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ABSTRACT

Existing approaches to few-shot learning deal with tasks that have persistent, rigid
notions of classes. Typically, the learner observes data only from a fixed number
of classes at training time and is asked to generalize to a new set of classes at
test time. Two examples from the same class would always be assigned the same
labels in any episode. In this work, we consider a realistic setting where the re-
lationship between examples can change from episode to episode depending on
the task context, which is not given to the learner. We define two new benchmark
datasets for this flexible few-shot scenario, where the tasks are based on images
of faces (Celeb-A) and shoes (Zappos50K). While classification baselines learn
representations that work well for standard few-shot learning, they suffer in our
flexible tasks since the classification criteria shift from training to testing. On the
other hand, unsupervised contrastive representation learning with instance-based
invariance objectives preserves such flexibility. A combination of instance and
class invariance learning objectives is found to perform best on our new flexible
few-shot learning benchmarks, and a novel variant of Prototypical Networks is
proposed for selecting useful feature dimensions.

1 INTRODUCTION

Following the success of machine learning applied to fully-supervised settings, there has been a
surge of interest in machine learning within more realistic, natural learning scenarios. Among these,
meta-learning and few-shot learning (Lake et al., 2011) (FSL) have emerged as exciting alternatives.
In the few-shot learning setting, the learner is presented with episodes of new learning tasks, where
the learner must identify patterns in a labeled support set and apply them to make predictions for
an unlabeled query set. Since its inception, there has been significant progress on FSL benchmarks.
However, standard supervised baselines are often shown to perform as well as carefully designed
solutions (Chen et al., 2019; Tian et al., 2020). In this work, we argue that this observation is due in
part to the rigidity in which FSL episodes are designed.

In a typical few-shot classification setting, each episode consists of a few examples belonging to one
of N classes. Across different training episodes, different images are sampled from the classes in
the training set but they will always be given the same class label: an elephant is always an elephant.
Most current approaches to FSL attempt to remove context. Existing tasks focus on classification
judgements, where the query image should be deemed similar to the support image belonging to the
same class, factoring out the role of context such as the setting, pose, and presence of other objects.
But many judgements are contextual—they depend on the task at hand and frame-of-reference. A
rock is similar to a chair when the aim is to sit, but similar to a club if the aim is to hit. Meta-
learning is especially appropriate in contextual judgements, as people are able to adapt readily to
new contexts and make appropriate judgements. So an important question is how to get context into
few-shot classification?

In this work, we define a new flexible few-shot learning (FFSL) paradigm. Instead of building
episodes from classes, each episode is a binary classification problem that is constructed with some
context that is hidden from the learner. In this way, the same data point may be given different labels
across multiple episodes. For example, elephants and tables may belong to the same class if the
context is “has legs”, but not when the context is “has ears”. Importantly, the learner is not given
direct access to the context and must infer it from the examples present in the episode.
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Figure 1: Illustration of the flexible few-shot learning tasks. Instead of having a fixed seman-
tic class, each example may belong to different classes flexibly depending on the context of each
episode. New classes and attributes are introduced in testing to establish new classification criteria.

Our FFSL problem is significantly more challenging than the standard setup. In each episode, a
learner must infer the correct context and adapt their predictions accordingly. In Section 5.1 we
study generalization issues that occur under supervised representation learning for the flexible few-
shot tasks. We show that these approaches easily overfit to the training attributes, even when given
direct access to the attributes that determine the context. We provide additional analysis of a toy
problem to illustrate one possible cause of this failure.

In this work, we contribute two new benchmark datasets for this flexible few-shot scenario. The tasks
are based on images of faces (Celeb-A) (Liu et al., 2015) and shoes (Zappos50K) (Yu & Grauman,
2014). We provide a thorough empirical evaluation of existing methods on these tasks. We find that
successful approaches in the standard FSL setting fall short on the flexible few-shot tasks. Further,
while supervised classification baselines can learn good representation in the standard FSL setting,
they suffer in FFSL. On the other hand, we found a combination of instance and class invariance
objectives is able to provide improved performance on the flexible few-shot tasks. Moreover, we
present Mask-ProtoNet which combines prototype classification with feature selection capability,
and it performs better compared to standard prototype averaging and linear readout.

2 BACKGROUND: STANDARD FEW-SHOT CLASSIFICATION

The vast majority of standard few-shot classification datasets are constructed as follows. First, a
standard supervised classification dataset is obtained (e.g. MNIST). Some number of the classes
are designated as training classes (e.g. digits 0-4), and the dataset is partitioned so that all images
belonging to the training classes are placed into the training set. The remaining classes are used for
validation/testing.

At training time, the learner is given episodes (E) to learn from. The episode is divided into a
labelled support set (ES) and an unlabelled query set (EQ). An episode is said to be N -way when
it contains data points from only N classes. Additionally, the episode is k-shot when there are k
labelled data points from each of the N classes in the support set. Given an episode, the learner
must successfully predict the class identity of data points in the query set, given the small amount
of labelled information in the support set. Throughout, we use x to denote input data and y the
corresponding class labels for this input.

Prototypical networks: A standard prototypical network (Snell et al., 2017) consists of an em-
bedding network, g, and a choice of distance function. In each episode, the labelled support data
are used to construct class prototypes, c, by averaging the data points assigned to each class. The
likelihood of the query predictions is then given by p(y = i|x) = softmax(−d(g(x), ci)). Typically
d is the squared Euclidean distance or the cosine dissimilarity function.

3 RELATED WORK

Meta-learning and few-shot learning: As one of the earlier studies of FSL, Lake et al. (2011)
showed that probabilistic programming can learn about unseen hand-written characters in the Om-
niglot dataset using few examples. Koch et al. (2015) showed that a deep Siamese network can
achieve similar performance. Vinyals et al. (2016) introduced the more challenging miniImageNet
dataset. This lead to the development of many meta-learning methods with deep networks including
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Figure 2: Sample FFSL episodes using Celeb-A (left) and Zappos-50K (right) datasets. Positive and
negative examples are sampled according to the context attributes, but the context information is not
revealed to the model at test time.

MAML (Finn et al., 2017), Matching Network (Vinyals et al., 2016), and the Prototypical Net-
work (Snell et al., 2017). One hypothesis is that to solve the FSL task, a model needs to be flexible
enough to adapt its feature extractor to the unseen test task. Though MAML is very flexible, it is not
empirically better than simpler methods such as Prototypical Networks. To strike a balance between
flexibility and simplicity, TADAM (Oreshkin et al., 2018) proposed adapting the network using the
FiLM layer (Perez et al., 2018), a generalization of conditional normalization.

In our work, we explore some generalization challenges introduced by the FFSL benchmarks. In
general, there is limited theoretical support for the success of meta-learning. Most existing work
focuses on defining notions of task similarity (Ben-David et al., 2010; Ben-David & Borbely, 2008),
building explicit models for meta-learning (Baxter, 2000; Pentina & Lampert, 2014) or on learning
good data representations for generalization across tasks (Maurer, 2009; Bullins et al., 2019; Du
et al., 2020). Yet another line of work investigates the theoretical limitations of few-shot learning
(Hanneke & Kpotufe, 2020; Lucas et al., 2020). Here we study the generalization failure modes of
supervised representation learning approaches to the FFSL tasks.

The standard few-shot classification task has been extended in various ways. In few-shot semi-
supervised learning, the support set is augmented with unlabelled examples to provide access to extra
information (Ren et al., 2018). This has inspired novel algorithms such as a meta-learning version
of learning from pseudo-labels (Sun et al., 2019). To capture the possibility that a model needs
to deal with varying support set size, and task difficulty, Triantafillou et al. (2019) introduced the
Meta-Dataset. They found that a hybrid of Prototypical Networks and MAML performed best. To
capture another aspect of learning in the real world, Finn et al. (2018) investigated the possibility of
having ambiguous tasks. In the same spirit, we extend the study of few-shot learning by introducing
our FFSL benchmarks, and show that this task calls for novel algorithms.

Zero-shot learning: In zero-shot learning (ZSL), a model is asked to recognize classes not present
in the training set, supervised only by some auxiliary description or attribute values (see Wang et al.
(2019a) for a survey). Lampert et al. (2014) studied the direct attribute prediction method. In
subsequent sections we also look at pretraining a predictor of attribute values. One motivating
factor for ZSL is the situation where no training example is available for the new classes, but only
descriptions of them. The motivation behind our FFSL task can be seen as complementary in that
sometimes a new concept cannot easily be described, but coming up with a small set of representative
examples is easier, e.g. “shoes that I like”. This suggests a comparison to recommendation systems.

Cold start in recommendation systems: Our FFSL tasks share overlap with the cold start prob-
lem in recommendation systems (Lam et al., 2008; Gope & Jain, 2017), in which a new user or item
is added to the system with little or no information. As data is collected on the new instance, the
system must quickly learn to generate good recommendations. The similarity of meta-learning and
cold-start recommendation has been explored before (Vartak et al., 2017). However, as new users
can be considered as having their own context to classify items, arguably our flexible few-shot tasks
share greater similarity with cold-start recommendation than standard FSL settings.

Compositional learning: Compositional features can be used to construct novel concepts. This
has been used to improve ZSL where a model not only predicts the class, but also attribute values of
unseen objects (Purushwalkam et al., 2019; Wang et al., 2019b; Yang et al., 2020). Another aspect
of our FFSL task is the need to reason about the underlying decision criteria. This theme is also
important in the Visual IQ test proposed in Barrett et al. (2018). There a model is asked to infer and
extrapolate attribute values to solve Raven’s Progressive Matrices.
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4 FFSL: FLEXIBLE FEW-SHOT LEARNING

In this section, we define our FFSL paradigm and introduce our two new benchmark datasets. As
in the standard few-shot classification setting (Section 2), our learner is presented with episodes of
data. However, the episodes are not constrained to contain data points from only N classes. Instead,
each data point is given either a positive or negative label depending on some criteria that is not
known to the learner.

Figure 1 shows some examples of different episodes in our FFSL setting. Each episode contains an
image of a pot, but the class identity of the pot varies according to the hidden context. In Episode 1,
the pot and the chair are given the same labels whereas in Episode 2 they belong to different classes.
Moreover, at test time brand new concepts (e.g. tables) or criteria (e.g. color) may be introduced.

Conceptually, each data point x ∈ X represents some combination of hidden attributes z ∈ Z . And
each context is an injective function, f : Z → {0, 1}, that labels each of the data points depending
on their hidden attributes. In this work, we consider contexts that compute conjuctions of binary
attributes. The set of training contexts and test contexts need not be the same.

In order to solve the FFSL task, the learner must correctly find a mapping from the data domain
X to the correct labels. One natural way to solve this problem would be to first find a mapping
h : X → Z , that is persistent across episodes, and then estimate the context in each episode.
However, we do not limit our exploration to methods that use this approach, since FFSL allows
different partitions of the Z space for training and testing, and as we will explain in Section 5.1,
directly learning to predict Z can lead to generalization issues.

Next we describe how we generate the FFSL datasets using existing image datasets with attributes,
Celeb-A faces (Liu et al., 2015) and Zappos-50K shoes (Yu & Grauman, 2014). Sample episodes
from each dataset are shown in Figure 2.

Celeb-A: The Celeb-A dataset contains around 200K images, where we split half to training, and
a quarter to validation and testing each. Each image is annotated with 40 binary attributes, detailing
hair colour, facial expressions, and other descriptors. We picked 27 salient attributes and split 14
for training and 13 for both val and test. There is no overlap between training or test attributes but
they may sometimes belong to a common category, e.g. blonde hair is in training and brown hair is
in test. Split details are included in the Appendix B. For each episode, we randomly select one or
two attributes and look for positive example belonging to these attributes simultaneously. And we
also sample an equal number of negative examples that don’t belong to one or both of the selected
attributes. This will construct a support set of positive and negative samples, and then we repeat the
same process for the corresponding query set as well.

Zappos-50K: The Zappos-50K dataset contains just under 50K images of shoes annotated with
attribute values, out of which we kept a total of 76 that we considered salient. We construct an image-
level split that assigns 80% of the images to the training set, 10% to the validation and 10% to the
test set. We additionally split the set of attribute values into two disjoint sets that are used to form the
training and held-out FFSL tasks, respectively. Sampling an episode from a particular split involves
sampling a conjunction of attributes from that split (e.g. ‘gender = boy’ and ‘material = leather’),
and then sampling positive and negative examples from the relevant example split. The positive
examples obey both clauses of the conjunction and, as a design choice, the negative examples do not
obey either clause. The sampled positive and negative examples are then divided into a support and
query set for the episode.

5 EXPLORING MODELS FOR FLEXIBLE FEW-SHOT LEARNING

In this section, we explore different learning models to solve FFSL tasks. Overall, we separate learn-
ing into two stages: representation learning and few-shot learning. In the representation learning
stage, a network backbone learns task relevant features over many examples. And in the FSL stage,
an episode with a few examples is presented, and the learner utilizes the base backbone network and
performs additional learning on top.

For typical meta-learning based methods, these two stages are essentially the same—training per-
forms episodic learning just like testing. Aside from meta-learning, simple supervised pretraining
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can also learn good representation for standard few-shot classification by using a linear classifier
readout at test time (Chen et al., 2019; Tian et al., 2020).

5.1 GENERALIZATION ISSUES WITH SUPERVISED REPRESENTATION LEARNING
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Figure 3: FFSL 20-shot classification. Both
supervised attribute classification and stan-
dard FSL do not generalize well.

In the FFSL task, any single example can have sev-
eral positive attributes and the context used to clas-
sify them varies across training and test. This sug-
gests that useful representations must be more gen-
eral than those needed for standard FSL. To investi-
gate this, we first conducted an initial experiment on
the Celeb-A benchmark. We adopted a standard pro-
totypical network (ProtoNet) with features learned
through the episodic query loss as our meta-learning
approach. We also explored pretraining-based ap-
proaches. We trained a classifier to predict the 14
binary training attributes from the input images to
learn a representation. At test time we simply used a
linear classifier to solve each episode. This approach
is denoted as SA (Supervised Attributes ), analogous
to the setting in Chen et al. (2019). We also trained an oracle classifier (SA*) on all 40 attributes in
the dataset, including both training and testing attributes. Since the tasks are constructed using at-
tribute information, the performance of SA* should be considered an upper bound for this problem.

Results are shown in Figure 3. Both ProtoNet and SA perform well on the training tasks since
they are exposed to the label information from the training attributes; however, the test performance
shows a significant generalization gap. In order to succeed in the training objective, both ProtoNet
and SA essentially learn to ignore other features that are potentially useful for testing as classification
criteria. By contrast, SA* is able to perform similarly on both training and testing, since the learning
does not depend on a particular split of the attributes. Initial experiments therefore suggest that
supervised learning alone will likely not be sufficient for our FFSL task.

In Appendix A we study a toy FFSL problem which further illustrates these generalization issues.
We explore training a prototypical network on data from a linear generative model, where each
episode presents significant ambiguity in resolving the correct context. We show that in this setting,
unlike in standarad FSC tasks, the prototypical network is forced to discard information on the test
attributes in order to solve the training tasks effectively, and thus fails to generalize.

5.2 UNSUPERVISED CONSTRASTIVE REPRESENTATION LEARNING

Learning good representation for downstream applications has always been a sought-after purpose
of deep learning. Hinton & Salakhutdinov (2006) proposed to pretrain subsequent layers of autoen-
coders for representation learning, and showed good performance for dimensionality reduction, and
downstream classification. Following the development of variational autoencoders (VAEs) (Kingma
& Welling, 2013), many extensions have been proposed to encourage “disentangled” representation
learning by reweighing terms in the evidence lower bound (Higgins et al., 2017; Kim & Mnih, 2018).

In contrast to traditional generative modeling where the objective is grounded on uncovering the data
distribution, self-supervised learning recently emerged as a promising approach for representation
learning. These include learning to predict rotations (Kolesnikov et al., 2019), maximize mutual
information between the input and representation (Belghazi et al., 2018; van den Oord et al., 2018),
and contrastive learning approaches (Chen et al., 2020; van den Oord et al., 2018; Tian et al., 2019;
He et al., 2019; Xiong et al., 2020). They have shown promise in learning semantic aware represen-
tations, almost closing the gap with supervised representation training on the challenging ImageNet
benchmark. We follow SIMCLR (Chen et al., 2020) as a representative framework for unsupervised
contrastive learning, shown in Figure 4-A. We chose SIMCLR because of its empirical success.

Concretely, it sends a pair of augmented versions of the same image to the input and obtains a
hidden representation. The hidden representation is further passed into a decoder, producing unit-
norm vectors. The network is trained end-to-end to minimize the InfoNCE loss (van den Oord et al.,
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Figure 4: Our proposed method for FFSL. A: we first pretrain the network with unsupervised
contrastive objective to learn general features. B: Then we finetune the network to classify the set of
training attributes. Both stages employ a different decoder header so that the representation remains
general. C: Finally at test time we use Mask-ProtoNet, a variant of ProtoNet that infers feature
selection iteratively.

2018), which distinguishes the positive sample from the same pair from the rest by encouraging
feature dot product between the positive pair to gain a higher value than negative pairs.

Finetuning with supervised attribute classification We can combine the merits of unsupervised
representation learning and supervised attribute classification (SA). To prevent SA from overriding
the unsupervised features, we add another classifier decoder MLP before the sigmoid classification
layer (see Figure 4-B). Empirically, finetuning on SA is found to be beneficial, but early stopping
is needed to prevent optimizing too much towards training attributes, which would cause significant
generalization issues (Section 5.1).

During test time, we directly use the representation before both decoders to perform FSL. In the next
section, we introduce Mask-ProtoNet, a novel method for FFSL.

5.3 FEW-SHOT LEARNING WITH MASK-PROTONET

Algorithm 1 Mask-ProtoNet
Require: Net, {xS

i , y
S
i }Ni=1, {xQ}Mj=1

// An embedding network, N support, M query
Ensure: {ŷQj }

M
j=1

// Network representation h ∈ RD

1: hS
i ← Net(xS

i ) ∀i; hQ
j ← Net(xQ

j ) ∀j;
2: w← 0 ∈ RD;
3: for t = 1 ... M + 1 do
4: w̃← σ(w)

5: p[k]←
∑

i(h
S
i �w̃)1[yS

i =k]∑
i 1[y

S
i =k]

6: ŷSi,k ← softmax(−d(hS
i � w̃,p[k])) ∀i;

7: l← − 1
N

∑
i CE(ŷSi , y

S
i ) + λ‖w̃‖1

8: w← w − η∇wl
9: end for

10: ŷQj,k ← softmax(−d(hQ
j � w̃,p[k])) ∀j;

11: return ŷQj

Once the representation is learned, a common ap-
proach for FSL is to directly learn a linear clas-
sifier on top of the representation, or average the
prototypes from the support set. Prototype aver-
aging, however, will consider all feature dimen-
sions, including the ones that are not relevant to
the current episode. A linear classifier, on the
other hand, learns a weight coefficient for each
feature dimension, thus performing some level
of feature selection. Still, the weights need to
be properly regularized to encourage high-fidelity
selection. A popular way is to apply an L1 regu-
larizer on the weights to encourage sparsity. The
learning of a classifier is essentially done at the
same time as the selection of feature dimensions.
In this paper, we propose Mask-ProtoNet as an al-
ternative for few-shot learning that separates the
procedure of classifier learning and feature selec-
tion: we use prototypes for classification and ad-
ditionally learn a soft binary mask for feature selection.

Just like a linear classifier, the Mask-ProtoNet learns a weight coefficient for each dimension. This
weight is then passed through a sigmoid function to act as a soft binary mask, which is learned
for a small number of iterations before termination. Finally classification is performed based on
the masked prototypes. Conceptually, the mask will disable unused features and instead focus on
dimensions that are activated in the current episode. The mask is updated to minimize the inner
loop loss, which is a combination of support set cross entropy and an L1 sparse regularizer. The full
algorithm is described in Algorithm 1 and Figure 4-C.
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Figure 5: 20-shot FFSL results comparing different representation learning and FSL stage
combinations. FFSE: Meta-learning directly using the flexible few-shot episodes. SA: Supervised
attribute classification. ID: Auxiliary representation learning (for Celeb-A this is face ID classifi-
cation). U: Unsupervised contrastive learning. U-SA: Our proposed U pretraining followed by SA
finetuning. SA*: Supervised attribute binary classification on all attributes, which serves as an ora-
cle (striped bars). A set of few-shot learners are evaluated: 1) logistic regression (LR), 2) LR with L1
regularization (LR +L1), 3) ProtoNet (Proto), and 4) the proposed Mask-ProtoNet (MaskProto).
U-SA with Mask-ProtoNet achieves the best performance in both benchmarks. Chance is 50%.

6 EXPERIMENTS

In this section we present our experimental evaluations with various representation learning and
few-shot learning methods for our FFSL benchmarks. Representation learning methods include:
1) FFSE: Meta-learning through Flexible Few-Shot Episodes; 2) SA: Supervised Attribute clas-
sification on training attributes only; 3) ID: Auxiliary representation learning task, for Celeb-A
this is the face IDentity classification; 4) U: Unsupervised representation learning (SIMCLR); 5)
U-SA: Unsupervised representation learning followed by Supervised Attribute classification fine-
tuning. This approach is described in Figure 4-A and B; 6) SA*: Supervised Attribute classification
on all attributes, which serves as an oracle.

We also compared the following methods for few-shot learning: 1) LR: Plain logistic regression
on the hidden representation; 2) LR +L1: LR with L1 regularization on the weights; 3) Proto:
Classification with prototypes (Snell et al., 2017); 4) MaskProto: Prototypes with additional mask
that is learned in an inner loop (as proposed in this paper, described in Algorithm 1).

Implementation details: Images were resized to 84 × 84 × 3. We used ResNet-12 (He et al.,
2016; Oreshkin et al., 2018) with 64, 128, 256, 512 channels in each residual module. The decoder
network for contrastive learning has two 512-d layers and outputs 128-d vectors. The classifier
finetuning decoder network has two 512-d layers and outputs a 512-d vector. We trained SIMCLR
using random crop areas of 0.08 – 1.0, color augmentation 0.5, and InfoNCE temperature 0.5, for
1000 epochs using LARS (You et al., 2017) and cosine schedule with batch size 512 and peak
learning rate 2.0. SA finetuning lasts for another 2k steps with batch size 128 and learning rate
0.1 for the decoder and 0.01 for the backbone and momentum 0.9. ID, SA and SA* use batch size
256 with a learning rate 0.1 for 30k steps, with 0.1x learning rate decay at 20k and 25k steps, and
momentum 0.9. Features are normalized before sending to LR classifiers. We use cosine similarity
for ProtoNet and Mask-ProtoNet.

6.1 RESULTS AND DISCUSSION

Main results: Figure 5 shows our main results on Celeb-A and Zappos-50K with 20-shot FFSL
episodes. On both benchmarks, training on flexible few-shot episodes based on training attributes
(FFSE) performed worst. This aligns with our observation of the generalization issue explained in
Section 5.1. Similarly, supervised attribute (SA) learning faced the same challenge. An auxiliary
task of class identification (ID) was not helpful for representation learning either. Interestingly,
unsupervised representation learning (U) attained relatively better test performance, suggesting that
the training objective in contrastive learning preserves more general features—not just shown for
semantic classification tasks in prior literature, but also for the flexible class definitions present here.
Surprisingly, finetuning slightly on SIMCLR pretrained networks (U-SA) contributed further gains
in performance. We also tried to finetune directly on FFSL episodes using meta-learning approaches
but this did not perform well — one possible explanation is given in our toy example (Appendix A).
We conclude that meta-learning may not help learn higher-level features about the FFSL task itself.
Lastly, we confirmed that U-SA closes the generalization gap between SA and SA*, and obtained
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Figure 6: Additional results on the Celeb-A dataset. A: How many examples are needed for
FFSL? We provide an oracle performance where the feature representation is directly the binary
ground-truth attribute vector (GT-LR) and we train a logistic regression classifier on top. It suggests
that there is natural ambiguity in the task and more examples than standard FSL are needed. B:
Comparison of few-shot learning methods on different number of shots. Mask-ProtoNet works
better with an increasing number of shots. C: Effect of the number of decoder layers during
finetuning. Adding a decoder keeps the representation general and not overfitting to the training
attributes. D: Effect of the number of finetuning steps. Small amount of finetuning on the training
attribute is beneficial, but eventually the accuracy goes down.

matching performance on Zappos-50K. Lastly, we confirmed that U-SA closes the generalization
gap between SA and SA*. These results were consistent across our benchmarks. Therefore, U-SA
was the most effective representation learning algorithm we explored for FFSL. Note that this result
contrasts with standard FSL literature, where unsupervised representation learning still lags behind
supervised pretraining (Medina et al., 2020). Moreover, MaskProto is often the best across different
FSL approaches, consistently higher than Proto, which does not reason about feature selection.

Number of shots: Since we have a flexible definition of classes in each episode, it could be the
case that the support examples are ambiguous. For example, by presenting both an elephant and a
cat in the support set, it is unclear whether the positive set is about animals or mammals. Figure 6-A
shows several approaches evaluated using Mask-ProtoNet with varying number of support examples
per class in Celeb-A FFSL episodes. In addition to the SA* oracle, we provided another oracle GT-
LR, where the representations are the binary attribute values, and readout is done by solving a linear
classifier. GT-LR gradually approached 100% accuracy as the number of shots approached 20. This
demonstrates that FFSL tasks potentially require more support examples to resolve ambiguity. Again
here, U-SA consistently outperformed U, SA, and ID baselines across different number of shots.

Figure 6-B plots the performance of different FSL methods, using a common U-SA representation.
Mask-ProtoNet performs better with more support examples, but worse with fewer (e.g. 2), since
minimizing the support loss of only two examples can lead to over-confidence.

Effect of decoder depth: Figure 6-C studies the effect of a decoder for attribute classification
finetuning. Adding an MLP decoder was found to be beneficial for unsupervised representation
learning in prior literature (Chen et al., 2020). Here we found that adding a decoder is also important
for SA finetuning, contributing to over 2% improvement.

Effect of SA finetuning: Figure 6-D plots the validation accuracy on FFSL tasks during finetuning
for a total of 10k steps. It is found that the accuracy grows from 80% and peaks at 2k steps with over
84%, and then drops. This suggests that a little finetuning on supervised attributes is beneficial, but
prolonged finetuning eventually makes the representation less generalizable.

7 CONCLUSION

The notion of a class often changes depending on the context, yet existing few-shot classification
relies on a fixed semantic class definition. In this paper, we propose a flexible few-shot learn-
ing paradigm where the classification criteria change based on the episode context. We proposed
benchmarks using the Celeb-A and Zappos-50K datasets to create flexible definitions with existing
attribute labels. We explored various ways to perform representation learning for this new task.
Unlike in standard FSL, we found that supervised representation learning generalizes poorly on the
test set, due to the partitioning of training & test attributes. Unsupervised contrastive learning on
the other hand preserved more generalizable features, and further finetuning on supervised attribute
classification yielded the best results. Finally, a variant of ProtoNet, Mask-ProtoNet is proposed and
delivers better readout performance. The development of FFSL benchmarks will hopefully encour-
age more future research investigating the generalization ability of meta-learning methods.
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A FLEXIBLE FEW-SHOT TOY PROBLEM

In this section we give details on a toy problem that illustrates the challenges introduced by the
flexible few-shot learning setting and the failures of existing approaches on this task. This simple
model captures the core elements of our flexible few-shot tasks, including ambiguity, domain shift
from training to test time, and the role of learning good representations. The primary limitation
of this model is the fact that it is fully linear — in a more realistic FFSL task recovering a good
representation from the data is significantly more challenging, and the data points will have a more
complex relationship with the attributes as in our benchmark datasets.

Problem setup We define a flexible few-shot learning problem where the data points x ∈ Rm are
generated from binary attribute strings, z ∈ {0, 1}d, with x = Az+ ζ for some matrix A ∈ Rm×d

with full column rank and noise source ζ. Thus, each data point x is a sum of columns of A with
some additive noise.

We consider contexts that classify the examples as positive when two attributes are 1-valued, and
negative otherwise (an AND attribute context). For the training episodes, the contexts depend only
on the first d1 < d attributes. At test time, the episode contexts depend on the remaining d − d1
attributes. The episodes are generated by sampling a context uniformly, and then uniformly sampling
k data points with positive labels and k with negative labels.

Linear prototypical network Now, consider training a prototypical network on this data with a
linear embedding network, g(x) = Wx. Within each episode, the prototypical network computes
the prototypes for the positive and negative classes,

cj =
1

k

∑
xi∈Sj

g(xi),=
1

k

∑
xi∈Sj

d∑
l=1

zilWal, for j ∈ {0, 1},

where Sj is the set of data points in the episode with label j, and al is the lth column of the matrix
A. Further, the prototypical network likelihood is given by,

p(y = 0|x) =
exp

{
−‖Wx− c0‖22

}
exp {−‖Wx− c0‖22}+ exp {−‖Wx− c1‖22}

.

The goal of the prototypical network is thus to learn weights W that lead to small distances between
data points in the same class and large distances otherwise. In the flexible few-shot learning tasks,
there is an additional challenge in that class boundaries shift between episodes. The context defining
the boundary is unknown and must be inferred from the episode. However, with few shots (small
k) there is ambiguity in the correct context — with a high probability that several possible contexts
provide valid explanations for the labels.

Fitting the prototypical network Notice that under our generative model, with x = Wz+ ζ we
have,

Wx− cj = WA(z− 1

k

∑
zi∈Sj

zi) +
1

k

∑
i

Wζi +Wζ, for j ∈ {0, 1}.

Notice that if A(z− 1
k

∑
zi∈Sj

zi) ∈ Ker(W ) then the entire first term is zero. If z ∈ Sj then there
is no contribution from the positive attribute features in this term. Otherwise, this term is guaranteed
to have some contribution from the positive attribute features.

Therefore, if W projects to the linear space spanned by the positive attribute features then the model
will be able to solve the episode without ambiguity. This suggests that the optimal weights are those
that project to the set of features used in the training set — destroying all information about the test
attributes which would otherwise introduce ambiguity.

We observed this effect empirically in Figure 7, where we have plotted the matrix abs(WA). Each
column of these plots represents a column of A mapped to the prototypical network’s embedding
space. The first 5 columns correspond to attributes used at training time, and the remaining 5 to
those used at test time.
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(A) Flexible task learned features (B) Standard task learned features

Figure 7: Projecting data features into prototypical network embedding space (WA) for the linear
toy problem. On the flexible task, the model destroys information from the test attributes to remove
ambiguity at training time.

Table 1: Attribute split for Celeb-A

Train

5 o Clock Shadow Black Hair Blond Hair Chubby
Double Chin Eyeglasses Goatee Gray Hair

Male No Beard Pale Skin Receding Hairline
Rosy Cheeks Smiling

Val/Test

Bald Bangs Brown Hair Heavy Makeup
High Cheekbones Mouth Slightly Open Mustache Narrow Eyes

Sideburns Wearing Earrings Wearing Hat Wearing Lipstick
Wearing Necktie

In the flexible task described above, the learned prototypical feature weights project out the features
used at test time (the last 5 columns). As a result, the model achieves 100% training accuracy but
only 51% test accuracy (chance is 50%). We also compared against a similar problem set up that
resembles the standard few-shot learning setting. In this setting, the binary attribute strings may have
only a single non-zero entry and each episode is a binary classification problem where the learner
must distinguish between two classes. In this standard few-shot setting, the model is not forced to
throw away test-time information and achieves 100% training accuracy and 99% test accuracy.

Settings for Figure 7 We use 10 attributes, 5 of which are used for training and 5 for testing. We
use a uniformly random sampled A ∈ R30×10 and the prototypical network learns W ∈ R10×30.
We use additive Gaussian noise when sampling data points with a standard deviation of 0.1. The
models are trained with the Adam optimizer using default settings over a total of 30000 random
episodes, and evaluated on an additional 1000 test episodes. We used k = 20 to produce these plots,
but found that the result was consistent over different shot counts.

B DATASET SPLIT

We include the attribute split for Celeb-A in Table 1.
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