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Abstract

Recent advancements in reinforcement learning (RL) have led to remarkable
achievements in robot locomotion capabilities. However, the complexity and “black-
box” nature of neural network-based RL policies hinder their interpretability and
broader acceptance, particularly in applications demanding high levels of safety and
reliability. This paper introduces a novel approach to distill neural RL policies into
more interpretable forms using Gradient Boosting Machines (GBMs), Explainable
Boosting Machines (EBMs) and Symbolic Regression. By leveraging the inherent
interpretability of generalized additive models, decision trees, and analytical expres-
sions, we transform opaque neural network policies into more transparent “glass-
box” models. We train expert neural network policies using RL and subsequently
distill them into (i) GBMs, (ii) EBMs, and (iii) symbolic policies. To address the
inherent distribution shift challenge of behavioral cloning, we propose to use the
Dataset Aggregation (DAgger) algorithm with a curriculum of episode-dependent
alternation of actions between expert and distilled policies, to enable efficient dis-
tillation of feedback control policies. We evaluate our approach on various robot
locomotion gaits – walking, trotting, bounding, and pacing – and study the im-
portance of different observations in joint actions for distilled policies using various
methods. We train neural expert policies for 205 hours of simulated experience and
distill interpretable policies with only 10 minutes of simulated interaction for each
gait using the proposed method.

1 Introduction

Explainability and interpretability are topics of increasing relevance in artificial intelligence and
robotics Gunning et al. (2019); Sakai & Nagai (2022); Milani et al. (2023). Whilst reinforcement
learning (RL) has enabled significant advancements in robot locomotion over model-based optimiza-
tion Lee et al. (2020); Yang et al. (2020); Miki et al. (2022); DeFazio et al. (2024), existing work
has ubiquitously used neural networks for representing policy and value functions due to their gen-
eral function approximation capabilities and automatic gradient-based optimization, making them
suitable for policy gradient algorithms widely used in RL.

However, as robots transition out of research environments into industrial or domestic applications
where they can deliver value to society, the black-box nature of neural networks ushers significant
challenges in terms of interpretability and explainability, arguably rendering them unsuitable for
safety-critical or consumer-facing use cases that particularly require behaviour or system certification
Milani et al. (2023). We note that many interpretable models such as decision trees or symbolic
expressions do not easily allow for generic gradient-based optimization. Because of this, there is a
motivation to transform neural locomotion policies into interpretable ones.
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Figure 1: From black-box to glass-box: summary of the proposed framework for distillation of neural
network-based RL policies into interpretable policies consisting of GBMs, EBMs, and symbolic
policies.

RL for robot locomotion has rapidly matured in capabilities in recent years, ranging from early
demonstrations of policy gradients for training simple locomotion policies Kohl & Stone (2004), to
the use of animal motion imitation Peng et al. (2020), and traversal of challenging terrain Lee et al.
(2020). Some previous work has focused on developing modular or hierarchical architectures, both in
locomotion Yang et al. (2020); Yuan et al. (2023); Yu et al. (2023), and manipulation settings Beyret
et al. (2019); Triantafyllidis et al. (2023); Hu et al. (2023), which are intrinsically not as black-box
due to their modular structure, however this was mainly done for improving policy performance or
learning efficiency – without delivering interpretability insights (except for Beyret et al. (2019) in
manipulation). Notably, Yu et al. (2023) evaluates observation importance for efficient learning of
locomotion policies, but uses neural policies and thus can only use black-box saliency methods for
importance analysis. Additionally, recent work has demonstrated the ability to learn exteroceptive
policies, from sparse environment perception Acero et al. (2022); Liu et al. (2021) to more dense or
visual perception Miki et al. (2022); Yu et al. (2021); Loquercio et al. (2023), further advancing the
capabilities of robot locomotion learned via RL – while maintaining the use of neural networks as
policies.

Nevertheless, there is a growing need to produce interpretable policies and thus enable more
widespread adoption of intelligent legged robots. Explainable RL has recently developed in various
directions Milani et al. (2023), with policy distillation or extraction becoming increasingly popu-
lar: decision trees guided by Q-functions have been distilled from neural policies for simple game
environments Bastani et al. (2018), as well as state machines and list processing programs Bastani
et al. (2020), and decision trees have also been used for evolutionary feature synthesis Zhang et al.
(2020) to provide visualizations and rule-based explanations of simple agent-environment interac-
tions Bewley & Lawry (2021). Moreover, neural RL expert policies have been distilled into decision
trees in various domains where interpretability is crucial, such as power system control Dai et al.
(2022), aircraft separation assurance Guo & Wei (2022), and sensor-based robot navigation Roth
et al. (2021).

To address the need for policy interpretability and inspired by previous work on explainable RL, we
develop a novel framework for distilling neural network expert locomotion policies trained via RL
into more interpretable glass-box policies, as shown in Figure 1. Our main contributions are:

• A novel policy distillation framework incorporating episode-dependent policy alternation to
DAgger Ross et al. (2011).

• Effective locomotion policies distilled via Gradient Boosting Machines (GBMs) Friedman
(2001), Explainable Boosting Machines (EBMs) Lou et al. (2012), and Symbolic Regression
Cranmer (2023).
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• Interpretability of the observation-action mapping unveiled in the distilled locomotion poli-
cies, and the evaluation of their performance in tasks consisting of walking, trotting, pacing,
and bounding gaits, providing both global and local explanations of policy actions.

We follow a distillation approach as the interpretable models we use cannot be trained to perform
general function approximation parametrically via policy gradients, they are best suited for regres-
sion on a supervised dataset. To the best of our knowledge, our work is the first to distill RL
locomotion policies into GBMs, EBMs, and symbolic policies.

2 Background

We now discuss relevant concepts to introduce our framework.

2.1 Reinforcement Learning for Robot Locomotion

RL is the machine learning paradigm for decision-making or control Sutton & Barto (2018), also
known as approximate dynamic programming for solving Markov Decision Processes (MDPs), de-
fined as a tuple ⟨S,A, P (st+1|st, at), R⟩, where S is the state space, A is action space, P (st+1|st, at)
is the transition dynamics, and R is the reward function. We denote a policy π : S → A parametrized
by θ as πθ.

The RL objective is to maximize cumulative rewards, and policy gradient algorithms are a popular
approach to approximately solve this using differentiable policies πθ such as neural networks, by
optimizing an objective of the form:

∇θE

[
T∑

t=0
rt

]
≈ E

[
T∑

t=0
Ψt∇θ log πθ(at|st)

]
(1)

where Ψt takes different forms depending on the algorithm, such as discounted returns, temporal-
difference residual, or a clipped surrogate objective in the case of the popular algorithm Proxi-
mal Policy Optimization (PPO) Schulman et al. (2017), which uses the parameter update θk+1 =
arg maxθ Es,a∼πθk

[L(s, a, θk, θ)] where L(s, a, θk, θ) is a clipped lower bound objective.

In RL for robot locomotion, the MDP state usually includes joint states, velocities, base orientation,
velocity, additional terms like feet height, contact states, target velocity, or distance to target, and
exteroceptive information if relevant, with actions typically being joint position targets executed by
high-frequency low-level joint PD controllers for compliant behavior Lee et al. (2020); Yang et al.
(2020); Yu et al. (2023); Acero et al. (2022); Miki et al. (2022); Loquercio et al. (2023). Reward
functions often combine target tracking, joint state or target smoothness, and other shaping terms
for desired gaits. Our approach utilises reward machines that structure reward functions as state
machines and extend the MDP state with the reward machine state, enhancing learning efficiency
and locomotion robustness DeFazio et al. (2024). This also aids policy interpretability through
the logical rules of reward machine states. See DeFazio et al. (2024) for an in-depth discussion on
locomotion reward machines.

2.2 Gradient Boosting Machines and Symbolic Regression

Generalized Additive Models (GAMs) are a flexible class of models that extend linear models by
allowing non-linear relationships between each predictor and the response variable, while maintaining
additivity Hastie & Tibshirani (1986). The model can be expressed as:

g(E[y]) = β0 + f1(x1) + f2(x2) + · · ·+ fp(xp) (2)

where y is the response variable, g(·) is a link function (identity for regression, sigmoid for classifi-
cation), xi are predictors, β0 is the intercept, and fi are shape functions.
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Gradient Boosting Machines (GBMs) are an ensemble learning technique that builds models se-
quentially, each new model correcting errors made by the previous ones Friedman (2001). A GBM
combines weak learner models, typically shallow decision trees, to create a strong predictive model:

ŷ =
M∑

i=1
γihi(x), (3)

where ŷ is the predicted response, hi(x) are the weak learner models, γi are the corresponding
weights, and M is the number of models.

Explainable Boosting Machines (EBMs) combine the advantages of gradient boosting from GBMs,
with the intelligibility of GAMs Lou et al. (2012). Notably, EBM implementations allow for uni-
variate fi and optionally bivariate fi,j shape functions when valuable Nori et al. (2019), expanding
GAMs by accounting for pairwise interaction terms as:

g(E[y]) = β0 +
∑

fi(xi) +
∑

fi,j(xi, xj) (4)

where fi and fi,j are essentially learned lookup tables.

Symbolic regression seeks mathematical models that best describe data, differing from traditional
regression by not strictly presupposing the model structure Cranmer (2023). Utilizing genetic algo-
rithms (GAs), symbolic regression evolves expressions using unary and binary operators to minimize
an error metric L over data D as minf L(D, f(x)) where f(x) is usually a GAM with complexity con-
straints. This symbolic approach enables the discovery of interpretable models, revealing inherent
data patterns Cranmer (2023).

3 Methodology

We now present the methodology used in this work. Our framework consists of (i) training of RL
experts as neural policies, and (ii) distillation of the neural policies into interpretable policies. We
note that we follow this process because the types of interpretable policies we use are not suitable
for gradient-based optimization of policy parameters, which is a requirement of policy gradient RL
methods. Moreover and noticeably, the neural policies used in previous locomotion work are not
particularly deep, usually having 2 to 5 hidden layers Lee et al. (2020); Yang et al. (2020); Acero
et al. (2022), and hence the limited expressiveness of these networks suggests that the observation-
action mapping learned via RL can be distilled into simpler forms, such as decision trees or additive
models, which motivates our work.

3.1 Training Reinforcement Learning Expert Policies

In general, RL algorithms require πθ to be differentiable, and therefore we cannot easily train GBMs,
EBMs, or symbolic policies directly via RL as these are not directly amenable for gradient-based
optimization. Thus, we use neural networks for our experts. We train expert policies for the
following tasks or gaits: walk, trot, pace, and bound. To obtain our neural expert policies, we use
the PPO algorithm in IsaacGym simulations. As previously mentioned, we build on top of DeFazio
et al. (2024), but we note that our approach is agnostic to the specific details regarding the RL
methodology used to train the neural experts. The logical propositions used for defining the reward
machines for each gait can be found in DeFazio et al. (2024). All gaits use the same base observations
and only differ in their reward machine states. Full observation lists are in Figure 11. A learned
state estimator is used for base velocity and feet contact forces DeFazio et al. (2024), but other
alternatives could be used.

We use the Unitree A1 quadruped robot for our experiments. Each expert policy is trained with
randomized forward velocity commands in the range [−1, 1] m/s and yaw rate commands in [−1, 1]
rad/s. The control frequency is 50Hz, with joint PD controllers set at P = 20 and D = 0.5 as DeFazio
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et al. (2024). We train the expert policy for each gait for 1.5k PPO updates Schulman et al. (2017)
using 1024 parallel environments, which equates to approximately 205 hours of simulated time
used to train each expert – substantially less than previous work Acero et al. (2022), highlighting
the sample efficiency of using reward machines.

3.2 Distilling Interpretable Locomotion Policies

In essence, our distillation process is an imitation learning problem, where the expert policies have
been trained via RL. Therefore, it is subject to the distribution shift found in vanilla behavioural
cloning. To address this, we use the Dataset Aggregation method (DAgger) Ross et al. (2011).
However, instead of directly combining pure expert and imitation policy rollouts in the supervised
dataset, we modify DAgger to use episode-dependent alternation of actions given by the expert and
distilled policies, as shown in Algorithm 1. We experimentally found that without this modifica-
tion policy performance was poor, yielding unstable gaits (this might be addressable by increasing
max_episodes substantially, but it could make distillation prohibitively expensive).

The alternation ratio 1/n determines how often the expert actions are used during rollouts, with
n increasing during the distillation process as a curriculum. This modification is well motivated
for robot control settings with feedback policies, as the action alternation leads to a more graceful
trajectory distribution shift in the data used to train the distilled policy.

We used t = 1000, corresponding to only 10 minutes as the total simulated time in the distillation
dataset D for each gait. Specifically, policies are trained with max_episodes = 30 alternating linear
velocity commands in [0, 0.25, 0.5, 0.75] and only updating n after cycling through all the velocity
commands (i.e. nf = 4), thus the lowest alternation ratio found in the datasets used for distillation
is 1/8.

Using Algorithm 1, in step 19 we distill three types of interpretable locomotion policies for each gait:
GBMs, EBMs, and symbolic expressions, leaving 20% of D as test set. We leverage efficient imple-
mentations from Pedregosa et al. (2011) for GBMs, from Nori et al. (2019) for EBMs, and from Cran-
mer (2023) for Symbolic Regression, with default hyperparameters for each as they are optimized
for robust performance. For Symbolic Regression, we use the unary operators [sin(·), tanh(·), ·2, ·3],
and binary operators [·+ ·, · − ·, · × ·] with maximum operator complexity 4 and overall complexity
90, for 20 iterations per distillation.

4 Results

We present the results of the GBM, EBM, and symbolic policies across various gaits: walking,
trotting, pacing, and bounding. A comprehensive data analysis is conducted to thoroughly delineate
both the performance and interpretability of these policies.

4.1 Performance of Distilled Policies

We evaluate the performance of all distilled policies after termination of Algorithm 1. We do this
from the perspective of regression performance and task performance during policy rollouts in our
simulated environment.

The regression performance of each method at imitating the corresponding expert policies for each
gait quantified by the R2 score is shown in Table 2. We note how EBMs and GBMs perform similarly
for all gaits, with EBMs performing best, and symbolic policies performing worst. Performance of
the symbolic policy might be improved if the genetic algorithm were to be run for more iterations,
however these are significantly time-consuming to run and we present results of the best performing
unary and binary operators we found after testing various combinations.

We evaluate each distilled policy upon termination of Algorithm 1 in simulation with 26 parallel en-
vironments using various alternation ratios and provide average episodic rewards in Figure 2. These
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Figure 2: Average episodic performance of distilled policies for all gaits tested using various alterna-
tion ratios. Note that alternation ratio of 1 means only the neural RL expert is used, 0 means only
the distilled policy is used.

results provide several relevant insights. First, GBM and EBM policies generally maintain perfor-
mance regardless of the alternation ratio used, whereas symbolic policies yield degraded performance
as the neural RL expert is used less often, which is aligned with scores in Table 2. Second, it shall
be noted that for all gaits there is at least one configuration that outperforms the RL expert (i.e.
alternation ratio of 1). Notably, when used strictly by themselves (i.e. alternation ratio 0), the GBM
walk policy outperforms the neural RL expert by over 10%, the EBM and GBM trot policies by 3%,
the EBM and GBM pace policies by 2%, and the EBM and GBM bound policies by nearly 7%. This
is usually due to better linear and angular velocity reward performance. The performance of the
symbolic policies generally matches and sometimes outperforms alternatives when alternated with
RL experts (by 12% for pace and 10% for bound with alternation ratio 1/2), but decays rapidly for
alternation ratios below 1/6 for walk and trot, and below 1/4 for pace and bound, yielding unusable
policies in isolation. It shall be noted standalone evaluations of distilled policies (i.e. alternation
ratio of 0) constitute a setting that was never seen in the distillation training data.

Additionally, we provide a visual depiction of the gait sequences when testing the distilled policies
running in isolation (i.e. alternation ratio 0), with GBM policies shown in Figure 3, EBM policies
in Figure 4, and symbolic policies in Figure 5. It shall be noted how GBM and EBM policies yield
visually similar gaits, whereas the symbolic policy yields visibly worse gaits, which is aligned with
the results in Figure 2 and Table 2. Tested in isolation, only GBM and EBM policies yielded stable
gaits that could run for the full duration of the test episodes, whereas symbolic gaits were not able
to sustain more than a couple of gait cycles.

4.2 Interpretability of Distilled Policies

With regards to GBMs, we use two different methods for policy interpretability: feature importance
and permutation importance Pedregosa et al. (2011), which quantify importance based on decision
tree branches and the effect of permutations respectively. We provide the importance maps for
all gaits in Figure 11, and we also provide a summary of those results based on joint type (hip,
thigh, calf) for the top 3 observations for each method and gait in Table 1. We note how generally
the differences between importance methods is found on the third or second most relevant feature,
mostly agreeing on the top feature for all joint types. These results provide a decomposition of the
observations relevant for producing the behaviour corresponding to each gait for each joint level in
quadruped locomotion. GBMs allow for some global explanations via inspection of decision trees or
partial dependence plots as shown in Figures 7 and 8 from which counterfactual information could
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be obtained for certification purposes, e.g. what value should an observation have taken for an action
output to be beyond a certain level.

Figure 3: Gait sequences for walk, trot, pace, and bound GBM policies.

Figure 4: Gait sequences for walk, trot, pace, and bound EBM policies.

Figure 5: Gait sequences for walk, trot, pace, and bound symbolic policies.

Regarding EBMs, since they are modified GAMs, we can easily obtain the global importance of each
term without additional models or computation, consisting of single and pairwise feature terms in
Equation 4. We provide the global importances of each term for distilled EBM policies in Figure
6. As detailed in Nori et al. (2019), EBMs are highly intelligible because the contribution of each
term to the final prediction can be visualized and understood by plotting fi or fi,j , providing global
explanations of policy behaviour. Examples of such global explanations are presented in Figure 9,
which show the mapping learned by the policy for a specific observation or observation pair. We
note how EBM top important features are different from GBM top important features, summarized
in Table 1, highlighting how observation importance for the same task varies depending on model
architecture.
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Figure 9 shows how trot policy actions for the Front Left Hip joint are influenced by its foot height,
as well as the pairwise interaction of the terms for previous action and joint position of the Hind
Right Thigh. We note how this pairwise interaction map resembles a signed “exclusive or” operation,
with near zero contribution to target joint angle in general, except for positive contributions when
the previous action is positive and the joint position is negative, and negative contributions when the
previous action is negative and the joint position is positive. EBMs also allow for local explanations,
i.e. explaining the action corresponding to a specific input observation, as show in Figure 10. We
argue this is particularly useful for safety certification or investigation purposes in the presence of
malfunctions. Lastly, symbolic policies are interpretable in the sense that they constitute analytical
expressions, and importance could be studied using partial derivatives, but we omit this due to their
under-performance and for brevity (each policy has up to 90 terms).

Figure 6: Global importances for EBM policies for walk, trot, pace, and bound (respectively, top to
bottom) for Front Left Hip joint actions.

5 Conclusion

This work presents a novel approach for distilling neural network-based RL locomotion policies
into interpretable ones, consisting of GBMs, EBMs, and symbolic policies for four gaits: walking,
trotting, pacing, and bounding. Following the proposed methods, we conducted a thorough analysis
of the performance and interpretability of distilled policies. Our results show that interpretable
policies can be efficiently extracted from neural locomotion policies, which reveal valuable insights
into the behaviour of RL locomotion policies and enable global and local explanations of the learned
observation-action mapping, without compromising performance in the case of GBMs and EBMs.

To the best of our knowledge, our work is the first to demonstrate that interpretable models can
be used as policies for robot locomotion, and this work contributes to increased interpretability of
RL locomotion policies. Future research directions include exploring the scalability of our approach
to exteroceptive policies, incorporating uncertainty estimates, and extending our methodology to
robot manipulation. We hope this work contributes towards enabling a widespread and trustworthy
adoption of autonomous robots.
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A Appendix on modified DAgger with policy alternation

Algorithm 1 DAgger with Curriculum of Episode-Dependent Alternation of Expert and Distilled
Policy Actions

1: Initialize dataset D ← ∅
2: Initialize distilled policy πdistilled randomly
3: Initialize pre-trained expert policy πexpert
4: Set frequency parameter nf

5: Set maximum episodes max_episodes
6: for episode = 1 to max_episodes do
7: Set n← max(1, ⌈episode/nf⌉)
8: Initialize episode trajectory τ ← ∅
9: for each step t of the episode do

10: if t mod n = 0 then
11: Execute action at ← πexpert(st) ▷ Use expert policy every 1/n steps
12: else
13: Execute action at ← πdistilled(st) ▷ Use distilled policy otherwise
14: end if
15: Observe new state st+1 and reward rt

16: Append (st, at, st+1, rt) to τ
17: end for
18: Aggregate dataset D ← D ∪ {(st, πexpert(st)) | (st, ·, ·, ·) ∈ τ}
19: Update πdistilled by supervised learning on D
20: end for

B Appendix on GBM and EBM interpretability

The following figures provide various examples of interpretability results that can be obtained from
the GBM and EBM policies.

Figure 7: Example of one of the decision trees used as weak learners in the distilled GBM walk
policy for Front Left Hip.



RLJ | RLC 2024

Figure 8: Partial dependence to top 3 observations by feature importance in distilled GBM walk
policy for Front Left Hip.

Figure 9: Example global explanations (top: single observation, bottom: interacting observation
pair) for EBM trot policy actions for Front Left Hip joint.
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Table 1: Top 3 Observations by Importance for Each Joint Type Action From Distilled Gradient
Boosting Machine Policies Based on Feature and Permutation Importance for 4 Different Gaits

Gait Joint Type 1st Feature 2nd Feature 3rd Feature
Feature Importance

Walk Hip Prev Action Hip RM State RM Iters, DoF Pos
or Prev Action Calf,
Height Foot

Thigh Prev Action Thigh RM State, RM Iters,
DoF Pos Thigh

Prev Action Hip, Com-
mand X

Calf Prev Action Hip or Calf RM Iters, Prev Action
Hip or Calf

Prev Action Hip or
Thigh

Trot Hip Prev Action Hip RM State, RM Iters,
Prev Action Hip or
Thigh

RM Iters, Prev Action
Calf

Thigh Prev Action Hip or
Thigh

RM Iters, Command X,
Prev Action Thigh or
Calf

RM Iters, RM State,
Foot Height

Calf Prev Action Hip or Calf Prev Action Calf or
Hip, RM State

Prev Action Hip or
Thigh

Pace Hip Prev Action Hip, Dof
Vel Hip, RM Iters, Foot
Height

DoF Pos or Vel Thigh,
RM State, RM Iters

Prev Action Hip, Foot
Height, DoF Vel Calf

Thigh Prev Action Hip, RM
Iters, Foot Height

Foot Height, Prev Ac-
tion Hip

DoF Vel Hip or Thigh,
Command X

Calf Prev Action Hip or
Thigh

Prev Action Thigh or
Calf, RM Iters, Foot
Height

RM Iters, DoF Pos or
Vel Thigh

Bound Hip Prev Action Hip Prev Action Hip or
Thigh

Prev Action Calf, Base
Lin Vel Z

Thigh Prev Action Thigh Prev Action Thigh or
Calf, RM Iters

Foot Height, Command
X, Prev Action Hip or
Calf

Calf Prev Action Calf or Hip Prev Action Calf or Hip Prev Action Hip or
Thigh

Permutation Importance
Walk Hip Prev Action Hip RM State, Foot Height RM Iters, RM State,

Prev Action Calf
Thigh Thigh Prev Action RM State, RM Iters,

Command X
Prev Action Hip, Com-
mand X

Calf Prev Action Hip or Calf Prev Action Calf or
Hip, RM State

Prev Action Hip or
Thigh

Trot Hip Prev Action Hip RM State, RM Iters,
Prev Action Hip or Calf

RM Iters, Prev Action
Thigh or Calf

Thigh Prev Action Hip or
Thigh

RM Iters, Command X,
Prev Action Thigh or
Calf

RM Iters, RM State,
Foot Height

Calf Prev Action Hip or Calf Prev Action Calf or
Hip, RM State

Prev Action Hip or
Thigh

Pace Hip Foot Height, Prev Ac-
tion Hip, RM Iters

Prev Action Hip, DoF
Pos Hip, RM Iters, DoF
Vel Calf

Prev Action Hip or
Thigh, DoF Vel Thigh,
RM State

Thigh Prev Action Hip, RM
Iters, Foot Height

Foot Height, Prev Ac-
tion Hip

DoF Vel Hip or Thigh,
Command X

Calf Prev Action Hip or
Thigh

Prev Action Thigh or
Calf, RM Iters, Foot
Height

RM Iters, DoF Pos or
Vel Thigh

Bound Hip Prev Action Hip Prev Action Hip or
Thigh

Prev Action Calf, RM
State

Thigh Prev Action Thigh Command X, Prev Ac-
tion Hip

RM State, RM Iters,
Prev Action Thigh or
Calf

Calf Prev Action Calf or Hip Prev Action Calf or
Hip, Base Lin Vel Z

Prev Action Hip or Calf
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Table 2: Comparison of R2 Scores on Test Sets Across Different Gaits

Model Type Walk Trot Pace Bound
GBM 0.9705 0.9863 0.9752 0.9537
EBM 0.9787 0.9906 0.9819 0.9637
Symbolic 0.6811 0.7334 0.7331 0.6564

Figure 10: Example local explanation for EBM pace policy action for Front Left Hip joint from an
evaluation rollout.
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Figure 11: Observation importances for GBM policies computed using two distinct methods: feature
importance and permutation importance Pedregosa et al. (2011).


