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Abstract

A new generation of pre-trained transformer001
language models has established new state-of-002
the-art results on many tasks, even exceeding003
the human level in standard NLU benchmarks.004
Despite the rapid progress, the benchmark-005
based evaluation has generally relied on the006
downstream performance as a primary met-007
ric which limits the scope of model compar-008
ison in terms of their practical use. This paper009
presents MOdel ResOurCe COmparison (MO-010
ROCCO), a publicly available framework1 that011
allows to assess models with respect to their012
downstream quality combined with two com-013
putational efficiency metrics such as memory014
consumption and throughput during the infer-015
ence stage. The framework allows for a flexi-016
ble integration with popular leaderboards com-017
patible with jiant environment that supports018
over 50 downstream tasks. We demonstrate019
the MOROCCO applicability by evaluating 10020
transformer models on two multi-task GLUE-021
style benchmarks in English and Russian and022
provide the model analysis.023

1 Introduction024

The field of NLP has been centered around the025

“pre-train & fine-tune” paradigm which involves026

pre-training a language model (LM) on an exten-027

sive text corpus and its further fine-tuning for a028

downstream task in a supervised fashion. A large029

number of transformer LMs (Vaswani et al., 2017)030

fall under this paradigm which has established new031

state-of-the-art results for the majority of NLP tasks032

such as text classification (Sun et al., 2019), part-of-033

speech tagging (Tsai et al., 2019), machine transla-034

tion (Zhu et al., 2019) and many others. The mod-035

els have demonstrated various capabilities, ranging036

from cross-lingual zero-shot transfer (Pires et al.,037

2019) to generating texts that are hard to distin-038

guish from the human written ones (Zellers et al.,039

1The url will be provided upon acceptance.

2020), and have even outperformed human solvers 040

in standard NLU benchmarks (He et al., 2021). 041

However, the rich diversity of LMs that differ 042

in number of parameters and the architecture de- 043

sign (Liu et al., 2020) has been mainly assessed 044

by means of downstream performance as a pri- 045

mary metric on many common benchmarks such 046

as GLUE (Wang et al., 2018), XGLUE (Liang 047

et al., 2020), SuperGLUE (Wang et al., 2019) and 048

XTREME (Hu et al., 2020). Despite the fact that 049

the benchmarks provide a standard for a direct 050

model comparison, the performance-oriented ap- 051

proach limits the scope of the evaluation meth- 052

ods (Ethayarajh and Jurafsky, 2020). Understand- 053

ing the need of expanding the methodology, vari- 054

ous benchmarks and contests have been proposed 055

targeting computational and technical aspects of 056

the models (see Section 2), with the problem of 057

continuously growing number of parameters high- 058

lighted (Rogers, 2019). In line with these works, 059

we introduce MOdel ResOurCe COmparison 060

(MOROCCO), a publicly available framework for 061

model evaluation in terms of their practical use. 062

The contributions of this paper are framed as fol- 063

lows. First, we present a standalone framework 064

that aims at measuring both the downstream per- 065

formance and computational efficiency of the mod- 066

els in a fixed environment. Second, MOROCCO 067

can be potentially integrated with popular leader- 068

boards compatible with jiant environment (Pruk- 069

sachatkun et al., 2020) that supports over 50 down- 070

stream tasks2, including GLUE-style ones. We 071

demonstrate the MOROCCO applicability by eval- 072

uating 10 transformer models on two SuperGLUE 073

benchmarks for English and Russian and provide 074

the model analysis. This way of model evalua- 075

tion provides the researcher with the opportunity of 076

the model comparison from different perspectives, 077

2https://github.com/nyu-mll/jiant/
blob/master/guides/tasks/supported_tasks.
md
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specifically those that meet the user needs.078

2 Related Work079

NLP benchmarks The trend for model-agnostic080

evaluation has been recently set by canonical multi-081

task NLU benchmarks such as GLUE (Wang et al.,082

2018) and SuperGLUE (Wang et al., 2019). The083

benchmark infrastructure involves a set of down-084

stream tasks and a public leaderboard. A submis-085

sion to the leaderboard consists of predictions made086

by the user model on the publicly available test sets,087

and is further evaluated by the task-specific met-088

rics. The more recent benchmarks follow the same089

evaluation procedure but aim at domain-specific ar-090

eas, such as dialogue systems (Mehri et al., 2020),091

biomedical NLU and reasoning (Gu et al., 2020),092

or at evaluation in the cross-lingual setting (Liang093

et al., 2020; Hu et al., 2020). Such evaluation094

method does not consider any computational and095

technical aspects of the models that differ greatly096

by number of parameters and architecture design097

choices, such as the number of transformer blocks,098

attention mechanism, pre-training objectives, etc.099

Besides, the benchmarks do not support the inter-100

action with the user models which limits the repro-101

ducibility of the leaderboard results (Rogers, 2019;102

Ethayarajh and Jurafsky, 2020).103

Efficient NLP The trade-off between model per-104

formance and computational efficiency has been105

explored in multiple shared tasks and competitions.106

The series of Efficient Neural Machine Translation107

challenges (Birch et al., 2018; Hayashi et al., 2019;108

Heafield et al., 2020) jointly measured the model109

downstream performance on the task of machine110

translation and computational efficiency parame-111

ters, ranging from memory consumption to size112

of a Docker image. The organizers selected the113

Pareto-optimal solutions (Aleskerov et al., 2007),114

i.e. those that require less computational resources115

when delivering a prominent downstream perfor-116

mance.117

The EfficientQA competition (Min et al., 2021)118

challenged the participants to create an effective119

NLP-system for open-domain question answering120

(ODQA). The submissions are limited by a num-121

ber of performance and technical requirements122

which stimulate the community to develop opti-123

mal ODQA systems that can achieve prominent124

performance while satisfying the technical needs125

and operating on an optimal amount of retrieval126

corpora.127

The SustaiNLP challenge (Wang and Wolf, 128

2020) was aimed at developing efficient but yet 129

accurate models. The efficiency is estimated as 130

the power consumed throughout the inference time 131

calculated by means of experiment impact tracker 132

(Henderson et al., 2020). The submitted systems 133

improve total energy consumption over the BERT- 134

base as much as 20×, but the results on average 135

around 2 absolute points lower. 136

Dynaboard (Ma et al., 2021) is a cloud-based 137

platform, on which a submitted model is evaluated 138

according to five different criteria, including task 139

performance, throughput, memory consumption, 140

fairness and robustness scores. The aggregating 141

Dynascore is designed according to multi-criteria 142

optimization theory to reflect user preferences. Sup- 143

ported tasks include several NLI, QA, sentiment 144

classification and hate speech detection datasets. 145

Last but not least, DAWNBench (Coleman et al., 146

2017) measures the end-to-end image classifica- 147

tion and QA systems reporting time required to 148

achieve a particular performance score, as well as 149

the downstream performance itself. 150

3 Evaluation Framework 151

MOROCCO can be used to rank the benchmark 152

leaderboard models by computational metrics (see 153

Section 3.1). To demonstrate that MOROCCO is 154

compatible with GLUE-style benchmarks, we per- 155

form experiments using SuperGLUE tasks for En- 156

glish and Russian (see Section 3.2) over popular 157

transformer-based models (see Section 3.3) which 158

are publicly released as a part of HuggingFace li- 159

brary (Wolf et al., 2019). 160

Submission details To conduct the evaluation 161

of the model’s performance on the RussianSuper- 162

GLUE tasks, a team should prepare their submis- 163

sion as a Docker container and send it to the testbed. 164

The testbed platform runs the submitted Docker 165

container with limited memory, CPU/GPU and run- 166

ning time. The container is expected to read the 167

texts from the standard input channel and output 168

the answers to the standard output. During the 169

inference, the running time is recorded for the sub- 170

mission scoring. To eliminate the running time and 171

memory footprint dispersion caused by technical 172

reasons, we perform several runs and compute the 173

median values. Next, the output from the container 174

is evaluated with the task-specific metrics. The re- 175

sults are used to compute the final evaluation score 176

for the whole submission. To ensure the compa- 177
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rability of the collected metrics, we fix the com-178

putation hardware. We use Yandex.Cloud3 virtual179

instances, where the following hardware is guaran-180

teed: 1 × Intel Broadwell CPU, 1 × NVIDIA Tesla181

V100 GPU. The Docker containers are equipped182

with Ubuntu 20.04. Following the SuperGLUE in-183

frastructure, our framework is designed to comprise184

with jiant framework, alongside with simple re-185

quirements for the evaluation containers built upon186

other frameworks, and can be run locally using the187

code base.188

3.1 Metrics189

We report the computational efficiency of the tested190

model by means of the memory footprint and infer-191

ence speed.192

Memory footprint allows to account for the193

model’s size and the number of weights implicitly,194

as there is strong dependency. To measure model195

GPU RAM usage M we run a container with a196

single record as input, measure the maximum GPU197

RAM consumption, repeat the procedure 5 times198

and compute a median value.199

Inference speed measures directly how much time200

the model consumes on a specific hardware, es-201

timating implicitly the model’s complexity. To202

measure the inference speed TN we run a container203

with N records as input, with batch size 324. We204

also estimate initialization time Tinit with running205

a container with an input of size 1. Inference speed206

Tp is computed as follows: Tp = N
TN−Tinit

. In our207

experiments we use N = 2000 which can be ad-208

justed by the user. We repeat the procedure 5 times209

to compute a median value.210

Overall, our evaluation procedure utilizes three
different scores, namely the task-specific perfor-
mance score Q, the inference speed Tp and the
memory footprint M . We propose to take into ac-
count these three characteristics of a model and
make an integral measure of its “fitness” F that
combines task-specific and computational metrics:

F = Q× Tp

log(M)

where Q is the metric-based score for a specific211

task, M is measured in bytes, Tp is measured in212

records per second (RPS). We take a logarithm of213

3https://cloud.yandex.com/
4The batch size of 32 is chosen empirically and utilizes the

GPU almost at 100% on the experiment tasks. Note that it can
be adjusted to meet the user needs.

Figure 1: Model evaluation on RussianSuperGLUE
(top) and SuperGLUE (bottom). X-axis=Inference
speed Tp (RPS). Y-axis=Task-specific performance Q.
The memory footprint M is represented by the size of
the circle.

M since the model size increase is exponential for 214

the modern models (Sanh et al., 2019). This mea- 215

sure is motivated by the common idea that memory 216

consumption should be lowered, while the achieved 217

quality and processing speed should be increased 218

(Henderson et al., 2020). 219

3.2 Tasks 220

The experiments are run on a diverse set of 9 tasks5 221

from the SuperGLUE benchmarks for each lan- 222

guage (see Table 1): Recognizing Textual Entail- 223

ment (RTE) task is aimed to capture textual entail- 224

ment in a binary classification form; Commitment 225

Bank belongs to the natural language inference 226

(NLI) group of tasks type with a 3-way classifica- 227

tion; Diagnostic dataset which is in fact another 228

test set for the RTE task annotated with various lin- 229

guistic and semantic phenomena; Words in Con- 230

5SuperGLUE benchmark also includes additional Wino-
gender Schema Diagnostics task which is a dataset which we
do not consider in the experiments since it is not included in
Russian SuperGLUE.

3
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Task Type Task SuperGLUE Russian SuperGLUE Metric
Name Samples Name Samples

NLI Recognizing Textual
Entailment

RTE 2490/277/3000 TERRa 2616/307/3198 Acc

Commitment Bank CB 250/56/250 RCB 438/220/438 Avg. F1
/ Acc

NLI &
diagnostics Diagnostic AX-b 0/0/1104 LiDiRus 0/0/1104 MCC

Common
Sense Words in Context WiC 5428/638/1400 RUSSE 19845/8508/18892 Acc

Choice of Plausible Al-
ternatives

COPA 400/100/500 PARus 400/100/500 Acc

World
Knowledge Yes/No Questions BoolQ 9427/3270/3245 DaNetQA 1749/821/805 Acc

Machine
Reading Multi-Sentence Read-

ing Comprehension
MultiRC 456/83/166 MuSeRC 500/100/322 F1 / EM

Reading Comprehen-
sion with Common-
sense Reasoning

ReCoRD 65709/7481/7484 RuCoS 72193/7577/7257 F1 / EM

Reasoning The Winograd Schema
Challenge

WSC 554/104/146 RWSD 606/204/154 Acc

Table 1: Datasets statistics. MCC stands for Matthews’ Correlation Coefficient; Acc - Accuracy; EM - Exact Match.
The size train/validation/test splits are provided in “Samples” columns

text task is based on word sense disambiguation231

problem in a binary classification form; Choice of232

Plausible Alternatives is a binary classification233

task aimed at accessing commonsense causal rea-234

soning; Yes/No Questions is a binary QA task for235

closed questions; Multi-Sentence Reading Com-236

prehension is a task on multi-hop machine reading237

comprehension (MRC); Reading Comprehension238

with Commonsense Reasoning is an MRC task,239

where it is required to fill the masked gaps in the240

sentence with the best fitting entities from the given241

text paragraph; Winograd Schema Challenge is242

devoted to co-reference resolution in a binary clas-243

sification form.244

3.3 Models245

We run the experiments on the following pub-246

licly available models that achieved competitive247

performance on both SuperGLUE and Russian248

SuperGLUE benchmarks. Models for English249

include monolingual (en_bert_base) and multi-250

lingual base BERT (bert-multilingual) (Devlin251

et al., 2019), RoBERTa-base (Liu et al., 2019)252

(en_roberta_base), ALBERT-base (Lan et al., 2019)253

(albert), and GPT-2-large (Radford et al., 2019)254

(en_gpt2). Models for Russian involve multi-255

lingual BERT-base (bert-multilingual), 3 variants256

of ruGPT-36 (rugpt3-small, rugpt3-medium, and 257

rugpt3-large), RuBERT-base (rubert) (Kuratov and 258

Arkhipov, 2019), and Conversational RuBERT- 259

base7 (rubert-conversational) trained on social me- 260

dia data. 261

4 Results 262

Figure 1 demonstrates the results for Russian Super- 263

GLUE (top) and SuperGLUE for English (bottom) 264

based on the received Q, Tp, and M (see Sec- 265

tion 3.1). These figures discover Pareto frontiers 266

for both languages. For English, GPT-2, mono- 267

and multilingual BERT models and RoBERTa ap- 268

pear to be Pareto-optimal. For Russian, ruGPT3- 269

large, ruGPT3-medium, ruBERT and Conversa- 270

tional ruBERT dominate other models according 271

to the Pareto rule. 272

The fitness metric F results are presented in Ta- 273

ble 2. RoBERTa model had shown the best score 274

for English, while RuBERT is the best fit among 275

the tested models for Russian. Multilingual BERT 276

model showed significantly different results on the 277

two languages. We hypothesize that it attributes to 278

the difference in the datasets in SuperGLUE and 279

RussianSuperGLUE, and the model’s training data 280

6https://github.com/sberbank-ai/
ru-gpts

7https://huggingface.co/DeepPavlov/
rubert-base-cased-conversational
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askew towards the English language. Overall, the281

evaluation results have revealed better models by282

means of task-specific quality, memory footprint,283

and inference speed.284

English Russian

en_bert_base 5.05 rubert 4.84
bert-multilingual 4.79 bert-multilingual 3.30
en_roberta_base 6.63 rubert-conversational 4.59
albert 5.41 rugpt3-small 3.89
en_gpt2 1.95 rugpt3-medium 1.89

rugpt3-large 1.24

Table 2: Fitness evaluation for the models in English
and Russian.

4.1 Discussion285

Averaging the estimates of Q, Tp, and M is one of286

the main limitations of proposed evaluation proce-287

dure. Averaging memory consumption M is less288

problematic, as it is relatively stable for any rea-289

sonable sample size. However two other metrics290

require more detailed investigation. Figure 2 com-291

pares the mean and maximum values of Q with re-292

spect to different models. Each model was trained293

five times with different random seeds and was294

scored ten times, which makes overall fifty runs.295

The only exception was made to the largest model,296

rugpt3-large, which was trained only ones. Blue297

dots present evaluation for a single run, pale red298

dots show mean results for all runs and full red299

dots show the maximum results for all runs. The300

ranking, achieved by maximum and mean scores is301

same.302

Figure 2: Mean, maximum and averaged task-specific
scores for the Russian SuperGLUE tasks.

Figure 3 compares averaged normalized infer-303

ence speed for different task sets, adopted fron304

RussianSuperGLUE. The normalization is done305

alongside the X-axis, thus one can compare the306

models’ ranking for different task sets. The rank-307

ing remains mostly unchanged, while occasionally308

top models exchange positions. 309

Figure 3: Averaged inference speed for different combi-
nations of the Russian SuperGLUE tasks.

We conclude that our evaluation procedure is sta- 310

ble. Averaging the estimates of Q, Tp, and M does 311

not introduce issues to the evaluation procedure and 312

makes model comparison informative. 313

5 Standalone Run 314

To run our framework locally you need to clone the 315

project repository first to your own machine. MO- 316

ROCCO works with the Docker container engine 317

and provides the corresponding code. We consider 318

the following procedure for the evaluation: train a 319

model for a specific task, build a Docker container 320

with the model, run the container on the test data to 321

get the outputs, collect the outputs for multiple runs 322

and conduct the evaluation. The downstream per- 323

formance can be received by making a submission 324

on the corresponding leaderboard. 325

For instance, the fine-tuning (training) the Ru- 326

BERT model for RUSSE could be done with this 327

command: 328

python main.py train rubert russe \ 329

~/path/for/logs ~/data/RUSSE 330

--seed=3 331

Note that this run uses the fixed random seed which 332

can be adjusted. 333

To infer the trained model for the specific task, 334

run the following code snippet: 335
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python main.py infer \336

~/path/for/logs/rubert/ russe \337

--batch-size=32338

To build the Docker container with the trained339

model, run the following code snippet:340

python main.py docker build \341

~/path/for/logs/rubert/ russe \342

rubert-russe343

To infer the container with the model, storing its344

outputs, run the following code snippet:345

docker run --gpus all \346

--interactive --rm rubert-russe \347

--batch-size 8 \348

<~/data/RUSSE/val.jsonl \349

>preds.jsonl350

To evaluate the model by the task-specific met-351

rics, make a submission with your model predic-352

tions to the leaderboard or run the following code353

snippet on the validation set (preliminarily making354

predictions for the set):355

python main.py eval russe \356

preds.jsonl \357

~/data/RUSSE/val.jsonl358

Finally, to get the results for the memory foot-359

print and inference speed, run the following code360

snippet:361

for index in 01 02 03 04 05;362

do python main.py docker \363

bench rubert-russe ~/data \364

russe --input-size=2000 \365

--batch-size=32 \366

>~/benches/rubert/\367

russe/2000_32_$index.jl;368

done369

6 Conclusion370

This work introduces the MOROCCO framework371

which provides assessment of language models372

with respect to their downstream quality combined373

with two computational efficiency metrics such as374

memory consumption and through-put during the375

inference stage. The proposed fitness metric allows376

to compose the GLUE-style leaderboards in a new377

way: to rank them so that the most high-precision,378

smallest and fastest models are in the top, the accu-379

rate ones, but bigger and slower models are in the380

middle, and the most imprecise, largest and slow-381

est ones are at the very bottom. Thus, to obtain a382

higher place on the leaderboard researchers need383

to strive not for the score on the individual tasks, 384

but also develop optimal models in terms of their 385

practical use. A similar conditional assessment 386

of the results has been mainly adopted for image 387

classification and QA tasks. We expand this idea 388

by integrating MOROCCO with the canonical Su- 389

perGLUE leaderboards showing the applicability 390

for two languages. The presented framework is 391

also compatible with the jiant framework and 392

transformer models, making it easily applicable to 393

evaluate a wide range of popular architectures, both 394

multilingual and monolingual. We hope that our 395

framework can be utilized in other jiant-based 396

projects to provide a better and more detailed eval- 397

uation. This paper aims at stimulating the research 398

on a compromise evaluation of the overall perfor- 399

mance of NLP-models which could be an alter- 400

native to the existing dominant “bigger is better” 401

trend and would take into account the problems of 402

overfitting, over-parametrization, data redundancy, 403

and many others. 404

A fruitful direction for future work is coopera- 405

tion with NLP-developers and enthusiasts to further 406

search for the most optimal solutions, including 407

organizing the competition of multilingual NLP- 408

models on existing benchmarks as a possible step. 409

Another line of work includes extending the frame- 410

work with other metrics such as time and mem- 411

ory use required for fine-tuning, time needed to 412

achieve the best quality, and robustness towards 413

task-specific adversarial attacks. 414
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