MOROCCO: Model Resource Comparison Framework

Anonymous ACL submission

Abstract

A new generation of pre-trained transformer
language models has established new state-of-
the-art results on many tasks, even exceeding
the human level in standard NLU benchmarks.
Despite the rapid progress, the benchmark-
based evaluation has generally relied on the
downstream performance as a primary met-
ric which limits the scope of model compar-
ison in terms of their practical use. This paper
presents MOdel ResOurCe COmparison (MO-
ROCCO), a publicly available framework! that
allows to assess models with respect to their
downstream quality combined with two com-
putational efficiency metrics such as memory
consumption and throughput during the infer-
ence stage. The framework allows for a flexi-
ble integration with popular leaderboards com-
patible with jiant environment that supports
over 50 downstream tasks. We demonstrate
the MOROCCO applicability by evaluating 10
transformer models on two multi-task GLUE-
style benchmarks in English and Russian and
provide the model analysis.

1 Introduction

The field of NLP has been centered around the
“pre-train & fine-tune” paradigm which involves
pre-training a language model (LM) on an exten-
sive text corpus and its further fine-tuning for a
downstream task in a supervised fashion. A large
number of transformer LMs (Vaswani et al., 2017)
fall under this paradigm which has established new
state-of-the-art results for the majority of NLP tasks
such as text classification (Sun et al., 2019), part-of-
speech tagging (Tsai et al., 2019), machine transla-
tion (Zhu et al., 2019) and many others. The mod-
els have demonstrated various capabilities, ranging
from cross-lingual zero-shot transfer (Pires et al.,
2019) to generating texts that are hard to distin-
guish from the human written ones (Zellers et al.,

!"The url will be provided upon acceptance.

2020), and have even outperformed human solvers
in standard NLU benchmarks (He et al., 2021).
However, the rich diversity of LMs that differ
in number of parameters and the architecture de-
sign (Liu et al., 2020) has been mainly assessed
by means of downstream performance as a pri-
mary metric on many common benchmarks such
as GLUE (Wang et al., 2018), XGLUE (Liang
et al., 2020), SuperGLUE (Wang et al., 2019) and
XTREME (Hu et al., 2020). Despite the fact that
the benchmarks provide a standard for a direct
model comparison, the performance-oriented ap-
proach limits the scope of the evaluation meth-
ods (Ethayarajh and Jurafsky, 2020). Understand-
ing the need of expanding the methodology, vari-
ous benchmarks and contests have been proposed
targeting computational and technical aspects of
the models (see Section 2), with the problem of
continuously growing number of parameters high-
lighted (Rogers, 2019). In line with these works,
we introduce MOdel ResQurCe COmparison
(MOROCCO), a publicly available framework for
model evaluation in terms of their practical use.
The contributions of this paper are framed as fol-
lows. First, we present a standalone framework
that aims at measuring both the downstream per-
formance and computational efficiency of the mod-
els in a fixed environment. Second, MOROCCO
can be potentially integrated with popular leader-
boards compatible with jiant environment (Pruk-
sachatkun et al., 2020) that supports over 50 down-
stream tasks?, including GLUE-style ones. We
demonstrate the MOROCCO applicability by eval-
uating 10 transformer models on two SuperGLUE
benchmarks for English and Russian and provide
the model analysis. This way of model evalua-
tion provides the researcher with the opportunity of
the model comparison from different perspectives,

https://github.com/nyu-mll/jiant/
blob/master/guides/tasks/supported_tasks.
md

https://github.com/nyu-mll/jiant/blob/master/guides/tasks/supported_tasks.md
https://github.com/nyu-mll/jiant/blob/master/guides/tasks/supported_tasks.md
https://github.com/nyu-mll/jiant/blob/master/guides/tasks/supported_tasks.md

specifically those that meet the user needs.

2 Related Work

NLP benchmarks The trend for model-agnostic
evaluation has been recently set by canonical multi-
task NLU benchmarks such as GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019). The
benchmark infrastructure involves a set of down-
stream tasks and a public leaderboard. A submis-
sion to the leaderboard consists of predictions made
by the user model on the publicly available test sets,
and is further evaluated by the task-specific met-
rics. The more recent benchmarks follow the same
evaluation procedure but aim at domain-specific ar-
eas, such as dialogue systems (Mehri et al., 2020),
biomedical NLU and reasoning (Gu et al., 2020),
or at evaluation in the cross-lingual setting (Liang
et al., 2020; Hu et al., 2020). Such evaluation
method does not consider any computational and
technical aspects of the models that differ greatly
by number of parameters and architecture design
choices, such as the number of transformer blocks,
attention mechanism, pre-training objectives, etc.
Besides, the benchmarks do not support the inter-
action with the user models which limits the repro-
ducibility of the leaderboard results (Rogers, 2019;
Ethayarajh and Jurafsky, 2020).

Efficient NLP The trade-off between model per-
formance and computational efficiency has been
explored in multiple shared tasks and competitions.
The series of Efficient Neural Machine Translation
challenges (Birch et al., 2018; Hayashi et al., 2019;
Heafield et al., 2020) jointly measured the model
downstream performance on the task of machine
translation and computational efficiency parame-
ters, ranging from memory consumption to size
of a Docker image. The organizers selected the
Pareto-optimal solutions (Aleskerov et al., 2007),
i.e. those that require less computational resources
when delivering a prominent downstream perfor-
mance.

The EfficientQA competition (Min et al., 2021)
challenged the participants to create an effective
NLP-system for open-domain question answering
(ODQA). The submissions are limited by a num-
ber of performance and technical requirements
which stimulate the community to develop opti-
mal ODQA systems that can achieve prominent
performance while satisfying the technical needs
and operating on an optimal amount of retrieval
corpora.

The SustaiNLP challenge (Wang and Wolf,
2020) was aimed at developing efficient but yet
accurate models. The efficiency is estimated as
the power consumed throughout the inference time
calculated by means of experiment impact tracker
(Henderson et al., 2020). The submitted systems
improve total energy consumption over the BERT-
base as much as 20x, but the results on average
around 2 absolute points lower.

Dynaboard (Ma et al., 2021) is a cloud-based
platform, on which a submitted model is evaluated
according to five different criteria, including task
performance, throughput, memory consumption,
fairness and robustness scores. The aggregating
Dynascore is designed according to multi-criteria
optimization theory to reflect user preferences. Sup-
ported tasks include several NLI, QA, sentiment
classification and hate speech detection datasets.

Last but not least, DAWNBench (Coleman et al.,
2017) measures the end-to-end image classifica-
tion and QA systems reporting time required to
achieve a particular performance score, as well as
the downstream performance itself.

3 Evaluation Framework

MOROCCO can be used to rank the benchmark
leaderboard models by computational metrics (see
Section 3.1). To demonstrate that MOROCCO is
compatible with GLUE-style benchmarks, we per-
form experiments using SuperGLUE tasks for En-
glish and Russian (see Section 3.2) over popular
transformer-based models (see Section 3.3) which
are publicly released as a part of HuggingFace li-
brary (Wolf et al., 2019).

Submission details To conduct the evaluation
of the model’s performance on the RussianSuper-
GLUE tasks, a team should prepare their submis-
sion as a Docker container and send it to the testbed.
The testbed platform runs the submitted Docker
container with limited memory, CPU/GPU and run-
ning time. The container is expected to read the
texts from the standard input channel and output
the answers to the standard output. During the
inference, the running time is recorded for the sub-
mission scoring. To eliminate the running time and
memory footprint dispersion caused by technical
reasons, we perform several runs and compute the
median values. Next, the output from the container
is evaluated with the task-specific metrics. The re-
sults are used to compute the final evaluation score
for the whole submission. To ensure the compa-

rability of the collected metrics, we fix the com-
putation hardware. We use Yandex.Cloud? virtual
instances, where the following hardware is guaran-
teed: 1 x Intel Broadwell CPU, 1 x NVIDIA Tesla
V100 GPU. The Docker containers are equipped
with Ubuntu 20.04. Following the SuperGLUE in-
frastructure, our framework is designed to comprise
with Jiant framework, alongside with simple re-
quirements for the evaluation containers built upon
other frameworks, and can be run locally using the
code base.

3.1 Maetrics

We report the computational efficiency of the tested
model by means of the memory footprint and infer-
ence speed.

Memory footprint allows to account for the
model’s size and the number of weights implicitly,
as there is strong dependency. To measure model
GPU RAM usage M we run a container with a
single record as input, measure the maximum GPU
RAM consumption, repeat the procedure 5 times
and compute a median value.

Inference speed measures directly how much time
the model consumes on a specific hardware, es-
timating implicitly the model’s complexity. To
measure the inference speed 1y we run a container
with N records as input, with batch size 32*. We
also estimate initialization time 7j,;; with running
a container with an input of size 1. Inference speed
T'p is computed as follows: Tp = ﬁ In our
experiments we use N = 2000 which can be ad-
justed by the user. We repeat the procedure 5 times
to compute a median value.

Overall, our evaluation procedure utilizes three
different scores, namely the task-specific perfor-
mance score (), the inference speed 1'p and the
memory footprint M. We propose to take into ac-
count these three characteristics of a model and
make an integral measure of its “fitness” F' that
combines task-specific and computational metrics:

Tp

F=@Qx log(M)

where () is the metric-based score for a specific
task, M is measured in bytes, T'p is measured in
records per second (RPS). We take a logarithm of

*https://cloud.yandex.com/

“The batch size of 32 is chosen empirically and utilizes the
GPU almost at 100% on the experiment tasks. Note that it can
be adjusted to meet the user needs.

2

ert, 2.4gb

0.52 1 rubert-conversational, 2.4gb

rugpt3-medium, 4.4gb

rugpt3-large, 7.5gb

avg. score over 9 tasks

rugpt3-small, 2.4gb

bert-multilingual, 2.4gb

60 80 100 120 140 160 180 200
inference speed, records per second

) en_froberta_base, 2.0gb

o
o
v

en_bert_base, [1.9gb
S bert, 2.4gb

albgrt, 1.1gb

avg. score over 9 tasks
o
o
o

o
»
el

en_gpt2, 3.8gb

100 120 140 160 180 200 220
inference speed, records per second

Figure 1: Model evaluation on RussianSuperGLUE
(top) and SuperGLUE (bottom). X-axis=Inference
speed T'p (RPS). Y-axis=Task-specific performance ().
The memory footprint M is represented by the size of
the circle.

M since the model size increase is exponential for
the modern models (Sanh et al., 2019). This mea-
sure is motivated by the common idea that memory
consumption should be lowered, while the achieved
quality and processing speed should be increased
(Henderson et al., 2020).

3.2 Tasks

The experiments are run on a diverse set of 9 tasks>
from the SuperGLUE benchmarks for each lan-
guage (see Table 1): Recognizing Textual Entail-
ment (RTE) task is aimed to capture textual entail-
ment in a binary classification form; Commitment
Bank belongs to the natural language inference
(NLI) group of tasks type with a 3-way classifica-
tion; Diagnostic dataset which is in fact another
test set for the RTE task annotated with various lin-
guistic and semantic phenomena; Words in Con-

SuperGLUE benchmark also includes additional Wino-
gender Schema Diagnostics task which is a dataset which we
do not consider in the experiments since it is not included in
Russian SuperGLUE.

https://cloud.yandex.com/

Task Type Task SuperGLUE Russian SuperGLUE Metric
Name | Samples Name | Samples
NLI Recognizing Textual | RTE 2490/277/3000 TERRa 2616/307/3198 Acc
Entailment
Commitment Bank CB 250/56/250 RCB 438/220/438 Avg. F1
/ Acc
i NLT & Diagnostic AX-b | 0/0/1104 LiDiRus | 0/0/1104 MCC
1agnostics
C‘S";Teon Words in Context WiC 5428/638/1400 | RUSSE | 19845/8508/18892 | Acc
Choice of Plausible Al- | COPA 400/100/500 PARus 400/100/500 Acc
ternatives
World Yes/N ti Bool 9427/3270/3245 DaNetQA | 1749/821/805 A
Knowledge es/No Questions 0olQ aNetQ cc
Machine |\ 11 Sentence Read- | MultiRC | 456/83/166 MuSeRC | 500/100/322 F1/EM
Reading . .
ing Comprehension
Reading Comprehen- | ReCoRD | 65709/7481/7484 | RuCoS 72193/7577/7257 F1/EM
sion with Common-
sense Reasoning
Reasoning The Winograd Schema | WSC 554/104/146 RWSD 606/204/154 Acc
Challenge

Table 1: Datasets statistics. MCC stands for Matthews’ Correlation Coefficient; Acc - Accuracy; EM - Exact Match.
The size train/validation/test splits are provided in “Samples” columns

text task is based on word sense disambiguation
problem in a binary classification form; Choice of
Plausible Alternatives is a binary classification
task aimed at accessing commonsense causal rea-
soning; Yes/No Questions is a binary QA task for
closed questions; Multi-Sentence Reading Com-
prehension is a task on multi-hop machine reading
comprehension (MRC); Reading Comprehension
with Commonsense Reasoning is an MRC task,
where it is required to fill the masked gaps in the
sentence with the best fitting entities from the given
text paragraph; Winograd Schema Challenge is
devoted to co-reference resolution in a binary clas-
sification form.

3.3 Models

We run the experiments on the following pub-
licly available models that achieved competitive
performance on both SuperGLUE and Russian
SuperGLUE benchmarks. Models for English
include monolingual (en_bert_base) and multi-
lingual base BERT (bert-multilingual) (Devlin
et al., 2019), RoBERTa-base (Liu et al., 2019)
(en_roberta_base), ALBERT-base (Lan et al., 2019)
(albert), and GPT-2-large (Radford et al., 2019)
(en_gpt2). Models for Russian involve multi-
lingual BERT-base (bert-multilingual), 3 variants

of ruGPT-3° (rugpt3-small, rugpt3-medium, and
rugpt3-large), RuBERT-base (rubert) (Kuratov and
Arkhipov, 2019), and Conversational RuBERT-
base’ (rubert-conversational) trained on social me-
dia data.

4 Results

Figure 1 demonstrates the results for Russian Super-
GLUE (top) and SuperGLUE for English (bottom)
based on the received), Tp, and M (see Sec-
tion 3.1). These figures discover Pareto frontiers
for both languages. For English, GPT-2, mono-
and multilingual BERT models and RoBERTa ap-
pear to be Pareto-optimal. For Russian, ruGPT3-
large, ruGPT3-medium, ruBERT and Conversa-
tional ruBERT dominate other models according
to the Pareto rule.

The fitness metric F' results are presented in Ta-
ble 2. RoBERTa model had shown the best score
for English, while RuBERT is the best fit among
the tested models for Russian. Multilingual BERT
model showed significantly different results on the
two languages. We hypothesize that it attributes to
the difference in the datasets in SuperGLUE and
RussianSuperGLUE, and the model’s training data

®https://github.com/sberbank-ai/
ru—-gpts

"https://huggingface.co/DeepPavlov/
rubert-base-cased-conversational

https://github.com/sberbank-ai/ru-gpts
https://github.com/sberbank-ai/ru-gpts
https://huggingface.co/DeepPavlov/rubert-base-cased-conversational
https://huggingface.co/DeepPavlov/rubert-base-cased-conversational

askew towards the English language. Overall, the
evaluation results have revealed better models by
means of task-specific quality, memory footprint,
and inference speed.

| English | Russian |
en_bert_base 5.05 | rubert 4.84
bert-multilingual 4.79 | bert-multilingual 3.30
en_roberta_base 6.63 | rubert-conversational 4.59
albert 5.41 | rugpt3-small 3.89
en_gpt2 1.95 | rugpt3-medium 1.89
rugpt3-large 1.24

Table 2: Fitness evaluation for the models in English
and Russian.

4.1 Discussion

Averaging the estimates of), T'p, and M is one of
the main limitations of proposed evaluation proce-
dure. Averaging memory consumption M is less
problematic, as it is relatively stable for any rea-
sonable sample size. However two other metrics
require more detailed investigation. Figure 2 com-
pares the mean and maximum values of () with re-
spect to different models. Each model was trained
five times with different random seeds and was
scored ten times, which makes overall fifty runs.
The only exception was made to the largest model,
rugpt3-large, which was trained only ones. Blue
dots present evaluation for a single run, pale red
dots show mean results for all runs and full red
dots show the maximum results for all runs. The
ranking, achieved by maximum and mean scores is
same.

= sample
rugpt3-large i mean
50 max
o
o o
rugpt3-medium M?m"{o"%
o
rugpt3-small - W&E‘fo
- R °
bert-multilingual gﬂm °
N °
rubert-conversational o % 3o°o°§o&m »°
o
o
rubert mg)o

0.42 0.44 0.46 0.48 0.50 0.52 0.54
avg. score over 9 tasks

Figure 2: Mean, maximum and averaged task-specific
scores for the Russian SuperGLUE tasks.

Figure 3 compares averaged normalized infer-
ence speed for different task sets, adopted fron
RussianSuperGLUE. The normalization is done
alongside the X-axis, thus one can compare the
models’ ranking for different task sets. The rank-
ing remains mostly unchanged, while occasionally

top models exchange positions.

danetqa fidirus muserc.rcb.rucos.russe, wsd.terra
netqa lidirus,rcb,rucos, russe.rwsd. terra
danetqa iras muserc rcb fucos fusse! terra
netagliditus,muserc rch rucod, s ferra
G, iU, mUSEre, fcos Fusse, terrs °
k0, TUSEr G b cog S5, 1Wad °
danetqa lidirus,muserci ucosrusse rwsd
et etgajlidifus, musérc,rchrsd terra
danetqa) h dirus muserc fcb fusse'terra
etqa,rucos, riisse,rwsd,terra
userc,rcb,rucos, russe,rwsd
TS, MUSere, rUsse s, terra
lidirys,muserc,rcb, rucos. erra °

danetqa, lidirus,muserc.russe terra °
mUSerc,rucos,russe, rwsd,terra o

200 882882008888

ldirus,musefc, cb,fucos rwsd
danetqa,muserc ricosrusse.rwsd
danelga, hdlrus rCbirusse.terra
rcb,ricos,russe terra

. icos Tusse °

o
E
8
o °
ecc008o

danetqa,rucos,russe.rwsd

°
8ce

USSTC,rucos, rwsd tert
danetqa,lidirts,rcb terra
lidirus,rcb,ricos, terra
danetqa, lidirus,rwsd terra
danetqa,rcb,fucos,terra
danetqa,lidir(s,muserc,rwsd
danetqa,muserc,rucos, russe

agZ;Z:°"

oeocboe

danetaa| nmms flisse
danetqa,terra
"hed terra °

lidirus, rucos °

a
§_ 2
[
EE b
B EEE
& 33

°
8
o %o
2080802080000

g
=
i
220068
3533
s
°
L]

danetqa,lidirus °
russe

danetga

rch

°

o8¢
8o

terra

rucos
muserc

(rps - min) / (max - min)

. rubert

BN rubert-conversational

= bert-multilingual
rugpt3-small

[rugpt3-medium

B rugpt3-large

Figure 3: Averaged inference speed for different combi-
nations of the Russian SuperGLUE tasks.

We conclude that our evaluation procedure is sta-
ble. Averaging the estimates of), T'p, and M does
not introduce issues to the evaluation procedure and
makes model comparison informative.

5 Standalone Run

To run our framework locally you need to clone the
project repository first to your own machine. MO-
ROCCO works with the Docker container engine
and provides the corresponding code. We consider
the following procedure for the evaluation: train a
model for a specific task, build a Docker container
with the model, run the container on the test data to
get the outputs, collect the outputs for multiple runs
and conduct the evaluation. The downstream per-
formance can be received by making a submission
on the corresponding leaderboard.

For instance, the fine-tuning (training) the Ru-
BERT model for RUSSE could be done with this
command:

python main.py train rubert russe \
~/path/for/logs ~/data/RUSSE
—-—seed=3

Note that this run uses the fixed random seed which
can be adjusted.

To infer the trained model for the specific task,
run the following code snippet:

python main.py infer \
~/path/for/logs/rubert/ russe \
——batch-size=32

To build the Docker container with the trained
model, run the following code snippet:

python main.py docker build \
~/path/for/logs/rubert/ russe \
rubert-russe

To infer the container with the model, storing its
outputs, run the following code snippet:

docker run —--gpus all \
-—interactive —--rm rubert-russe \
——batch-size 8 \
<~/data/RUSSE/val. jsonl \

>preds. jsonl

To evaluate the model by the task-specific met-
rics, make a submission with your model predic-
tions to the leaderboard or run the following code
snippet on the validation set (preliminarily making
predictions for the set):

python main.py eval russe \
preds. jsonl \
~/data/RUSSE/val. jsonl

Finally, to get the results for the memory foot-
print and inference speed, run the following code
snippet:

for index in 01 02 03 04 05;
do python main.py docker \
bench rubert-russe ~/data \
russe —-—input-size=2000 \
——-batch-size=32 \
>~/benches/rubert/\
russe/2000_32_Sindex.jl;

done

6 Conclusion

This work introduces the MOROCCO framework
which provides assessment of language models
with respect to their downstream quality combined
with two computational efficiency metrics such as
memory consumption and through-put during the
inference stage. The proposed fitness metric allows
to compose the GLUE-style leaderboards in a new
way: to rank them so that the most high-precision,
smallest and fastest models are in the top, the accu-
rate ones, but bigger and slower models are in the
middle, and the most imprecise, largest and slow-
est ones are at the very bottom. Thus, to obtain a
higher place on the leaderboard researchers need

to strive not for the score on the individual tasks,
but also develop optimal models in terms of their
practical use. A similar conditional assessment
of the results has been mainly adopted for image
classification and QA tasks. We expand this idea
by integrating MOROCCO with the canonical Su-
perGLUE leaderboards showing the applicability
for two languages. The presented framework is
also compatible with the jiant framework and
transformer models, making it easily applicable to
evaluate a wide range of popular architectures, both
multilingual and monolingual. We hope that our
framework can be utilized in other jiant-based
projects to provide a better and more detailed eval-
uation. This paper aims at stimulating the research
on a compromise evaluation of the overall perfor-
mance of NLP-models which could be an alter-
native to the existing dominant “bigger is better”
trend and would take into account the problems of
overfitting, over-parametrization, data redundancy,
and many others.

A fruitful direction for future work is coopera-
tion with NLP-developers and enthusiasts to further
search for the most optimal solutions, including
organizing the competition of multilingual NLP-
models on existing benchmarks as a possible step.
Another line of work includes extending the frame-
work with other metrics such as time and mem-
ory use required for fine-tuning, time needed to
achieve the best quality, and robustness towards
task-specific adversarial attacks.

References

Fuad Aleskerov, Denis Bouyssou, and Bernard Mon-
jardet. 2007. Utility maximization, choice and pref-
erence, volume 16. Springer Science & Business
Media.

Alexandra Birch, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Yusuke Oda. 2018. Findings
of the second workshop on neural machine transla-
tion and generation. In Proceedings of the 2nd Work-
shop on Neural Machine Translation and Generation,
pages 1-10.

Cody Coleman, Deepak Narayanan, Daniel Kang, Tian
Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. 2017. Dawn-
bench: An end-to-end deep learning benchmark and
competition. Training, 100(101):102.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. pages 4171-4186.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of nlp leaderboards.
arXiv preprint arXiv:2009.13888.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. arXiv preprint arXiv:2007.15779.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis
Konstas, Andrew Finch, Minh-Thang Luong, Gra-
ham Neubig, and Katsuhito Sudoh. 2019. Findings
of the third workshop on neural generation and trans-
lation. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 1-14.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, loan-
nis Konstas, Andrew Finch, Graham Neubig, Xian Li,
and Alexandra Birch. 2020. Findings of the fourth
workshop on neural generation and translation. In
Proceedings of the Fourth Workshop on Neural Gen-
eration and Translation, pages 1-9.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brun-
skill, Dan Jurafsky, and Joelle Pineau. 2020. Towards
the systematic reporting of the energy and carbon
footprints of machine learning. Journal of Machine
Learning Research, 21(248):1-43.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generalisa-
tion. In International Conference on Machine Learn-
ing, pages 4411-4421. PMLR.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
russian language. arXiv preprint arXiv:1905.07213.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan
Majumder, and Ming Zhou. 2020. Xglue: A new
benchmark dataset for cross-lingual pre-training, un-
derstanding and generation.

Qi Liu, Matt J. Kusner, and Phil Blunsom. 2020. A
survey on contextual embeddings.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya
Jain, Ledell Wu, Robin Jia, Christopher Potts,
Adina Williams, and Douwe Kiela. 2021. Dyn-
aboard: An evaluation-as-a-service platform for holis-
tic next-generation benchmarking. arXiv preprint
arXiv:2106.06052.

S. Mehri, M. Eric, and D. Hakkani-Tur. 2020.
Dialoglue: A natural language understanding
benchmark for task-oriented dialogue. ArXiv,
abs/2009.13570.

Sewon Min, Jordan Boyd-Graber, Chris Alberti,
Dangqi Chen, Eunsol Choi, Michael Collins, Kelvin
Guu, Hannaneh Hajishirzi, Kenton Lee, Jenni-
maria Palomaki, Colin Raffel, Adam Roberts, Tom
Kwiatkowski, Patrick Lewis, Yuxiang Wu, Hein-
rich Kiittler, Linqing Liu, Pasquale Minervini, Pon-
tus Stenetorp, Sebastian Riedel, Sohee Yang, Min-
joon Seo, Gautier Izacard, Fabio Petroni, Lucas Hos-
seini, Nicola De Cao, Edouard Grave, Ikuya Ya-
mada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei
Miyawaki, Shun Sato, Ryo Takahashi, Jun Suzuki,
Martin Fajcik, Martin Docekal, Karel Ondrej, Pavel
Smrz, Hao Cheng, Yelong Shen, Xiaodong Liu,
Pengcheng He, Weizhu Chen, Jianfeng Gao, Bar-
las Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Wen tau Yih. 2021.
Neurips 2020 efficientqa competition: Systems, anal-
yses and lessons learned.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How Multilingual is Multilingual BERT? pages
4996-5001.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel Bowman. 2020. jiant: A software toolkit for
research on general-purpose text understanding mod-
els. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 109-117.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Anna Rogers. 2019. How the transformers broke nlp
leaderboards.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In The 5th
Workshop on Energy Efficient Machine Learning and
Cognitive Computing.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194-206. Springer.

http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2003.07278
http://arxiv.org/abs/2003.07278
http://arxiv.org/abs/2003.07278
http://arxiv.org/abs/2101.00133
http://arxiv.org/abs/2101.00133
http://arxiv.org/abs/2101.00133
https://hackingsemantics.xyz/2019/leaderboards/
https://hackingsemantics.xyz/2019/leaderboards/
https://hackingsemantics.xyz/2019/leaderboards/

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical bert models for sequence labeling. In
EMNLP/IJCNLP (1).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. pages 5998-6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in Neural Information
Processing Systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for
natural language understanding. pages 353-355.

Alex Wang and Thomas Wolf. 2020. Overview of the
sustainlp 2020 shared task. In Proceedings of Sus-
taiNLP: Workshop on Simple and Efficient Natural
Language Processing, pages 174—178.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2020. Defending against neural fake
news.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Hougiang Li, and Tieyan Liu. 2019.
Incorporating bert into neural machine translation. In
International Conference on Learning Representa-
tions.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1905.12616
http://arxiv.org/abs/1905.12616
http://arxiv.org/abs/1905.12616

