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Abstract

The ability to perform fast and accurate atomistic simulations is crucial for advanc-
ing the chemical sciences. By learning from high-quality data, machine-learned
interatomic potentials achieve accuracy on par with ab initio and first-principles
methods at a fraction of their computational cost. The success of machine-learned
interatomic potentials arises from integrating inductive biases such as equivariance
to group actions on an atomic system, e.g., equivariance to rotations and reflections.
In particular, the field has notably advanced with the emergence of equivariant
message passing. Most of these models represent an atomic system using spherical
tensors, tensor products of which require complicated numerical coefficients and
can be computationally demanding. Cartesian tensors offer a promising alternative,
though state-of-the-art methods lack flexibility in message-passing mechanisms,
restricting their architectures and expressive power. This work explores higher-rank
irreducible Cartesian tensors to address these limitations. We integrate irreducible
Cartesian tensor products into message-passing neural networks and prove the
equivariance and traceless property of the resulting layers. Through empirical
evaluations on various benchmark data sets, we consistently observe on-par or
better performance than that of state-of-the-art spherical and Cartesian models.

1 Introduction

The ability to perform sufficiently fast and accurate atomistic simulations for large molecular and mate-
rial systems holds the potential to revolutionize molecular and materials science [1–8]. Conventionally,
computational chemistry and materials science rely on ab initio or first-principles approaches—e.g.,
coupled cluster [9–11] or density functional theory (DFT) [12, 13], respectively—that are accurate but
computationally demanding, thus limiting the accessible simulation time and system sizes. However,
the ability to generate high-quality, first-principles-based data sets has prompted the development of
machine-learned interatomic potentials (MLIPs). These potentials enable atomistic simulations with
accuracy that is on par with the reference first-principles method but at a fraction of the computational
cost. Message-passing neural networks (MPNNs) [14–21] have been employed in chemical and
materials sciences, including the development of MLIPs, due to their efficient processing of the graph
representation of the atomic system [22–26]. Achieving the desired MLIPs’ performance, however,
requires the inclusion of inductive biases, like the invariance of total energy to translations, reflections,
and rotations in the three-dimensional space, and an effective encoding of the atomic system into a
learnable representation [27]. Designing equivariant MPNNs [25, 26, 28–36], which preserve the
directional information of the local atomic environment, has been one of the most active research
directions of the last years. Previous work often achieves equivariance by representing an atomic

*Corresponding author: viktor.zaverkin@neclab.eu
†These authors contributed equally.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



system as a graph, with node features expressed in spherical harmonics basis or using lower-rank
Cartesian tensors and designing ad-hoc message-passing layers [25, 28–37].

MLIPs based on spherical harmonics [25, 33, 34], which are the basis for irreducible representations
of the three-dimensional rotation group, often demonstrate a better performance compared to those
that use lower-rank Cartesian representations (scalars and vectors) [28, 37]. Spherical tensors,
however, require the definition of a particular rotational axis, often chosen as the z-axis, resulting in
inherent bias [38]. Furthermore, coupling spherical tensors via tensor products, involved in designing
equivariant convolutions and constructing many-body features [33, 39, 40], requires the definition of
complicated numerical coefficients, e.g., Wigner 3-j symbols defined in terms of the Clebsch–Gordan
coefficients [41], and can be computationally demanding. In contrast, irreducible Cartesian tensors
have no preferential directions; their tensor products are simpler and have a better computational
complexity—up to a certain tensor rank—than the tensor products of spherical tensors [38, 42–45].
Recent work improved results of Cartesian MPNNs by using rank-two tensors and decomposing them
into irreducible representations of the three-dimensional rotation group [30], i.e., into representations
of dimension 1 (trace), 3 (anti-symmetric part), and 5 (traceless symmetric part) [46]. Higher-rank
reducible Cartesian tensors have also been integrated into many-body MPNNs [31]. These state-
of-the-art Cartesian approaches, however, lack the flexibility of their message-passing mechanisms.
They rely exclusively on convolutions with invariant filters and restrict the construction of many-body
features, limiting the range of possible architectures and their expressive power.

Contributions. In this work, we address the limitations of state-of-the-art Cartesian models and
demonstrate that operating with irreducible Cartesian tensors leads to on-par or, sometimes, even
better performance than that of spherical counterparts. Particularly, this work goes beyond scalars,
vectors, and rank-two tensors and explores the integration of higher-rank irreducible Cartesian tensors
and their products into equivariant MPNNs: i) We demonstrate how irreducible Cartesian tensors that
are symmetric and traceless can be constructed from a unit vector and a product of two irreducible
Cartesian tensors, essential for equivariant convolutions and constructing many-body features; ii) We
prove that the resulting tensors are traceless and equivariant under the action of the three-dimensional
rotation and reflection group; iii) We demonstrate that higher-rank irreducible Cartesian tensors
can be used to design cost-efficient—up to a certain tensor rank—and accurate equivariant models
of many-body interactions; iv) We conduct different experiments to assess the effectiveness of
equivariant message passing based on irreducible Cartesian tensors, and achieve state-of-the-art
performance on benchmark data sets such as rMD17 [47], MD22 [48], 3BPA [49], acetylacetone [32],
and Ta–V–Cr–W [50]. We hope our contributions will offer new insights into the use of Cartesian
tensors for constructing accurate and cost-efficient MLIPs and beyond.

2 Background

Group representations and equivariance. A group (G, ·) is defined by a set of elements G and a
group product ·. A representation D of a group is a function from G to square matrices such that
D[g]D[g′] = D[g · g′], ∀ g, g′ ∈ G. This representation defines an action of G to any vector space X
(of the same dimension as the dimension of square matrices) through the matrix-vector multiplication,
i.e., (g,x) 7→ DX [g]x for ∀ g ∈ G and ∀x ∈ X . For vector spaces X and Y , a function f : X → Y
is called equivariant to the action of a group G to X and Y iff

f(DX [g]x) = DY [g]f(x) ,∀ g ∈ G.

Invariance can be seen as a special type of equivariance with DY [g] being the identity for all g.
An important class of equivariant models focuses on equivariance to the action of the Euclidean
group E(3), comprising translations and the orthogonal group O(3), i.e., rotation group SO(3) and
reflections, in R3. MLIPs based on equivariant models usually focus on equivariance to the action of
the orthogonal group O(3) and are invariant to translations.

Cartesian tensors. A vector x ∈ R3 transforms under the action of the rotation group SO(3) as
x′ = Rx, i.e., each component of it transforms as (x)′i =

∑
j Rij (x)j . Here, R = DX [g] ∈ R3×3

denotes the rotation matrix representation of g ∈ SO(3). Cartesian tensors of rank n are described by
3n numbers and generalize the concept of vectors. A rank-n Cartesian tensor T can be viewed as
a multidimensional array with n indices, i.e., (T)i1i2···in with ik ∈ {1, 2, 3} for ∀ k ∈ {1, · · · , n}.
Furthermore, each index of (T)i1i2···in transforms independently as a vector under rotation. For
example, a rank-two tensor transforms under rotation as T′ = RTR⊤, i.e., each component of
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it transforms as (T)
′
i1i2

=
∑

j1j2
Ri1j1Ri2j2 (T)j1j2 . For Cartesian tensors, one defines an r-

fold tensor contraction and an outer product, i.e., (T)j1···js =
∑

i1,··· ,ir (U)i1···irj1···js (S)i1···ir
and (T)i1···irj1···js = (U)i1···ir (S)j1···js , respectively. Cartesian tensors are generally reducible
and can, thus, be decomposed into smaller representations that transform independently within
their linear subspaces under rotation. For example, a rank-two reducible Cartesian tensor contains
representations of dimension 1 (trace), 3 (anti-symmetric part), and 5 (traceless symmetric part):∑

i1
(T)i1i1 , (T)i1i2−(T)i2i1 , and (T)i1i2+(T)i2i1−2/3

∑
i1
(T)i1i1 , respectively. Under rotation,

the traceless symmetric part remains within its irreducible subspace, with a similar behavior for other
irreducible components of (T)i1i2 . Furthermore, for a reducible Cartesian tensor of rank n, an action
of the rotation group SO(3) can be represented with a 3n × 3n-dimensional rotation matrix. This
rotation matrix is also reducible, meaning that an appropriate change of basis can block diagonalize it
into smaller subsets, the irreducible representations of the rotation group SO(3).

Spherical tensors. Spherical harmonics (or spherical tensors) Y l
m are functions from the points on

a sphere to complex or real numbers, with degree l ≥ 0 and components −l ≤ m ≤ l. Collecting
all components for a given l we obtain a (2l + 1)-dimensional object Yl = (Y l

−l, . . . , Y
l
l−1, Y

l
l ).

Spherical tensors transform under rotation as Y l
m(Rx̂) =

∑
m′(D)lmm′Y l

m′(x̂), where (D)lmm′ is
the irreducible representation of SO(3)—the Wigner D-matrix—and R denotes the rotation matrix.
Spherical tensors are irreducible and can be combined using the Clebsch–Gordan tensor product(

Y l1
m1

⊗CG Y
l2
m2

)l3
m3

=
∑l1

m1=−l1

∑l2

m2=−l2
Cl3m3

l1m1,l2m2
Y l1
m1
Y l2
m2
,

with Clebsch–Gordan coefficients Cl3m3

l1m1,l2m2
and l3 ∈ {|l1 − l2|, · · · , l1 + l2}. Furthermore, any

reducible Cartesian tensor of rank n can be written in spherical harmonics as (x̂)i1 (x̂)i2 · · · (x̂)in =∑n
l=0

∑l
m=−lX

lm
i1i2···inY

l
m, with coefficients X lm

i1i2···in defined elsewhere [51].

3 Related work

Equivariant message-passing potentials. Equivariant MPNNs [25, 28–37, 39, 52–54] often outper-
form more traditional invariant models [55–60]. While many invariant and equivariant MPNNs rely
on two-body features within a single message-passing layer, there is a growing interest in constructing
higher-body-order features, such as angles and dihedrals, to model many-body interactions in atomic
systems [57, 59, 60]. Note that equivariant models with two-body features in a single message-passing
layer build many-body ones through repeated message-passing iterations, increasing the receptive
field and, thus, computational cost. Recent work recognized the importance of higher-body-order fea-
tures but faced challenges due to explicit summation over triplets or quadruplets [57, 59]. In contrast,
MACE advances the current state-of-the-art by combining ACE and equivariant message passing,
introducing cost-efficient many-body message-passing potentials [33]. With just two message-passing
layers, MACE yields accurate potentials for interacting many-body systems [61].

Beyond Clebsch–Gordan tensor product. Despite the success of equivariant MPNNs based
on spherical tensors, the high computational cost of the Clebsch–Gordan tensor product limits
their computational efficiency [28, 30, 33–35, 53, 54, 62–64]. Thus, current research focuses on
alternatives to the Clebsch–Gordan tensor product, which has a O(L5) complexity for tensors up
to degree L. Recently, the relation of Clebsch–Gordan coefficients to the integral of products of
three spherical harmonics, known as the Gaunt coefficients [41], has been exploited to reduce the
computational cost of the tensor product of spherical tensors to O(L3), compared to O(L6) of the
full Clebsch–Gordan tensor product including all (l1, l2) → l3 [36]. However, this approach excludes
odd tensor products and, thus, restricts the expressive power and the range of possible architectures.

Cartesian tensors and their products offer another promising alternative to the Clebsch–Gordan
tensor product, enabling the efficient construction of message-passing layers with two- and many-
body features. Recent work has explored decomposing rank-two tensors into their irreducible
representations and using higher-rank reducible tensors [30, 31]. These approaches, however, are
limited to convolutions with invariant filters, restricting the range of possible architectures and, thus,
the expressive power of resulting Cartesian models. Furthermore, they provide limited mechanisms
for constructing higher-body-order features, restricted to three-body features obtained through matrix-
matrix multiplication and invariant many-body features obtained through full tensor contractions,
similar to moment tensor potentials and Gaussian moments [65–67]. Finally, using reducible Cartesian
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Figure 1: Schematic illustration of (a) the construction of an irreducible Cartesian tensor for a
local atomic environment and (b) the tensor product of two irreducible Cartesian tensors of
rank l1 and l2. The construction of an irreducible Cartesian tensor from a unit vector r̂ is defined in
Eq. (1). In this work, we use tensors with the same rank n and weight l, i.e., n = l, avoiding the need
for embedding tensors with l < n in a higher-dimensional tensor space. Therefore, we use l to identify
the rank and the weight of an irreducible Cartesian tensor. The tensor product is defined in Eqs. (2)
and (3), resulting in a new tensor Tl3 = (Tl1 ⊗Cart Tl2)l3 of rank l3 = {|l1 − l2|, · · · , l1 + l2}.
Transparent boxes denote the linearly dependent elements of symmetric and traceless tensors. The
tensor product can be even or odd, defined by l1 + l2 − l3.

tensors during message-passing leads to mixing different irreducible representations, which can hinder
the performance of resulting models compared to state-of-the-art spherical models [31].

4 Methods

We define an atomic configuration S = {ru, Zu}Nat
u=1, where ru ∈ R3 denotes Cartesian coordinates

and Zu ∈ N represents the atomic number of atom u, with a total of Nat atoms. Our focus lies on
message-passing MLIPs, parameterized by θ, that learn a mapping from a configuration S to the
total energy E, i.e., fθ : S 7→ E ∈ R. Thus, we represent molecular and material systems as graphs
in a three-dimensional Euclidean space. An edge {u, v} exists if atoms u and v are within a cutoff
distance rc, i.e., ∥ru − rv∥2 ≤ rc. For more details on MPNNs, see Appendix A. The total energy
of an atomic configuration is defined by the sum of individual atomic energy contributions [68],
i.e., E =

∑Nat

u=1Eu. Atomic forces are computed as negative gradients of the total energy with
respect to atomic coordinates, i.e., Fu = −∇ruE.

4.1 Irreducible Cartesian tensor product

In the following, we explore irreducible Cartesian tensors and their products based on the three-
dimensional vector space and the three-dimensional orthogonal group O(3), which comprises ro-
tations and reflections. The respective tensors and tensor products are schematically illustrated in
Fig. 1 (a) and (b), respectively, and are further employed in constructing MPNNs for atomic systems
equivariant under actions of the orthogonal group. An irreducible Cartesian tensor Tn ∈ (R3)⊗n

of rank n and weight l ≤ n (related to the degree l of spherical tensors) can be represented by
a tensor with 3n components in a three-dimensional vector space. These 3n components form a
basis for a (2l + 1)-dimensional irreducible representation of the three-dimensional rotation group
SO(3) [69, 70]. Thus, only 2l + 1 of the 3n components are independent.

The rotation in the space of all tensors of rank n is induced through the n-fold outer product
of a rotation matrix R ∈ R3×3, i.e., R⊗n = R ⊗ · · · ⊗ R. The obtained representation of the
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rotation group SO(3) is reducible for all n except n = {0, 1}. Reducing a tensor of rank n yields
a unique irreducible tensor with the same weight and rank (n = l), which is characterized by
being symmetric, i.e., (Tn)···i···j··· = (Tn)···j···i··· ,∀ i ̸= j ∈ {i1 · · · , in}, and traceless, i.e.,∑

i(Tn)···i···i··· = 0 ,∀ i ∈ {i1, · · · , in}. An irreducible tensor of rank n and weight l with l < n
can be viewed as a l-rank tensor embedded in the n-rank tensor space, e.g., by computing an outer
product with the identity matrix. However, the embedding is often not unique. Thus, we construct
tensors with the same weight and rank (n = l) in the following.

Irreducible Cartesian tensors from unit vectors. Hereafter, we denote the rank and the weight of
irreducible Cartesian tensors by l to distinguish them from reducible counterparts. An irreducible
Cartesian tensor of an arbitrary rank l can be constructed from a unit vector r̂ in the form [45]

Tl(r̂) = C
∑⌊l/2⌋

m=0
(−1)m

(2l − 2m− 1)!!

(2l − 1)!!

{
r̂⊗(l−2m) ⊗ I⊗m

}
, (1)

resulting in a symmetric and traceless tensor of rank l. Here, I denotes the 3 × 3 identity matrix,
r̂⊗(l−2m) = r̂⊗ · · · ⊗ r̂ and I⊗m = I⊗ · · · ⊗ I are the corresponding (l − 2m)- and m-fold outer
products. The curly brackets indicate the summation over all permutations of the l unsymmetrized
indices [45], i.e., {Tl}i1···il =

∑
π∈Sl

(Tl)iπ(1)···iπ(l)
, with Sl being the corresponding set of per-

mutations. The expression in Eq. (1) involves three distinct outer products (r̂ ⊗ r̂)i1i2 = r̂i1 r̂i2 ,
(I ⊗ I)i1i2i3i4 = δi1i2δi3i4 , and (r̂ ⊗ I)i1i2i3 = r̂i1δi2i3 , where δi2i3 denotes the Kronecker delta.
The normalization constant C = (2l − 1)!!/l! is chosen such that an l-fold contraction of Tl with
the unit vector r̂ yields unity. An example of an irreducible Cartesian tensor with rank l = 3 is
(Tl=3)i1i2i3 = 5

2

(
r̂i1 r̂i2 r̂i3 − 1

5 (r̂i1δi2i3 + r̂i2δi3i1 + r̂i3δi1i2)
)
.

Irreducible Cartesian tensor product. The following defines the product of two irreducible
Cartesian tensors xl1 ∈ (R3)⊗l1 and yl2 ∈ (R3)⊗l2 , yielding an irreducible Cartesian tensor of rank
l3, i.e., zl3 = (xl1 ⊗Cart yl2)l3 ∈ (R3)⊗l3 ∀ l3 ∈ {|l1 − l2|, · · · , l1 + l2}, that is symmetric and
traceless. The irreducible Cartesian tensor product is crucial for designing equivariant MPNNs and is
used for equivariant convolutions and constructing many-body features in Section 4.2. For an even
l1 + l2 − l3 = 2k, the general form of an irreducible Cartesian tensor of rank l3 reads [45]

(xl1 ⊗Cart yl2)l3

=Cl1l2l3

∑min(l1,l2)−k

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

{
(xl1 · (k +m) · yl2)⊗ I⊗m

}
,

(2)

where (xl1 · (k +m) · yl2) =
∑

i1,··· ,ik+m
(xl1)i1···ik+m

(yl2)i1···ik+m
denotes an (k +m)-fold ten-

sor contraction, which results in a tensor of rank l1 + l2 − 2(k +m). For simplicity, we skip the
uncontracted indices in the above definition. For example, for l1 = 4 and l2 = 3 and a three-fold
tensor contraction we obtain (xl1 · 3 · yl2)i4 =

∑
i1,i2,i3

(xl1)i1i2i3i4(yl2)i1i2i3 , i.e., the correspond-
ing tensors are contracted along i1, i2, and i3. Note that the final result is independent of the index
permutation, as the contracted tensors are symmetric. For an odd l1+ l2− l3 = 2k+1, we define [45]

(xl1 ⊗Cart yl2)l3

=Dl1l2l3

∑min(l1,l2)−k−1

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

{
(ε : xl1 · (k +m) · yl2)⊗ I⊗m

}
,

(3)

with ε denoting the Levi-Civita symbol (εi1i2i3 = −εi3i2i1 and εi1i1i3 = 0). The double contraction
with the Levi-Civita symbol reads (ε : xl1 ·(k+m) ·yl2)i1 =

∑
i2,i3

εi1i2i3 (xl1 · (k +m) · yl2)i2i3 ,
and yields a tensor of rank l1 + l2 − 2(k +m)− 1. Details on the normalization constants Cl1l2l3
and Dl1l2l3 are provided in Appendix B.1.

4.2 Equivariant message-passing based on irreducible Cartesian tensors

The following section introduces the basic operations for constructing equivariant MPNNs based on
irreducible Cartesian tensors. Using their irreducible tensor products, we demonstrate how to build
equivariant two- and many-body features, crucial for modeling many-body interactions in molecular
and materials systems. Particularly, we focus on MLIPs based on equivariant MPNNs and extend the
state-of-the-art MACE architecture [33] to the Cartesian basis. Following the MACE architecture,
we use only even tensor products. We split vectors ruv = ru − rv ∈ R3 from atom u to atom
v, schematically shown in Fig. 1 (a), into their radial and angular components (unit vectors), i.e.,
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ruv = ∥ruv∥2 ∈ R and r̂uv = ruv/ruv ∈ R3, respectively. In the t-th message-passing layer, edges
{u, v} are embedded using a fully connected neural network R(t)

kl1l2l3
: R → R with k output feature

channels. The radial function R(t)
kl1l2l3

takes as an input radial distances ruv, which are embedded
through Bessel functions and multiplied by a smooth polynomial cutoff function [60]. Finally, we
use irreducible Cartesian tensors Tl(r̂), similar to spherical tensors Yl(r̂), to embed unit vectors into
the tensor space of maximal rank lmax.

Equivariant convolutions and two-body features. Rotation equivariance in MPNNs is typically
achieved by constraining convolution filters to be the products between learnable radial functions and
spherical tensors, i.e., R(t)

kl1l2l3
(ruv)Y

l1
m1

(r̂uv). The two-body features A(t)
ukl3m3

are further obtained
through the tensor product—the point-wise convolution [39]—between the respective filters and
neighbors’ equivariant features h(t)ukl2m2

. The permutational invariance is enforced by pooling over the
neighbors v ∈ N (u). Here, we use irreducible Cartesian tensors, with the rotation-equivariant filters
given by R(t)

kl1l2l3
(ruv)

(
Tl1(r̂uv)

)
i1i2···il1

. Thus, two-body features
(
A

(t)
ukl3

)
i1i2···il3

are obtained
using the irreducible Cartesian tensor product and are represented by rank-l3 irreducible Cartesian
tensors. The Cartesian two-body features are defined by(
A

(t)
ukl3

)
i1i2···il3

=
∑

v∈N (u)

(
R

(t)
kl1l2l3

(ruv)Tl1(r̂uv)⊗Cart
1√
dt

∑
k′

W
(t)
kk′l2

h
(t)
vk′l2

)
i1i2···il3

, (4)

where dt represents the number of feature channels in the node embeddings h(t)
vk′l2

of the t-th message-
passing layer. In the first message-passing layer, node embeddings are initialized as learnable weights
WkZv

that are invariant to actions of the orthogonal group, i.e., are scalars or tensors of rank l2 = 0,
and embed the atom type Zv . Thus, constructing equivariant two-body features simplifies to(

A
(1)
ukl1

)
i1i2···il1

=
∑

v∈N (u)
R

(1)
kl1

(ruv)
(
Tl1(r̂uv)

)
i1i2···il1

WkZv . (5)

Equivariant many-body features. The importance of many-body terms arises from the fact that the
interaction between atoms changes when additional atoms are present; see Appendix A. Furthermore,
many-body terms are often required to ensure the generalization of interatomic potentials, i.e., their
ability to accurately predict energies and forces for temperatures and stoichiometries on which they
were not trained [71]. Here, we construct (ν + 1)-body equivariant features from

(
A

(t)
uklξ

)
i1i2···ilξ

obtained using Eqs. (4) or (5). The ν-fold Cartesian tensor product, which yields (ν + 1)-body
features represented by an irreducible Cartesian tensor of rank L, reads(

B
(t)
uηνkL

)
i1i2···iL

=
(
Ã

(t)
ukl1

⊗Cart · · · ⊗Cart Ã
(t)
uklν︸ ︷︷ ︸

ν-fold

)
i1i2···iL

, (6)

where ην counts all possible ν-fold products of {l1, · · · , lν}-rank tensors, yielding rank-L irreducible
Cartesian tensors, and Ã

(t)
uklξ

= 1√
dt

∑
k′ W

(t)
kk′lξ

A
(t)
uk′lξ

with dt feature channels.

The irreducible Cartesian tensor product does not allow pre-computing the coefficients of the ν-fold
tensor product, differing from spherical tensors that use the generalized Clebsch–Gordan coeffi-
cients, contracted with weights from Eq. (A1) and summed over the possible paths len(ην), for this
purpose [33, 40, 51]. Thus, we obtain the result of Eq. (6) by iteratively applying the irreducible
Cartesian tensor product (ν − 1) times and refer to the respective models as irreducible Cartesian
tensor potentials (ICTPs) with the full product basis or ICTPfull. However, two-fold tensor products
in Eq. (6) are symmetric to permutations of involved tensors. Thus, the number of the ν-fold tensor
products, len(ην), can be significantly reduced; we refer to the corresponding models as ICTPsym.
Furthermore, we can reduce the computational cost of the Cartesian product basis by performing
the calculations in a latent feature space. We use learnable weights Wkk′lξ to reduce the number of
feature channels for the product basis calculation and then increase it again for subsequent steps; we
refer to the corresponding models as ICTPlt. For more details on the model architecture, such as the
construction of updated many-body node embeddings, readout functions, and different options for
the Cartesian product basis, see Appendix B.2.

Runtime considerations. When choosing an architecture to implement MLIPs, the runtime per
energy and force evaluation is crucial. The computational complexity as a function of rank L is
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Figure 2: Inference times and memory consumption as a function of the tensor rank L (a)–(b)
and the correlation order ν (c)–(d). All results are obtained for the 3BPA data set and lmax = L. We
used eight feature channels to allow experiments with larger ν values. MACE models use intermediate
tensors with l > lmax for their product basis, which we fixed to l = lmax. Otherwise, pre-computing
generalized Clebsch–Gordan coefficients for ν > 4 would require more than 2 TB of RAM. For ICTP,
we used the full product basis to compute the same number of ν-fold tensor products as in MACE.

O
(
9LL!/

(
2L/2 (L/2)!

))
for the irreducible Cartesian tensor product and O

(
L5
)

for the Clebsch–
Gordan one; see Appendix B.3 for more details. Thus, equivariant convolutions based on spherical
tensors are more computationally efficient for L → ∞ than those based on irreducible Cartesian
tensors. However, state-of-the-art models and physical properties typically require L ≤ 4 [33, 72],
making sub-leading terms and implementation-dependent amplitudes crucial. Based on our analysis,
for L ≤ 4, we can expect equivariant convolutions based on irreducible Cartesian tensors to be more
computationally and memory efficient than their spherical counterparts. For L ≤ 4, the ν-fold tensor
product in the Cartesian basis can also offer computational advantages. Its cost, as a function of
rank L and correlation order ν, is K(9LL!/(2L/2(L/2)!))ν−1 and KL 1

2ν(ν+3) for ICTP and MACE,
respectively. The pre-factor K, which counts all possible ν-fold tensor products, is removed in MACE
through generalized Clebsch-Gordan coefficients, though these coefficients increase the memory
spherical models use. Therefore, it is essential to consider the inference times for a fair comparison,
which we provide in Section 5.

Equivariance and tracelss property of message-passing layers. We conclude this section by giving
a theoretical result that ensures the equivariance of message-passing layers based on irreducible
Cartesian tensors and their irreducible tensor products to actions of the orthogonal group. The proof
is provided in Appendix C. We also prove in Appendix D that these message-passing layers preserve
the traceless property of irreducible Cartesian tensors.
Proposition 4.1. The message-passing layers based on irreducible Cartesian tensors and their
irreducible tensor products are equivariant to actions of the orthogonal group.
Proposition 4.2. The message-passing layers based on irreducible Cartesian tensors and their
irreducible tensor products preserve the traceless property of irreducible Cartesian tensors.

5 Experiments and results

This section presents the results for the five benchmark data sets: rMD17, MD22, 3BPA, acetylacetone,
and Ta–V–Cr–W. We describe data sets and training details in Appendices E.1 and E.2, respectively.

Scaling and computational cost. The expressive power and computational efficiency of equivariant
many-body message-passing potentials depend on the tensor ranks employed in equivariant message
passing and embedding local atomic environments, i.e., L and lmax, respectively, as well as the
correlation order ν. Recent work has shown that for identifying environments with L-fold symmetries,
at least rank-L tensors are required [73]. These symmetries are typically lifted in atomistic simulations,
motivating the use of L ≤ 4. Higher body-order correlations ν, in turn, are required if atomic
environments are degenerate to a lower body-order correlation ν − 1 [73, 74]. Figure 2 demonstrates
inference times and memory consumption of models based on irreducible Cartesian and spherical
tensors, i.e., ICTP and MACE, respectively, as a function of the tensor rank and the correlation order.
Table A1 presents the corresponding numerical results. We find that irreducible Cartesian tensors
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Table 1: Energy (E) and force (F) mean absolute errors (MAEs) for the rMD17 data set. E-
and F-MAE are given in meV and meV/Å, respectively. Results are shown for models trained using
Ntrain = {950, 50} configurations randomly drawn from the data set, with further 50 used for early
stopping. All values are obtained by averaging over five independent runs, with the standard deviation
provided if available. Best performances, considering the standard deviation, are highlighted in bold.

Ntrain = 950 Ntrain = 50
ICTPsym TensorNet [30] MACE [33] Allegro [34] NequIP [25] NequIP [25] MACE [33] ICTPsym

Aspirin E 2.27 ± 0.11 2.4 2.2 2.3 2.3 19.5 17.0 14.84 ± 0.98
F 6.67 ± 0.19 8.9 ± 0.1 6.6 7.3 8.2 52.0 43.9 40.19 ± 0.95

Azobenzene E 1.20 ± 0.01 0.7 1.2 1.2 0.7 6.0 5.4 5.47 ± 0.63
F 2.92 ± 0.03 3.1 3.0 2.6 2.9 20.0 17.7 17.25 ± 0.53

Benzene E 0.26 ± 0.00 0.02 0.4 0.3 0.04 0.6 0.7 0.38 ± 0.02
F 0.34 ± 0.02 0.3 0.3 0.2 0.3 2.9 2.7 2.45 ± 0.13

Ethanol E 0.43 ± 0.02 0.5 0.4 0.4 0.4 8.7 6.7 6.15 ± 0.26
F 2.63 ± 0.10 3.5 2.1 2.1 2.8 40.2 32.6 29.53 ± 1.14

Malonaldehyde E 0.82 ± 0.03 0.8 0.8 0.6 0.8 12.7 10.0 9.72 ± 0.42
F 4.96 ± 0.21 5.4 4.1 3.6 5.1 52.5 43.3 42.88 ± 3.08

Naphthalene E 0.56 ± 0.00 0.2 0.5 0.2 0.9 2.1 2.1 2.06 ± 0.10
F 1.45 ± 0.05 1.6 1.6 0.9 1.3 10.0 9.2 9.43 ± 0.46

Paracetamol E 1.44 ± 0.03 1.3 1.3 1.5 1.4 14.3 9.7 8.94 ± 0.66
F 4.89 ± 0.11 5.9 ± 0.1 4.8 4.9 5.9 39.7 31.5 30.13 ± 1.51

Salicylic acid E 0.97 ± 0.01 0.8 0.9 0.9 0.7 8.0 6.5 5.95 ± 0.43
F 3.66 ± 0.06 4.6 ± 0.1 3.1 2.9 4.0 35.9 28.4 27.78 ± 1.93

Toluene E 0.46 ± 0.00 0.3 0.5 0.4 0.3 3.3 3.1 2.45 ± 0.13
F 1.61 ± 0.02 1.7 1.5 1.8 1.6 15.1 12.1 11.24 ± 0.55

Uracil E 0.57 ± 0.01 0.4 0.5 0.6 0.4 7.3 4.4 4.66 ± 0.16
F 2.64 ± 0.08 3.1 2.1 1.8 3.1 40.1 25.9 25.97 ± 0.78

outperform spherical ones for most parameter values. In particular, irreducible Cartesian tensors
allow spanning the ν-space more efficiently, in line with our theoretical results in Section 4.2.

Molecular dynamics trajectories. We assess the performance of ICTP models using the revised
MD17 (rMD17) data set, which includes structures, total energies, and atomic forces for ten small
organic molecules obtained from ab initio molecular dynamics simulations [47]. Table 1 shows that
ICTPsym achieves accuracy on par with state-of-the-art spherical and Cartesian models. Notably,
several methods exhibit similar accuracy when trained with 950 configurations. However, the achieved
accuracy is much lower than the desired accuracy of 43.37 meV ≈ 1 kcal/mol, making a model
comparison less meaningful. Therefore, we also compare ICTPsym with MACE and NequIP, trained
using 50 configurations, making learning accurate MLIPs more challenging. From Table 1, we see
that ICTPsym outperforms MACE and NequIP for most molecules in this scenario.

We further evaluate the performance of ICTP using the MD22 data set, which contains seven
molecular systems with 42–370 atoms [48]. This data set spans four major classes of biomolecules
and supramolecules and was designed to challenge short-range models. Table A2 shows that ICTP
achieves an accuracy on par with or better than state-of-the-art models, including long-range ones.

Extrapolation to out-of-domain data. We continue to assess the performance of ICTP models using
the 3BPA data set [49]. The training data set comprises 500 configurations, total energies, and atomic
forces acquired from molecular dynamics at 300 K. The test data set is obtained from simulations at
300 K, 600 K, and 1200 K. We also test our models using energies and forces along dihedral rotations
of the molecule. Table 2 shows that ICTP models trained using 450 configurations perform on par
with state-of-the-art spherical models, similar to the results for rMD17. However, we were not able
to reproduce the original results using the current MACE source code and the described training
setup [33]. Therefore, for a fair comparison, we unified the training setup for ICTP and MACE
(see Appendix E.2) and Table 2 reports the corresponding results for 450 training configurations. In
Table A3, we present the results obtained for ICTP and MACE trained using 50 configurations.

From Table 2, we observe that ICTPfull slightly outperforms MACE in total energy and atomic
force RMSEs but is ∼ 1.4 times less computationally efficient. This difference arises from MACE
using the generalized Clebsch–Gordan coefficients and pre-computing their product with the weights
in the linear expansion in Eq. (A1) [33], which reduces the effective number of evaluated tensor
products. Thus, we may attribute the lower computational efficiency of ICTPfull to the use of the
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Table 2: Energy (E) and force (F) root-mean-square errors (RMSEs) for the 3BPA data set. E-
and F-RMSE are given in meV and meV/Å, respectively. Results are shown for models trained using
450 configurations randomly drawn from the training data set collected at 300 K, with further 50
used for early stopping. All ICTP results are obtained by averaging over five independent runs. For
MACE and NequIP, the results are reported for three runs. The standard deviation is provided if it is
available. Best performances, considering the standard deviation, are highlighted in bold. Inference
time and memory consumption are measured for a batch size of 100. Inference time is reported per
structure in ms, while memory consumption is provided for the entire batch in GB.

ICTPfull ICTPsym ICTPsym+lt MACEa CACE [31] MACE [33] NequIP [34]

300 K E 2.70 ± 0.22 2.70 ± 0.08 2.98 ± 0.34 2.81 ± 0.18 6.3 3.0 ± 0.2 3.28 ± 0.10
F 9.45 ± 0.29 9.39 ± 0.31 9.57 ± 0.20 9.47 ± 0.42 21.4 8.8 ± 0.3 10.77 ± 0.19

600 K E 10.74 ± 0.31 10.38 ± 0.80 10.29 ± 0.90 11.11 ± 1.41 18.0 9.7 ± 0.5 11.16 ± 0.14
F 22.99 ± 0.64 22.87 ± 0.91 23.03 ± 0.76 23.27 ± 1.45 45.2 21.8 ± 0.6 26.37 ± 0.09

1200 K E 29.80 ± 0.92 30.84 ± 1.87 31.32 ± 1.80 31.15 ± 1.58 58.0 29.8 ± 1.0 38.52 ± 1.63
F 62.82 ± 1.23 64.54 ± 3.88 65.36 ± 3.47 65.22 ± 3.52 113.8 62.0 ± 0.7 76.18 ± 1.11

Dihedral slices E 9.82 ± 0.79 10.64 ± 1.07 13.03 ± 3.44 8.56 ± 1.53 – 7.8 ± 0.6 23.2 [33]
F 17.52 ± 0.54 17.18 ± 0.81 19.31 ± 0.83 17.69 ± 1.29 – 16.5 ± 1.7 23.1 [33]

Inference time 6.45 ± 0.50 5.31 ± 0.02 3.51 ± 0.22 4.66 ± 0.05 – 24.3b 103.5b [33]

Memory consumption 49.66 ± 0.00 42.01 ± 0.11 39.08 ± 0.00 36.26 ± 0.00 – – –

a During inference time measurements with the MACE source code, we were not able to reproduce the original
results [33]. Thus, we re-run MACE experiments using a training setup similar to that of ICTP; see Appendix E.2.
b The original publication did not report the batch size used to measure inference time [33]. Therefore, the
values provided are used solely to demonstrate the relative computational cost of MACE and NequIP.
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Figure 3: Potential energy profiles for three cuts through the 3BPA molecule’s potential energy
surface. All models are trained using 50 configurations, and additional 50 are used for early stopping.
The 3BPA molecule, including the three dihedral angles (α, β, and γ), provided in degrees ◦, is
shown as an inset. The color code of the inset molecule is C grey, O red, N blue, and H white. The
reference potential energy profile (DFT) is shown in black. Each profile is shifted such that each
model’s lowest energy is zero. Shaded areas denote standard deviations across five independent runs.

MACE architecture, which results in a larger pre-factor K for Cartesian models but facilitates a fair
comparison between irreducible Cartesian and spherical tensors. Using the symmetric Cartesian
product basis and that in the latent space, for example, we further improve the runtime of our models
while maintaining accuracy on par with MACE.

Table A4 presents additional results obtained for ν = 1, i.e., focusing on models that rely exclusively
on two-body interactions. We observe that Cartesian models exhibit shorter inference times than
spherical ones, with MACE and ICTPfull achieving 2.96± 0.06 ms and 2.63± 0.02 ms, respectively.
Regarding memory consumption, MACE and ICTP perform similarly despite the larger number of
tensor products required for the Cartesian product basis in Eq. (6). This observation can be attributed
to, for example, the Clebsch–Gordan tensor product requiring the computation of intermediate tensors
with (2L+ 1)2 elements, whereas irreducible Cartesian tensors contain 3L elements.

Figure 3 compares potential energy profiles obtained with ICTP and MACE trained using 50 configu-
rations. For the potential energy cut at β = 120◦ (left panel), ICTP and MACE perform similarly,
except for the energy barrier at γ ≈ 143◦, which ICTP tends to underestimate stronger than MACE.
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Table 3: Energy (E) and force (F) root-mean-square errors (RMSEs) for the acetylacetone data
set. E- and F-RMSE are given in meV and meV/Å, respectively. Results are shown for models trained
using 450 configurations randomly drawn from the training data set collected at 300 K, with further
50 used for early stopping. All ICTP results are obtained by averaging over five independent runs.
For MACE and NequIP, the results are reported for three runs. The standard deviation is provided if
it is available. Best performances, considering the standard deviation, are highlighted in bold.

ICTPfull ICTPsym ICTPsym+lt MACEa MACE [33] NequIP [32]

300 K E 0.75 ± 0.04 0.76 ± 0.03 0.77 ± 0.04 0.75 ± 0.05 0.9 ± 0.03 0.81 ± 0.05
F 5.08 ± 0.11 5.17 ± 0.10 5.18 ± 0.16 5.00 ± 0.17 5.1 ± 0.1 5.90 ± 0.46

600 K E 5.39 ± 1.22 4.43 ± 0.34 5.12 ± 0.29 4.96 ± 0.64 4.6 ± 0.3 6.04 ± 1.54
F 23.21 ± 1.96 22.90 ± 1.62 24.05 ± 1.71 23.25 ± 1.82 22.4 ± 0.9 27.80 ± 4.03

Number of parameters 2,774,800 2,736,400 2,648,080 2,803,984 2,803,984 3,190,488

a Similar to Table 2, we re-run MACE experiments using the similar training setup as for ICTP; see Appendix E.2.

For β = 150◦ (middle panel), however, ICTPfull and ICTPsym outperform MACE across nearly the
entire range of the dihedral angle γ. For β = 180◦ (right panel), all models perform similarly. Fig-
ure A1 shows the corresponding potential energy profiles for models trained with 450 configurations.
All models perform similarly in this scenario, with energy profiles close to the reference (DFT).

Flexibility and reactivity. We further use the acetylacetone data set to assess the ICTP models’
extrapolation capabilities to higher temperatures (similar to 3BPA), bond breaking, and bond tor-
sions [32]. Table 3 shows that ICTP models achieve state-of-the-art results while employing fewer
parameters than spherical counterparts. Appendix E.3 includes additional results for the acetylacetone
data set, such as total energy and atomic force RMSEs for models trained with 50 configurations and
details on the potential energy profiles for hydrogen transfer and C-C bond rotation. Overall, ICTP
and MACE perform similarly, demonstrating excellent generalization capability. However, when
trained using 50 configurations, ICTPfull is the only MLIP consistently producing the potential energy
profile for hydrogen transfer close to the reference (DFT).

Multicomponent alloys. We finally evaluate the ICTP and MACE models using the Ta–V–Cr–
W data set, designed to assess the performance of state-of-the-art MLIPs in modeling chemically
complex multicomponent systems. In this evaluation, we attempt to predict energies and forces for
Ta–V–Cr–W subsystems under two scenarios: The 0 K energies and forces in binary, ternary, and
quaternary systems and near-melting temperature energies and forces in 4-component disordered
alloys. Table A6 shows that ICTPsym outperforms MACE in nearly all subsystems, particularly in
energy prediction. ICTP achieves an overall accuracy of 1.38 ± 0.09 meV/atom for energies and
0.028 ± 0.001 eV/Å for forces, compared to 2.19 ± 0.31 meV/atom and 0.029 ± 0.001 eV/Å by
MACE. However, the K pre-factor from the ν-fold tensor product results in longer inference times
for ICTP than MACE, in line with the discussion for 3BPA.

6 Conclusions and limitations

This work introduces many-body equivariant MPNNs based on higher-rank irreducible Cartesian
tensors, offering an alternative to spherical models and addressing the limitations of state-of-the-art
Cartesian models. We assess the performance of resulting MPNNs using five benchmark data sets,
such as rMD17, MD22, 3BPA, acetylacetone, and Ta–V–Cr–W. In these experiments, MPNNs
based on irreducible Cartesian tensors show a lower computational cost of individual operations
compared to spherical counterparts. Furthermore, we demonstrate that these Cartesian models achieve
accuracy and generalization capability on par with or better than state-of-the-art spherical models
while memory consumption is comparable. Our results hold across the typical range of tensor ranks
used in modeling many-body interactions and relevant physical properties, i.e., L ≤ 4.

Limitations. We emphasize our focus on introducing MPNNs based on irreducible Cartesian tensors
and prove their equivariance and traceless property. We adapted the MACE architecture, which uses
only even tensor products, to enable a fair comparison with state-of-the-art spherical models. Further
modifications to the architecture are possible and necessary, e.g., to reduce the pre-factor arising from
the Cartesian product basis, before we can fully exploit the potential of irreducible Cartesian tensors.
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Data availability

All data sets used in this study are publicly available: rMD17 (https://doi.org/10.6084/
m9.figshare.12672038.v3), MD22 (http://www.sgdml.org), 3BPA (https://github.
com/davkovacs/BOTNet-datasets), acetylacetone (https://github.com/davkovacs/
BOTNet-datasets), and Ta–V–Cr–W (https://doi.org/10.18419/darus-3516).

Code availability

The source code is available on GitHub and can be accessed via this link: https://github.com/
nec-research/ictp.
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A Background

Message-passing neural networks. Message-passing neural networks (MPNNs) learn node repre-
sentations in a graph by iteratively processing local information sent by the nodes’ neighbors. The
initial features of node u are represented as the vector xu, and undirected edges {u, v} connect
pairs of nodes u, v. A node v belongs to the neighborhood of node u, denoted as N (u), if there
exists an edge {u, v} in the graph. Typically, the (t+ 1)-th message-passing layer computes a new
node u’s representation h

(t+1)
u by applying a permutation invariant aggregation function over the

neighbors [16, 21]

h(t+1)
u = ϕ(t)

(
h(t)
u ,
∑

v∈N (u)
ψ(t)

(
h(t)
u ,h(t)

v

))
,

where ϕ(t), ψ(t) are often implemented as learnable fully-connected neural networks (NNs), and
h
(0)
u = xu. To learn a mapping from a learned representation h

(t)
u to the atoms’ energies, we can

couple T message-passing layers with corresponding readout functions Rt, t ∈ {1, . . . , T} such that
Eu =

∑T
t=1 Rt

(
h
(t)
u

)
.

Many-body interatomic potentials. Interatomic potentials approximate the potential energy of
atoms—the electronic ground state energy—as a function of their coordinates [71]. Many-body
potentials naturally arise because the interaction between two atoms is influenced by the presence of
additional atoms, changing their electronic structure. This concept is formalized by expanding the
atomic energyEu of a many-atom system into a series of two-body, three-body, and higher-body-order
contributions

Eu = E(1)(ru) +
∑
v1

E(2)(ru, rv1) +
∑

v1<v2

E(3)(ru, rv1 , rv2) + · · · ,

where ru represents the position of atom u and the superscript ν in E(ν) indicates the order of the
many-body interaction. In the absence of external fields, E(ν) contributions to the atomic energy are
invariant to rotations, and the two-body potential depends only on distances ruv = ∥ru − rv∥2

Eu =
∑
v1

E(2)(ruv1) +
∑

v1<v2

E(3)(ruv1 , ruv2
, rv1v2) + · · · .

Expansions of this form have found a broad application in constructing machine-learned interatomic
potentials (MLIPs), significantly advancing the field [40, 65].

Higher-body-order local descriptors. Recent advances in MLIPs have been influenced by mo-
ment tensor potentials (MTPs) [65] and atomic cluster expansion (ACE) [40]. These approaches
enable systematic construction of higher-body-order polynomial basis functions, encompassing
representations like atom-centered symmetry functions (ACSFs) [68, 75], smooth overlap of atomic
positions (SOAP) [76, 77], Gaussian moments [66, 67], and embedded atom/multi-scale embedded
atom method (EAM/MEAM) potentials [78, 79]. Furthermore, a reducible Cartesian tensor can be
represented as a linear combination of irreducible spherical counterparts, and vice versa [40, 51].
More general expressions, including tensor contractions, have also been provided, hinting at the
relationship between Cartesian and spherical models [80–82]. Despite the success of MTP and ACE,
defining smaller cutoff radii and rigid architecture can result in limited accuracy compared to MPNNs.

Many-body message passing. Designing accurate and computationally efficient interatomic potential
models for interacting many-body systems requires including higher-body-order energy contributions
and, thus, higher-body-order learnable features. Recently, a new message construction mechanism
has been proposed by expanding the messages m(t)

u to include many-body contributions [33]

m(t)
u =

∑
v1

ψ
(t)
2

(
h(t)
u ,h(t)

v1

)
+
∑
v1,v2

ψ
(t)
3

(
h(t)
u ,h(t)

v1 ,h
(t)
v2

)
+ · · ·+

∑
v1,··· ,vν

ψ
(t)
ν+1

(
h(t)
u ,h(t)

v1 , · · · ,h
(t)
vν

)
,

where (ν+1) denotes the order of many-body interactions, defining the number of contracted tensors.
Using

∑
v1,··· ,vν

instead of
∑

v1<···<vν
circumvents the exponential increase in computational cost

with ν. It allows exploiting the product structure of many-body features, which differs from other
approaches [58–60].
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B Methods

B.1 Normalization constants

The following provides the normalization constants Cl1l2l3 and Dl1l2l3 for even and odd irreducible
Cartesian tensor products in Eqs. (2) and (3), respectively. The respective normalization constants
read [45]

Cl1l2l3 =
l1!l2!(2l3 − 1)!!((L1 + 1)/2)!((L2 + 1)/2)!

l3!L1!!L2!!L3!!(L/2)!
,

Dl1l2l3 =
2l1!l2!(2l3 − 1)!!(L1/2)!(L2/2)!

(l3 − 1)!(L1 + 1)!!(L2 + 1)!!(L3 + 1)!!((L+ 1)/2)!
,

with L = l1 + l2 + l3 and Li = L− 2li − 1. Here, Cl1l2l3 is defined such that an l3-fold contraction
of the tensor zl3 , obtained through the irreducible Cartesian tensor product between xl1 and yl2
(xl1 and yl2 are obtained using Eq. (1)), with the unit vector r̂ yields unity. We refer to the original
publication for the motivation behind Dl1l2l3 [45].

B.2 Further details on the equivariant message passing

The following provides additional details on the employed equivariant message-passing architecture.
Learnable weights employed in Eqs. (4), (5), and (6) (i.e., W (t)

kk′l2
, W (t)

kZv
, and W (t)

kk′lξ
with k, k′ run-

ning over feature channels) are initialized by picking the respective entries from a normal distribution
with zero mean and unit variance.

Many-body message-passing. The many-body equivariant features, represented by an irreducible
Cartesian tensor of rank L and obtained through the ν-fold tensor product in Eq. (6), are combined
using the linear expansion(

m
(t)
ukL

)
i1i2···iL

=
(∑

ν

∑
ην

W
(t)
ZuηνkL

B
(t)
uηνkL

)
i1i2···iL

, (A1)

where W (t)
ZuηνkL

denotes a learnable weight matrix which depends on the chemical element Zu and
rank L and which elements are initialized by picking the respective entries from a normal distribution
with zero mean and a standard deviation of 1/len(ην). The updated node embeddings are further
obtained as a linear function of

(
m

(t)
ukL

)
i1i2···iL

and the residual connection [33, 83](
h
(t+1)
ukL

)
i1i2···iL

=
1√
dt

∑
k′

W
(t)
kk′L

(
m

(t)
uk′L

)
i1i2···iL

+
1√
dtNZ

∑
k′

W
(t)
Zukk′L

(
h
(t)
uk′L

)
i1i2···iL

,

(A2)
whereNZ denotes the number of atom types and learnable weightsW (t)

kk′L andW (t)
Zukk′L are initialized

by picking the respective entries from a normal distribution with zero mean and unit variance.

Full and symmetric product basis. In the MACE architecture, the authors pre-compute products
between the generalized Clebsch–Gordan coefficients, which define the interactions of {l1, · · · , lν}-
rank spherical tensors, and the learnable weight W (t)

ZuηνkL
of the linear expansion in Eq. (A1) [33].

This approach reduces the computational cost of constructing the product basis with spherical tensors
as the effective number of evaluated tensor products is smaller by K = len (ην). For irreducible
Cartesian tensors, operations like matrix-vector and matrix-matrix products define the interactions
between {l1, · · · , lν}-rank tensors. Thus, an equivalent operation to those proposed for spherical
tensors may be generally impossible for irreducible Cartesian tensors or would lead to an architecture
different from MACE.

Note that one of our main goals is to demonstrate that a many-body equivariant message-passing
architecture defined using higher-rank irreducible Cartesian tensors can be as expressive as the one
using spherical tensors. Therefore, we compute m

(t)
ukL by iteratively evaluating all possible ν-fold

tensor products, which effectively leads to a larger number of operations than for MACE. We refer
to the models based on this architecture as irreducible Cartesian tensor potentials (ICTPs) with the
full product basis, or ICTPfull. We also noticed that the number of tensor products len(ην) leading to
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the tensor of rank L, can be reduced by the symmetry of the two-fold tensor product in Eq. (6), i.e.,
Al1 ⊗Al2 = Al2 ⊗Al1 if Al1 and Al2 are symmetric. We refer to this design choice as ICTPs with
the symmetric product basis or ICTPsym.

Coupled feature channels. Using coupled feature channels instead of uncoupled ones in Eq. (A1)
can improve the performance of the final model. Additionally, the number of feature channels and,
thus, the overall computational cost can be reduced when constructing the product basis. However,
the number of parameters and, thus, the expressive power of the model can be preserved. Specifically,
we can define a linear expansion for combining many-body equivariant features as(

m
(t)
ukL

)
i1i2···iL

=
(∑

ν

∑
ην

∑
k′

W
(t)
Zuηνkk′LB

(t)
uηνk′L

)
i1i2···iL

, (A3)

where W (t)
Zuηνkk′L denotes a learnable weight matrix which depends on the chemical element Zu and

rank L and which elements are initialized by picking the respective entries from a normal distribution
with zero mean and a standard deviation of 1/(

√
dt × len(ην)). The construction of the product basis

in the latent feature space requires encoding the two-body features A(t)
uklξ

using the learnable weight
matrices in Eq. (6). The linear expansion is then constructed in the latent feature space and decoded
using the learnable weight matrices of the linear function in Eq. (A2). We refer to this design choice
as ICTPs with the product basis constructed in the latent feature space or ICTPlt. Combining it with
the symmetric product basis, we obtain ICTPsym+lt.

Readout. Atomic energies expanded into a series of many-body contributions, Eu = E
(0)
u + E

(1)
u +

· · ·+E
(T )
u , are obtained by applying readout functions Rt to node features with L = 0, which are

invariant to rotations

E(t)
u = Rt

({
h
(t)
uk(L=0)

}
k

)
=


1√
dt

∑
k′ W

(t)
k′ h

(t)
uk′(L=0) if t < T,

NN(t)
({

h
(t)
uk(L=0)

}
k

)
if t = T,

(A4)

with learnable weights W (t)
k′ or those of NN(t) initialized by picking the respective entries from a

normal distribution with zero mean and unit variance. Linear readout functions for t < T preserve the
many-body orders in h

(t)
uk(L=0), while a one-layer fully-connected NN is used for the last message-

passing layer and accounts for the residual higher-order terms in the expansion [32].

B.3 Computational complexity and runtime analysis

We analyze the computational complexity of the irreducible Cartesian tensor product with respect to
the maximum rank L used. For each tuple of (i1, · · · , iL) of a rank-L tensor in Eq. (2), the single
contraction term (xL · (k +m) · yL) has a cost of 3k+m. The total computational cost is 3L for
even tensor products and 3L+1 for odd ones—due to the additional double contraction with the Levi-
Civita symbol. The computation of the set of permutations over the L unsymmetrized indices scales
as L!/

(
2L/2 (L/2)!

)
for even tensor products and L!/

(
2(L−1)/2 ((L− 1) /2)!

)
for odd ones [45].

Because each final rank-L tensor has 3L elements, the complexity for computing an irreducible
Cartesian tensor of rank L is O

(
9LL!/

(
2L/2 (L/2)!

))
. This expression is used throughout this work

as it captures contributions from tensor contractions and index permutations, though it simplifies
asymptotically to O

(
LL
)

using Stirling’s approximation for factorials.

The number of calculations required to obtain a rank-L spherical tensor through the Clebsch–Gordan
tensor product is (2L+ 1)

5. Thus, the computational complexity of the Clebsch–Gordan tensor
product is O

(
L5
)
. While the Clebsch–Gordan tensor product is more computationally efficient than

the irreducible Cartesian tensor product for L → ∞, the latter is expected to be advantageous for
smaller tensor ranks, i.e., L ≤ 4, assuming similar multiplicative factors and negligible sub-leading
terms. Tensors of rank L ≤ 4 are particularly relevant for equivariant message-passing architectures
and representing physical properties [32, 33, 72]. Compared to the Gaunt tensor product with the
computational complexity of O

(
L3
)
, including all (l1, l2) → l3 [36], the irreducible Cartesian tensor

product may be less advantageous for L ≥ 3. However, the Gaunt-coefficients-based approach
excludes odd tensor products, limiting the expressive power and the range of possible architectures.

As regards the cost of performing message passing at each layer, the general neighbors’ aggregation
of Eq. (4) has a cost of ENch9

LL!/
(
2L/2 (L/2)!

)
, where E is the number of edges in the atomic
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system and Nch is the number of feature channels. Computing many-body features via Eq. (6)
requires to iteratively perform ν − 1 Cartesian tensor products for all K = len(ην) possible ν-fold
tensor products, resulting in a computational cost of MNchK(9LL!/(2L/2(L/2)!))ν−1 with M
denoting the number of nodes. For the Clebsch–Gordan tensor product, the corresponding number
of calculations is ENchL

5 and MNchKL5(ν−1). Spherical models, however, can use generalized
Clebsch–Gordan coefficients, resulting in MNchKL

1
2ν(ν+3) for the product basis. We can remove

the factor K from the above expression by restricting the parameterization to uncoupled feature
channels as in Eq. (A1) and obtain MNchL

1
2ν(ν+3). Thus, MACE with this specific choice of the

product basis can be more computationally efficient than ICTP only for large Nch and small ν, given
L ≤ 4. In this work, we have shown that leveraging the symmetry of the irreducible Cartesian tensor
product and coupled feature channels can improve the computational cost of ICTP. The former, in
particular, reduces the effective number of ν-fold tensor products K. Further optimization of the
architecture, however, is possible and is expected to fully exploit the advantage of Cartesian tensors.

Finally, memory consumption for Cartesian tensors is often believed to be less advantageous than that
of spherical tensors. However, for contracting two rank-L spherical tensors, the memory requirement
is about (2L+ 1)2, resulting from the definition of the Clebsch–Gordan tensor product in Section 2.
For a Cartesian tensor, the memory requirement is about 3L. Thus, the irreducible Cartesian tensor
product can be expected to require the same or less memory for L ≤ 4 than the Clebsch–Gordan
counterpart. The memory consumption of models based on spherical tensors is further increased by
the use of generalized Clebsch–Gordan coefficients, as we demonstrate in Section 5.

C Proof of Cartesian message-passing equivariance to actions of the
orthogonal group

We first recap the standard action of the O(3) group onto
(
R3
)⊗l

. Let DX be a representation of the
orthogonal group O(3) (also in line with Section 2), i.e.,

DX : O(3) → R3×3, g 7→ DX [g] = R.

We define the action of the O(3) group onto
(
R3
)⊗l

as follows

ϕ : O(3)×
(
R3
)⊗l →

(
R3
)⊗l

, ϕ (g,Tl)i1i2···il :=
∑
j1

· · ·
∑
jl

Ri1j1 · · ·Riljl (Tl)j1···jl ,

where Tl ∈
(
R3
)⊗l

. We hereinafter denote ϕ (g,Tl) also byRTl. The outer product ⊗ is equivariant
to this action, and R acts trivially on the 3× 3-identity matrix.
Lemma C.1. Let R be a representation of an element of the orthogonal group O(3). Then,

(i) ∀Tl1 ∈
(
R3
)⊗l1 and ∀Tl2 ∈

(
R3
)⊗l2

R (Tl1 ⊗Tl2) = (RTl1)⊗ (RTl2) .

(ii) For the 3× 3-identity matrix I, we have

RI = I.

Proof. (i) We first show that R (Tl1 ⊗Tl2) = (RTl1)⊗ (RTl2)

((RTl1)⊗ (RTl2))i1···il1 il1+1···il1+l2

= (RTl1)i1···il1
(RTl2)il1+1···il1+l2

=

 ∑
j1,...,jl1

Ri1j1 · · ·Riljl1
(Tl1)j1···jl1

 ∑
jl1+1,...,jl1+l2

Ril1+1jl1+1
· · ·Ril1+l2

jl1+l2
(Tl2)jl1+1···jl1+l2


=
∑
j1

· · ·
∑
jl1

∑
jl1+1

· · ·
∑

jl1+l2

Ri1j1 · · ·Ril1 jl1
Ril1+1jl1+1

· · ·Ril1+l2
jl1+l2

(Tl1)j1···jl1
(Tl2)jl1+1···jl1+l2

= (R (Tl1 ⊗Tl2))i1···il1 il1+1···il1+l2
.
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(ii) With
∑

iRijRik = δjk, or equivalently RTR = I, we get

(RI)i1i2 =
∑
j1,j2

Ri1j1Ri2j2δj1j2 =
∑
j1

Ri1j1Ri2j1 = δi1i2 .

Using Lemma C.1, we can show that the irreducible Cartesian tensor operator Tl : R3 → (R3)⊗l is
equivariant to actions of the O(3) group.
Proposition C.2. Let l ≥ 0 be a positive integer. Then, the irreducible Cartesian tensor operator
Tl : R3 → (R3)⊗l is equivariant to actions of the O(3) group.

Proof. It suffices to show that the map r̂ 7→ r̂⊗(l−2m) ⊗ I⊗m is equivariant to actions of the O(3)
group ∀ l ≥ 1 and ∀m ≤ ⌊l/2⌋ (m ≥ 0).

(Rr̂)
⊗(l−2m) ⊗ I⊗m Lemma C.1 (ii)

= (Rr̂)
⊗(l−2m) ⊗ (RI)

⊗m

Lemma C.1 (i)
= R

(
r̂⊗(l−2m) ⊗ I⊗m

)
.

Our next claim is that for l3 ∈ {|l1 − l2|, |l1 − l2|+ 1, · · · , l1 + l2} the irreducible Cartesian tensor
product ⊗Cart defined in Eqs. (2) and (3) is equivariant to actions of the O(3) group, i.e., the following
diagram commutes (

R3
)⊗l1 ×

(
R3
)⊗l2

R
��

⊗Cart //
(
R3
)⊗l3

R
��(

R3
)⊗l1 ×

(
R3
)⊗l2

⊗Cart

//
(
R3
)⊗l3

The proof for this claim is very similar to Proposition C.2. The only difference is to show the
equivariance for the (k +m)-fold tensor contraction.

Proposition C.3. The irreducible Cartesian tensor product ⊗Cart :
(
R3
)⊗l1 ×

(
R3
)⊗l2 →

(
R3
)⊗l3

makes the above diagram commute.

Proof. It suffices to show that the (k +m)-fold tensor contraction is equivariant to actions of the
O(3) group. For xl1 ∈ (R3)⊗l1 , yl2 ∈ (R3)⊗l2 , and R being a representation of an element of the
orthogonal group O(3), we can write

((Rxl1) · (s) · (Ryl2))β1···βl1−sδ1···δl2−s

=
∑

α1,··· ,αs

(Rxl1)α1···αsβ1···βl1−s
(Ryl2)α1···αsδ1···δl2−s

=
∑

α1,··· ,αs

 ∑
γ1,··· ,γs

η1,··· ,ηl1−s

Rα1γ1
· · ·Rαsγs

Rβ1η1
· · ·Rβl1−sηl1−s

(xl1)γ1···γsη1···ηl1−s



×

 ∑
γ̃1,··· ,γ̃s

η̃1,··· ,η̃l2−s

Rα1γ̃1
· · ·Rαsγ̃s

Rδ1η̃1
· · ·Rδl2−sη̃l2−s

(yl2)γ̃1···γ̃sη̃1···η̃l2−s


=

( ∑
η1···ηl1−s

Rβ1η1
· · ·Rβl1−sηl1−s

) ∑
η̃1···η̃l2−s

Rδ1η̃1
· · ·Rδl2−sη̃l2−s


×
∑

γ1···γs

(xl1)γ1···γsη1···ηl1−s
(yl2)γ1···γsη̃1···η̃l2−s

= (R (xl1 · (s) · yl2))β1···βl1−sδ1···δl2−s
.
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A similar derivation applies to the odd case (3), which completes the proof.

We finally give a proof for Proposition 4.1, i.e., the equivariance of message-passing layers based on
irreducible Cartesian tensors to actions of the O(3) group.

Proof of Proposition 4.1. Since a message-passing layer in Section 4.2 and Appendix B.2 is defined
by stacking layers corresponding to Eqs. (4), (5), (6), (A1), (A2), and (A3), we show the equivariance
for each of these equations. We show the equivariance by induction.

• Case t = 1:

Equivariance of Eq. (5): Since learnable weights WkZv and learnable (invariant) radial ba-

sis R
(1)
kl1

(ruv) are defined for each feature channel k, the weights are multiplied with(
Tl1(r̂uv)

)
i1i2···il1

as scalars. Therefore,(
A

(1)
ukl1

)
i1i2···il1

=
∑

v∈N (u)
R

(1)
kl1

(ruv)
(
Tl1(r̂uv)

)
i1i2···il1

WkZv

is equivariant to actions of the O(3) group.
Equivariance of Eq. (6): The proof is similar to the case of Eq. (5), since we again have learnable

parameter W (1)
kk′lν

for each A
(1)
uk′lν

. Therefore, noting that the Cartesian tensor product is
equivariant to actions of the O(3) group, the following function(

B
(1)
uηνkL

)
i1i2···iL

=
(
Ã

(1)
ukl1

⊗Cart · · · ⊗Cart Ã
(1)
uklν

)
i1i2···iL

is also equivariant to actions of the O(3) group.
Equivariance of Eq. (A1): The equation defined by(

m
(1)
ukL

)
i1i2···iL

=
(∑

ν

∑
ην

W
(1)
ZuηνkL

B
(1)
uηνkL

)
i1i2···iL

,

is equivariant to actions of the O(3) group, since for each set of indices u, ην , k, and L we have
a scalar learnable parameter W (1)

ZuηνkL
.

Equivariance of Eq. (A2): The respective parameters W (1)
kk′L and W (1)

Zukk′L in Eq. (A2)(
h
(2)
ukL

)
i1i2···iL

=
1√
dt

∑
k′

W
(1)
kk′L

(
m

(1)
uk′L

)
i1i2···iL

+
1√
dtNZ

∑
k′

W
(1)
Zukk′L

(
h
(1)
uk′L

)
i1i2···iL

.

are multiplied as scalar with h
(1)
uk′L and m

(1)
uk′L, which are shown to be equivariant to actions of

the O(3) group. Thus, h(2)
ukL is equivariant to actions of the O(3) group as a function of h(1)

uk′L

and m
(1)
uk′L.

Equivariance of Eq. (A3): The equivariance of Eq. (A3) to actions of the O(3) group is also
immediate since learnable parameters apply to each tuple of (i1, i2, · · · , iL) as a scalar.

• General case t > 1: The equivariance of Eqs. (4), (5), (6), (A1), (A2), and (A3) to actions of
the O(3) group for arbitrary t > 1 follows in a similar way to those obtained for the t = 1 case.
However, we need to show the equivariance of Eq. (4). Suppose that Eqs. (5), (6), (A1), (A2), and
(A3) are equivariant to actions of the O(3) group for t > 1. Then, for the (t+1)-th message-passing
layer,(

A
(t)
ukl3

)
i1i2···il3

=
∑

v∈N (u)

(
R

(t)
kl1l2l3

(ruv)Tl1(r̂uv)⊗Cart
1√
dt

∑
k′

W
(t)
kk′l2

h
(t)
vk′l2

)
i1i2···il3

,

is equivariant to actions of the O(3) group. Here, the irreducible Cartesian tensor product ⊗Cart

and Tl1 are equivariant to actions of the O(3) group, h(t)
vk′l2

is equivariant by the assumption, and

W
(t)
kk′l2

applies to h
(t)
vk′l2

as a scalar.
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D Proof of the traceless property for irreducible Cartesian tensors

This section provides a proof for Proposition 4.2 in the main text. The corresponding proposition
states the following

Proposition D.1. The message-passing layers based on irreducible Cartesian tensors and their
irreducible tensor products preserve the traceless property of irreducible Cartesian tensors.

Our proof of Proposition 4.2 comprises two main parts. First, we show that given two irreducible
Cartesian tensors, the irreducible Cartesian tensor product yields again an irreducible Cartesian tensor.
We then can use this result in the second part, where we show that expressions defined by Eqs. (4), (5),
(6), (A1), (A2), and (A3) preserve the traceless property of irreducible Cartesian tensors. The proof
of the second part is straightforward since the message-passing layers are defined by multiplications
with scalars, summations, and the irreducible Cartesian tensor product of tensors defined in Eqs. (1),
(2), and (3). Therefore, we provide the proof only for the first part in the rest of this section.

Irreducible Cartesian tensors from unit vectors. Recall that an irreducible Cartesian tensor of
arbitrary rank l for a unit vector r̂ ∈ R3 is defined as

Tl (r̂) = C
∑⌊l/2⌋

m=0
(−1)m

(2l − 2m− 1)!!

(2l − 1)!!

{
r̂⊗(l−2m) ⊗ I⊗m

}
.

The trace of this tensor reads

Tr (Tl (r̂)) =
∑

i1=i2
(Tl (r̂))i1i2

=
∑

i1=i2
C
∑⌊l/2⌋

m=0
(−1)

m (2l − 2m− 1)!!

(2l − 1)!!

({
r̂⊗(l−2m) ⊗ I⊗m

})
i1i2

= C
∑⌊l/2⌋

m=0
(−1)

m (2l − 2m− 1)!!

(2l − 1)!!

∑
i1=i2

({
r̂⊗(l−2m) ⊗ I⊗m

})
i1i2

.

Let
{
k1, k2, . . . , kl−2m

}
be a subset of {1, 2, . . . , l} with l − 2m distinct elements, and a subset

Il−2m with l − 2m distinct elements in
{
i1, . . . , il

}
is written as Il−2m =

{
ik1
, ik2

, . . . , ikl−2m

}
.

We also let Jl−2m be a set ofm disjoint subsets with 2 elements in
{
i1, . . . , il

}
\Il−2m, i.e., Jl−2m =

{{ikl−2m+1
, ikl−2m+2

}, . . . , {ikl−1
, ikl

}}. While we introduce Il−2m and Jl−2m as sets, we assume
the order of elements in those sets if the order is necessary and there is no confusion. Furthermore,
we introduce two notations used throughout this section

r̂
⊗(l−2m)
Il−2m

= r̂ik1
r̂ik2

· · · r̂ikl−2m

I⊗m
Jl−2m

= δikl−2m+1
ikl−2m+2

· · · δikl−1
ikl
.

Then, we can write{
r̂⊗(l−2m) ⊗ I⊗m

}
=
∑

Il−2m

∑
Jl−2m

r̂
⊗(l−2m)
Il−2m

⊗ I⊗m
Jl−2m

=
∑

Il−2m

∑
Jl−2m

r̂ik1
· · · r̂ikl−2m

δikl−2m+1
ikl−2m+2

· · · δikl−1
ikl
,

where Il−2m runs over all subsets of
{
i1, . . . , il

}
with l − 2m elements and Jl−2m comprises all(∏1

p=m

(
2p
2

))
/m! combinations of m subsets with 2 elements of

{
i1, . . . , il

}
\Il−2m. Depending

on whether i1 and/or i2 belong to Il−2m, the above expression may be further reduced to
(a)m∑

i1,i2∈Il−2m

+

(b)m∑
i1∈Il−2m

i2∈Jl−2m

+

(c)m∑
i2∈Il−2m

i1∈Jl−2m

+

(d)m∑
i1,i2 /∈Il−2m

δi1i2

+

(e)m∑
i1,i2 /∈Il−2m

δisi1δi2it

 r̂ik1
· · · r̂ikl−2m

× δikl−2m+1
ikl−2m+2

· · · δikl−1
ikl
.
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We get the following traces for each pair of Il−2m and Jl−2m

Tr ((a)m) = r̂
⊗(l−2m)
Il−2m\{i1,i2} ⊗ I⊗m

Jl−2m
,

Tr ((b)m) =
∑

i1=i2
r̂ik1

· · · r̂i1 · · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl
δiks i2

= r̂ik1
· · · r̂iks

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl

= r̂
⊗(l−2m)
{iks}∪Il−2m\{i1} ⊗ I

⊗(m−1)
Jl−2m\{iks ,i2}

,

Tr ((c)m) =
∑

i1=i2
r̂ik1

· · · r̂i2 · · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl
δiks i1

= r̂ik1
· · · r̂iks

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl

= r̂
⊗(l−2m)
{iks}∪Il−2m\{i2} ⊗ I

⊗(m−1)
Jl−2m\{iks ,i1}

,

Tr ((d)m) =
∑

i1=i2
r̂ik1

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl
δi1i2

= 3
(
r̂
⊗(l−2m)
Il−2m

⊗ I
⊗(m−1)
Jl−2m\{i1,i2}

)
,

Tr ((e)m) =
∑

i1=i2
r̂ik1

. . . r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δisi1δi2it · · · δikl−1

ikl

= r̂
⊗(l−2m)
Il−2m

⊗ I
⊗(m−1)
Jl−2m\{i1,i2}.

Lemma D.2. Let l ≥ 2 and 0 ≤ m ≤ ⌊l/2⌋−1. For each pair (Il−2m, Jl−2m), there exist 2l−2m−1
pairs of

(
Il−2(m+1), Jl−2(m+1)

)
whose trace equals to the trace for the pair (Il−2m, Jl−2m), i.e.,

(2l − 2m− 1)Tr
(
r̂
⊗(l−2m)
Il−2m

⊗ I⊗m
Jl−2m

)
= Tr

 ∑
(Il−2(m+1),Jl−2(m+1))

r̂
⊗(l−2(m+1))
Il−2(m+1)

⊗ I
⊗(m+1)
Jl−2(m+1)

 .

Proof. Without loss of generality, we may assume Il−2m =
(
i1, i2, ik3 , . . . , ikl−2m

)
and Jl−2m ={{

ikl−2m+1
, ikl−2m+2

}
, . . . ,

{
ikl−1

, ikl

}}
. For ∀m, Tr ((a)m) has the following expression

Tr ((a)m) =
∑

i1=i2
r̂i1 r̂i2 r̂ik3

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl

= r̂ik3
· · · r̂ikl−2m

δikl−2m+1
ikl−2m+2

· · · δikl−1
ikl
.

For Tr
(
(b)m+1

)
andm+1, we have a set of

(
Il−2(m+1), Jl−2(m+1)

)
with the cardinality of l−2m−2

and the corresponding trace equals to Tr ((a)m). For 3 ≤ ∀ s ≤ l − 2m, let

I
(s)
l−2(m+1) =

{
ik3 , . . . , i1︸︷︷︸

s-th index

, . . . , ikl−2m

}
,

J
(s)
l−2(m+1) =

{{
ikl−2m+1

, ikl−2m+2

}
, . . . ,

{
ikl−1

, ikl

}
,
{
iks
, i2
}}
.

Here, we note that we assume the order of elements in I(s)l−2(m+1). Then, we obtain

Tr
(
(b)m+1

)
=
∑

i1=i2

∑l−2m

s=3
r̂ik3

· · · r̂i1︸︷︷︸
s-th vector

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl
δiks i2

=
∑l−2m

s=3
r̂ik3

· · · r̂iks
· · · r̂ikl−2m

δikl−2m+1
ikl−2m+2

· · · δikl−1
ikl

= (l − 2m− 2)Tr ((a)m) .

The same derivation as above holds for Tr
(
(c)m+1

)
. For Tr

(
(d)m+1

)
, let

Il−2(m+1) =
{
ik3 , . . . , ikl−2m

}
,

Jl−2(m+1) =
{{
ikl−2m+1

, ikl−2m+2

}
, . . . ,

{
ikl−1

, ikl

}
,
{
i1, i2

}}
.
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and we get

Tr
(
(d)m+1

)
=
∑

i1=i2
r̂ik3

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−1

ikl
δi1i2

= 3Tr ((a)m) .

For Tr
(
(e)m+1

)
and 1 ≤ ∀ s ≤ m, we let

I
(s)
l−2(m+1) =

{
ik3 , . . . , ikl−2m

}
,

J
(s)
l−2(m+1) =

{{
ikl−2m+1

, ikl−2m+2

}
, . . . ,

{
ikl−2m+2s−1

, i1
}
,
{
i2, ikl−2m+2s

}
, . . . ,

{
ikl−1

, ikl

}}
,

and obtain

Tr
(
(e)m+1

)
=
∑

i1=i2

∑m

s=1
r̂ik3

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δikl−2m+2s−1

i1δi2ikl−2m+2s
· · · δikl−1

ikl

=
∑m

s=1
r̂ik3

· · · r̂ikl−2m
δikl−2m+1

ikl−2m+2
· · · δkl−2m+2s−1kl−2m+2s

· · · δikl−1
ikl

= 2mTr ((a)m) .
The additional factor of two originates from the permutation of indices i1 and i2.

Using all the above results, we obtain

Tr((b)m+1) + Tr((c)m+1) + Tr((d)m+1) + Tr((e)m+1)

= (l − 2m− 2)Tr ((a)m) + (l − 2m− 2)Tr ((a)m) + 3Tr ((a)m) + 2mTr ((a)m)

= (2l − 2m− 1)Tr ((a)m) ,

which completes the proof of the Lemma.

For eachm, defineA(m) = Tr ((a)m) andB(m) = Tr ((b)m)+Tr ((c)m)+Tr ((d)m)+Tr ((e)m).
Then, the trace of Tl (r̂) may be written as a summation of A(m) and B(m) over m

Tr (Tl (r̂)) = C
∑⌊l/2⌋

m=0
(−1)

m (2l − 2m− 1)!!

(2l − 1)!!

∑
i1=i2

({
r̂⊗(l−2m) ⊗ I⊗m

})
i1,i2

= C( (A(0) +B(0))

+ (−1)
(2l − 2− 1)!!

(2l − 1)!!
(A(1) +B(1))

· · ·

+ (−1)
m̃ (2l − 2m̃− 1)!!

(2l − 1)!!
(A(m̃) +B(m̃))

+ (−1)
m̃+1 (2l − 2(m̃+ 1)− 1)!!

(2l − 1)!!
(A(m̃+ 1) +B(m̃+ 1))

· · · .

By Lemma D.2, each pair of the diagonal terms (A (m̃) , B (m̃+ 1)) is cancelled, and B(0) and
A (⌊l/2⌋) are left, which by definition are trivial. This result completes the proof of the traceless
property for Eq. (1).

Even irreducible Cartesian tensor product. The trace of an even irreducible Cartesian tensor
product may be written as

Tr
(
(xl1 ⊗Cart yl2)l3

)
=
∑
i1=i2

Cl1l2l3

∑min(l1,l2)−k

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

({
(xl1 · (k +m) · yl2)⊗ I⊗m

})
i1i2

= Cl1l2l3

∑min(l1,l2)−k

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

∑
i1=i2

({
(xl1 · (k +m) · yl2)⊗ I⊗m

})
i1i2︸ ︷︷ ︸

(∗)even

.
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In the following, we let

Il1−(k+m) =
{
ik1 , . . . , ikl1−(k+m)

}
⊂
{
i1, . . . , il3

}
,

Jl2−(k+m) =
{
ikl1−(k+m)+1

, . . . , ikl3−2m

}
⊂
{
i1, . . . , il3

}
\Il1−(k+m),

Kl3−2m =
{{
ikl3−2m+1

, ikl3−2m+2

}
, . . . ,

{
ikl3−1

, ikl3

}}
.

For simplicity, we omit the subscripts l1 − (k +m), l2 − (k +m), and l3 − 2m for I , J , and K, if
there is no confusion. We also introduce a new notation xj1···jp,Q = xj1···jp,q1···qu , where x is an
irreducible Cartesian tensor and Q =

{
q1, . . . , qu

}
, which is used throughout this section. Then,

non-trivial terms in (∗)even may be written as

∑
i1=i2

(a)m∑
i1∈I
i2∈J

+

(b)m∑
i2∈I
i1∈J

+

(c)m∑
i1∈I∪J
i2∈K

+

(d)m∑
i2∈I∪J
i1∈K

+

(e)m∑
i1,i2∈K

 ∑
j1,...,jk+m

(xl1)j1···jk+m,I (yl2)j1···jk+m,J I⊗m
K .

We note that the trace is trivial when both of i1 and i2 belong to either of I or J , because xl1 and yl2
are traceless by assumption.
Lemma D.3. Let 0 ≤ m ≤ min(l1, l2)− k − 1. For each triplet

(
Il1−(k+m), Jl2−(k+m),Kl3−2m

)
,

there exist 2l3 − 2m − 1 triplets of
(
Il1−(k+m+1), Jl2−(k+m+1),Kl3−2(m+1)

)
such that the trace

for each triplet equals to the trace for
(
Il1−(k+m), Jl2−(k+m),Kl3−2m

)
.

Proof. Without loss of generality, we may assume

Il1−(k+m) =
{
i1, ik2

, . . . , ikl1−(k+m)

}
⊂
{
i1, . . . , il3

}
,

Jl2−(k+m) =
{
i2, ikl1−(k+m)+2

, . . . , ikl3−2m

}
⊂
{
i1, . . . , il3

}
\Il1−(k+m),

Kl3−2m =
{{
ikl3−2m+1

, ikl3−2m+2

}
, . . . ,

{
ikl3−1

, ikl3

}}
.

Then, Tr ((a)m) has the following expression

Tr ((a)m)

=
∑
i1=i2

∑
j1,...,jk+m

(xl1)j1···jk+m,i1ik2
···ikl1−(k+m)

(yl2)j1···jk+m,i2ikl1−(k+m)+2
···ikl3−2m

I⊗m
K

=
∑

j1,...,jk+m,
jk+m+1

(xl1)j1···jk+m+1,ik2
···ikl1−(k+m)

(yl2)j1···jk+m+1,ikl1−(k+m)+2
···ikl3−2m

I⊗m
K .

The same derivation applies to Tr ((b)m), and it has the same result as above.

For Tr((c)m+1) and m+ 1, we have l3 − 2m− 2 of
(
Il1−(k+m+1), Jl2−(k+m+1),Kl3−2(k+m+1)

)
triplets whose trace equals to Tr ((a)m). Indeed, like in the proof of Lemma D.2, we let

Il1−(k+m+1) ∪ Jl2−(k+m+1) =
{
ik2
, . . . , i1, . . . , ikl1−(k+m)

, ikl1−(k+m)+2
, . . . , ikl3−2m

}
,

Kl3−2(m+1) =
{{
ikl3−2m+1

, ikl3−2m+2

}
, . . . ,

{
ikl3−1

, ikl3

}
,
{
iks
, i2
}}
.

Then, by letting J̃ =
{
j1, . . . , jk+m, jk+m+1

}
, we obtain

Tr((c)m+1)

=
∑
i1=i2

∑
s

∑
J̃

(xl1)J̃ik2
···i1···ikl1−(k+m)

(yl2)J̃ikl1−(k+m)+2
···ikl3−2m

× δikl3−2m+1
ikl3−2m+2

· · · δikl3−1
ikl3

δiks i2

=
∑
s

∑
J̃

(xl1)J̃,ik2
···iks ···ikl1−(k+m)

(yl2)J̃,ikl1−(k+m)+2
···ikl3−2m

× δikl3−2m+1
,ikl3−2m+2

· · · δikl3−1
,ikl3

= (l3 − 2m− 2)Tr ((a)m) .
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The same derivation applies to Tr((d)m+1), and we get Tr((d)m+1) = (l3 − 2m− 2)Tr ((a)m).

For Tr((e)m+1), the same derivation as for Tr((d)m+1) and Tr((e)m+1) in the proof of Lemma D.2
applies. Therefore, we have

Tr((e)m+1) = (2m+ 3)Tr ((a)m) .

Hence, we obtain

Tr((c)m+1) + Tr((d)m+1) + Tr((e)m+1)

= (l3 − 2m− 2)Tr((a)m) + (l3 − 2m− 2)Tr((a)m) + (2m+ 3)Tr((a)m)

= (2l3 − 2m− 1)Tr((a)m) = (2l3 − 2m− 1)Tr((b)m),

which completes the proof of the Lemma.

For eachm, defineA(m) = Tr ((a)m)+Tr ((b)m) andB(m) = Tr ((c)m)+Tr ((d)m)+Tr ((e)m).
Then, the trace for (xl1 ⊗Cart yl2)l3 may be written as a summation of A(m) and B(m) over m

Tr
(
(xl1 ⊗Cart yl2)l3

)
= Cl1l2l3

∑min(l1,l2)−k

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

∑
i1=i2

({
(xl1 · (k +m) · yl2)⊗ I⊗m

})
i1i2

= Cl1l2l3( (A(0) +B(0))

+ (−1)2
(2l3 − 2− 1)!!

(2l3 − 1)!!
(A(1) +B(1))

· · ·

+ (−1)m̃2m̃
(2l3 − 2m̃− 1)!!

(2l3 − 1)!!
(A(m̃) +B(m̃))

+ (−1)m̃+12m̃+1 (2l3 − 2(m̃+ 1)− 1)!!

(2l3 − 1)!!
(A(m̃+ 1) +B(m̃+ 1))

· · · .
By Lemma D.3, each pair of the diagonal terms (A(m̃), B(m̃+ 1)) is cancelled taking into account
an additional factor of 2m in front of B(m̃+1); B(0) andA (min(l1, l2)− (l1 + l2 − l3)/2) are left,
which by definition are trivial. This result completes the proof of the traceless property for Eq. (2).

Odd irreducible Cartesian tensor product. The trace of an odd irreducible Cartesian tensor product
may be written as

Tr
(
(xl1 ⊗Cart yl2)l3

)
=
∑
i1=i2

Dl1l2l3

∑min(l1,l2)−k−1

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

({
(ε : xl1 · (k +m) · yl2)⊗ I⊗m

})
i1,i2

= Dl1l2l3

∑min(l1,l2)−k−1

m=0
(−1)m2m

(2l3 − 2m− 1)!!

(2l3 − 1)!!

∑
i1=i2

({
(ε : xl1 · (k +m) · yl2)⊗ I⊗m

})
i1,i2︸ ︷︷ ︸

(∗)odd

In the following, we let

El3 = {ik0} ⊂
{
i1, . . . , il3

}
Il1−(k+m) =

{
ik1
, . . . , ikl1−(k+m)

}
⊂
{
i1, . . . , il3

}
\El3 ,

Jl2−(k+m) =
{
ikl1−(k+m)+1

, . . . , ikl3−2m

}
⊂
{
i1, . . . , il3

}
\
(
Il1−(k+m) ∪ El3

)
,

Kl3−2m =
{{
ikl3−2m+1

, ikl3−2m+2

}
, . . . ,

{
ikl3−1

, ikl3

}}
.

For simplicity, we omit the subscripts l3, l1 − (k +m), l2 − (k +m), and l3 − 2m for E, I , J , and
K, if there is no confusion. Then, non-trivial terms inside (∗)odd can be written as

∑
i1=i2

(a)m∑
i1∈I
i2∈J

+

(b)m∑
i2∈I
i1∈J

+

(c)m∑
i1∈E∪I∪J

i2∈K

+

(d)m∑
i2∈E∪I∪J

i1∈K

+

(e)m∑
i1,i2∈K

 ∑
j1,...,jk+m

∑
a2,a3

εEa2a3
(xl1)j1···jk+ma2,I\{a2} (yl2)j1···jk+ma3,J\{a3} I

⊗m
K .
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Note that the trace is trivial when i1 or i2 belongs to E and the remaining index belongs to I ∪ J .
Indeed, let J̃ =

{
j1, . . . , jk+m

}
and suppose i1 ∈ E and i2 ∈ I . Then, and we have(

Tr
(
(xl1 ⊗Cart yl2)l3

))
(I∪J)\{i2}

=
∑
i1=i2

∑
J̃

∑
a2,a3

εi1a2a3
(xl1)J̃,a2,i2,I\{i2} (yl2)J̃,a3,J


=
∑
J̃

(∑
i1=i2

∑
a2<a3

εi1a2a3

(
(xl1)J̃,a2,i2,I\{i2} (yl2)J̃,a3,J

− (xl1)J̃,a3,i2,I\{i2} (yl2)J̃,a2,J

))

=
∑
J̃


∑

(i1,a2,a3)=
(1,2,3)
(2,1,3)
(3,1,2)

εi1a2a3

(
(xl1)J̃,a2,i1,I\{i1} (yl2)J̃,a3,J

− (xl1)J̃,a3,i1,I\{i1} (yl2)J̃,a2,J

)


= 0.
For the non-trivial terms inside (∗)odd we have the lemma below, whose proof is identical to that of
Lemma D.3.

Lemma D.4. Let 0 ≤ m ≤ min(l1, l2)−k−2. For each tuple
(
El3 , Il1−(k+m), Jl2−(k+m),Kl3−2m

)
,

there exist 2l3− 2m− 1 tuples of
(
El3 , Il1−(k+m+1), Jl2−(k+m+1),Kl3−2(m+1)

)
such that the trace

for each of the tuples equals to the trace for
(
El3 , Il1−(k+m), Jl2−(k+m),Kl3−2m

)
.

Proof. Without loss of generality, we may assume

El3 = {ik0} ⊂
{
i1, . . . , il3

}
Il1−(k+m) =

{
i1, ik2

, . . . , ikl1−(k+m)

}
⊂
{
i1, . . . , il3

}
\El3 ,

Jl2−(k+m) =
{
i2, ikl1−(k+m)+2

, . . . , ikl3−2m

}
⊂
{
i1, . . . , il3

}
\
(
Il1−(k+m) ∪ El3

)
,

Kl3−2m =
{{
ikl3−2m+1

, ikl3−2m+2

}
, . . . ,

{
ikl3−1

, ikl3

}}
.

Then, Tr ((a)m) has the following expression

Tr ((a)m)

=
∑
i1=i2

∑
a2,a3

∑
j1,...,jk+m

εik0
a2a3

(xl1)j1···jk+m,a2i1ik3
···ikl1−(k+m)

(yl2)j1···jk+m,a3i2ikl1−(k+m)+3
···ikl3−2m

I⊗m
K

=
∑
a2,a3

∑
j1,...,jk+m,
jk+m+1

εik0
a2a3

(xl1)j1···jk+m+1,a2ik3
···ikl1−(k+m)

(yl2)j1···jk+m+1,a3ikl1−(k+m)+3
···ikl3−2m

I⊗m
K .

Here, we assume that a2 ∈ Il1−(k+m) and a3 ∈ Jl2−(k+m). The same derivation holds for Tr ((b)m).

For Tr((c)m+1) and m+1, we have l3− 2m− 2 of
(
El3 , Il1−(k+m+1), Jl2−(k+m+1),Kl3−2(m+1)

)
triplets whose trace equals to Tr ((a)m). Indeed, like in the proof of Lemma D.2, we let

El3 ∪ Il1−(k+m+1) ∪ Jl2−(k+m+1) =
{
ik0
, ik2

, . . . , i1, . . . , ikl1−(k+m)
, ikl1−(k+m)+2

, . . . , ikl3−2m

}
,

Kl3−2(m+1) =
{{
ikl3−2m+1

, ikl3−2m+2

}
, . . . ,

{
ikl3−1

, ikl3

}
,
{
iks
, i2
}}
.
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Then, by letting J̃ =
{
j1, . . . , jk+m, jk+m+1

}
, we obtain

Tr((c)m+1)

=
∑
i1=i2

∑
s

∑
a2,a3

∑
J̃

εik0
a2a3

(xl1)J̃a2ik2
···i1···ikl1−(k+m)

(yl2)J̃a3ikl1−(k+m)+3
···ikl3−2m

× δikl3−2m+1
ikl3−2m+2

· · · δikl3−1
ikl3

δiks i2

=
∑
s

∑
a2,a3

∑
J̃

εik0
a2a3

(xl1)J̃a2ik2
···iks ···ikl1−(k+m)

(yl2)J̃a3ikl1−(k+m)+3
···ikl3−2m

× δikl3−2m+1
ikl3−2m+2

· · · δikl3−1
ikl3

= (l3 − 2m− 2)Tr ((a)m) .

The same derivation applies to Tr((d)m+1), and we get Tr((d)m+1) = (l3 − 2m− 2)Tr ((a)m).

For Tr((e)m+1), the same derivation as for Tr((d)m+1) and Tr((e)m+1) in the proof of Lemma D.2
applies. Therefore, we obtain

Tr((e)m+1) = (2m+ 3)Tr ((a)m) .

Finally, we can write

Tr((c)m+1) + Tr((d)m+1) + Tr((e)m+1)

= (l3 − 2m− 2)Tr((a)m) + (l3 − 2m− 2)Tr((a)m) + (2m+ 3)Tr((a)m)

= (2l3 − 2m− 1)Tr((a)m) = (2l3 − 2m− 1)Tr((b)m),

which completes the proof of the Lemma.

Noting that Tr ((a)m) is doubled for every m due to the factor 2m, the proof is completed similarly
to the proof of Lemma D.3. This result completes the proof of the traceless property for Eq. (3).

E Experiments and results

E.1 Description of the data sets

rMD17 data set. The revised MD17 (rMD17) data set is a collection of structures, energies,
and atomic forces of ten small organic molecules obtained from ab initio molecular dynamics
(AIMD) [47]. These molecules are derived from the original MD17 data set [47, 84–86], with
100,000 structures sampled for each. Our models are trained using 950 and 50 configurations for each
molecule randomly sampled from the original data set using five random seeds, with 50 additional
configurations randomly sampled for early stopping. We use the remaining configurations to test the
final models. Table 1 reports the mean absolute errors (MAEs) in total energies and atomic forces
averaged over five independent runs, including the standard deviation between them.

MD22 data set. The MD22 data set includes structures, energies, and atomic forces of seven
molecular systems derived from AIMD simulations at elevated temperatures, spanning four major
classes of biomolecules and supramolecules [48]. These molecular systems range from a small
peptide containing 42 atoms to a double-walled nanotube comprising 370 atoms. Characterized by
complex intermolecular interactions, this data set was designed to challenge short-range models.
The training set sizes used in this study are consistent with those in the original publication [48],
selected to ensure that the sGDML model stays within a target accuracy of 1 kcal/mol (≈ 43.37
meV). We randomly selected an additional set of 500 structures for each molecule in the data set for
early stopping, while the remaining configurations were reserved for testing the final models. The
corresponding training and validation data sets were randomly selected using three random seeds.
Table A2 reports MAEs in total energies per atom and atomic forces averaged over three independent
runs, including the standard deviation between them.

3BPA data set. The 3BPA data set comprises structures, energies, and atomic forces of a flexible
drug-like organic molecule obtained from AIMD at various temperatures [49]. The training data set
consists of 500 configurations sampled at 300 K, while three separate test data sets are obtained from
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AIMD simulations at 300 K, 600 K, and 1200 K. An additional test data set provides energy values
along dihedral rotations of the molecule. This test directly assesses the smoothness and accuracy of
the potential energy surface, influencing properties such as binding free energies to protein targets.
Our models are trained using 450 and 50 configurations randomly sampled from the training data
set using five random seeds, with further 50 configurations reserved for early stopping. Table 2
reports the root-mean-square errors (RMSEs) in total energies and atomic forces averaged over five
independent runs for a training set size of 450 structures, including the standard deviation between
them. Table A3 presents the corresponding results obtained with a training set size of 50 structures.

Acetylacetone data set. The acetylacetone data set includes structures, energies, and atomic forces
of a small reactive molecule obtained from AIMD at various temperatures [32]. The training data set
comprises configurations sampled at 300 K, while the test data sets are sampled at 300 K and 600 K.
The generalization ability of final models is evaluated using an elevated temperature of 600 K and
along two internal coordinates of the molecule: The hydrogen transfer path and a partially conjugated
double bond rotation featuring a high rotation barrier. Our models are trained using 450 and 50
configurations randomly sampled from the training dataset using five random seeds, with further 50
configurations reserved for early stopping. Table 3 reports RMSEs in total energies and atomic forces
averaged over five independent runs for a training set size of 450 structures, including the standard
deviation between them. Table A5 presents the corresponding results obtained with a training set size
of 50 structures.

Ta–V–Cr–W data set. The Ta–V–Cr–W data set includes 0 K energies, atomic forces, and stresses
for binaries, ternaries, and quaternary and near-melting temperature properties in four-component
disordered high-entropy alloys [50]. In total, this benchmark data set comprises 6711 configurations,
with energies, atomic forces, and stresses computed at the density functional theory (DFT) level.
More precisely, there are 5680 0 K structures: 4491 binary, 595 ternary, and 594 quaternary structures,
along with 1031 structures sampled from MD at 2500 K. Structure sizes range from 2 to 432 atoms
in the periodic cell. All models are trained using 5373 configurations, with 4873 used for training
and 500 for early stopping. The remaining configurations are reserved for testing the models’
performance. The performance is evaluated separately using 0 K binaries, ternaries, quaternaries,
and near-melting temperature four-component disordered alloys. The original data set provides ten
different training-test splits. In our experiments, each training set is further split into training and
validation subsets using a random seed. Furthermore, we use additional binary structures strained
along the [100] direction as a part of the test data set. Note that the final models, in this case, were
obtained by training using the whole data set of 6711 configurations (training + test), 500 of which
were reserved as a validation data set. Table A6 reports RMSEs in total energies per atom and atomic
forces averaged over ten independent runs, including the standard deviation between them.

E.2 Training details

All ICTP and MACE models employed in this work were trained on a single NVIDIA A100 GPU
with 80 GB of RAM. Training times for ICTP and MACE models typically ranged from 30 minutes
to a few days, depending on the data set, the data set size, and the employed precision. We used
double precision for 3BPA and acetylacetone data sets and single precision for rMD17, in line with
the original experiments [33]. Double precision was also used for MD22, while single precision was
employed in our Ta–V–Cr–W experiments. Unless stated otherwise, we used two message-passing
layers and irreducible Cartesian tensors or spherical tensors of a maximal rank of lmax = 3 to embed
the directional information of atomic distance vectors.

For ICTP models with the full (ICTPfull) and symmetric (ICTPsym) product basis and MACE, we
employ 256 uncoupled feature channels. Exceptions include our experiments with the 3BPA data
set, aimed at investigating scaling and computational cost, and the Ta–V–Cr–W experiments, where
we used eight and 32 feature channels, respectively. For ICTP models with the symmetric product
basis evaluated in the latent feature space (ICTPsym+lt), we use 64 coupled feature channels for the
Cartesian product basis and 256 for two-body features. Radial features are derived from eight Bessel
basis functions with polynomial envelope for the cutoff with p = 5 [60]. These features are fed into a
fully connected NN of size [64, 64, 64]. We apply SiLU non-linearities to the outputs of the hidden
layers [87, 88]. The readout function of the first message-passing layer is implemented as a linear
layer. The readout function of the second layer is a single-layer fully connected NN with 16 hidden
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neurons. A cutoff radius of 5.0 Å is used across all data sets except MD22, where we used a cutoff
radius of 5.5 Å for the double-walled nanotube and 6.0 Å for the other molecules in the data set.

All parameters of ICTP and MACE models were optimized by minimizing the combined squared
loss on training data Dtrain = (Xtrain,Ytrain), where Xtrain = {S(k)}Ntrain

k=1 and Ytrain =

{Eref
k , {Fref

u,k}
Nat
u=1,σ

ref
k }Ntrain

k=1

L (θ,Dtrain) =

Ntrain∑
k=1

[
Ce

∥∥∥Eref
k − E(S(k),θ)

∥∥∥2
2
+ Cf

N
(k)
at∑

u=1

∥∥∥Fref
u,k − Fu

(
S(k),θ

)∥∥∥2
2

+ Cs

∥∥∥Vkσref
k − Vkσ

(
S(k),θ

)∥∥∥2
2

]
.

(A5)

Here, σref
k is the stress tensor defined as σ = 1

V ∇ϵE|ϵ=0, where E denotes total energy after a
strain deformation with symmetric tensor ϵ ∈ R3×3 and V is the volume of the periodic box.

When training ICTP models on rMD17, 3BPA, and acetylacetone data sets, we neglected the stress
loss and set Ce = 1/N

(k)
at and Cf = 10 Å

2
to balance the relative contributions of total energies

and atomic forces, respectively. For MACE and 3BPA/acetylacetone, Ce = 1/(B × N
(k)
at ) and

Cf = 1000/(B×3×N (k)
at ) Å

2
were used withB denoting the batch size. For ICTP models trained on

the MD22 data set, we set Ce = 10/N
(k)
at and Cf = 1 Å

2
, using energies and forces in eV and eV/Å,

respectively. For the Ta–V–Cr–W dataset, the stress loss was incorporated into the combined loss in
Eq. (A5), along with the energy and force losses. For ICTP, we usedCe = 1/N

(k)
at ,Cf = 0.01 Å

2
, and

Cs = 0.001/N
(k)
at to balance the relative contributions of total energies, atomic forces, and stresses,

respectively. For MACE, we chose Ce = 1/(B × N
(k)
at × N

(k)
at ), Cf = 1/(B × 3 × N

(k)
at ) Å

2
,

and Cs = 0.05/(B × 9×N
(k)
at ×N

(k)
at ). Here, E(S(k),θ), Fu

(
S(k),θ

)
, and σ

(
S(k),θ

)
are total

energies, atomic forces, and stresses predicted by ICTP or MACE.

All models for rMD17, 3BPA, and acetylacetone were trained for 2000 epochs using the AMSGrad
variant of Adam [89], with default parameters of β1 = 0.9, β2 = 0.999, and ε = 10−8. For MD22
and Ta–V–Cr–W, all models were trained for 1000 epochs. For rMD17, 3BPA, and acetylacetone
data sets, we used a learning rate of 0.01 and a batch size of 5. For MD22 and Ta–V–Cr–W, we
again chose a learning rate of 0.01 but a mini-batch of 2 and 32, respectively. For evaluations on the
validation and test data sets, we used a batch size of 10 for rMD17, 3BPA, and acetylacetone, while
mini-batches of 2 and 32 were used for MD22 and Ta–V–Cr–W, respectively.

The learning rate was reduced using an on-plateau scheduler based on the validation loss with a
patience of 50 and a decay factor of 0.8 for all data sets except for MD22, for which we used a
patience of 10. We utilize an exponential moving average with a weight of 0.99 for evaluation on the
validation set and for the final model. Additionally, in line with MACE [33], we apply exponential
weight decay of 5× 10−7 on the weights of Eqs. (6), (A1), and (A3). Furthermore, we incorporate a
per-atom shift of total energies via the average per-atom energy over all the training configurations,
including the energies of individual atoms for 3BPA and acetylacetone datasets. If no atomic energies
are provided, as for rMD17, MD22, and Ta–V–Cr–W, the per-atom shift is obtained by solving a
linear regression problem [67]. Additionally, a per-atom scale is determined as the root-mean-square
of the components of the forces over the training configurations.

E.3 Additional results

Scaling and computational cost. Table A1 provides the numerical results complementing Fig. 2 in
the main text. All results in Table A1 and Fig. 2 were obtained using irreducible Cartesian tensors
with a maximal rank of lmax = L to represent local atomic environments. Here, L denotes the tensor
rank of employed equivariant messages. We facilitated the exploration of larger ν values by setting
the number of uncoupled feature channels to eight. In the MACE model, intermediate spherical
tensors with a rank of l > lmax are used to construct the product basis. However, the pre-computation
of generalized Clebsch–Gordan coefficients for ν > 4, in some cases, would require more than
2 TB of RAM. Therefore, in our experiments, we fixed the maximum rank of intermediate tensors to
l = lmax. We also used the full product basis for ICTP to calculate the same number of ν-fold tensor
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Table A1: Inference times and memory consumption as a function of the tensor rank L and the
correlation order ν for the 3BPA data set. All values for ICTP and MACE models are obtained
by averaging over five independent runs. The standard deviation is provided if it is available. Best
performances are highlighted in bold. Inference time and memory consumption are measured for a
batch size of 10. Inference time is reported per structure in ms; memory consumption is provided for
the entire batch in GB.

L = 1 L = 2 L = 3

ICTPfull MACE ICTPfull MACE ICTPfull MACE

Inference times

ν = 1 0.76 ± 0.17 1.02 ± 0.03 0.87 ± 0.18 1.38 ± 0.04 0.98 ± 0.26 1.88 ± 0.03
ν = 2 0.59 ± 0.20 1.12 ± 0.03 1.03 ± 0.21 1.52 ± 0.05 1.34 ± 0.08 2.0 ± 0.10
ν = 3 0.79 ± 0.22 1.23 ± 0.03 1.15 ± 0.08 1.67 ± 0.03 1.85 ± 0.13 2.23 ± 0.03
ν = 4 0.94 ± 0.17 1.41 ± 0.11 1.31 ± 0.21 1.83 ± 0.01 2.07 ± 0.20 2.53 ± 0.01
ν = 5 1.02 ± 0.17 1.52 ± 0.08 1.72 ± 0.07 2.26 ± 0.03 3.61 ± 0.02 OOM
ν = 6 1.0 ± 0.07 1.77 ± 0.05 1.83 ± 0.16 27.85 ± 0.01 16.76 ± 0.35 OOM

Memory consumption

ν = 1 0.05 ± 0.00 0.04 ± 0.00 0.08 ± 0.00 0.06 ± 0.00 0.21 ± 0.00 0.13 ± 0.00
ν = 2 0.05 ± 0.00 0.04 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.28 ± 0.09 0.13 ± 0.00
ν = 3 0.05 ± 0.00 0.04 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 0.51 ± 0.03 0.23 ± 0.00
ν = 4 0.05 ± 0.00 0.05 ± 0.00 0.18 ± 0.08 0.30 ± 0.00 1.07 ± 0.10 4.16 ± 0.00
ν = 5 0.05 ± 0.00 0.07 ± 0.00 0.35 ± 0.07 3.18 ± 0.00 5.07 ± 0.02 OOM
ν = 6 0.11 ± 0.09 0.22 ± 0.00 0.93 ± 0.00 50.49 ± 0.00 28.48 ± 0.03 OOM

Table A2: Energy (E) and force (F) mean absolute errors (MAEs) for the MD22 data set.a E- and
F-MAE are given in meV/atom and meV/Å, respectively. Results are shown for models trained using
training set sizes defined in the original publication [48]. All values for ICTP models are obtained
by averaging over three independent runs. We also use an additional subset of 500 configurations
drawn randomly from the original data set for early stopping. The standard deviation is provided if
available. Best performances, considering the standard deviation, are highlighted in bold.

ICTPsym ViSNet-LSRM [90] Equiformer [90] So3krates [91] MACE [61] Allegro [90] TorchMD-Net [90] sGDML [48]

Ac–Ala3–NHMe E 0.068 ± 0.000 0.068 0.085 0.348 0.064 0.105 0.116 0.403
F 3.28 ± 0.02 3.91 3.49 10.58 3.8 4.63 8.15 34.26

DHA E 0.080 ± 0.001 0.068 0.138 0.293 0.102 0.089 0.093 0.997
F 2.62 ± 0.01 2.59 2.19 10.49 2.8 3.17 5.24 32.52

Stachyose E 0.053 ± 0.001 0.053 0.070 0.22 0.062 0.124 0.069 1.995
F 2.51 ± 0.03 3.33 2.75 18.86 3.8 4.21 8.33 29.49

AT–AT E 0.057 ± 0.002 0.056 0.095 0.129 0.079 0.103 0.081 0.52
F 3.02 ± 0.07 3.39 4.16 9.37 4.3 4.13 8.83 29.92

AT–AT–CG–CG E 0.045 ± 0.001 0.042 0.055 0.127 0.058 0.145 0.076 0.52
F 3.37 ± 0.05 4.61 5.43 14.40 5.0 5.55 14.13 30.36

Buckyball catcher E 0.123 ± 0.001 0.124 0.117 0.112 0.141 0.154 0.152 0.343
F 3.58 ± 0.07 4.45 4.83 10.28 3.7 3.85 14.39 29.49

Double-walled E 0.352 ± 0.003b 0.214 0.140 0.116 0.194 0.259 0.173 0.468
nanotube F 12.64 ± 0.23b 14.71 11.91 31.53 12.0 14.87 43.5 22.55

a ICTP, MACE, Equiformer, Allegro, and TorchMD-Net are short-range models (i.e., they use local or semi-local
atomic representations), ViSNet-LSRM and SO3krates include long-range information, and sGDML is a global
model.
b For consistency, these results are obtained for relative energy and force weights of Ce = 10/N

(k)
at and

Cf = 1 Å
2
, based on our experiments with the Ac–Ala3–NHMe molecule. For comparison, we also trained

ICTP for 800 epochs with Ce = 100/N
(k)
at and Cf = 1 Å

2
, achieving MAEs of 0.209 ± 0.007 meV/atom for

energy and 13.98 ± 0.30 meV/Å for force.

products, i.e., K = len (ην), as used in MACE with l = lmax. Finally, we note that ICTP and MACE
use different approaches to optimize their runtimes; however, the scaling with respect to the tensor
rank and the correlation order is independent of these optimization methods.
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Table A3: Energy (E) and force (F) root-mean-square errors (RMSEs) for the 3BPA data set
(results for Ntrain = 50). E- and F-RMSE are given in meV and meV/Å, respectively. Results are
shown for models trained using 50 molecules randomly drawn from the training data set collected at
300 K, with further 50 used for early stopping. All ICTP and MACE results are obtained by averaging
over five independent runs, with the standard deviation provided if available. Best performances,
considering the standard deviation, are highlighted in bold.

ICTPfull ICTPsym ICTPsym+lt MACE

300 K E 14.98 ± 1.62 13.43 ± 1.00 16.03 ± 1.26 14.54 ± 1.02
F 37.21 ± 2.14 37.27 ± 1.63 38.38 ± 1.55 37.68 ± 1.33

600 K E 31.68 ± 3.56 31.63 ± 3.94 30.74 ± 1.82 30.71 ± 3.43
F 69.87 ± 3.04 68.87 ± 2.94 69.62 ± 2.88 69.88 ± 3.88

1200 K E 92.16 ± 9.33 86.0 ± 12.03 78.51 ± 8.88 83.99 ± 8.20
F 157.72 ± 6.53 153.16 ± 9.62 151.37 ± 9.59 154.46 ± 10.84

Dihedral slices E 33.69 ± 8.03 31.06 ± 6.27 33.44 ± 5.56 27.79 ± 7.41
F 47.12 ± 5.27 47.68 ± 2.21 49.08 ± 4.05 48.91 ± 4.71

Molecular dynamics trajectories. Table A2 presents the energy and force mean absolute errors
(MAEs) for the ICTP models trained on the MD22 data set. This data set was designed to challenge
short-range potential models—i.e., those based on local or semi-local atomic representations—and
includes large molecular systems with complex intermolecular interactions. We compare errors
obtained for ICTP models with those of state-of-the-art approaches that incorporate global, short- and
long-range information. From Table A2, we see that ICTP achieves accuracy in predicted energies
and atomic forces on par with or better than state-of-the-art methods. The ICTP model uses a cutoff
of 6.0 Å (5.5 Å for the double-walled nanotube), resulting in a receptive field of 12.0 Å (11.0 Å),
considering the two message-passing layers. This receptive field is, in most cases, smaller than
the diameter of molecular systems in the data set. Thus, ICTP is, at most, a semi-local potential
model—similar to MACE, which used a 5.0 Å cutoff and two message-passing layers.

We chose a larger cutoff for ICTP than the one used by MACE motivated by the results in the
recent work [7]. In particular, the authors compared MACE to VisNet-LSRM—the best model
reported to date for MD22, which employs mixed short- and long-range information in their message
passing—and reported that MACE can achieve lower force errors. However, VisNet-LSRM typically
had lower energy errors, attributed to the improvement from considering atomic interactions beyond
10.0 Å. Using a larger cutoff radius for ICTP compared to MACE, we expected results closer to those
of VisNet-LSRM. Table A2 shows that using a receptive field of 12.0 Å is, in most cases, sufficient to
achieve accuracy in predicted energies close to the one obtained by VisNet-LSRM.

Extrapolation to out-of-domain data. Table A3 demonstrates total energy and atomic force RMSEs
obtained for ICTP and MACE models trained using 50 configurations randomly drawn from the
original data set. ICTP and MACE models perform similarly, considering the standard deviation
obtained across five independent runs. However, ICTP models often have lower mean RMSE values
compared to MACE. Furthermore, Table A4 presents the total energy and atomic force RMSEs for
ICTP and MACE models that use ν = 1 to compute the product basis. Thus, we provide results
for models which rely exclusively on two-body interactions. We note that for ν = 1, ICTPfull and
ICTPsym are identical; though, we include both results for completeness.

Figure A1 compares potential energy profiles obtained with ICTP and MACE models trained using
450 configurations. Potential energy cuts at β = 120◦ and β = 180◦ are easier tasks for MLIPs, as
there are training points in the data set with similar combinations of dihedral angles [32]. In contrast,
the potential energy cut at β = 150◦ is more challenging, with no training points close to it. Notably,
Fig. A1 shows that all models produce smooth potential energy profiles close to the reference ones
(DFT) for all values of β. These results again demonstrate excellent extrapolation capabilities of
irreducible Cartesian models that are on par with the spherical MACE model.

Flexibility and reactivity. Table A5 demonstrates total energy and atomic force RMSEs obtained for
ICTP and MACE models trained using 50 configurations randomly drawn from the original data set.
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Table A4: Energy (E) and force (F) root-mean-square errors (RMSEs) for the 3BPA data set
(results for ν = 1). E- and F-RMSE are given in meV and meV/Å, respectively. Results are shown
for models trained using 450 configurations randomly drawn from the training data set collected at
300 K, with further 50 used for early stopping. For all models, ν = 1 is used. Thus, the employed
models rely exclusively on two-body interactions. All ICTP and MACE results are obtained by
averaging over five independent runs. Best performances, considering the standard deviation, are
highlighted in bold. Inference time and memory consumption are measured for a batch size of 100.
Inference time is reported per structure in ms, while memory consumption is provided for the entire
batch in GB.

ICTPfull ICTPsym ICTPsym+lt MACE

300 K E 12.90 ± 1.06 12.90 ± 1.06 14.97 ± 1.64 13.50 ± 1.71
F 29.90 ± 0.25 29.90 ± 0.25 30.93 ± 0.47 30.18 ± 0.38

600 K E 29.97 ± 0.94 29.97 ± 0.94 31.64 ± 1.83 31.32 ± 2.16
F 62.80 ± 0.45 62.80 ± 0.45 64.54 ± 0.95 63.04 ± 0.73

1200 K E 81.03 ± 1.64 81.03 ± 1.64 79.26 ± 4.66 81.54 ± 2.02
F 146.96 ± 1.30 146.96 ± 1.30 151.45 ± 5.21 149.44 ± 1.94

Dihedral slices E 22.84 ± 2.96 22.84 ± 2.96 29.16 ± 7.96 28.08 ± 4.04
F 48.82 ± 5.25 48.82 ± 5.25 52.53 ± 5.27 49.62 ± 2.92

Inference time 2.63 ± 0.02 2.62 ± 0.02 2.53 ± 0.01 2.96 ± 0.06

Memory consumption 32.57 ± 0.00 32.57 ± 0.00 32.34 ± 0.09 23.32 ± 0.00
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Figure A1: Potential energy profiles for three cuts through the 3BPA molecule’s potential
energy surface (results for Ntrain = 450). All models are trained using 450 configurations, and the
remaining 50 are used for early stopping. The 3BPA molecule, including the three dihedral angles
(α, β, and γ), provided in degrees ◦, is shown as an inset. The color code of the inset molecule is C
grey, O red, N blue, and H white. The reference potential energy profile (DFT) is shown in black.
Each profile is shifted such that each model’s lowest energy is zero. Shaded areas denote standard
deviations across five independent runs.

Similar to the 3BPA data set, ICTP and MACE models demonstrate comparable accuracy in predicted
energies and forces, considering the standard deviation obtained across five independent runs.

Figure A2 further investigates the generalization capabilities of ICTP models trained using 450
configurations, demonstrating potential energy profiles for the rotation around the C-C bond, i.e., the
C-C-C-O dihedral angle (α), and for the hydrogen transfer (i.e., the O–H distance dOH in Fig. A2).
The training data set encompasses dihedral angles less than 30◦. Furthermore, the energy barrier
of 1 eV is outside the energy range of the training data set obtained at 300 K. As for the hydrogen
transfer, the training data does not contain transition geometries, but the reaction still occurs in a
region that is not too far from the training data. Overall, ICTP models perform on par with MACE
for predicting potential energy profiles for the rotation around the corresponding C-C bond and for
the hydrogen transfer.

34



Table A5: Energy (E) and force (F) root-mean-square errors (RMSEs) for the acetylacetone
data set (results for Ntrain = 50). E- and F-RMSE are given in meV and meV/Å, respectively.
Results are shown for models trained using 50 configurations randomly drawn from the training
data set collected at 300 K, with further 50 used for early stopping. All ICTP and MACE results
are obtained by averaging over five independent runs. Best performances, considering the standard
deviation, are highlighted in bold.

ICTPfull ICTPsym ICTPsym+lt MACE

300 K E 4.42 ± 0.39 4.45 ± 0.36 4.38 ± 0.24 4.22 ± 0.52
F 28.85 ± 3.00 28.28 ± 1.45 29.17 ± 1.65 28.38 ± 2.74

600 K E 17.61 ± 3.14 16.13 ± 1.37 17.3 ± 2.05 17.53 ± 3.58
F 75.09 ± 8.70 69.99 ± 5.12 74.96 ± 4.68 74.93 ± 9.91
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Figure A2: Potential energy profiles of (a) the dihedral angle describing the rotation around
the C-C bond and (b) hydrogen transfer between two oxygen atoms (results for Ntrain = 450).
All models are trained using 450 molecules, and the remaining 50 are used for early stopping. The
acetylacetone molecule, including the dihedral angle in degrees ◦ describing the rotation around the
C-C bond (α), is shown as an inset in (a). The color code of the inset molecule is C grey, O red, and
H white. The reference potential energy profile (DFT) is shown in black. Each profile is shifted such
that each model’s lowest energy is zero. The histograms demonstrate the distribution of dihedral
angles and O-H distances in the training data. Shaded areas denote standard deviations across five
independent runs.

Figure A3 shows potential energy profiles for MLIPs trained with 50 configurations, similar to
Fig. A2. Notably, Fig. A2 (b) demonstrates that ICTPfull is the only MLIP consistently producing
the potential energy profile for the hydrogen transfer close to the reference (DFT). This task is
particularly challenging, as most data splits do not include configurations sufficiently close to the
transition structure as in Fig. A2.

Multicomponent alloys. The Ta–V–Cr–W data set is designed to evaluate the performance of MLIPs
across atomic systems with varying numbers of atom types/components, comprising both relaxed
(0 K) and high-temperature structures [50]. In particular, this data set includes 0 K energies, forces,
and stresses for 2-, 3-, and 4-component systems and 2500 K properties in 4-component disordered
alloys. It contains 6711 configurations with sizes ranging from two to 432 atoms in the periodic cell.
Table A6 demonstrates the energy and force RMSEs for the ICTP and MACE models, evaluated
separately on 0 K binaries, ternaries, quaternaries, and near-melting temperature four-component
disordered alloys. ICTP consistently outperforms state-of-the-art models for the Ta–V–Cr–W data
set, i.e., MTP and GM-NN. In contrast, for MACE, we were not able to identify a set of relative
weights for energy, forces, and virial losses that consistently yield results better than those of MTP
and GM-NN in both energies and forces. Table A6 shows that MACE often matches the accuracy of
ICTP on forces but is typically outperformed by a factor of ≤ 2.0 on energies.
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Figure A3: Potential energy profiles of (a) the dihedral angle describing the rotation around
the C-C bond and (b) hydrogen transfer between two oxygen atoms (results for Ntrain = 50).
All models are trained using 50 molecules, and additional 50 are used for early stopping. The
acetylacetone molecule, including the dihedral angle in degrees ◦ describing the rotation around the
C-C bond (α), is shown as an inset in (a). The color code of the inset molecule is C grey, O red, and
H white. The reference potential energy profile (DFT) is shown in black. Each profile is shifted such
that each model’s lowest energy is zero. The histograms demonstrate the distribution of dihedral
angles and O-H distances in the training data set for one random seed used to split the original data.
Shaded areas denote standard deviations across five independent runs.

We further compare the ICTP, MACE, MTP, and GM-NN models using the separate test data set
containing binary structures strained along the [100] direction. We find that neither ICTP nor MACE
consistently outperforms MTP and GM-NN in this case. However, because this test data set contains
only a single configuration of 432 atoms per binary, it may not serve as a valuable benchmark in
this study and is included merely for completeness. Additionally, we trained a Cartesian model with
ν = 2 and L = lmax = 2, which resembles a TensorNet-like architecture [30], though it incorporates
equivariant convolution filters. The corresponding results are provided in Table A6. We found that
model configurations with ν = 3 and L = 2 (and often with L = 1) outperform the ν = 2 and
L = lmax = 2 configuration by factors of ≤ 1.4 and ≤ 1.2 in energy and force RMSEs, respectively.

Finally, similar to our results for the 3BPA data set, we observe that MACE can be more computa-
tionally efficient than ICTP. We attribute longer inference times of ICTP to the pre-factor K arising
from the Cartesian product basis in Eq. (6). Thus, we attribute ICTP’s lower computational efficiency
to the use of the MACE architecture, which is optimized for spherical tensors. We expect that further
modifications to the architecture can facilitate more efficient use of the advantages of operations
based on irreducible Cartesian tensors.

F Broader social impact

This section discusses the broader social impact of the presented work. Our work has important
implications for the chemical sciences and engineering, as many problems in these fields require
atomistic simulations; we also discuss it in Section 1. Although this work focuses on standard
benchmark data sets, our experiments demonstrate the scalability of our method to larger atomic
systems. Beyond constructing machine-learned interatomic potentials, equivariant models based
on irreducible Cartesian tensors can be applied for molecular property prediction, protein structure
prediction, protein generation, ribonucleic acid structure ranking, and many more.

Our work has no obvious negative social impact. As long as it is applied to the chemical sciences and
engineering in a way that benefits society, it will have positive effects.
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Table A6: Energy (E) and force (F) root-mean-square errors (RMSEs) for the Ta–V–Cr–W data
set. E- and F-RMSEs are given in meV/atom and eV/Å. Results are obtained by averaging over
ten splits of the original data set, except for the deformed structures. For the latter, the results are
obtained using the whole data set (training + test). For the ICTP, MACE, and GM-NN models, we
randomly selected a validation data set of 500 structures from the corresponding training data sets.
Best performances, considering the standard deviation, are highlighted in bold. Inference time and
memory consumption are measured for a batch size of 50. Inference timea is reported per atom in µs;
memory consumption is provided for the entire batch in GB.

Subsystem ICTPsym (L = 2) ICTPsym (L = 1) ICTPsym (L = 0) MACE (L = 2) MACE (L = 1) MACE (L = 0) ICTPsym (ν = 2) MTP [50] GM-NN [50] EAM [50]

TaV E 1.02 ± 0.27 1.21 ± 0.54 1.65 ± 1.06 1.72 ± 0.67 1.76 ± 0.53 2.24 ± 1.34 1.24 ± 0.50 1.94 1.54 32.00
F 0.020 ± 0.002 0.022 ± 0.002 0.024 ± 0.002 0.019 ± 0.002 0.020 ± 0.003 0.022 ± 0.002 0.023 ± 0.002 0.050 0.029 0.404

TaCr E 1.81 ± 0.29 1.94 ± 0.23 2.13 ± 0.19 3.26 ± 0.42 3.31 ± 0.44 4.18 ± 0.56 2.40 ± 0.33 3.26 2.98 43.60
F 0.025 ± 0.007 0.024 ± 0.006 0.027 ± 0.005 0.029 ± 0.01 0.026 ± 0.007 0.028 ± 0.007 0.026 ± 0.006 0.057 0.038 0.343

TaW E 1.75 ± 0.11 1.87 ± 0.14 2.45 ± 0.31 2.73 ± 0.53 3.21 ± 0.55 3.57 ± 0.48 2.19 ± 0.54 2.72 2.99 44.80
F 0.017 ± 0.002 0.018 ± 0.002 0.020 ± 0.002 0.017 ± 0.002 0.018 ± 0.002 0.019 ± 0.002 0.018 ± 0.002 0.038 0.025 0.248

VCr E 1.74 ± 1.20 2.52 ± 2.43 2.13 ± 1.24 2.19 ± 0.78 2.82 ± 1.28 3.11 ± 1.42 1.89 ± 1.27 2.29 2.82 44.80
F 0.016 ± 0.002 0.018 ± 0.001 0.019 ± 0.001 0.016 ± 0.001 0.017 ± 0.001 0.018 ± 0.002 0.019 ± 0.001 0.036 0.025 0.270

VW E 1.32 ± 0.2 1.46 ± 0.16 1.69 ± 0.21 1.90 ± 0.19 1.94 ± 0.23 2.42 ± 0.24 1.61 ± 0.16 2.50 2.00 21.30
F 0.014 ± 0.002 0.015 ± 0.002 0.018 ± 0.003 0.014 ± 0.002 0.015 ± 0.002 0.017 ± 0.002 0.016 ± 0.002 0.037 0.023 0.292

CrW E 2.18 ± 0.93 2.45 ± 1.53 2.76 ± 1.15 2.31 ± 1.18 2.84 ± 0.98 4.14 ± 1.38 3.12 ± 1.90 4.35 2.87 23.40
F 0.018 ± 0.004 0.020 ± 0.005 0.024 ± 0.008 0.020 ± 0.009 0.019 ± 0.006 0.023 ± 0.007 0.022 ± 0.006 0.041 0.029 0.248

TaVCr E 0.79 ± 0.08 0.92 ± 0.17 1.00 ± 0.24 2.26 ± 0.54 2.71 ± 0.66 3.92 ± 0.77 0.97 ± 0.13 2.43 1.97 34.10
F 0.027 ± 0.001 0.029 ± 0.002 0.033 ± 0.002 0.023 ± 0.002 0.024 ± 0.001 0.028 ± 0.001 0.031 ± 0.002 0.054 0.045 0.313

TaVW E 1.00 ± 0.20 0.98 ± 0.18 1.26 ± 0.23 1.80 ± 0.35 1.97 ± 0.44 2.29 ± 0.86 0.95 ± 0.25 1.67 1.70 39.60
F 0.021 ± 0.001 0.022 ± 0.001 0.025 ± 0.001 0.021 ± 0.002 0.023 ± 0.001 0.026 ± 0.001 0.023 ± 0.001 0.043 0.034 0.321

TaCrW E 1.16 ± 0.15 1.28 ± 0.13 1.58 ± 0.29 1.67 ± 0.38 1.48 ± 0.50 2.08 ± 0.57 1.24 ± 0.11 2.08 2.19 23.60
F 0.022 ± 0.001 0.024 ± 0.001 0.027 ± 0.001 0.028 ± 0.002 0.030 ± 0.002 0.033 ± 0.002 0.026 ± 0.001 0.051 0.039 0.327

VCrW E 1.00 ± 0.16 1.07 ± 0.14 1.37 ± 0.13 1.97 ± 0.5 2.21 ± 0.42 2.86 ± 0.64 1.10 ± 0.14 1.37 1.94 19.40
F 0.018 ± 0.001 0.019 ± 0.001 0.022 ± 0.001 0.017 ± 0.001 0.019 ± 0.001 0.021 ± 0.001 0.020 ± 0.001 0.040 0.031 0.314

TaVCrW (0 K) E 1.22 ± 0.07 1.30 ± 0.10 1.48 ± 0.16 2.26 ± 0.55 2.48 ± 0.46 3.60 ± 0.54 1.33 ± 0.17 2.09 2.16 50.80
F 0.021 ± 0.002 0.022 ± 0.002 0.025 ± 0.002 0.022 ± 0.001 0.023 ± 0.002 0.027 ± 0.001 0.024 ± 0.002 0.049 0.037 0.488

TaVCrW (2500 K) E 1.63 ± 0.07 1.74 ± 0.11 2.09 ± 0.09 2.22 ± 0.48 2.34 ± 0.59 3.68 ± 0.70 2.06 ± 0.09 2.40 2.67 59.40
F 0.116 ± 0.002 0.121 ± 0.002 0.141 ± 0.003 0.119 ± 0.007 0.126 ± 0.006 0.150 ± 0.003 0.140 ± 0.002 0.156 0.179 0.521

Overall E 1.38 ± 0.09 1.56 ± 0.21 1.80 ± 0.18 2.19 ± 0.31 2.42 ± 0.31 3.17 ± 0.28 1.67 ± 0.21 2.43 2.32 37.14
F 0.028 ± 0.001 0.029 ± 0.001 0.034 ± 0.001 0.029 ± 0.001 0.030 ± 0.001 0.034 ± 0.001 0.032 ± 0.001 0.054 0.043 0.443

Deformed Structures

TaV E 5.47 ± 0.66 4.97 ± 0.89 5.56 ± 1.84 3.57 ± 1.61 3.41 ± 1.57 3.63 ± 1.84 5.80 ± 1.56 4.43 3.63 56.8

CrW E 1.94 ± 0.90 2.19 ± 0.80 2.04 ± 0.84 2.74 ± 1.35 2.14 ± 1.37 2.19 ± 1.24 1.53 ± 1.65 1.25 1.04 27.1

TaCr E 0.81 ± 0.73 0.76 ± 0.66 0.83 ± 0.66 2.47 ± 1.42 3.57 ± 2.11 7.10 ± 1.96 1.57 ± 1.86 1.89 0.49 13.3

VW E 0.49 ± 0.41 0.51 ± 0.40 0.65 ± 0.42 2.90 ± 0.93 2.20 ± 0.83 3.61 ± 2.36 0.78 ± 0.38 0.41 0.52 66.1

TaW E 0.89 ± 0.56 1.16 ± 0.93 1.09 ± 0.69 5.32 ± 1.79 8.52 ± 2.05 5.68 ± 3.68 2.82 ± 1.79 3.74 3.11 161.9

VCr E 6.30 ± 2.65 8.49 ± 3.39 8.40 ± 1.78 7.20 ± 2.95 4.21 ± 2.17 3.50 ± 2.52 4.60 ± 3.38 4.29 2.70 283.2

Overall E 2.65 ± 0.46 3.01 ± 0.48 3.10 ± 0.43 4.03 ± 0.67 4.01 ± 0.70 4.29 ± 0.73 2.85 ± 0.56 2.67 1.91 101.4

Inference time 51.78 ± 1.18 25.09 ± 0.02 14.59 ± 0.01 29.48 ± 0.23 15.37 ± 0.04 4.43 ± 0.00 14.97 ± 0.09 17.57 7.25 0.50

Memory consumption 36.78 ± 0.00 16.93 ± 0.00 8.48 ± 0.00 28.82 ± 0.00 13.87 ± 0.00 5.91 ± 0.00 13.15 ± 0.00 – – –

a Inference times for MTP and EAM were measured on two Intel Xeon E6252 Gold (Cascade Lake) CPUs. For
GM-NN, an NVIDIA GeForce RTX 3090 Ti 12GB GPU was used, while all other models were evaluated using
an NVIDIA A100 GPU with 80 GB of RAM.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction include the presented work’s main contributions,
assumptions, and results. Each of these claims are backed up through theoretical and
empirical results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the presented work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

38



Answer: [Yes]
Justification: We provide the proof of the equivariance and traceless property of MPNNs
based on irreducible Cartesian tensors in Appendices C and D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the entire experimental setting and all details on the performed
experimens in Section 5 and Appendix E. We also provide a detailed description of MPNNs
employed in this work, including the weight initialization; see Section 4.2 and Appendix B.2.
Furthermore, we describe the construction of irreducible Cartesian tensor products and
introduce the irreducible Cartesian tensor products in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code is available on GitHub and can be accessed via
this link: https://github.com/nec-research/ictp. All data sets used in this
study are publicly available: rMD17 (https://doi.org/10.6084/m9.figshare.
12672038.v3), MD22 (http://www.sgdml.org), 3BPA (https://github.com/
davkovacs/BOTNet-datasets), acetylacetone (https://github.com/davkovacs/
BOTNet-datasets), and Ta–V–Cr–W (https://doi.org/10.18419/darus-3516).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details on the experimental setting are provided in Section 5 and Ap-
pendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run all experiments using several random seeds and provide the corre-
sponding standard deviations and error bars in all tables and figures.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on the computer resources in Section 5 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The presented work follows the NeurIPS Code of Ethics. We also include
Appendix F, which discusses the broader social impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We include Appendix F, which discusses the broader social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We reference all employed data sets and source codes in the main text.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a detailed description of the construction of irreducible Cartesian
tensors, computation of their irreducible tensor products, and the resulting equivariant
message-passing layers; see Section 4 and Section B. We also provide training details in
Appendix E.2 and describe the employed data sets in greater detail in Appendix E.1. The
source code includes comprehensive documentation as well.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We performed neither crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We performed neither crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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