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Abstract

Large language models have been criticized001
for their limited ability to reason about affor-002
dances - the actions that can be performed on003
an object. It has been argued that to accom-004
plish this, models need some form of ground-005
ing, i.e., connection, to objects and how they006
interact in the physical world. Inspired by007
the way humans learn about the world through008
interaction, we develop an approach to learn-009
ing physical properties directly. We introduce010
a dataset of 200k object interactions in a 3D011
virtual environment and a self-supervised pre-012
training objective for learning representations013
of these objects. We show with probing and014
clustering experiments that even in the zero-015
shot setting, derived models learn robust rep-016
resentations of objects and their affordances in017
an unsupervised manner. Our model outper-018
forms pretrained language and vision models019
on an affordance prediction baseline, suggest-020
ing that pretraining on observed interactions021
encodes grounded information that is not read-022
ily learned in conventional text or vision mod-023
els.024

1 Introduction025

Although representations learned from large lan-026

guage models have proven useful on many lan-027

guage understanding evaluations (Raffel et al.,028

2019), (Brown et al., 2020), it is unclear how much,029

even basic, physical commonsense is captured by030

language model pretraining. Humans can rely on031

rich background information on how the world032

works when reasoning with language. In part, this033

background knowledge is supplied in the form of034

affordances, representations of the actions that are035

applicable to objects. An understanding of affor-036

dances endows humans with the ability to reason037

about novel situations and objects using language.038

Though language models learn from text statistics039

and can learn to associate high-frequency noun-040

verb pairs with objects and their affordances (Fulda041

Figure 1: Example of an interaction in our dataset. The
model predicts the position of the soccer ball at future
timesteps. To do that, it must encode some knowledge
that soccer balls bounce and roll. As input, our
model takes the eight 3D points illustrated as the cor-
ners of the box surrounding the ball, as well as the cen-
ter point.

et al., 2017), they struggle with basic relationships 042

if they are not explicitly manifested in written lan- 043

guage. Further, they struggle to infer the proper- 044

ties that explain why objects afford those actions 045

(Forbes et al., 2019), thus limiting their ability to 046

generalize to novel words and situations. For ex- 047

ample, when tested in a zero-shot setting, large lan- 048

guage models can not accurately predict if a com- 049

mon object can afford simple actions like rolling or 050

bouncing (Aroca-Ouellette et al., 2021), a task that 051

is trivially solved by humans. A proposed solution 052

to contend with this gap is through grounded lan- 053

guage learning (Bender and Koller, 2020; Merrill 054

et al., 2021; Bisk et al., 2020), but there is little 055

evidence that text and vision pretraining, a com- 056

mon approach, improves language representations 057

in general (Yun et al., 2021). 058

In this work, we address this gap. Inspired by 059

the way in which infants learn about objects by 060

touching, lifting, dropping or throwing them and 061

observing their subsequent behavior, we attempt 062

to teach a model via interaction with objects in 063

a 3D virtual environment. This way, our model 064

directly learns what aspects of an object imply cer- 065

tain affordances, such as the roundness of an object 066
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might imply its roll-ability. We use a set of ob-067

jects and their affordances—that is, the actions that068

can be performed on an object (e.g., a ball affords069

rolling)—to evaluate how well our model captures070

physical concepts.071

In order to do this, we train a transformer to072

predict an object’s motion after applying physi-073

cal forces to it. We demonstrate through probing074

and clustering experiments that the intermediate075

representations from our model encode human-076

interpretable affordance categories, even in a zero-077

shot setting on unseen object types. Importantly,078

our model is able to learn these concepts simply079

from learning to predict how objects will behave080

in a 3D physics simulation. We finally show that081

the learned object representations contain critically082

richer information than what is encoded in large083

pretrained text and vision models, outperforming084

both on an affordance prediction task. This paper085

provides evidence that interaction-based pretrain-086

ing improves upon language and image represen-087

tations’ ability to encode physical commonsense088

knowledge and lays the groundwork for incorporat-089

ing this knowledge into pretrained text embeddings.090

In summary, the main contributions of this paper091

are as follows:092

1. We introduce a novel pretraining objective for093

learning affordance concepts in an unsuper-094

vised manner.095

2. We release a dataset of 200k simulated object096

interactions and their motions through space.1097

3. We demonstrate shortcomings of text and vi-098

sion representations in encoding affordance099

information and show that interaction pretrain-100

ing outperforms both in an affordance predic-101

tion task102

2 Related Work103

2.1 Affordances104

Past research on affordances generally frames the105

objective as learning which actions an object al-106

lows in a specified situational context. However,107

these works rely on curated datasets with explicit108

affordance labels for each object (Chao et al., 2015;109

Do et al., 2018). Sometimes, affordance datasets110

leverage multimodal settings such as images (My-111

ers et al., 2015), or 3D models and environments112

(Mandikal and Grauman, 2021; Nagarajan and113

1https://drive.google.com/drive/folders/<anonymized>

Grauman, 2020), but require annotations for ev- 114

ery object. Different from this line of work, our 115

approach learns affordances in an unsupervised 116

manner, and unlike Fulda et al. (2017), which ex- 117

tracts an affordance structure from word embed- 118

dings alone, our model learns from interacting with 119

objects in a 3D space, grounding its representa- 120

tions to cause-and-effect pairs of physical forces 121

and object motion. 122

2.2 Intuitive Physics 123

There has been success in building neural mod- 124

els that are able to predict object motion and dy- 125

namics in virtual worlds. Many recent works train 126

networks that model complex collisions between 127

multiple objects (Byravan and Fox, 2017), Weng 128

et al. (2006), as well as deformable object colli- 129

sions (Mrowca et al., 2018). Oftentimes, these 130

approaches involve interaction with a 2D or 3D 131

world (Fragkiadaki et al., 2016), (Battaglia et al., 132

2016). These works inform our approach, how- 133

ever, our goal differs in that we examine how to 134

optimally learn concepts of object affordances to 135

support language learning. 136

2.3 Physical Commonsense Reasoning 137

There is doubt that language representations encode 138

robust commonsense reasoning knowledge (Bisk 139

et al., 2019). An analysis of the representation con- 140

tents of these models shows that only explicitly 141

manifested and documented associations are reli- 142

ably learned (Forbes et al., 2019). Explicit attempts 143

at grounding to the physical world use multimodal 144

models (Hahn et al., 2019), connecting language to 145

videos. Such spatio-temporal features are limited 146

to the 2D information provided by pixels, and do 147

not offer the same degree of granularity attained 148

by our approach. Nguyen et al. (2020) relate im- 149

ages of objects to language queries describing their 150

uses. Large datasets such as Krishna et al. (2016), 151

Yatskar et al. (2016), and Gupta and Malik (2015) 152

require in-depth human provided annotations that 153

provides a limited list of semantic roles of objects. 154

Additionally, Yun et al. (2021) finds no evidence 155

that text and vision pretraining offers any boost 156

to lexical semantic understanding, and it has been 157

shown that learning through interaction can outper- 158

form purely visually grounded models (Thomason 159

et al., 2016). 160

In an effort similar to ours, Zellers et al. (2021), 161

aim to ground language to interactions with objects 162

based on events in a simulated environment using a 163
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neurosymbolic architecture. Unlike our work, the164

model requires a symbolic vocabulary of object165

properties and actions that occur in the interactions.166

Our approach requires no such knowledge injec-167

tion and instead directly learns from the raw inter-168

actions themselves. Like Nagarajan and Grauman169

(2020), which uses the same simulation environ-170

ment, the model trained is not directly grounded171

to the physical phenomena that occur during these172

actions. In this paper, we focus on unsupervised173

interaction with objects in the simulated world and174

show that our model coincidentally learns physical175

commonsense concepts important for understand-176

ing language.177

3 Dataset178

Instead of modeling objects using visual data, we179

take inspiration from the way children explore ob-180

jects by interacting with them. The intuition is181

that from frequent observation of an object’s re-182

action to physical impulses (the analagous equiva-183

lent of pushing, throwing, or dropping the object)184

we can infer which actions the object affords, and185

thereby learn robust representations of those ob-186

jects. Learning affordances is a difficult task that187

requires knowledge of highly nuanced properties188

that are often independent of the visual appearance189

of an object. A can of soup affords rolling, but only190

when it lies on its side. Rarely, if ever, will we use191

language to express this concept; humans supply192

it from experience. Collecting a video dataset to193

distinguish these differences clearly is too costly194

and noisy, and only provides 2D pixel data. To195

overcome these limitations, we gather a dataset of196

200k simulations of forces exerted on objects in197

the Unity 3D game engine2. Unity uses a realis-198

tic physics simulation, which allows us to emulate199

interactions with models of objects that a human200

could have in the real world.201

3.1 Environment and Data Collection202

Data is collected in a flat empty room using the203

Unity physics engine on a collection of 39 realistic204

objects collected from the Unity Asset Store (See205

Appendix A). These objects were chosen based on206

the availability of affordance labels (see Section207

3.2). For each sequence, an object is instantiated at208

rest on the ground. A random impulse force deter-209

mined as either a ’push’ flat along the ground, or a210

’throw’ into the air is exerted on the object. Instead211

2https://unity.com/

of collecting flat pixel-level data from the point 212

of view of a camera, we record the coordinates of 213

the object in 3D space at a rate of 60 frames per 214

second. The sequence ends when the object stops 215

moving or after 4 seconds elapses. We only exert a 216

single impulse on an object per sequence. Each se- 217

quence is defined by the coordinates describing the 218

object’s 3D position in space P = {p1, ..., pt} for t 219

timesteps. Since we care about capturing the man- 220

ner in which the object travels and rotates through 221

space, pi contains 9 distinct 3D points around the 222

object: 8 corners around an imaginary bounding 223

box and the center point of that bounding box, as 224

shown in Figure 1. 225

3.2 Affordances 226

If we are told that a dax can roll, is that object 227

more likely to be round or flat? Such questions re- 228

quire the understanding of an object’s affordances. 229

To evaluate the model’s ability to learn affordance 230

concepts, we use previous work (Aroca-Ouellette 231

et al., 2021; Chao et al., 2015; Myers et al., 2015) 232

to assign affordance labels to object classes. The 233

39 objects we use in our experiments were selected 234

based on their availability on the Asset Store and 235

their overlap with the object classes used in these 236

datasets. Our objects have binary labels for the set 237

of affordances: A = {roll, slide, stack, 238

contain, wrap-grasp, bounce}. These 239

affordances were chosen because of their use 240

in physical reasoning benchmarks (e.g., Aroca- 241

Ouellette et al. (2021)), and they can be observed 242

from single-object interactions alone. Note that 243

our model never sees these labels during training; 244

we only use them for evaluation. Wrap-grasp 245

(wgrasp) refers to the act of wrapping a hand 246

around an object, and holding it with the palm and 247

fingers (e.g., afforded by mugs, or long slender ob- 248

jects). See Appendix A for a breakdown of object 249

types and their affordances. This set of actions is 250

well represented in our dataset. We acknowledge 251

that contain and wgrasp are likely to be par- 252

ticularly challenging for a model because grasping 253

presupposes having a hand (which our disembod- 254

ied agent cannot simulate), and containing can only 255

be learned indirectly by learning about concavity. 256

4 Models 257

We develop a self-supervised pretraining task under 258

which a model is trained to predict the motion of an 259

object given a starting sequence of object positions. 260

3



Figure 2: Basic architecture. The model receives coordinates describing an object’s trajectory and predicts the
remainder of the sequence.

Each input to the model consists of one interaction261

with a single object, with the goal of predicting262

its trajectory. Consider the example in Figure 1,263

where a soccer ball that is thrown, moves in an arc,264

and is about to hit the ground. When the ball lands,265

how high will it bounce? As it settles, will it roll266

or slide across the ground? If a model can connect267

the visual appearance and movement of objects to268

object affordance concepts, it should be able to269

infer the positions of the ball in some future states.270

We use a transformer architecture (Vaswani et al.,271

2017) with embedding size ed (Figure 2). First,272

a single linear layer is used to encode our input273

coordinates to the dimension of the transformer.274

The transformer is then fed the first t− k timesteps275

where k ≥ 1. Given some ground truth coordinates276

pi our model is trained using a Mean Squared Error277

(MSE) loss summed for each of the predicted point278

pi′:279

MSE(P ′, P ) =
1

N

N∑
i=1

t∑
j=t−k

(pij ′ − pij)
2 (1)280

The model outputs predictions for each timestep281

up to t. We also train a variant of the model with282

an additional set of input vectors encoding visual283

information about the object at rest. We describe284

these models in Sections 4.1 and 4.2. In both cases,285

the final object representations are obtained from286

the transformer encoder output.287

4.1 Base Model288

Our base model encodes the input sequence P con-289

taining the object’s 3D coordinates in virtual space.290

Each input token pi is a vector of the position of291

the object in 3D space at time step i. As described292

in Section 3, each position pi contains 9 distinct293

points corresponding to the object center and the294

eight corners of the rectangular bounding box en- 295

capsulating the object. Before processing, each pi 296

is fed into a single feed-forward layer to project it 297

to the input size of the transformer. 298

4.2 Multiview Images 299

The input sequence P contains the object’s position 300

over time, but does not include any explicit clues 301

regarding object shape. We therefore also consider 302

a model in which the agent has information about 303

what the object looks like and can use these fea- 304

tures as clues to how an object will behave. We 305

include this visual information as additional inputs 306

to the model. We implement this by inputting coor- 307

dinates P followed by a SEP token and a sequence 308

of image encodings I of the object’s six faces (an 309

image taken from each side of the object). We re- 310

fer to these impressions as the object’s multiview. 311

Image encodings are bottleneck embeddings from 312

a pretrained ResNet-34 model (He et al., 2015) and 313

are frozen for training. 314

To encourage the model to connect the sequence 315

and image representations, we randomly (50% of 316

the time) replace the object in I with an object 317

with different affordances and train the model to 318

classify if the sample was perturbed. We add a 319

linear binary classification layer on top of a CLS 320

token to predict c and add the cross entropy loss to 321

our main objective: 322

L(P ′, P, y) = MSE(P ′, P ) + CE(c, y) (2) 323

3244.3 Intermediate Representations 325

The goal of our modeling effort is to obtain in- 326

termediate object representations that carry distin- 327

guishing information for affordance prediction. To 328

create a single representation of a sequence, we 329

average the encoder outputs. In the base model 330
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Figure 3: Examples of objects seen during training and an unseen object counterpart, ordered with respect to visual
similarity between the objects in each pair to show the varying degree to which the zero-shot objects differ from
seen objects. Both depicted objects are positively labeled for the corresponding affordance.

we average the encoder output tokens si to form331

s. In the Multiview model case, we only average332

the encoder output tokens of the multiview image333

tokens vi to form representation mv.334

335

5 Experiments336

Our goal is to demonstrate that our trajectory-337

prediction pretraining objective captures rich object338

affordance information that text and vision repre-339

sentations alone do not. In all cases, we examine340

encodings in the zero-shot setting to show that our341

model generalizes to unseen data. We probe our342

intermediate representations for evidence of affor-343

dance information (Section 5.1) and illustrate that344

our model organizes the latent space into human-345

interpretable clusters of affordances (Section 5.3).346

Finally, in Section 6 compares performance in affor-347

dance prediction of our representations to text and348

vision embeddings. All experiments use encodings349

of unseen object types Umv
enc , unless otherwise spec-350

ified. Unseen objects are chosen so that they have351

similar affordance labels to seen objects, but vary352

in appearance and shape (Figure 3). If the model353

learns to generalize about the kinds of shapes of354

objects that afford different actions, we would ex-355

pect high quality representations regardless of the356

shape of a novel object.357

5.1 Probing for Affordances358

We use probing classifiers (Veldhoen et al., 2016;359

Adi et al., 2017; Conneau et al., 2018; Hupkes et al.,360

2018; Hewitt and Manning, 2019) to measure the361

extent to which the intermediate representations362

of our model encode the desired affordance infor-363

mation. We freeze the weights of our pretrained364

Figure 4: Including images of the object generally im-
proves probe classification performance, especially in
the case of wgrasp and contain.

models and feed the intermediate representation 365

for a given input from the encoder into a single- 366

linear-layer network trained to classify whether the 367

object in the sequence affords a certain action. We 368

train a separate classifier probe for each of the six 369

affordance classes on inputs from unseen object 370

types only. As shown in Table 1, our multiview 371

model is able to infer affordance information from 372

intermediate representations with an accuracy that 373

significantly exceeds random chance. 374

For example, the model is able to classify 375

whether an object slides based on its intermedi- 376

ate representation 74% of the time, which is 21 377

percentage points above chance (53% of the ob- 378

jects afford rolling over sliding). The model has 379

the highest accuracy predicting sliding and rolling 380

behavior, and the worst predicting containing and 381

wgrasping. It makes sense for the model to cap- 382

ture this distinction because in essentially every 383
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Affordance Majority (%) Accuracy (%) Precision Recall F1
Slide 52.9 74.4 0.73 0.82 0.77
Roll 64.8 78.9 0.82 0.86 0.84
Stack 64.8 78.5 0.72 0.64 0.67

Contain 76.4 77.84 0.55 0.19 0.29
W-Grasp 58.8 72.98 0.70 0.59 0.64
Bounce 82.2 89.2 0.71 0.69 0.70

Table 1: Probe classifier performance for representations of objects extracted from the Multiview Model.

(a) All Sequences that afford either rolling or sliding (b) Subset of sequences of objects that afford only rolling,
only sliding, or both

Figure 5: t-SNE projections of model representations. The left panel shows the separation between rolling and
sliding across all sequences and objects. The right panel portrays a subset of objects that afford rolling and sliding.
Objects that afford both populate the center area between the single-affordance encodings.

sequence, the object either slides or rolls along the384

ground. contain and wgrasp are the opposite385

in the sense that they are never directly observed in386

our setting. Containing is only weakly connected387

to shape, and our dataset would need to have se-388

quences with multiple objects in order to observe a389

containing action.Wgrasp, can never be observed390

because our disembodied agent has no hands.391

5.2 The Effect of Visual Information392

The basic version of our model relies exclusively393

on location traces. We find that, overall, the re-394

sults improve when we include visual information395

from the multiview object images, especially in the396

case of contain and w-grasp, which require397

some reasoning about shape or multiple object in-398

teractions. Our results are shown in Figure 4 and399

indicate that the biggest improvements stem from400

those two cases. These findings are promising for401

the argument that grounding to different domains402

provides a more complete “understanding” of ob-403

jects.404

5.3 Qualitative Analysis405

We analyze how the representations of the motion406

sequences cluster. If our model is learning intuitive407

concepts of affordances, we expect different se-408

quences of actions to form distinct clusters. Based 409

on a t-SNE projection of the sequence representa- 410

tions in U base
enc , we find that the most salient pat- 411

tern the model encodes is the distinction between 412

rolling and sliding, with the model generally group- 413

ing sequence representations into one of these two 414

groups. Interestingly, objects that afford both slid- 415

ing and rolling (e.g., a can slides when upright, 416

but rolls on its side) have representations that span 417

both groups, as shown in Figure 5. Because nearly 418

every sequence includes an object sliding or rolling 419

along the ground at some point, we believe this is 420

the most fundamental characteristic for the model 421

to encode in order to predict the withheld frames. 422

6 Comparison to Language and Vision 423

Representations 424

Statistical language models struggle to encode af- 425

fordance information from text alone (Forbes et al., 426

2019), making it difficult to reason about physical 427

properties of objects. We show interaction pretrain- 428

ing, however, consistently encodes this knowledge 429

into representations of unseen object types. Addi- 430

tionally, we compare to encodings from pretrained 431

vision models (He et al., 2015) to demonstrate that 432

the choice of grounding domain matters. Although 433

each model operates on different types of input, 434
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Figure 6: For the text setting of our affordance predic-
tion task, we find sentences from the Wikitext corpus
that mention object types from our dataset and use only
the contextualized embeddings of those objects as in-
puts to our model.

this comparison shows how well each modality435

encodes affordances. We find that our model’s rep-436

resentations outperform both text and vision base-437

lines, which are derived from much larger models.438

Our results indicate that in general, representations439

from language modeling and image classification440

pretraining do not encode affordance information441

as richly as interaction pretraining.442

6.1 Data443

To test our claim that interaction pretraining en-444

codes more robust object affordance information,445

we first need datasets for each modality containing446

representations of each object type in our interac-447

tion environment.448

Text Data We collect sentences from the449

Wikitext-103 corpus (Merity et al., 2017) that men-450

tion an object from our dataset. We reduce our set451

of objects into a set of 18 common labels that accu-452

rately describe each class of object. For example,453

Bottle1 and Bottle2 both map to bottle454

so that we can find mentions in the corpus. We455

run each sentence through a pretrained BERT-base456

model (Devlin et al., 2019) and average the con-457

textualized word embeddings for each WordPiece458

token that corresponds to a mention of the object of459

interest (see Figure 6). In total, we collect 38,969460

sentences for an average of 2,165 sentences per461

object.462

Vision Data To keep the information in the vi-463

sual domain consistent with that of our trained464

model, we use images of the objects from the Unity465

environment as our vision data. Images of objects466

are taken at random angles and positions in the467

environment. In all cases, the objects are in the468

center of the frame. We preprocess the images in 469

the same way as for the multiview images, but with 470

the addition of RandAugment (Cubuk et al., 2019) 471

to add more variation to the training data. We run 472

these images through Resnet-34, and extract 512- 473

dimensional encodings from the penultimate layer. 474

Interaction Data To test the model’s capacity 475

for generalization to object types that were never 476

encountered during training, we use Umv
enc , the un- 477

seen object encodings in the Multiview model as 478

our interaction inputs. 479

6.2 Affordance Prediction Model 480

Similar to our probing experiments, we want to 481

determine if encodings of objects contain physical 482

affordance information. However, we change the 483

task slightly to account for the inherent fuzziness 484

of labeling objects for affordances. Although a 485

coin could roll if thrown at exactly the right an- 486

gle, it is much more likely for a soccer ball to roll. 487

To account for this, we adjust the task to express 488

preference between encodings of two different ob- 489

jects, indicating which one is more likely to afford 490

an action. For each modality m ∈{text, vision, 491

interaction} and each affordance a ∈ A we sam- 492

ple from the pretrained model corresponding to m 493

one encoding that is positively labeled for a and 494

one which is negatively labeled. We train a simple 495

multilayer perceptron fm
a to output a likelihood of 496

affording the action Each model is trained using 497

a margin ranking loss (Equation 3) with margin 498

m = .25 to rank the positive example higher than 499

the negative one. 500

L(x1, x2, y) = max(0,−y∗(x1−x2)+m) (3) 501

We believe this is a fairer evaluation of the data 502

points that we have for the text and vision compo- 503

nents, and allows us to train on more combinations 504

of examples. 505

6.3 Text and Vision Baseline Results 506

We find that grounding to object interactions al- 507

lows a model to encode intuitive affordance infor- 508

mation much more saliently than models that are 509

trained without this kind of grounding. The net- 510

works trained on the interaction data, as encoded 511

by the Multiview model, attain the highest accu- 512

racy on the majority of affordances, determined by 513

the number of positive-negative pairs the model 514

ranked correctly. Our results in Table 2 show that 515

this performance difference is considerable. We 516
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Model Slide Roll Stack Contain W-Grasp Bounce
Text 43.0 24.5 74.3 63.4 86.6 57.0

Vision 57.1 73.3 68.5 68.3 65.4 74.3
Interaction (ours) 76.1 77.5 78.0 51.6 60.3 85.5

<Text, Vision> 70.1 48.7 79.1 66.0 76.7 72.2
<Text, Inter.> 70.9 47.3 65.2 56.7 80.8 79.6

<Text, Vision, Inter.> 70.7 53.1 80.6 69.5 66.3 75.2

Table 2: Accuracy for each affordance prediction model for each modality. Interaction based object representations
perform best in all cases except for those affordances for which our model had the weakest signal to learn from.
Concatenation of vectors from multiple modalities shows improvement in some cases.

Figure 7: The affordance prediction model picks be-
tween two objects which is more likely to afford an
action (in this case, slide). Text representations are
highly inconsistent and performance depends on the ob-
ject pair.

find that the biggest gains are in the slide, roll,517

and bounce actions. Direct observation of these518

actions is inherently missing from vision and text519

pretraining, but are clearly apparent in object trajec-520

tories. As evidenced by previous experiments, our521

pretraining setup does not have positive inductive522

bias for learning what “containing” or “grasping”523

are, and subsequently yields poor performance for524

these affordances.525

We tend to see a much larger variance in perfor-526

mance in the purely text-based model, depending527

on the object pair used. As an example, let us528

inspect interaction and text models on slide pre-529

diction, when pairing vase negatives to various530

positive object types. We can observe that text531

representations do not consistently encode affor-532

dance information, while interaction pretraining is533

robust to all unseen object types. Our results are534

shown in Figure 7. Even though the BERT model535

has seen these words before, its contextualized text536

embeddings are either only encoding affordance537

information some of the time, or not encoding af- 538

fordance information at all and relying on learning 539

some heuristic difference between the two objects. 540

Contrasting this, our model yields much more con- 541

sistent high-performing results even though the ob- 542

jects are outside of the training distribution. 543

The knowledge encoded during interaction pre- 544

training has the potential to improve physical rea- 545

soning in existing pretrained language models. Mo- 546

tivated by this possibility, we explore concatenating 547

text embeddings (768d) with our interaction rep- 548

resentations (100d) and retrain the models. We 549

compare these results with text concatenated with 550

vision representations (512d) as well as all three 551

together as shown in Table 2. Although pure in- 552

teraction models perform the best overall, we see 553

some improvements in the stack and contain 554

affordances. More work is needed in how to effec- 555

tively combine these sources of knowledge. 556

7 Conclusion 557

This paper proposes an interaction-based self- 558

supervised pretraining scheme for learning object 559

trajectories from observations of interactions in a 560

3D virtual environment. We show that object affor- 561

dance information can be encoded in the interme- 562

diate representations of our model more robustly 563

than in those from models pretrained for either 564

language modeling or image classification. Our 565

model differs from those of previous works in that 566

it learns rich representations from raw interactions, 567

allowing it to generalize to unseen object types 568

while requiring very little preprocessing and no hu- 569

man annotation. The effectiveness of this approach 570

encourages future follow-up research into the op- 571

timal integration of interaction-based pretraining 572

into language models to improve physical reason- 573

ing performance in downstream applications. 574
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Figure 8: The affordance prediction architecture for comparing interaction pretraining with vision and text repre-
sentations. For each modality m (e.g., vision) and each affordance a (e.g., roll) we train a network that learns to
predict which of two objects is more likely to afford a. Each sample is some representation of an object that either
does or does not afford a.
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Object Slide Roll Stack Contain W-Grasp Bounce
BombBall
EyeBall

SpikeBall
Vase_Amphora
Vase_Hydria

Vase_VoluteKrater
book_0001a
book_0001b
book_0001c

bowl01
cardboardBox_01
cardboardBox_02
cardboardBox_03

Cola Can
Pen black
Gas Bottle
Soccer Ball
can small

can
meat can box

spam can
AtomBall
Bottle2
plate02

plate02_flat
Bottle1

WheelBall
wine bottle 04

coin
BuckyBall

SplitMetalBall
bowl02
bowl03
mug02
mug03

Old_USSR_Lamp_01
lamp
Ladle
Apple

Table 3: All objects in the dataset and their associated affordances
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Affordance Number of Objects
Slide 22
Roll 23
Stack 17

Contain 8
Wrap-grasp 13

Bounce 7

Table 4: Each affordance we are interested in learning
and the number of objects out of the 39 have a positive
label for that affordance.
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