DETR, we
pretrain the Vanilla DETR on ImageNet and only finetune the box prediction and classifier head
on PASCAL VOC while keeping the parameters of pretrained CNN backbone, encoder and decoder
fixed. We report average recall with detecting top K objects, denoted as AR@ K. As shown in Table
[l Siamese DETR outperforms UP-DETR by a significant margin of 2.9/5.1/6.7 AR with detecting
top 1/10/100 object(s), respectively. It suggests Siamese DETR provides a better initialization in
downstream tasks than UP-DETR due to its localization and discrimination prior.

12
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Table 6: Memory cost and iteration time. *Notice that Siamese DETR and UP-DETR are imple-
mented using MMSelfSup, and DETReg are implemented using released repository. Several hooks
in MMSelfSup may slow down the iteration time, therefore the iteration time of DETReg is for
reference only.

Method GPU Mem. | Iteration time
Siamese DETR 8428 MB 0.8018 s/it
UP-DETR 8199 MB 0.7524 s/it
DETReg* 10528 MB 0.5028 s/it

fo=3 Rl Table 5: Ablations on downstream initialization.
58 [ 58 We initialize the Vanilla DETR using models pre-
& 57 ss| | trained by Siamese DETR and UP-DETR without
56 56 finetining. We report average recall with detecting
55 55 top K objects, denoted as AR@ K.
0.1 0.3 1.0 3.0 5.0 10.0 1.0 3.0 5.0 10.0
M Ao Method | AR@1 | AR@10 | AR@100
random 0.0 0.1 0.5
Figure 7: Sensitivity of Hyper-parameters in ~ UP-DETR 9.5 17.9 24.0
Siamese DETR. ours 12.4 23.0 30.7

Data Efficiency. To verify the data efficiency of Siamese DETR, we consider the transfer perfor-
mance on the limited amount of downstream datasets. Specifically, we pretrain Conditional DETR
on ImageNet and finetune it on 10%/30%/50%/70% PASCAL VOC datasets. All these splits are se-
lected randomly. As shown in Figure[8] Siamese DETR can achieve a similar (49.3 AP) performance
with from scratch model (49.9) using only 30% of datasets. Moreover, Siamese DETR outperforms
UP-DETR by a large margin in all splits.

Memory Cost and Iteration Time. The parameters in Siamese DETR are all shared, therefore it
only has a slight increase on GPU memory. Besides, performing multi-view learning and adding
crop-level features does not bring too much time cost. We provided a quantitive results in Table[§]

C MORE VISUALIZATION

C.1 CONVERGENCE

Figure[9]and Figure[I0illustrate the convergence curves of models finetuned on COCO and PASCAL
VOC, respectively. The model initialized by Siamese DETR converges faster and outperforms its
counterparts by significant margins in all setups.

C.2 MORE QUALITATIVE RESULTS

We also provide more qualitative results of box predictions and corresponding attention maps when
initializing the downstream model using Siamese DETR, UP-DETR, and DETReg without finetun-
ing in Figure [T} The visualization results verify better transferability of Siamese DETR against its
counterpart.

13
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Figure 8: Data efficiency of Siamese DETR. We finetune Siamese DETR and UP-DETR using
10%/30%/50%/70% PASCAL VOC datasets.
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Figure 9: Illustration of convergence curves when finetuned on COCO.
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Figure 10: Illustration of convergence curves when finetuned on PASCAL VOC.
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Figure 11: More visualization on box predictions and attention maps when initializing the down-
stream models using Siamese DETR, UP-DETR and DETReg without finetuning.
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