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Abstract

Large language models have been criticized
for their limited ability to reason about affor-
dances - the actions that can be performed on
an object. It has been argued that to accom-
plish this, models need some form of ground-
ing, i.e., connection, to objects and how they
interact in the physical world. Inspired by
the way humans learn about the world through
interaction, we develop an approach to learn-
ing physical properties directly. We introduce
a dataset of 200k object interactions in a 3D
virtual environment and a self-supervised pre-
training objective for learning representations
of these objects. We show with probing and
clustering experiments that even in the zero-
shot setting, derived models learn robust rep-
resentations of objects and their affordances in
an unsupervised manner. Our model outper-
forms pretrained language and vision models
on an affordance prediction baseline, suggest-
ing that pretraining on observed interactions
encodes grounded information that is not read-
ily learned in conventional text or vision mod-
els.

1 Introduction

Although representations learned from large lan-
guage models have proven useful on many lan-
guage understanding evaluations (Raffel et al.,
2019), (Brown et al., 2020), it is unclear how much,
even basic, physical commonsense is captured by
language model pretraining. Humans can rely on
rich background information on how the world
works when reasoning with language. In part, this
background knowledge is supplied in the form of
affordances, representations of the actions that are
applicable to objects. An understanding of affor-
dances endows humans with the ability to reason
about novel situations and objects using language.
Though language models learn from text statistics
and can learn to associate high-frequency noun-
verb pairs with objects and their affordances (Fulda

Figure 1: Example of an interaction in our dataset. The
model predicts the position of the soccer ball at future
timesteps. To do that, it must encode some knowledge
that soccer balls bounce and roll. As input, our
model takes the eight 3D points illustrated as the cor-
ners of the box surrounding the ball, as well as the cen-
ter point.

et al., 2017), they struggle with basic relationships
if they are not explicitly manifested in written lan-
guage. Further, they struggle to infer the proper-
ties that explain why objects afford those actions
(Forbes et al., 2019), thus limiting their ability to
generalize to novel words and situations. For ex-
ample, when tested in a zero-shot setting, large lan-
guage models can not accurately predict if a com-
mon object can afford simple actions like rolling or
bouncing (Aroca-Ouellette et al., 2021), a task that
is trivially solved by humans. A proposed solution
to contend with this gap is through grounded lan-
guage learning (Bender and Koller, 2020; Merrill
et al., 2021; Bisk et al., 2020), but there is little
evidence that text and vision pretraining, a com-
mon approach, improves language representations
in general (Yun et al., 2021).

In this work, we address this gap. Inspired by
the way in which infants learn about objects by
touching, lifting, dropping or throwing them and
observing their subsequent behavior, we attempt
to teach a model via interaction with objects in
a 3D virtual environment. This way, our model
directly learns what aspects of an object imply cer-
tain affordances, such as the roundness of an object



might imply its roll-ability. We use a set of ob-
jects and their affordances—that is, the actions that
can be performed on an object (e.g., a ball affords
rolling)—to evaluate how well our model captures
physical concepts.

In order to do this, we train a transformer to
predict an object’s motion after applying physi-
cal forces to it. We demonstrate through probing
and clustering experiments that the intermediate
representations from our model encode human-
interpretable affordance categories, even in a zero-
shot setting on unseen object types. Importantly,
our model is able to learn these concepts simply
from learning to predict how objects will behave
in a 3D physics simulation. We finally show that
the learned object representations contain critically
richer information than what is encoded in large
pretrained text and vision models, outperforming
both on an affordance prediction task. This paper
provides evidence that interaction-based pretrain-
ing improves upon language and image represen-
tations’ ability to encode physical commonsense
knowledge and lays the groundwork for incorporat-
ing this knowledge into pretrained text embeddings.
In summary, the main contributions of this paper
are as follows:

1. We introduce a novel pretraining objective for
learning affordance concepts in an unsuper-
vised manner.

2. We release a dataset of 200k simulated object
interactions and their motions through space. '

3. We demonstrate shortcomings of text and vi-
sion representations in encoding affordance
information and show that interaction pretrain-
ing outperforms both in an affordance predic-
tion task

2 Related Work
2.1 Affordances

Past research on affordances generally frames the
objective as learning which actions an object al-
lows in a specified situational context. However,
these works rely on curated datasets with explicit
affordance labels for each object (Chao et al., 2015;
Do et al., 2018). Sometimes, affordance datasets
leverage multimodal settings such as images (My-
ers et al., 2015), or 3D models and environments
(Mandikal and Grauman, 2021; Nagarajan and
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Grauman, 2020), but require annotations for ev-
ery object. Different from this line of work, our
approach learns affordances in an unsupervised
manner, and unlike Fulda et al. (2017), which ex-
tracts an affordance structure from word embed-
dings alone, our model learns from interacting with
objects in a 3D space, grounding its representa-
tions to cause-and-effect pairs of physical forces
and object motion.

2.2 Intuitive Physics

There has been success in building neural mod-
els that are able to predict object motion and dy-
namics in virtual worlds. Many recent works train
networks that model complex collisions between
multiple objects (Byravan and Fox, 2017), Weng
et al. (2006), as well as deformable object colli-
sions (Mrowca et al., 2018). Oftentimes, these
approaches involve interaction with a 2D or 3D
world (Fragkiadaki et al., 2016), (Battaglia et al.,
2016). These works inform our approach, how-
ever, our goal differs in that we examine how to
optimally learn concepts of object affordances to
support language learning.

2.3 Physical Commonsense Reasoning

There is doubt that language representations encode
robust commonsense reasoning knowledge (Bisk
et al., 2019). An analysis of the representation con-
tents of these models shows that only explicitly
manifested and documented associations are reli-
ably learned (Forbes et al., 2019). Explicit attempts
at grounding to the physical world use multimodal
models (Hahn et al., 2019), connecting language to
videos. Such spatio-temporal features are limited
to the 2D information provided by pixels, and do
not offer the same degree of granularity attained
by our approach. Nguyen et al. (2020) relate im-
ages of objects to language queries describing their
uses. Large datasets such as Krishna et al. (2016),
Yatskar et al. (2016), and Gupta and Malik (2015)
require in-depth human provided annotations that
provides a limited list of semantic roles of objects.
Additionally, Yun et al. (2021) finds no evidence
that text and vision pretraining offers any boost
to lexical semantic understanding, and it has been
shown that learning through interaction can outper-
form purely visually grounded models (Thomason
et al., 2016).

In an effort similar to ours, Zellers et al. (2021),
aim to ground language to interactions with objects
based on events in a simulated environment using a



neurosymbolic architecture. Unlike our work, the
model requires a symbolic vocabulary of object
properties and actions that occur in the interactions.
Our approach requires no such knowledge injec-
tion and instead directly learns from the raw inter-
actions themselves. Like Nagarajan and Grauman
(2020), which uses the same simulation environ-
ment, the model trained is not directly grounded
to the physical phenomena that occur during these
actions. In this paper, we focus on unsupervised
interaction with objects in the simulated world and
show that our model coincidentally learns physical
commonsense concepts important for understand-
ing language.

3 Dataset

Instead of modeling objects using visual data, we
take inspiration from the way children explore ob-
jects by interacting with them. The intuition is
that from frequent observation of an object’s re-
action to physical impulses (the analagous equiva-
lent of pushing, throwing, or dropping the object)
we can infer which actions the object affords, and
thereby learn robust representations of those ob-
jects. Learning affordances is a difficult task that
requires knowledge of highly nuanced properties
that are often independent of the visual appearance
of an object. A can of soup affords rolling, but only
when it lies on its side. Rarely, if ever, will we use
language to express this concept; humans supply
it from experience. Collecting a video dataset to
distinguish these differences clearly is too costly
and noisy, and only provides 2D pixel data. To
overcome these limitations, we gather a dataset of
200k simulations of forces exerted on objects in
the Unity 3D game engine’. Unity uses a realis-
tic physics simulation, which allows us to emulate
interactions with models of objects that a human
could have in the real world.

3.1 Environment and Data Collection

Data is collected in a flat empty room using the
Unity physics engine on a collection of 39 realistic
objects collected from the Unity Asset Store (See
Appendix A). These objects were chosen based on
the availability of affordance labels (see Section
3.2). For each sequence, an object is instantiated at
rest on the ground. A random impulse force deter-
mined as either a *push’ flat along the ground, or a
’throw’ into the air is exerted on the object. Instead

Zhttps://unity.com/

of collecting flat pixel-level data from the point
of view of a camera, we record the coordinates of
the object in 3D space at a rate of 60 frames per
second. The sequence ends when the object stops
moving or after 4 seconds elapses. We only exert a
single impulse on an object per sequence. Each se-
quence is defined by the coordinates describing the
object’s 3D position in space P = {p1,...,p¢} fort
timesteps. Since we care about capturing the man-
ner in which the object travels and rotates through
space, p; contains 9 distinct 3D points around the
object: 8 corners around an imaginary bounding
box and the center point of that bounding box, as
shown in Figure 1.

3.2 Affordances

If we are told that a dax can roll, is that object
more likely to be round or flat? Such questions re-
quire the understanding of an object’s affordances.
To evaluate the model’s ability to learn affordance
concepts, we use previous work (Aroca-Ouellette
et al., 2021; Chao et al., 2015; Myers et al., 2015)
to assign affordance labels to object classes. The
39 objects we use in our experiments were selected
based on their availability on the Asset Store and
their overlap with the object classes used in these
datasets. Our objects have binary labels for the set
of affordances: A = {roll, slide, stack,
contain, wrap-grasp, bounce}. These
affordances were chosen because of their use
in physical reasoning benchmarks (e.g., Aroca-
Ouellette et al. (2021)), and they can be observed
from single-object interactions alone. Note that
our model never sees these labels during training;
we only use them for evaluation. Wrap—grasp
(wgrasp) refers to the act of wrapping a hand
around an object, and holding it with the palm and
fingers (e.g., afforded by mugs, or long slender ob-
jects). See Appendix A for a breakdown of object
types and their affordances. This set of actions is
well represented in our dataset. We acknowledge
that contain and wgrasp are likely to be par-
ticularly challenging for a model because grasping
presupposes having a hand (which our disembod-
ied agent cannot simulate), and containing can only
be learned indirectly by learning about concavity.

4 Models

We develop a self-supervised pretraining task under
which a model is trained to predict the motion of an
object given a starting sequence of object positions.
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Figure 2: Basic architecture. The model receives coordinates describing an object’s trajectory and predicts the

remainder of the sequence.

Each input to the model consists of one interaction
with a single object, with the goal of predicting
its trajectory. Consider the example in Figure 1,
where a soccer ball that is thrown, moves in an arc,
and is about to hit the ground. When the ball lands,
how high will it bounce? As it settles, will it roll
or slide across the ground? If a model can connect
the visual appearance and movement of objects to
object affordance concepts, it should be able to
infer the positions of the ball in some future states.
We use a transformer architecture (Vaswani et al.,
2017) with embedding size e, (Figure 2). First,
a single linear layer is used to encode our input
coordinates to the dimension of the transformer.
The transformer is then fed the first ¢ — k timesteps
where & > 1. Given some ground truth coordinates
p; our model is trained using a Mean Squared Error
(MSE) loss summed for each of the predicted point

pil:

MSE(P1,P) = (pij! — pi)*> (1)

The model outputs predictions for each timestep
up to t. We also train a variant of the model with
an additional set of input vectors encoding visual
information about the object at rest. We describe
these models in Sections 4.1 and 4.2. In both cases,
the final object representations are obtained from
the transformer encoder output.

4.1 Base Model

Our base model encodes the input sequence P con-
taining the object’s 3D coordinates in virtual space.
Each input token p; is a vector of the position of
the object in 3D space at time step . As described
in Section 3, each position p; contains 9 distinct
points corresponding to the object center and the

eight corners of the rectangular bounding box en-
capsulating the object. Before processing, each p;
is fed into a single feed-forward layer to project it
to the input size of the transformer.

4.2 Multiview Images

The input sequence P contains the object’s position
over time, but does not include any explicit clues
regarding object shape. We therefore also consider
a model in which the agent has information about
what the object looks like and can use these fea-
tures as clues to how an object will behave. We
include this visual information as additional inputs
to the model. We implement this by inputting coor-
dinates P followed by a SEP token and a sequence
of image encodings I of the object’s six faces (an
image taken from each side of the object). We re-
fer to these impressions as the object’s multiview.
Image encodings are bottleneck embeddings from
a pretrained ResNet-34 model (He et al., 2015) and
are frozen for training.

To encourage the model to connect the sequence
and image representations, we randomly (50% of
the time) replace the object in [ with an object
with different affordances and train the model to
classify if the sample was perturbed. We add a
linear binary classification layer on top of a CLS
token to predict c and add the cross entropy loss to
our main objective:

L(P1,P,y) = MSE(P1,P) + CE(c,y) (2)

4.3 Intermediate Representations

The goal of our modeling effort is to obtain in-
termediate object representations that carry distin-
guishing information for affordance prediction. To
create a single representation of a sequence, we
average the encoder outputs. In the base model
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Figure 3: Examples of objects seen during training and an unseen object counterpart, ordered with respect to visual
similarity between the objects in each pair to show the varying degree to which the zero-shot objects differ from
seen objects. Both depicted objects are positively labeled for the corresponding affordance.

we average the encoder output tokens s; to form
s. In the Multiview model case, we only average
the encoder output tokens of the multiview image
tokens v; to form representation muv.

5 Experiments

Our goal is to demonstrate that our trajectory-
prediction pretraining objective captures rich object
affordance information that text and vision repre-
sentations alone do not. In all cases, we examine
encodings in the zero-shot setting to show that our
model generalizes to unseen data. We probe our
intermediate representations for evidence of affor-
dance information (Section 5.1) and illustrate that
our model organizes the latent space into human-
interpretable clusters of affordances (Section 5.3).
Finally, in Section 6 compares performance in affor-
dance prediction of our representations to text and
vision embeddings. All experiments use encodings
of unseen object types U"'Y, unless otherwise spec-
ified. Unseen objects are chosen so that they have
similar affordance labels to seen objects, but vary
in appearance and shape (Figure 3). If the model
learns to generalize about the kinds of shapes of
objects that afford different actions, we would ex-
pect high quality representations regardless of the
shape of a novel object.

5.1 Probing for Affordances

We use probing classifiers (Veldhoen et al., 2016;
Adietal.,2017; Conneau et al., 2018; Hupkes et al.,
2018; Hewitt and Manning, 2019) to measure the
extent to which the intermediate representations
of our model encode the desired affordance infor-
mation. We freeze the weights of our pretrained

F1 of Affordance Probes for Base and Multiview Models
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Figure 4: Including images of the object generally im-
proves probe classification performance, especially in
the case of wgrasp and contain.

models and feed the intermediate representation
for a given input from the encoder into a single-
linear-layer network trained to classify whether the
object in the sequence affords a certain action. We
train a separate classifier probe for each of the six
affordance classes on inputs from unseen object
types only. As shown in Table 1, our multiview
model is able to infer affordance information from
intermediate representations with an accuracy that
significantly exceeds random chance.

For example, the model is able to classify
whether an object slides based on its intermedi-
ate representation 74% of the time, which is 21
percentage points above chance (53% of the ob-
jects afford rolling over sliding). The model has
the highest accuracy predicting sliding and rolling
behavior, and the worst predicting containing and
wgrasping. It makes sense for the model to cap-
ture this distinction because in essentially every




Affordance | Majority (%) | Accuracy (%) | Precision | Recall | F1
Slide 52.9 74.4 0.73 0.82 | 0.77
Roll 64.8 78.9 0.82 0.86 | 0.84
Stack 64.8 78.5 0.72 0.64 | 0.67
Contain 76.4 77.84 0.55 0.19 | 0.29
W-Grasp 58.8 72.98 0.70 0.59 | 0.64
Bounce 82.2 89.2 0.71 0.69 | 0.70

Table 1: Probe classifier performance for representations of objects extracted from the Multiview Model.
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Figure 5: t-SNE projections of model representations. The left panel shows the separation between rolling and
sliding across all sequences and objects. The right panel portrays a subset of objects that afford rolling and sliding.
Objects that afford both populate the center area between the single-affordance encodings.

sequence, the object either slides or rolls along the
ground. contain and wgrasp are the opposite
in the sense that they are never directly observed in
our setting. Containing is only weakly connected
to shape, and our dataset would need to have se-
quences with multiple objects in order to observe a
containing action.Wgrasp, can never be observed
because our disembodied agent has no hands.

5.2 The Effect of Visual Information

The basic version of our model relies exclusively
on location traces. We find that, overall, the re-
sults improve when we include visual information
from the multiview object images, especially in the
case of contain and w—grasp, which require
some reasoning about shape or multiple object in-
teractions. Our results are shown in Figure 4 and
indicate that the biggest improvements stem from
those two cases. These findings are promising for
the argument that grounding to different domains
provides a more complete “understanding” of ob-
jects.

5.3 Qualitative Analysis

We analyze how the representations of the motion
sequences cluster. If our model is learning intuitive
concepts of affordances, we expect different se-

quences of actions to form distinct clusters. Based
on a t-SNE projection of the sequence representa-
tions in U295¢, we find that the most salient pat-
tern the model encodes is the distinction between
rolling and sliding, with the model generally group-
ing sequence representations into one of these two
groups. Interestingly, objects that afford both slid-
ing and rolling (e.g., a can slides when upright,
but rolls on its side) have representations that span
both groups, as shown in Figure 5. Because nearly
every sequence includes an object sliding or rolling
along the ground at some point, we believe this is
the most fundamental characteristic for the model
to encode in order to predict the withheld frames.

6 Comparison to Language and Vision
Representations

Statistical language models struggle to encode af-
fordance information from text alone (Forbes et al.,
2019), making it difficult to reason about physical
properties of objects. We show interaction pretrain-
ing, however, consistently encodes this knowledge
into representations of unseen object types. Addi-
tionally, we compare to encodings from pretrained
vision models (He et al., 2015) to demonstrate that
the choice of grounding domain matters. Although
each model operates on different types of input,
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Figure 6: For the text setting of our affordance predic-
tion task, we find sentences from the Wikitext corpus
that mention object types from our dataset and use only
the contextualized embeddings of those objects as in-
puts to our model.

this comparison shows how well each modality
encodes affordances. We find that our model’s rep-
resentations outperform both text and vision base-
lines, which are derived from much larger models.
Our results indicate that in general, representations
from language modeling and image classification
pretraining do not encode affordance information
as richly as interaction pretraining.

6.1 Data

To test our claim that interaction pretraining en-
codes more robust object affordance information,
we first need datasets for each modality containing
representations of each object type in our interac-
tion environment.

Text Data We collect sentences from the
Wikitext-103 corpus (Merity et al., 2017) that men-
tion an object from our dataset. We reduce our set
of objects into a set of 18 common labels that accu-
rately describe each class of object. For example,
Bottlel and Bottle2 both map to bottle
so that we can find mentions in the corpus. We
run each sentence through a pretrained BERT-base
model (Devlin et al., 2019) and average the con-
textualized word embeddings for each WordPiece
token that corresponds to a mention of the object of
interest (see Figure 6). In total, we collect 38,969
sentences for an average of 2,165 sentences per
object.

Vision Data To keep the information in the vi-
sual domain consistent with that of our trained
model, we use images of the objects from the Unity
environment as our vision data. Images of objects
are taken at random angles and positions in the
environment. In all cases, the objects are in the

center of the frame. We preprocess the images in
the same way as for the multiview images, but with
the addition of RandAugment (Cubuk et al., 2019)
to add more variation to the training data. We run
these images through Resnet-34, and extract 512-
dimensional encodings from the penultimate layer.

Interaction Data To test the model’s capacity
for generalization to object types that were never
encountered during training, we use U/'Y, the un-

seen object encodings in the Multiview model as
our interaction inputs.

6.2 Affordance Prediction Model

Similar to our probing experiments, we want to
determine if encodings of objects contain physical
affordance information. However, we change the
task slightly to account for the inherent fuzziness
of labeling objects for affordances. Although a
coin could roll if thrown at exactly the right an-
gle, it is much more likely for a soccer ball to roll.
To account for this, we adjust the task to express
preference between encodings of two different ob-
jects, indicating which one is more likely to afford
an action. For each modality m €{text, vision,
interaction} and each affordance a € A we sam-
ple from the pretrained model corresponding to m
one encoding that is positively labeled for a and
one which is negatively labeled. We train a simple
multilayer perceptron f" to output a likelihood of
affording the action Each model is trained using
a margin ranking loss (Equation 3) with margin
m = .25 to rank the positive example higher than
the negative one.

L(z1,22,y) = max(0, —y* (z1—22)+m) (3)

We believe this is a fairer evaluation of the data
points that we have for the text and vision compo-
nents, and allows us to train on more combinations
of examples.

6.3 Text and Vision Baseline Results

We find that grounding to object interactions al-
lows a model to encode intuitive affordance infor-
mation much more saliently than models that are
trained without this kind of grounding. The net-
works trained on the interaction data, as encoded
by the Multiview model, attain the highest accu-
racy on the majority of affordances, determined by
the number of positive-negative pairs the model
ranked correctly. Our results in Table 2 show that
this performance difference is considerable. We



Model Slide | Roll | Stack | Contain | W-Grasp | Bounce
Text 43.0 | 245 | 743 63.4 86.6 57.0
Vision 57.1 | 73.3 | 68.5 68.3 65.4 74.3
Interaction (ours) 76.1 | 77.5 | 78.0 51.6 60.3 85.5
<Text, Vision> 70.1 | 48.7 | 79.1 66.0 76.7 72.2
<Text, Inter.> 709 | 47.3 | 652 56.7 80.8 79.6
<Text, Vision, Inter.> | 70.7 | 53.1 | 80.6 69.5 66.3 75.2

Table 2: Accuracy for each affordance prediction model for each modality. Interaction based object representations
perform best in all cases except for those affordances for which our model had the weakest signal to learn from.
Concatenation of vectors from multiple modalities shows improvement in some cases.
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Figure 7: The affordance prediction model picks be-
tween two objects which is more likely to afford an
action (in this case, s1ide). Text representations are
highly inconsistent and performance depends on the ob-
ject pair.

find that the biggest gains are in the s1ide, roll,
and bounce actions. Direct observation of these
actions is inherently missing from vision and text
pretraining, but are clearly apparent in object trajec-
tories. As evidenced by previous experiments, our
pretraining setup does not have positive inductive
bias for learning what “containing” or “grasping”
are, and subsequently yields poor performance for
these affordances.

We tend to see a much larger variance in perfor-
mance in the purely text-based model, depending
on the object pair used. As an example, let us
inspect interaction and text models on s1ide pre-
diction, when pairing vase negatives to various
positive object types. We can observe that text
representations do not consistently encode affor-
dance information, while interaction pretraining is
robust to all unseen object types. Our results are
shown in Figure 7. Even though the BERT model
has seen these words before, its contextualized text
embeddings are either only encoding affordance

information some of the time, or not encoding af-
fordance information at all and relying on learning
some heuristic difference between the two objects.
Contrasting this, our model yields much more con-
sistent high-performing results even though the ob-
jects are outside of the training distribution.

The knowledge encoded during interaction pre-
training has the potential to improve physical rea-
soning in existing pretrained language models. Mo-
tivated by this possibility, we explore concatenating
text embeddings (768d) with our interaction rep-
resentations (100d) and retrain the models. We
compare these results with text concatenated with
vision representations (512d) as well as all three
together as shown in Table 2. Although pure in-
teraction models perform the best overall, we see
some improvements in the stack and contain
affordances. More work is needed in how to effec-
tively combine these sources of knowledge.

7 Conclusion

This paper proposes an interaction-based self-
supervised pretraining scheme for learning object
trajectories from observations of interactions in a
3D virtual environment. We show that object affor-
dance information can be encoded in the interme-
diate representations of our model more robustly
than in those from models pretrained for either
language modeling or image classification. Our
model differs from those of previous works in that
it learns rich representations from raw interactions,
allowing it to generalize to unseen object types
while requiring very little preprocessing and no hu-
man annotation. The effectiveness of this approach
encourages future follow-up research into the op-
timal integration of interaction-based pretraining
into language models to improve physical reason-
ing performance in downstream applications.
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Figure 8: The affordance prediction architecture for comparing interaction pretraining with vision and text repre-
sentations. For each modality m (e.g., vision) and each affordance a (e.g., rol1) we train a network that learns to
predict which of two objects is more likely to afford a. Each sample is some representation of an object that either
does or does not afford a.
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Object

Slide

Roll

Stack

Contain

W-Grasp

Bounce

BombBall
EyeBall
SpikeBall
Vase_Amphora
Vase_Hydria
Vase_VoluteKrater
book _0001a
book_0001b
book_0001c
bowl01
cardboardBox_01
cardboardBox_02
cardboardBox_03
Cola Can
Pen black
Gas Bottle
Soccer Ball
can small
can
meat can box
spam can
AtomBall
Bottle2
plate02
plate02_flat
Bottlel
WheelBall
wine bottle 04
coin
BuckyBall
SplitMetalBall
bowl02
bowl03
mug02
mug03
Old_USSR_Lamp_01
lamp
Ladle
Apple

Table 3: All objects in the dataset and their associated affordances

COCCOCLC«

AN COCK

<

COCCCLCK

COCCCK < COCCCK

AN

COCC KK

v’

v’

AN COCK COCCCCLCK

AN
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<

COCK

AN

< C KX

<

<

COCCK

v’
v’

AN



Affordance | Number of Objects
Slide 22
Roll 23
Stack 17
Contain 8
Wrap-grasp 13
Bounce 7

Table 4: Each affordance we are interested in learning
and the number of objects out of the 39 have a positive
label for that affordance.
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