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The ultrametric backbone is the union of all 
minimum spanning forests 
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Extended Abstract 
Many problems in network science and graph theory, such as predicting links [1], 

optimizing traversal [2], locating central (or redundant) nodes and edges [3], identifying 
primary transmission modes in spreading dynamics and community structure [4], or 
predicting the size of cascades when nodes or edges are attacked, depend strongly on the 
structure of shortest paths [5]. Often the length of a path is computed as the sum of its edge 
weights, but the underlying system or process may suggest other choices, such as multiplying 
the edge weights or taking only the largest edge weight. The method of aggregating edge 
weights determines the distances between nodes, and which paths are shortest in the context 
of a specific optimization problem. The aggregation operation encodes the cost of indirect 
associations or interactions. Moreover, other methods beyond shortest paths, such as 
diffusion and resistance distances, are possible to aggregate indirect associations in networks 
[6, 7].  A unifying framework to study families of algebraically consistent edge weighting 
and path aggregation that quantifies node-to-node distance in weighted graphs is provided by 
the distance closure [8]. In this framework, applying triangular metric space operations [9, 
10] leads to general algebraic definitions of network distances including shortest path 
distance, diffusion distance, and resistance as the closure of an algebraic structure [8]. 

Minimum spanning trees (MST) and forests are powerful sparsification techniques 
that remove cycles from weighted graphs to minimize total edge weight while preserving 
node reachability, with applications in computer science, network science, and graph theory. 
Despite their utility and ubiquity, they have several limitations, including that they are only 
defined for undirected networks, they significantly alter dynamics on networks, and they do 
not generally preserve important network features such as shortest distances, shortest path 
distribution, and community structure. In contrast, distance backbones, which are subgraphs 
formed by all edges that obey a generalized triangle inequality, are well defined in directed 
and undirected graphs (via the distance closure framework) and preserve those and other 
important network features [3,4].  

The distance backbone of a graph is defined with respect to a specified path-length 
operator that aggregates weights along a path to define its length, thereby associating a cost to 
indirect connections. The backbone is the union of all shortest paths between each pair of 
nodes according to the specified operator. One such operator, the max function, computes the 
length of a path as the largest weight of the edges that compose it (a weakest link criterion). It 
is the only operator that yields an algebraic structure for computing shortest paths that is 
consistent with De Morgan’s laws. Applying this operator yields the ultrametric backbone of 
a graph in that (semi-triangular) edges whose weights are larger than the length of an indirect 
path connecting the same nodes (i.e. those that break the generalized triangle inequality based 
on max as a path-length operator) are removed. We demonstrate that the ultrametric 
backbone is the union of minimum spanning forests in undirected graphs and provides a new 
generalization of minimum spanning trees to directed graphs that, unlike minimum equivalent 
graphs and minimum spanning arborescences, preserves all max-min shortest paths and De 
Morgan’s law consistency. 
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Figure 1: The ultrametric backbone is distinct from unions of MST analogs in directed graphs. (a) 
An example distance graph with thicker edges corresponding to smaller distance weights. (b) The 
ultrametric backbone is shown with edge weights omitted for visual clarity. Edge d2,4 is removed, as 
indicated by the red dashes; it is redundant for max-min  shortest paths because it breaks the max-min 
transitivity. (c) A minimum equivalent graph is shown, which in this example is unique. Note that it is 
distinct from the ultrametric backbone and does not preserve the shortest max-min   path from x2 to x4. 
(d) Five (in this case, unique) minimum spanning arborescences with the root node filled in with black 
are shown. The red dashed line indicates an edge, d2,3  , that is not in any minimum spanning 
arborescence, but is in the ultrametric backbone and required for max-min  shortest paths (its weight 
increases from 5 to 6). The blue edge, d2,4  , is present in the union of these five graphs, but is redundant 
for max-min  shortest paths and therefore is not in the ultrametric backbone. 


