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Abstract: Manipulating objects without grasping them is an essential component
of human dexterity, referred to as non-prehensile manipulation. Non-prehensile
manipulation may enable more complex interactions with the objects, but also
presents challenges in reasoning about gripper-object interactions. In this work,
we introduce Hybrid Actor-Critic Maps for Manipulation (HACMan), a reinforce-
ment learning approach for 6D non-prehensile manipulation of objects using point
cloud observations. HACMan proposes a temporally-abstracted and spatially-
grounded object-centric action representation that consists of selecting a contact
location from the object point cloud and a set of motion parameters describing how
the robot will move after making contact. We modify an existing off-policy RL al-
gorithm to learn in this hybrid discrete-continuous action representation. We eval-
uate HACMan on a 6D object pose alignment task in both simulation and in the
real world. On the hardest version of our task, with randomized initial poses, ran-
domized 6D goals, and diverse object categories, our policy demonstrates strong
generalization to unseen object categories without a performance drop, achieving
an 89% success rate on unseen objects in simulation and 50% success rate with
zero-shot transfer in the real world. Compared to alternative action representa-
tions, HACMan achieves a success rate more than three times higher than the best
baseline. With zero-shot sim2real transfer, our policy can successfully manipulate
unseen objects in the real world for challenging non-planar goals, using dynamic
and contact-rich non-prehensile skills. Videos can be found on the project website:
https://hacman-2023.github.io.
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1 Introduction
The ability to manipulate objects in ways beyond grasping is a critical aspect of human dexterity.
Non-prehensile manipulation, such as pushing, flipping, toppling, and sliding objects, is essential
for a wide variety of tasks where objects are difficult to grasp or where workspaces are cluttered
or confined. However, non-prehensile manipulation remains challenging for robots; previous work
has only shown results with limited object generalization [1, 2] or limited motion complexity, such
as planar pushing or manipulating articulated objects with limited degrees of freedom [3, 4, 5]. We
propose a method that generalizes across object geometries while showing versatile interactions for
complex non-prehensile manipulation tasks.

We present Hybrid Actor-Critic Maps for Manipulation (HACMan), a reinforcement learning (RL)
approach for non-prehensile manipulation from point cloud observations. The first technical con-
tribution of HACMan is to propose an object-centric action representation that is temporally-
abstracted and spatially-grounded. The agent selects a contact location and a set of motion param-
eters determining the trajectory it should take after making contact. The contact location is selected
from the observed object point cloud which provides spatial grounding. At the same time, the robot
decisions become more temporally-abstracted because we focus on only learning the contact-rich
portions of the action.

The second technical contribution of HACMan is to incorporate the proposed action representation
in an actor-critic RL framework. Since the contact location is defined over a discrete action space
(selecting a contact point among the points in the object point cloud) and the motion parameters
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Target Object Pose

Figure 1: We propose HACMan (Hybrid Actor-Critic Maps for Manipulation), which allows non-
prehensile manipulation of unseen objects into arbitrary stable poses. With HACMan, the robot
learns to push, tilt, and flip the object to reach the target pose, which is shown in the first column
and in the top row with transparency. The policy allows for dynamic object motions with complex
contact events in both simulation (top) and in the real world (bottom). The performance of the policy
is best understood from the videos on the website: https://hacman-2023.github.io.

(defining the trajectory after contact) are defined over a continuous action space, our action repre-
sentation is in a hybrid discrete-continuous action space. In HACMan, the actor network outputs
per-point continuous motion parameters and the critic network predicts per-point Q-values over the
object point cloud. Different from common continuous action space RL algorithms [6, 7], the per-
point Q-values are used both to update the actor and also to compute the probability for selecting the
contact location. We modify the update rule of an existing off-policy RL algorithm to incorporate
such a hybrid action space.

We apply HACMan to a 6D object pose alignment task with randomized initial object poses, ran-
domized 6D goal poses, and diverse object geometries (Fig. 1). In simulation, our policy generalizes
to unseen objects without a performance drop, obtaining an 89% success rate on unseen objects. In
addition, HACMan achieves a training success rate more than three times higher than the best base-
line with an alternative action representation. We also perform real robot experiments with zero-shot
sim2real transfer, in which the learned policy performs dynamic object interactions over unseen ob-
jects of diverse shapes with non-planar goals. Our contributions include:

• We propose a novel object-centric action representation based on 3D spatial action maps
to learn complex non-prehensile interactions. We also modify an existing off-policy RL
algorithm to incorporate such a hybrid discrete-continuous action space.

• The proposed action representation demonstrates substantive improvements of perfor-
mance over the baselines and shows strong generalization to unseen objects.

• The learned policy showcases complex contact-rich and dynamic manipulation skills, in-
cluding pushing, tilting, and flipping, shown both in simulation and with a real robot.

2 Related Work
Non-prehensile manipulation. Non-prehensile manipulation is defined as manipulating objects
without grasping them [8]. Many non-prehensile manipulation tasks involve complex contact events
among the robot, the object, and the environment, which lead to significant challenges in state-
estimation, planning and control [1, 2, 9, 5]. Recent work has applied learning-based methods in
non-prehensile manipulation, but they are limited in terms of either skill complexity [10, 3, 4, 11] or
object generalization [12, 11]. In contrast, our work shows 6D object manipulation involving more
complex object interactions while also generalizing to a large variety of unseen object geometries.

Visual Reinforcement Learning with Point Clouds. Recent research has explored various ways
of incorporating point clouds into RL [13, 14]. To overcome the optimization difficulties, previous
work has tried pre-training the feature extractor with an auxiliary loss [15], initializing the RL policy
with behavior cloning [16], or using student-teacher training [17, 18] (see detailed discussion in
Appendix F). Our method does not require these additional training procedures due to the benefits
of the proposed action representation. In the experiments, we show that the baselines following the
most relevant previous work [13, 17, 18] struggles when the task becomes more complex.
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Spatial action maps. Similar to our method, recent work has explored spatial action maps that
are densely coupled with visual input instead of compressing it into a global embedding, based on
images [19, 4, 20], point clouds [21, 3, 22], or voxels [23]. Unlike previous works with spatial
action maps that consider one-shot decision making (similar to a bandit problem) [3, 4, 10] or rely
on expert demonstrations with ground truth actions [19, 21, 23], our method reasons over multi-step
sequences with no expert demonstrations. For example, Xu et al. [4] only chooses a single contact
location followed by an action sequence, rather than a sequence of contact interactions. Unlike
previous work in spatial action maps that uses DQN with discrete actions [24, 25, 10, 20], our
hybrid discrete-continuous action space allows the robot to perform actions without discretization.
Furthermore, we demonstrate the benefit of spatial action representations when applied to a 6D non-
prehensile manipulation task, which is more challenging than the pick-and-place and articulated
object manipulation tasks in previous work.

RL with hybrid discrete-continuous action spaces. Most RL algorithms focus on either a discrete
action space [26] or a continuous action space [7, 6, 27]. However, certain applications are defined
over a hybrid action space where the agent selects a discrete action and a continuous parameter
for the action [28, 29, 30]. Unlike previous work, our hybrid action space uses a spatial action
representation in which the discrete actions are defined over a map of visual inputs. The closest
to our work is Feldman et al. [20] in terms of applying RL to spatial action maps, but they only
consider a finite horizon of 2. We include formal definitions of the policies over the hybrid action
space and modify the loss functions and exploration accordingly.

3 Preliminaries
A Markov Decision Process (MDP) models a sequential stochastic process. An MDP can be repre-
sented as a tuple (S,A, P, r), where S is the state space; A is the action space; P (st+1|st, at) is the
transition probability function, which models the probability of reaching state st+1 from state st by
taking action at; r(st, at, st+1) is the immediate reward at time t. The objective is to maximize the
return Rt, defined as the cumulative discounted reward Rt =

∑︁∞
i=0 γ

irt+i. Given a policy π, the
Q-function is defined as Qπ(s, a) = Eπ[Rt|st = s, at = a].

HACMan is built on top of Q-learning-based off-policy algorithms with a continuous action space [6,
27, 29]. In these algorithms, we define a deterministic policy πθ parameterized by θ and a Q-
function Qϕ parameterized by ϕ. Note that since the policy is deterministic, we use epsilon-greedy
during exploration. Given a dataset D with transitions (st, at, st+1), the Q-function loss is defined
according to the Bellman residual:

L(ϕ) = Est,at,st+1∼D[(Qϕ(st, at)− yt)
2], (1)

where yt is defined as:
yt = rt + γQϕ(st+1, πθ(st+1)). (2)

The policy loss for πθ is defined to maximize the Q-function:

J(θ) = −Est∼D[Qπθ (st, at)|at=πθ(st)]. (3)

4 Problem Statement and Assumptions
We focus on the task of 6D object pose alignment with non-prehensile manipulation. The objective
of the robot is to perform a sequence of non-prehensile actions (i.e. pushing, flipping) to move an
object on the table into a target goal pose. We assume that the goals are stable object poses on the
table. The robot policy observes the point cloud of the scene from depth cameras, denoted as X . We
assume that the point cloud observation is segmented between the background and the object to be
manipulated. Thus, the full point cloud X consists of the object point cloud X obj and the background
point cloud X b. The feature for each point is a 4-dimensional vector, including a 1-dimensional
segmentation mask and a 3-dimensional goal flow vector (will be defined in Section 5.3).

5 Method
5.1 Action Representation
We propose an object-centric action space that consists of two parts: a contact location aloc on
an object and motion parameters am which define how the robot moves to interact with the object
after contact. As shown in Fig. 2, to execute an action, the end-effector will first move to a location in
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free space near location aloc, after which it will interact with the object using the motion parameters
am. After the interaction, the end-effector will move away from the object, a new observation is
obtained, and the next action can be taken.

(a) Before action 
execution

(b) Move to the  
contact location

(c) Execute the 
motion parameters

Figure 2: Illustration of our action space.

Specifically, given the object point cloud
X obj = {xi | i = 1 . . . N}, where xi ∈ R3 are
the point locations, the contact location aloc is
chosen from among the points in X obj . Thus,
aloc is defined over a discrete action space of
dimension N . We assume a collision-free mo-
tion planner to move the gripper to the contact
location aloc (see Appendix A.6 for details). In
contrast, the motion parameters am, which de-
fine how the gripper interacts with the object after contact, are defined in a continuous action space.
Furthermore, we define am as the end-effector delta position movement from the contact position,
hence am ∈ R3. Our experiments show that translation-only movements are sufficient to enable
complex 6D object manipulation in our task. We also include additional experiments on extending
motion parameters to enable rotations in Appendix C.4.

The proposed action representation has two benefits compared to previous work. First, it is
temporally-abstracted. We “abstract” a sequence of lower-level gripper movements of approach-
ing the contact and executing the motion parameters into one action decision step in the RL problem
definition. Compared to the common action space of end-effector delta movements [31, 32, 12, 33],
the agent with our action space can avoid wasting time learning how to move in free space and in-
stead focus on learning contact-rich interactions. Second, it is spatially-grounded since the agent
selects a contact location from the observed object point cloud.

5.2 Hybrid RL Algorithm

The proposed action space is a hybrid discrete-continuous action space: the contact location aloc is
discrete while the motion parameters am are continuous. We propose a way to adapt existing off-
policy algorithms designed for continuous action spaces [6, 27] to this hybrid action space. First,
consider the simpler case of an action space that only has the continuous motion parameters am. In
this case, we can directly apply existing off-policy algorithms as described in Section 3. Given the
observation s (which is the point cloud X in our task), we can train an actor to output the motion
parameters πθ(s) = am. Similarly, the critic Qϕ(s, a

m) outputs the Q-value given the observation
s and the motion parameters am; the Q-value can be used to update the actor according to Eqn. 3.

To additionally predict the contact location aloc, we also need the policy to select a point among the
discrete set of points in the object point cloud X obj . Our insight is that we can embed such a discrete
component of the action space into the critic by training the critic to output a per-point Q-value Qi

for each point xi over the entire point cloud. The Q-value at each point on the object represents
the estimated return after selecting this point as the contact location. These Q-values can thus be
used not only to update the actor, but also to select the contact location as the point with the highest
Q-value. Additionally, we train the actor to also output per-point motion parameters ami for each
point xi. If point xi is selected as the contact location aloc, then the motion parameters at this point
ami will be used as the gripper motion after contact.

The overall architecture is shown in Fig. 3. The actor πθ receives as input the point cloud observation
and outputs per-point motion parameters πθ(X ) = {ami = πθ,i(X ) | i = 1 . . . N}. We call this
per-point output an “Actor Map”. The critic also receives as input the point cloud observation. It
first calculates per-point features f(X ) = {fi | i = 1 . . . N}. The critic then concatenates each per-
point feature fi (Section 4) with the corresponding per-point motion parameter ami and inputs the
concatenated vector to an MLP. The output of the MLP is a per-point Q-value: Qi = Qϕ(fi, a

m
i ),

which scores the action of moving the gripper to location xi and executing motion parameters ami .
We call this per-point output a “Critic Map”. In this way, the critic is able to reason jointly about
the contact location (via the feature fi) as well as the motion parameters ami . In our implementation,
both the actor and the critic use segmentation-style PointNet++ architecture [34] (Appendix B).

At inference time, we can select the point xi within the object points X obj with the highest Q-
value Qi as the contact location and use the corresponding motion parameters ami . For exploration
during training, we define a policy πloc which selects the contact location based on a softmax of the
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Figure 3: An overview of the proposed method. The point cloud observation includes the location
of the points and point features. The goal is represented as per-point flow of the object points. The
actor takes the observation as input and outputs an Actor Map of per-point motion parameters. The
Actor Map is concatenated with the per-point critic features to generate the Critic Map of per-point
Q-values. Finally, we choose the best contact location according to the highest value in the Critic
Map and find the corresponding motion parameters in the Actor Map.

Q-values over all of the object points. The probability of a point xi being selected as the contact
location is thus given as:

πloc(xi | s) = πloc(xi | X ) =
exp(Qi/β)∑︁

k=1,...,N exp(Qk/β)
. (4)

β is the temperature of the softmax which controls the exploration of the contact location. Note that
the background points X b are included in the observation s = X = {X b,X obj}, but are excluded
when choosing the contact location. We modify the update rules of the off-policy algorithm for
this hybrid policy. Given s = X , we first define the per-point loss for updating the actor πθ,i(s) at
location xi according to Eqn. 3:

Ji(θ) = −Qϕ(fi, a
m
i ) = −Qϕ(fi, πθ,i(s)). (5)

fi is the feature corresponding to point xi. The total objective of the actor is then computed as an
expectation over contact locations:

J(θ) = Exi∼πloc [Ji(θ)] =
∑︂
i

πloc(xi | s) · Ji(θ). (6)

πloc(xi | s) is the probability of sampling contact location xi, defined in Eq. 4. The difference
between Eqn. 6 and the regular actor loss in Eqn. 3 is that we use the probability of the discrete
action to weight the loss for the continuous action. To take into account πloc during the critic
update, the Q-target yt from Eqn. 2 is modified to be:

y = rt + γExi∼πloc [Qϕ(fi(st+1), πθ,i(st+1))]. (7)

5.3 Representing the Goal as Per-Point Goal Flow
As described in Section 4, the objective of our task is to move an object to a given goal pose. Instead
of concatenating the goal point cloud to the observed point cloud [17, 18], we represent the goal
as per-point “goal flow”: Suppose that point xi in the initial point cloud corresponds to point x′

i
in the goal point cloud; then the goal flow is given by ∆xi = x′

i − xi. The goal flow ∆xi is
a 3D vector which is included as the feature of the point cloud observation (concatenated with a
segmentation label, resulting in a 4-dimensional feature vector). This flow representation of goal is
also used to calculate the reward and success rate for the pose alignment task (Appendix A.3). In the
real robot experiments, we estimate the goal flow using point cloud registration (Appendix D). Our
ablation experiments suggest that utilizing the flow representation of the goal drastically enhances
performance compared to directly concatenating the goal point cloud (Appendix C.1).

6 Experiment Setup
We evaluate our method on the 6D object pose alignment task as described in Section 4. The
objective is to perform a sequence of non-prehensile actions (i.e. pushing, flipping) to move the
object to a given goal pose. In this section, we describe the task setup in simulation, used for
training and simulation evaluation (see Section 8 for real robot experiments).
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Figure 4: Baselines and Ablations. Our approach outperforms the baselines and the ablations, with
a larger margin for more challenging tasks on the right. Success rates for simple tasks - pushing a
single object to an in-plane goal - are high for all methods, but only HACMan achieves high success
rates for 6D alignment of diverse objects.

Task Setup. The simulation environment is built on top of Robosuite [35] with MuJoCo [36].
We include 44 objects with diverse geometries from Liu et al. [37]. Details and visualizations of the
object models are included in Appendix A.1. The object dataset is split into three mutually exclusive
sets: training set (32 objects), unseen instances (7 objects) and unseen categories (5 objects). The 7
unseen instances consist of objects from categories included in the training set, whereas the 5 objects
in “unseen categories” consist of novel object categories. An episode is considered a success if the
average distance between the corresponding points of the object and the goal is less than 3 cm. More
details on our simulation environment setup can be found in Appendix A.

Task Variants. To analyze the limitations of different methods, we design the object pose alignment
task with varying levels of difficulty. We consider three types of object datasets: An All Objects
dataset that includes the full object dataset, a Cylindrical Objects dataset consisting of only cylin-
drical objects, and a Single Object dataset consists of just a single cube. We also try different task
configurations: In the Planar goals experiments, the object starts from a fixed initial pose at the
center of the bin, and the goal pose is a randomized planar translation of the starting pose. In the
6D goals experiments, both the object initial pose and goal pose are randomized SE(3) stable poses,
not limited to planar transformations. This task requires SE(3) object movement to achieve the goal
which imposes challenges in spatial reasoning. These different task variations are used to show at
what level of difficulty each of the baseline methods stop being able to complete the task.

7 Simulation Results
In this section, we demonstrate the effectiveness of HACMan compared to the baselines and abla-
tions. Fig. 4 summarizes the performance of each method after being trained with the same number
of environment interactions. The training curves, tables, and additional results can be found in
Appendix C. Implementation details of all methods are included in Appendix B.

Table 1: Features of the proposed action representation
compared to the baselines.

Spatially
Grounded?

Temporally
Abstracted?

Select Contact Location [Ours] ✓ ✓
Regress Contact Location × ✓
No Contact Location [17, 18, 12, 13, 32, 31] × ×

Effect of action representations. We
compare our method with two alternative
action representations, summarized in Ta-
ble 1. In Regress Contact Location, the
policy directly regresses to a contact lo-
cation and motion parameters, instead of
choosing a contact point from the point
cloud as in HACMan. The No Contact Location baseline directly regresses to a delta end-effector
movement at each timestep. For every action, the robot continues from its position from the previous
action, instead of first moving the gripper to a selected contact location. This is the most common
action space in manipulation [17, 18, 12, 13, 32, 31]. As input for these two baselines, we use either
point cloud observations or ground-truth state, establishing four baselines in total. The baseline that
regresses motion parameters from point cloud observations is a common action representation used
in prior work in RL from point clouds such as Qin et al. [13]. The baseline that regresses motion
parameters from ground-truth state is the most common approach in prior work, such as in Zhou and
Held [12] as well as the teacher policies in Chen et al. [17, 18] (see Appendix F for more discussion).

As shown in Fig. 4, these baseline action representations struggle with the more complex task vari-
ants. For the most challenging task variant “All Objects + 6D goals,” our method achieves a success
rate 61% better than the best baseline (see Table 5 for numbers). As mentioned in Section 5, the
proposed action representation benefits from being spatially-grounded and temporally-abstracted.
The comparison against the baselines demonstrates the importance of each of these two features
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Figure 5: Qualitative results for the object pose alignment task. HACMan shows complex non-
prehensile behaviors that move the object to the goal pose (shown as the transparent object).

(a) Planar – thin object (d) Knock over (e) Flip up(b) Planar – thick object (c) Planar – Multimodal solution

Figure 6: Goal-conditioned Critic Maps. Blue: goal point cloud. Color map: observed object
point cloud. Lighter colors indicate higher Critic Map scores. Red arrows: motion parameters at a
selected location. The policy uses different contact locations based on object geometries and goals.

(Table 1). The “Regress Contact Location” baseline still benefits from being temporally-abstracted
because the gripper starts from a location chosen by the policy at each timestep; however, this action
representation is not spatially-grounded because it regresses to a contact location which might not
be on the object surface, unlike our approach which selects the contact location among the points
in the point cloud observation. Thus, the “Regress Contact Location” baseline suffers from training
difficulties with more diverse objects (last two variants in Fig. 4). The “No Contact Location” base-
line is neither spatially-grounded nor temporally-abstracted; it follows the usual approach from prior
work [17, 18, 12, 13, 32, 31] of regressing an end-effector delta motion at each timestep. While this
is the most common action space in prior work, it has close to zero performance with 6D goals.

Effect of Multi-step Reasoning. To test the necessity of multi-step reasoning for the pose alignment
task, we experiment with a “Greedy” version of HACMan by setting the discount factor γ in the RL
algorithm to γ = 0. This forces the algorithm to optimize for greedy actions for each step. Using
RL for multi-step reasoning is one of the important differences between our method and previous
work such as Where2Act [3] and UMPNet [4] which optimize for one-step contact locations. Fig. 4
indicates that greedy actions might work for planar goals, but suffer from poor performance for 6D
goals that requires multi-step non-greedy interactions. For example, the last row in Fig. 5 shows an
example of our method pushing the object away from the goal position to prepare for flipping it to the
correct orientation, demonstrating non-greedy behavior. In contrast, we find that the greedy ablation
often results in local optima of only trying to match the object position but not its orientation.

Table 2: Generalization to unseen objects.

Object Set Split Success Rate # of Objects
Train 0.833 ± .018 32
Train (Common Categories) 0.887 ± .024 13
Unseen Instance (Common Categories) 0.891 ± .033 7
Unseen Category 0.827 ± .047 5

Generalization to unseen objects. The
evaluation of our method over unseen ob-
jects with 6D goals is summarized in Ta-
ble 2. Our method generalizes well to
unseen object instances and unseen cate-
gories without a performance drop. When
we increase the maximum episode length
from 10 steps to 30 steps, our method achieves 95.1% success on unseen categories (Appendix C.7).
Table 2 shows that, comparing the same set of object categories (“common categories”), the suc-
cess rates of the training instances are similar to the unseen instances. The differences in geometry
comparing the training objects and the unseen objects are visualized in Appendix A.1.

Goal-conditioned Object Affordance and Multimodality. We visualize the Critic Map, which
computes the score of each contact location of the object (Fig. 6). The Critic Maps capture goal-
conditioned object affordances which describe how the object can be moved to achieve the goal.
Fig. 6(a) and (b) are two scenarios of performing translation object motions for different object
heights: For a thin object, the Critic Map highlights the region of the top of the object (dragging) or
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(a) Blue cup (b) Milk carton                (c) Box (d) Red bottle (e) Hook

(f) Black mug (g) Red mug (h) Wood block (i) Toy bridge (j) Toy block 

Object Name Planar
Goals

Non-planar
Goals Total

(a) Blue cup 4/7 4/13 8/20
(b) Milk bottle 6/7 10/13 16/20
(c) Box 2/5 10/15 12/20
(d) Red bottle 4/7 0/13 4/20
(e) Hook 5/8 5/12 10/20
(f) Black mug 4/7 0/13 4/20
(g) Red mug 5/7 3/13 8/20
(h) Wood block 6/7 6/13 12/20
(i) Toy bridge 9/10 5/10 14/20
(j) Toy block 2/2 10/18 12/20

Total 47/67 53/133 100/200
Percentage 70% 40% 50%

Figure 7: Real robot experiments. HACMan achieves a 50% overall success rate over unseen
objects with different geometries and physical properties, with 6D goal poses.

from the back side of the object (pushing). For a thick object, it prefers to push from the bottom to
avoid the object falling over. In Fig. 6(c), the hammer needs to be rotated by 180 degrees. The Critic
Map predicts a multimodal solution of pushing from either end of the object. Fig. 6(d) and (e) show
out-of-plane motions of the object of knocking over and flipping up the objects.

Additional Results. We include additional experiment results in Appendix C, including additional
ablations, extending the motion parameters, cluttered scenes, longer training steps, longer episode
lengths, and success rate breakdown for each object category.

8 Real robot experiments
In the real robot experiments, we aim to evaluate the ability of the trained policy to generalize to
novel objects and execute dynamic motions in the real world. We evaluate the policy with a diverse
set of objects with different shapes, surface frictions, and densities (Fig. 7). We use random initial
poses and random 6D goals (referred to in the previous section as “All Objects + 6D Goals”). For
example, the red mug (Fig. 7(g)) has goal poses of being upright on the table or lying on the side. An
episode is considered a success if the average distance of corresponding points between the object
and the goal is smaller than 3 cm; we also mark an episode as a failure if there is a failure in the
point cloud registration between the observation and the goal. Implementation details of the real
robot experiments can be found in Appendix D.

Fig. 7 (right) summarizes the quantitative results of the real robot experiments. We run the evalua-
tions without manual reset, which may create uneven numbers of planar versus out-of-plane goals.
It achieves 70% success rate on planar goals and 40% success rate on non-planar goals. Non-planar
goals are more difficult than the planar goals because they require dynamic motions to interact with
the object. A small error in the action may result in large changes in the object movement. Videos of
the real robot experiments can be found on the website: https://hacman-2023.github.io.
The real robot experiments demonstrate that the policy is able to generalize to novel objects in the
real world, despite the sim2real gap of the simulator physics and inaccuracies of point cloud regis-
tration for estimating the goal transformation. More discussion can be found in Appendix D.

9 Limitations
Since the contact location in our action space is defined over the point cloud observation, our method
requires relatively accurate depth readings and camera calibration. Further, the contact location is
currently limited to the observed part of the object. In addition, for this goal-conditioned task, we
represent the goal as per-point flow (Section 5.3) which relies on point cloud registration algorithms.
Inaccuracies in the registration algorithm sometimes lead to failure cases in real robot experiments.
More discussion of the failure cases can be found in Appendix D.3. In addition, finetuning the policy
on the real robot can potentially improve the success rate further.

10 Conclusion
In this work, we propose to learn Hybrid Actor-Critic Maps with reinforcement learning for non-
prehensile manipulation. The learned policy shows complex object interactions and strong general-
ization across unseen object categories. Our method achieves a significantly higher success rate than
alternative action representations, with a larger performance gap for more difficult task variants. In
addition, it would be interesting to explore alternative 3D representations other than point clouds
such as implicit representation [38, 39]. We hope the proposed method and the experimental results
can pave the way for future work on more skillful robot manipulation over diverse objects.
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A Simulation Environment

A.1 Object dataset preprocessing

We use the object models from Liu et al. [37]. Before importing the object models to Mu-
Joco, we perform convex decomposition using V-HACD (https://github.com/kmammou/
v-hacd) and generate watertight meshes using Manifold (https://github.com/hjwdzh/
Manifold). The objects are first scaled to 10 cm according to the maximum lengths along x, y,
and z axis. The object sizes are randomized with an additional scale within [0.8, 1.2] for the “All
Objects” task variants.

We filter out a part of the objects in the original dataset due to simulation artifacts such as wall
penetration and unstable contact behaviors. For example, some of the long and thin objects can be
pushed into the walls and bounce back like springs. Some of the objects cannot remain stable on the
table. The filtering procedure proceeds as follows: 1) we drop an object with an arbitrary quaternion
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Figure 8: Training objects. 32 objects used in training.

Figure 9: Evaluation objects (unseen in-
stance). 7 objects used in unseen instance eval-
uations. These instances are from the same cat-
egories as the training objects.

Figure 10: Evaluation objects (unseen cate-
gory). 5 objects used in unseen category eval-
uations. They come from 4 randomly chosen
categories.

and translation for 100 times; 2) we calculate the percentage of rollouts where the objects are still
unstable after 80 simulation steps; 3) we filter out objects with larger than 10% instability rate. We
also filter out flat objects because they are hard to flip. Flat objects are defined as objects for which
the ratio between the second smallest dimension to the smallest dimension is larger than 1.5. After
filtering, we are left with 44 objects. We split the 44 objects into three datasets: train (32 objects),
unseen instances (7 objects), and unseen categories (5 objects). The object models of the three
datasets are visualized in Fig. 8, Fig. 9 and Fig. 10 respectively. The Cylindrical Objects used
in the experiments is a subset of the All Objects dataset. Cylindrical Objects consist of 9 train
objects, 3 unseen instance objects, and 4 unseen category objects.

A.2 Collecting goal poses

To collect stable goal poses, we sample an SE(3) object pose in the air above the center of bin, drop
the object in the bin, and then wait until it becomes stable to record the pose. We collect 100 goal
poses for each object. At the beginning of each episode, a goal is sampled from the list of stable
poses. Furthermore, we randomize the location of the sampled stable goal pose within the bin.

A.3 Representing the goal as per-point goal flow

As mentioned in Section 5.3, we represent the goal as the “goal flow” of each object point from the
current point cloud to the corresponding point in the transformed goal point cloud. In other words,
suppose that point xi in the initial point cloud corresponds to point x′

i in the goal point cloud; then
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Figure 11: Camera locations in simulation.

the goal flow is given by ∆xi = x′
i − xi. The goal flow ∆xi is a 3D vector which is concatenated

to the other features of the input point cloud to represent the goal. In the ablations in Appendix C.1,
we show that such a representation of the goal significantly improves training, compared to other
goal representations such as concatenating the goal point cloud with the observed point cloud.

In order to compute the flow to the goal, we need to estimate correspondences between the obser-
vation and the goal. In simulation, we calculate the goal flow based on the ground truth correspon-
dences, based on the known object pose and goal pose. In the real robot experiments, we estimate
the correspondences using point cloud registration methods (see Appendix D for details).

Further, for training the RL algorithm, we need some measure of the distance between the initial
pose and the goal pose as the reward. Rather than computing a weighted average of the translation
and rotation distance (which requires a weighting hyperparameter), we instead define the reward at
each timestep rt as the negative of the average goal flow: rt = − 1

N

∑︁N
i=1 ||∆xi||, in which || · ||

denotes the L2 distance and ∆xi is the “goal flow” as defined above. This computation is similar to
the “matching score” [40] or “PLoss” [41] used in previous work, except here we use it as a reward
function.

A.4 Success rate definition

An episode is marked as a success when the average distance of the corresponding points between
the object and the goal is smaller than 3 cm. More specifically, this is calculated by the average
norm of the per-point goal flow vectors as described in Appendix A.3. The episode terminates when
it reaches a success. If the episode does not reach a success within 10 steps, it is marked as a failure.
We include an additional experiment on longer episode length in Appendix C.7.

A.5 Observation

The observation space includes a point cloud of the entire scene X . It contains background points
X b and object points X obj . Note that we move the gripper to a reset pose after every action before
taking the next observation. Thus, the gripper is not observed in the point cloud. To get the point
cloud, we set three cameras around the bin (Fig. 11). The depth readings from the cameras are
converted to a set of point locations in the robot base frame and combined.

The object points are then downsampled with a voxel size of 0.005 m × 0.005 m × 0.005 m and the
background points are downsampled with a voxel size of 0.02 m × 0.02 m × 0.02 m. We empirically
find that using a slightly denser object point cloud may increase the performance. More specifically,
using a 0.005 m × 0.005 m × 0.005 m voxel downsample is slightly better than 0.01 m × 0.01 m
× 0.01 m. We suspect that the policy can perform more precise manipulation of the object with a
denser point cloud.

After downsampling, we estimate the normals of the object points using Open3D
(http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.
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estimate_normals.html). The estimated normals will be used during action execution
(discussed in the next section).

As mentioned in Section 5.3 and Appendix A.3, the feature of each point contains the goal flow
and the segmentation mask (foreground vs background). The goal flow of the object point is cal-
culated according to Section A.3. The goal flow of the background point is set to zero. We obtain
the segmentation labels of the object points and the background points from Robosuite[35] dur-
ing simulation. Details of obtaining segmentation labels in real robot experiments are discussed in
Appendix D.

A.6 Action

As mentioned in Section 5, the proposed method uses an action space with a contact location selected
from the object points and a set of motion parameters. We discuss the implementation details of
executing such an action in the simulation environment in this section. Note that we use a floating
gripper as the robot in simulation since we only focus on gripper interactions with the objects.

Once the policy selects a point on the object point cloud, we obtain the corresponding location
and estimated normal of the point as described in the previous section. The robot first moves to
a “pre-contact” location which is 2 cm away from the contact location along the surface normal.
In simulation, this is implemented by directly setting the gripper to the desired pose. In real ex-
periments, we adopt a workaround solution discussed in Appendix D. If the gripper encounters a
collision at the desired pose, we mark this action as failure and skip the remaining action execution
procedure. After reaching the pre-contact location, the gripper will approach to the desired contact
location using a low-level controller.

After that, the robot will execute the motion parameters which is the end-effector delta position
command that was output by the policy. For the delta actions, we use an action scale of 2 cm.
The delta action is executed with an action repeat of 3. We use Operation Space Controller with
relatively low gains to allow compliant contact-rich motions with the object. Note that we only
consider translation commands (3 dimensions) without rotation in the main experiments because
it leads to sufficiently complex object motion for our task. Appendix C.4 discusses the effect of
including rotation in the gripper movements.

The gripper may not exactly reach the desired location in both sim and real, due to the compliant
low-level controller and the gripper geometry. We consider this imperfect execution as a part of the
environment dynamics. We do not enforce assumptions such as keeping the contact while executing
the motion parameter or avoiding other contact points. Avoiding such assumptions on contacts is a
strength of the proposed method compared to some of the classical methods [1, 2].

B Algorithm and Training Details

B.1 HACMan (Ours)

HACMan is implemented as a modification on top of TD3 [6] based on the implementation
from Stable-Baselines3 (https://github.com/DLR-RM/stable-baselines3). We use
PointNet++ segmentation-style backbones for both the actor and the critic using the implementation
from PyG (https://pytorch-geometric.readthedocs.io). Weights are not shared
between the actor and the critic. Hyperparameters are included in Table 3. The actor and the critic
use the same network size and the same learning rate. To improve the stability of policy training,
we clamp the target Q-values according to an estimated upper and lower bound of the return for the
task. The location policy temperature β is described in Eqn. 4.

B.2 Baselines

The baselines share the same code framework as HACMan. We discuss their differences with HAC-
Man in this section.

Regress Contact Location. Unlike HACMan, this baseline does not use the object surface for
contact point selection. Instead, it directly predicts a location (3 dimensions) and a motion parameter
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Table 3: Hyperparameters.
Hyperparameters Values
Initial timesteps 10000
Batch size 64
Discount factor (γ) 0.99
Critic update freq per env step 2
Actor update freq per env step 0.5
Target update freq per env step 0.5
Learning rate 0.0001
MLP size [128, 128, 128]
Critic clamping [-20, 0]
Location policy temperature (β) 0.1

(3 dimensions, represented as a delta end-effector movement). For each action execution, the end-
effector moves to the selected location, moves according to the motion parameters, and then resets to
the default pose. To improve the performance of this baseline, we project the contact location output
to be within the bounding box of the object. Thus, in this baseline, for a location output of the
policy, a value of 0 corresponds to the center of the object along a specific dimension, while 1 and
−1 represent the maximum and minimum boundaries of the bounding box along that dimension,
respectively. Since the location output is no longer a point selected from the object surface, we
can no longer use the surface normal vector to determine the approach direction as in HACMan.
Instead, this baseline always approaches the location from the top at a height equal to the maximum
side length of the object bounding box.

No Contact Location. This baseline does not use the idea of a contact point. Instead, the policy only
predicts a motion parameter (3 dimensions, represented as a delta end-effector movement). For each
action execution, the end-effector moves according to the motion parameter starting from where
it ends after the previous action, without resetting to the default pose. To reduce the exploration
difficulties, we make two additional changes: 1) we always start the end-effector right above the
object (at a height equal to the maximum side length of the object bounding box) at the beginning
of an episode, and 2) we add an extra term to the reward function that penalizes the end-effector for
being too far from the object,

Jdist =

{︃
−λdist(dmin − 0.05), dmin > 0.05 m
0, otherwise

(8)

where dmin is the minimum distance from the end-effector to the object point cloud vertices, and
λdist is the weight for this reward term.

Point Cloud. Unlike HACMan, these point cloud baselines use PointNet++ classification-style
backbones from PyG (https://pytorch-geometric.readthedoc.io). For each point
cloud, it extracts a single global feature vector instead of per-point feature.

State. In the state-based baselines, the input consists of the pose of the current object, the goal, and
optionally the end-effector if the baseline is using “No Contact Location”. Each pose is a vector
(dim=7) that consists of a position (dim=3) and a quaternion (dim=4). The model concatenates all
the pose vectors into a single vector as the input to an MLP.

We report the best results of the baselines in the paper by searching over different hyperparameters
for each baseline, including learning rate, actor update frequency, initial timesteps, and EE distance
weight λdist. The best hyperparameters for each baseline that are different from HACMan are
summarized in Table 4; any hyperparameter not listed in Table 4 is the same as our method (Table 3).

Table 4: Baseline-specific Hyperparameters.

Baselines Hyperparameters Values
Regress Contact Location (Point Cloud) Actor update freq per env step 0.25
No Contact Location (Point Cloud) Actor update freq per env step 0.25

EE Distance Weight λdist 1
No Contact Location (State) EE Distance Weight λdist 5
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C Supplementary Experiment Results

C.1 Additional ablations

We perform additional ablation studies to analyze each component of the proposed method with all
the variants of the object pose alignment task. The results of the ablations are summarized in Fig. 12.

Single Object
Planar Goals

Cylindrical Objects
Planar Goals

Single Object
6D Goals

Cylindrical Objects
6D Goals

All Objects
6D Goals

Task Variants

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e Ours

No Actor Map
No Flow (Goal Transformation)
No Flow (Goal PC)
Random Location

Figure 12: Additional ablations. All of the components of our method are essential to achieve the
best performance when the task becomes more difficult.

Effect of Contact Location: To test the hypothesis that contact location matters for non-prehensile
manipulation, we design a “Random Location” ablation: the policy randomly selects a contact
location on the object instead of learning to predict a contact location. From Fig. 12, we observe a
performance drop for not predicting the contact location even for the simplest task variant.

Effect of Goal Representations: As described in Section 5.3 and Appendix A.3, in our method,
we represent the goal by first computing the correspondence between the observation and goal point
clouds and concatenating a per-point “goal flow” to the observation. We include two alternative goal
representations to justify the use of goal flow in our pipeline: “No Flow (Goal PC”) concatenates
the goal point cloud with the observed point cloud [17, 18]. We use an additional segmentation
label in the point features to distinguish the goal points from the observed points. From Fig. 12,
this ablation only works well on planar goals for this task. In “No Flow (Goal Transformation)”,
we represent the goal as the transformation between the current observation pose and the goal pose.
We represent this transformation as a 7D vector that includes a translation vector and a quaternion.
We concatenate the 7D goal pose to the observation at all of the object points. Note that, similar to
our method, this baseline also requires computing correspondences between the observation and the
goal. This approach performs well but slightly worse than our method in the last two task variants.

Effect of Actor Map: Instead of using an Actor Map which has per-point outputs, this ablation uses
an actor that outputs a single vector of motion parameters while keeping the Critic Map. This is
different from the baselines in the previous section that remove both the Actor and Critic Maps. In
the “No Actor Map” experiments, we observe a relatively minor performance drop compared to the
full method. Nonetheless, using the per-point action output from an Actor Map instead of a single
output may allow the agent to reason more effectively about different actions for different contact
locations, such as the multimodal solution shown in Fig. 6 (middle).

C.2 Training curves and tables

In this section, we include the full training results for all the methods with additional task variants.
Fig. 13 and Fig. 14 include the training curves for the baselines and the ablations. Table 5 and Table 6
are recorded at 200k environment interaction steps from the training curves for all the methods. The
numbers in the tables are used to generate the bar plots in Fig. 4 and Fig. 12.

Note we also interpolate between the tasks ”Planar Goals” and ”6D Goals” and include an additional
task configuration with a fixed initial object pose and a randomized 6D goal, “6D Goals (Fixed
Init)”. This task configuration is combined with the Single Object dataset and the Cylindrical Object
dataset. Thus, we include 7 variants in total (5 variants in the main paper).

As discussed in Section 7, the baselines and ablations have poor performance when the task becomes
more challenging. Our method achieves the best converged performance across all task variants
while being more sample efficient.
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Figure 13: Baselines. It shows success rates on the train dataset over environment steps. The shaded
area represents the standard deviation across three training seeds.
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Figure 14: Ablations. It shows success rates on the train dataset over environment steps. The shaded
area represents the standard deviation across three training seeds.

Table 5: Baselines. We compare our method with baselines with different action representations and
observations. Our approach outperforms the baselines, with a larger margin for more challenging
tasks. The success rate is reported with the mean and standard deviation across three seeds.

Methods
No Contact Location Regress Contact LocationObject Dataset Task Configuration
State Point Cloud State Point Cloud Ours

Single Object
Planar Goal 0.812 ± .012 0.973 ± .016 1.000 ± .000 0.996 ± .005 1.000 ± .000
6D Goal (Fixed Init) 0.003 ± .000 0.020 ± .002 0.060 ± .014 0.971 ± .005 0.982 ± .004
6D Goal 0.000 ± .000 0.009 ± .001 0.573 ± .015 0.991 ± .004 0.997 ± .003
Planar Goal 0.361 ± .019 0.107 ± .007 0.990 ± .002 0.924 ± .027 0.961 ± .003
6D Goal (Fixed Init) 0.001 ± .001 0.021 ± .002 0.264 ± .017 0.324 ± .014 0.885 ± .004Cylindrical Objects
6D Goal 0.006 ± .002 0.035 ± .002 0.258 ± .010 0.187 ± .012 0.879 ± .014

All Objects 6D Goal 0.012 ± .004 0.016 ± .009 0.094 ± .018 0.243 ± .028 0.854 ± .028
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Table 6: Ablations. We show that all of the components are essential to achieve the best performance
when the task becomes more difficult. Each success rate is reported with the mean and standard
deviation across three seeds.

Object Dataset Task Configuration

Methods
Random Greedy No Flow No Flow No OursLocation (Goal PC) (Goal Pose) Action Map

Single Object
Planar Goal 0.323 ± .011 1.000 ± .000 0.989 ± .002 1.000 ± .000 1.000 ± .000 1.000 ± .000
6D Goal (Fixed Init) 0.075 ± .005 0.754 ± .023 0.198 ± .025 1.000 ± .000 0.991 ± .002 0.982 ± .004
6D Goal 0.037 ± .003 0.633 ± .014 0.181 ± .018 0.994 ± .004 0.989 ± .002 0.997 ± .003

Cylindrical Objects
Planar Goal 0.158 ± .006 0.767 ± .017 0.949 ± .003 0.927 ± .012 0.925 ± .012 0.961 ± .003
6D Goal (Fixed Init) 0.097 ± .006 0.346 ± .012 0.189 ± .009 0.746 ± .015 0.805 ± .016 0.885 ± .004
6D Goal 0.093 ± .004 0.262 ± .011 0.216 ± .008 0.631 ± .016 0.775 ± .018 0.879 ± .014

All Objects 6D Goal 0.147 ± .021 0.293 ± .026 0.153 ± .017 0.808 ± .028 0.835 ± .017 0.854 ± .028

C.3 Additional baseline: Global feature with query contact location

We consider an additional baseline in this section where both the actor and the critic use a global
point cloud feature and a query contact location as input. The query contact location is represented
as a 3D coordinate (x, y, z). More specifically, the actor takes as input a global feature and a contact
location and outputs a continuous vector of motion parameters. The critic takes as input a global
feature and a contact location and outputs a Q-value. Since both the actor and the critic require a
contact location as input, we still need a way of selecting the query contact location. We follow
a similar way as our method to use the observed points on the object as candidate queries and
select the contact location based on the highest Q-value. In this way, the action space remains a
discrete-continuous action space as our method, but it uses a global point cloud feature rather than a
segmentation-style per-point feature.

As shown in Fig. 15, this alternative baseline performs worse than our method. We hypothesize that
a segmentation-style point cloud network can reason about the local point features more effectively
than a global feature extractor due to skip connections.
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Figure 15: Comparison between our method and the additional baseline with query contact
locations. The left figure shows the success rate of the simplest task variant - a single object with
planar goals. The right figure shows the most challenging task variant - all objects with 6D goals.
The shaded area represents the standard deviation across three training seeds. Our method performs
better than the baseline in both cases.

C.4 Extending Motion Parameters

The motion parameters in the main results are defined as a 3D vector that describes the translation
motion of the gripper. In this section, we extend the motion parameters in different ways:

6D Contact. The motion parameters also predict the orientation of the gripper when the gripper
approaches the contact location. The orientation is in the form of ZYX Euler angles. To account for
the physical constraints of our task setup, we restrict the y and x angles to the range of [−0.5π, 0.5π],
and the z angle to the range of [−π, π].

6D Motion. We introduce the ability for the gripper to change orientation while executing the
motions after making contact. Similar to the translation motion parameters, the rotation motion
parameters (ZYX Euler angles) represent the delta rotation at each action repeat step.

Per-point Contact Location Offset. We conduct an experiment where the agent learns a per-point
contact location offset combined with 3D motion. The agent’s continuous action space is defined as
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(contact offset, 3D motion parameters). For each action on a given point at location x, the agent uses
(x + xoffset) as the contact location. Notably, the xoffset value is mapped to scale with the bounding
box since it ranges between [−1, 1].

Table 7: Success rates with different mo-
tion parameters. All methods are evaluated
on all train objects with 6D goals.

Method Success Rate
HACMan Default 0.833 ± .018
+ with 6D Motion 0.866 ± .090
+ with 6D Contact 0.819 ± .077
+ with Contact Offset 0.800 ± .011

Regress Contact Location Default 0.243 ± .028
+ with 6D Motion 0.356 ± .133

Table 7 compares the performance of HACMan with
the modified action spaces. The success rates are re-
ported along with their corresponding standard devi-
ations. We find that including 6D motion in the mo-
tion parameters results in a slightly higher success
rate. However, 6D contact or contact offset does not
seem to provide significant benefits. We also try to
include 6D motion in the Regress Contact Location
baseline. As shown in Table 7, 6D motion improves
the performance of the baseline, but the success rate
is still much worse than our method.

C.5 Experiments in cluttered environments

Table 8: Success rates under different clut-
tered scenes. All methods are evaluated with
6D goals.

# of Scene Objects Success Rate
0 (Default) 0.833
1 0.773
5 0.580

We can directly apply HACMan to a setting of ma-
nipulating objects in cluttered scenes. We con-
duct preliminary experiments in which we introduce
varying numbers of scene objects into the bin. The
scene objects serve as obstacles that add challenges
to the task. We train HACMan under two condi-
tions: with one scene object and with five scene
objects, and we compare the results with the perfor-
mance achieved in the absence of any scene objects
(default setting). From Table 8, as expected, the task becomes more challenging when there are
more obstacles in the bin. As illustrated in Fig 16, the policy tends to push the object directly toward
the goal by pushing the scene object aside.

Figure 16: Qualitative results for object pose alignment tasks in cluttered environments. HAC-
Man shows complex non-prehensile behaviors that move objects to goal poses (shown as the trans-
parent objects). The scene objects are colored in brown to distinguish from the target object to be
manipulated to the goal pose.

C.6 Effect of longer training time

Although we report the success rate at 200k training steps for all the results due to computational
limitations, our method continues to improve performance with longer training (Figure 17). The
graph illustrates the success rate achieved by our method as the number of training steps increases.
Notably, after 500k training steps, our method achieves a success rate of 91.1± 7.3%, significantly
improving from the 83.3% success rate reported in the main text (at 200k training steps).

C.7 Effect of longer episode lengths

We conducted an additional experiment to explore the relationship between success rates and max-
imum episode length. In the main paper, our episodes were limited to a maximum of 10 steps, and
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Figure 17: Success rate with extended training. The success rate of our method reaches 91.1 ±
7.3% after 500k training steps, compared to 83.3% after 200k training steps.
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Figure 18: Success rates at various maximum episode lengths. This line plot shows the success
rates of HACMan evaluated on the four datasets. It is worth noting that the success rates for Unseen
Instance (Common) and Train (Common) are marginally higher compared to Train and Unseen
Category, similar to the pattern in Table 2.

any episode exceeding this limit was deemed a failure. During this additional evaluation, we relaxed
the episode length restrictions and allowed the agent to operate with a maximum episode length of
30. As shown in Fig 18, HACMan achieves more than 95% success rates across all datasets (Train
96.6%, Train (Common) 99.4%, Unseen Instance (Common) 99.7%, Unseen Category 95.1%) when
the maximum episode length is extended to 30. This suggests that providing the agent with a longer
time horizon enables it to achieve higher success rates without the need for retraining.

C.8 Per-category result breakdown

Fig. 19 shows the breakdown of the results for each object category. Although our method demon-
strates consistent performance across the majority of objects, there are certain objects with geome-
tries that pose intrinsic challenges for our approach. For example, our method is limited to poking a
bowl from the top due to occlusions, making it difficult to flip an upward-facing bowl downwards.

C.9 Final Distance to Goal

To further analyze the performance of our method, Fig. 20 visualizes the distribution of distances
to goal of our method at the end of the episodes for the “All Objects 6D Goals” task variant. These
distances are computed as the norms of the flow distances between the objects and their respective
goals.
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Figure 20: Distribution of distances to the goal at the end of the episode for our method in the
“All Objects 6D Goals” experiment. The vertical dashed line represents the success threshold at
a distance of 0.03m. The distribution has a median of 2.57cm, a mean of 3.66cm, and a standard
deviation of 4.27cm.

D Real Robot Experiments

D.1 Real robot setup

The robot setup is shown in Fig. 21. We use three cameras on the real robot to get a combined
point cloud. We follow a similar procedure as Appendix A to process the point cloud and to execute
the action except the following details: We segment the object points from the full point cloud
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Figure 21: Real robot setup.

based on the location and the dimension of the bin instead of using the ground truth segmentation
labels from Robosuite. To move the gripper to the pre-contact location, we first move the robot to a
location above the pre-contact location and then move down to the pre-contact location, instead of
“teleporting” the gripper in simulation.

To obtain goals for the real world evaluation, we record 10 goal point clouds for each object by
manually setting the objects into different stable poses. During each timestep, we use point cloud
registration algorithm to estimate the goal transformation to calculate the goal flow. Specifically, we
use the global registration implementation from Open3D (http://www.open3d.org/docs/
release/tutorial/pipelines/global_registration.html) and then use Iterative
Closest Point (ICP) for local refinement. Note that we only match the shapes of the object instead
of matching both the colors and the shapes due to the limitation of the registration algorithms.

Note that the evaluation process can be done automatically without any manual resets. The reward
and the episode termination condition (Appendix A.4) are both calculated automatically.

For the real robot experiments, we use the policy trained with “6D goals” and the “All Objects”
dataset. We perform zero-shot sim2real transfer without finetuning or additional domain random-
ization. We have tried to add noise to the contact location execution and add noise to the point cloud
observation. However, these modifications did not result in better real robot performance.

D.2 Analysis

We include additional analysis on the real robot results in this section. The proposed method assumes
an estimated goal transformation as input. To estimate the transformation from the object to the goal,
we use point cloud registration, as described above. However, the estimation of the transformation
might not be perfect in the real world. To better understand the performance of our system, we
define two types of evaluation criteria: The “flow success” is automatically calculated based on
the estimated point cloud registration according to the evaluation metric in Appendix A.4. Hence,
“flow success” will sometimes mark an episode as a success or failure incorrectly due to errors in the
point cloud registration. For the “actual success” evaluation metric, we manually mark as failures the
cases among the flow success episodes where the goal estimation is significantly wrong. Thus, “flow
success” indicates the performance of the trained policy (assuming perfect point cloud registration
at termination) while the “actual success” indicates the performance of the full system (accounting
for errors in the point cloud registration). Fig. 7 in the main text reports the actual success. We
include both success metrics in Table 9 below. The policy achieves a 61% success rate based on the
flow success, indicating that some of our errors are due to failures in point cloud registration.
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Table 9: Additional analysis on the real robot experiments. An episode is considered a “flow
success” if the average norm of the estimated flow is less than 3 cm. An episode is considered as an
“actual success” if the object is aligned with the goal pose without point cloud registration failure.

Planar Goals Non-planar Goals Total
Object Name Flow Actual Flow Actual Flow Actual

(a) Blue cup 4/7 4/7 7/13 4/13 5/20 4/20
(b) Milk carton 6/7 6/7 10/13 10/13 16/20 16/20
(c) Box 2/5 2/5 10/15 10/15 12/20 12/20
(d) Red bottle 7/7 4/7 6/13 0/13 13/20 4/20
(e) Hook 5/8 5/8 5/12 5/12 10/20 10/20
(f) Black mug 4/7 4/7 2/13 0/13 6/20 4/10
(g) Red mug 5/7 5/7 7/13 3/13 12/20 8/20
(h) Wood block 6/7 6/7 8/13 6/13 14/20 12/20
(i) Toy bridge 9/10 9/10 7/10 5/10 16/20 14/20
(j) Toy block 2/2 2/2 10/18 10/18 12/20 12/20

Total 50/67 47/67 72/133 53/133 122/200 100/200
Percentage 75% 70% 54% 40% 61% 50%

D.3 Failure cases

We discuss the failure cases of the real robot experiments in this section and include the videos
on our website: https://hacman-2023.github.io/. The most noticeable failure cases are due to the
errors of point cloud registration. The challenges of the registration methods come from noisy depth
readings and partial point clouds. The error of the point cloud registration methods will lead to
unexpected actions during the episode. In addition, it may end the episode early because the episode
termination depends on the goal estimation. This motivates us to separate out the success criteria in
Table 9 based on the failures of the registration method.

On the action side, both the contact location and the motion parameters might have execution errors.
Since the contact location is selected from the observed point cloud, when the camera calibration is
not accurate enough, the robot might not be able to reach the desired contact location of the object.
In addition, since we use a compliant low-level controller to execute the motion parameters, the
robot might not be able to execute the desired motion the same way as in the simulation.

In addition, the object dynamics might be different from the simulation due to the surface friction
and the density of the object. The performance of our method could be further improved with domain
randomization over the physical parameters.

E More discussion on non-prehensile manipulation

Non-prehensile manipulation is an important aspect of the robot’s capabilities, particularly in sce-
narios where grasping encounters limitations, as demonstrated in Fig. 22. This section discusses the
importance of non-prehensile actions in two key contexts:

Environment Occlusion. The first row of Figure 22 shows an example where the potential grasp
poses of the object are occluded by the wall. Non-prehensile moves, like nudging objects to a better
position, offer a practical solution in such a scenario.

Oversized Objects. The last two rows of Figure 22 include scenarios where certain dimensions of
the object are larger than the width of the gripper.

F More discussion on the related work

F.1 Compared to Chen et al. [17, 18]

Our work is substantially different from Chen et al. [17, 18] from the follow aspects:

Approach: The approach in Chen et al. [17, 18] follows a student-teacher training pipeline. The
teacher training is equivalent to the “No Contact Location” baseline with “states” observations in
our paper. The policy takes all the relevant robot state and object state information and outputs delta
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Figure 22: Examples showcasing limitations of prehensile manipulation. The frames where
prehensile manipulation is challenging are highlighted. The first row shows a cube placed at the
corner of the bin, where any grasp is obstructed by the bin wall. Both the second and third rows
depict instances where objects are too large to be grasped at specific poses.

robot actions. Note that they train a single teacher policy across all shapes without using the point
cloud which results in a state-observation policy that is “robust” to shapes instead of “adaptive” to
shapes (see Discussion section in Chen et al. [18]). As shown in Table II, this baseline performs
significantly worse than our method in our task because it lacks shape information from the point
cloud and the robot-centric action space is not as efficient as our object-centric action space. On the
other hand, although the student policy in Chen et al. [17, 18] takes point cloud observation, it is
trained using imitation learning from the teacher, so its performance is upper bounded by the teacher
policy which has been shown to be worse than our proposed method.

Task: We investigate a completely different task and thus the numbers are not really comparable
with the numbers from previous work [17, 18]. First, we use a simple gripper instead of a dexterous
hand. Second, we consider matching the orientation and position of the goal pose while Chen et al.
[17, 18] only considers orientation.

F.2 Compared to Cheng et al. [1], Hou and Mason [2]

Unlike Cheng et al. [1], Hou and Mason [2], our method is not limited to a simplified gripper model
and does not require the knowledge of object environment contact modes which are challenging to
estimate during real robot execution. In addition, Cheng et al. [1], Hou and Mason [2] are restricted
by quasi-static assumptions. Although our method requires static point cloud observations in be-
tween robot actions, the robot interaction with the object is not restricted to quasi-static motion. As
shown in Figure 23, the flipping motion could be non-quasi-static. However, we also want to point
out that static point cloud observations may limit the method from more complex dynamic motions.

Figure 23: An example of non-quasi-static motion. The figure shows an example of executing the
motion parameters to flip a mug upright. After the gripper pushes against the edge of the mug (first
two images), it relies on the inertia of the mug to finish the motion which is not quasi-static (last two
images).
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