
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

UICopilot: Automating UI Synthesis via Hierarchical Code
Generation fromWebpage Designs

Anonymous Author(s)

Abstract
Automating the synthesis of User Interfaces (UIs) plays a crucial
role in enhancing productivity and accelerating the development
lifecycle, reducing both time and manual effort. Recently, the rapid
development of Multimodal Large Language Model (MLLM) has
made it possible to generate front-end Hypertext Markup Language
(HTML) code directly from webpage designs. However, real-world
webpages encompass not only a diverse array of HTML tags but also
complex stylesheets, resulting in significantly lengthy code. The
lengthy code challenges the performance and efficiency of MLLMs,
especially in capturing UI’s structure information. To mitigate this
challenge, this paper puts forward UICopilot, a novel approach
to automating UI synthesis via hierarchical code generation from
webpage designs. The core idea of UICopilot is to decouple the
process into two stages: generating the coarse HTML hierarchical
structure and then producing fine-grained code. To validate the
effectiveness of UICopilot, we conduct experiments on a real-
word dataset, i.e., Vision2UI. Experimental results demonstrate that
UICopilot significantly outperforms existing baselines in both
automatic evaluation metrics and human evaluations. Specifically,
statistical analysis reveals that the majority of human annotators
prefer the webpages generated by ours over those produced by
GPT-4V.1

1 Introduction
Translating webpage designs directly into code significantly stream-
lines the front-end development process, reducing both time and
manual effort. This automation not only enhances developer pro-
ductivity but also minimizes the potential for human error in code
generation. However, earlier works were limited in scope, primarily
relying on small deep-learning models to handle relatively simple
User Interface (UI) design tasks. For instance, one of the earliest
studies, pix2code [3] trained a model combining CNN [17] and
LSTM [13] on a synthetic dataset to generate Domain-Specific Lan-
guages (DSL) code from simple UI images, which could be compiled
into several front-end languages, including HTML for webpages.
Sketch2code [33] explored generating webpage code from hand-
drawn design sketches, investigating both deep learning and com-
puter vision-based approaches.

1All the materials, including the source code, dataset, are available at: https://github.
com/anonymouscodeeee/repo1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

With the rapid advancement of Multimodal Large Language
Model (MLLM) , generating high-quality UI code from webpage
designs (screenshots) has become increasingly feasible. Several
studies have emerged in this field, focusing either on enhancing the
code generation capabilities of MLLMs [10, 16] or evaluating their
performance [10, 11, 36]. For instance, WebSight [16] introduced
a training dataset generated by an LLM, while Design2Code [36]
provided a curated test dataset of 485 samples along with an auto-
matic metric to assess the similarity between generated webpages
and their original designs. Vision2UI [10] contributed a real-world,
large-scale webpage generation dataset for both training and evalu-
ation. Similarly, Web2Code [49] presents a large-scale synthesized
dataset along with an MLLM-based evaluation framework. When
appropriate data are available, these works fine-tune MLLMs using
pairs of webpage screenshots and their corresponding code. The
resulting fine-tuned model operates in a one-step end-to-end ap-
proach, where it takes a screenshot as input and directly generates
the corresponding code as output.

Challenges and Motivation. Despite the promising performance
achieved by these one-step approaches, we are still far from fully
automating UI synthesis for real-world webpages. As highlighted
in [36], the complexity of code generation increases significantly
as the total number of Hypertext Markup Language (HTML) tags,
the diversity of unique tags, and the depth of the Document Ob-
ject Model (DOM) tree grow. Existing MLLMs often experience a
notable decrease in performance and efficiency when faced with
real-world webpage designs that involve complex structures and a
higher number of unique HTML tags [36]. Concretely, two primary
challenges exist for the one-step generation approach.
C1: The substantial length of the code that needs to be gen-
erated. Common code generation tasks typically involve generat-
ing short code snippets or function implementations containing
fewer than a few hundred tokens. In contrast, real-world webpages
include not only HTML but also complex Cascading Style Sheets
(CSS), significantly increasing the overall code length. For exam-
ple, webpages in the Common Crawl dataset often contain tens
of thousands of tokens, and even after extensive cleansing, they
still average over 5,000 tokens [10]. This far exceeds the context
window of most large models, posing significant challenges for
both training and inference. Consequently, webpage generation
is more akin to project-level development than simply generating
isolated code snippets in one step.
C2: The complexity of generating deeply nested structures.
Webpages are typically composed of multiple layers of nested el-
ements, which makes generating these intricate structures from
high-resolution design diagrams particularly challenging. Previous
studies, such as [10, 25], have shown that even GPT-4V struggles
to accurately capture structural information when evaluated on
the pix2code test dataset, one of the simplest benchmarks for code
generation from webpage designs.

1

https://github.com/anonymouscodeeee/repo1
https://github.com/anonymouscodeeee/repo1
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Our Work. To mitigate these challenges, this paper puts forward
UICopilot, a novel approach to automating UI synthesis via hier-
archical code generation from webpage designs (screenshots). To
alleviate the complexity of generating lengthy code, we decouple
the process into two stages: generating the coarse HTML hierarchi-
cal structure and then producing fine-grained code. Concretely, we
first introduce and train a Vision Transformer [8] (ViT)-based struc-
ture model to predict a coarse DOM tree containing only node types,
hierarchy, and bounding boxes (BBoxes). To streamline the training
process, we implement a BBox-based pruning strategy to simplify
the dataset and reduce prediction complexity by removing nodes
with areas below a fixed threshold, retaining only node type and
hierarchy information. Using the predicted BBoxes of the coarse
DOM tree’s leaf nodes, the original design image is segmented into
subregion images. These subregion images are sequentially fed
into a code agent to generate the corresponding HTML/CSS code,
which is then embedded back into the DOM tree. Finally, the DOM
tree and design image are fed into the code agent once more to
generate styles and attributes for the non-leaf nodes, while refining
the global code.

To assess the effectiveness of UICopilot, we conduct experi-
ments using the real-world dataset Vision2UI. We compare our
results against several state-of-the-art baselines using three visual
metrics. The experimental results show that UICopilot signifi-
cantly outperforms other baselines. Notably, the visual score of GPT-
4V improves by 23%, 27%, and 48% when integrated into UICopilot
across three test datasets of increasing complexity, demonstrat-
ing that UICopilot is particularly effective in handling complex
webpage generation. Additionally, we present several webpages
generated by our method and GPT-4V in randomized order to hu-
man annotators for evaluation. The results reveal that in over 60% of
the cases, annotators prefer the webpages generated by our method,
providing strong evidence for the effectiveness of our hierarchical
code generation approach.

The primary contributions of this paper are as follows:
• We propose a novel approach UICopilot that decouples the

generation of hierarchical structure and fine-grained code. To the
best of our knowledge, we are the first to break the limitations of
one-stage webpage code generation by addressing the challenges
of lengthy code generation and complex nested structures in
real-world webpage Synthesis.

• We perform extensive experiments to evaluate the performance
of UICopilot on the real-word Vision2UI dataset, and compare
it with several state-of-the-art baselines. The results of automatic
metrics and human evaluation show thatUICopilot consistently
outperforms other baselines.

2 Preliminaries
Before introducing our framework, we first discuss the inherent hi-
erarchical structure of webpages and how MLLMs can be leveraged
to generate code from webpage’ design image.

2.1 Hierarchy Structure of Webpage Designs
Common webpage code is composed of three main components:
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS),
and JavaScript (JS). HTML defines the elements on the page, their

(a) HTML Code without CSS

(b) BBox (c) HTML DOM Tree

1 <body>
2 <div class="app">
3 <div class="left">
4
5 Home
6 Users
7 Orders
8
9 </div>
10 <div class="right">
11 <h1 class="title">Have a nice day!</h1>
12 <img class="poster" src="1.jpg"//
13 </div>
14 </div>
15 </body>

body

div

div div

img h1ul

li lili

Home Users Orders

Have…

Figure 1: The structures of a webpage’ design image.

hierarchical structure, and their attributes. CSS is responsible for
styling these elements, including properties such as size, color, and
fonts. JavaScript typically manages the interactive functionality of
the webpage, enabling dynamic behavior and user interactions. In
our work, we focus on generating static webpages, so JavaScript
code is excluded. The structural information in a UI design diagram
primarily consists of the hierarchical relationships between ele-
ments, as well as their size and location. This information is crucial
to the quality of webpage code generation and the accuracy of the
final rendering. First, webpage code is organized in a hierarchical,
nested structure, represented by theHTMLDOMTree (Figure1(c)),
which serves as the skeleton of the webpage. Second, the size and
location of UI elements are captured by bounding boxes (BBox, as
shown in Figure 1(b)), which defines the primary layout structure.
Our goal is to prioritize capturing the hierarchical structure of a
webpage in order to generate code that closely aligns with the orig-
inal design. Specifically, we aim to develop a webpage generation
framework that accurately represents both the webpage’s HTML
DOM Tree and BBox information , ensuring that the resulting code
reflects the design’s structural and visual integrity.

2.2 Image to Code by MLLMs
MLLMs are designed to understand and generate multimodal con-
tent, such as text, images, and audio, by leveraging LLMs. Compared
to unimodal models, MLLMs benefit from cross-modal knowledge
transfer and understanding, showing great potential in tasks like
image captioning, visual question answering, autonomous driving,
and speech recognition. A typical MLLM consists of three key com-
ponents: a modality encoder, a learnable connector, and an LLM.
The modality encoder, often pre-trained on large-scale datasets (e.g.,
image-text pairs), enhances alignment with textual information.
The learnable connector further aligns the different modalities dur-
ing training. Rather than being trained from scratch, pre-trained
LLMs are often utilized to improve efficiency and performance. The
raw multimodal data is processed through the modality encoder,
connector, and LLM to generate task-relevant text.

In our scenario, the primary objective is to generate code from
images. We introduce two MLLMs: Pix2Struct-1.3B [18], which
serves as the structure model for hierarchical structure prediction,
and GPT-4V [28], which functions as the code agent. Common im-
age encoders typically use either fixed-resolution or patch-based

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

UICopilot: Automating UI Synthesis via Hierarchical Code Generation from Webpage Designs Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Coarse DOM Layout Generation

body

header main

div div div

Leaf Nodes Local Images Generated SubtreesWebpage Design

Coarse-grained
DOM Tree (w/ Bbox)

Optimized
DOM TreeStructure Model

Agent For Global
Optimization

body

header main

div div

x N div

input img

div

div img
div

div div
span span

div

div
bbox

div
bbox

div
bbox

Agent For Local
Subtree Generation

(c) Non-Leaf Style Synthesis and Global Refinement

(b) Leaf Node HTML/CSS Generation

Figure 2: Overview of the framework, including model training and inference.

approaches. The fixed-resolution method scales and crops input
images into a fixed-size matrix before feeding them into the en-
coder. In contrast, the patch-based approach, such as the Vision
Transformer (ViT), scales the image to a specific ratio and divides
it into fixed-size patches, which are then processed similarly to
text tokens. We chose Pix2Struct as our base MLLM, which also
uses an image encoder based on ViT but employs an aspect-ratio-
preserving scaling strategy. This makes it more robust to extreme
aspect ratios and adaptable to varying sequence lengths and res-
olutions. Given a UI image, after scaling, it is split into fixed-size
patches. These patches are embedded and processed by the ViT
encoder, which employs the self-attention mechanism to capture
relationships between patches and understand the overall spatial
arrangement of the UI components. The transformer-based text
decoder of Pix2Struct then takes the encoded representation of the
image and generates the corresponding output, e.g., UI component
expressions, functions, and locations. Although Pix2Struct could
generate simplified HTML from masked website screenshots, it is
primarily designed for handling structured UI representations and
still struggles with the full complexity of real-world webpages [18].

3 UICopilot
3.1 Task Description
In the task ofwebpage code generation, when given a high-resolution
design image (such as a screenshot of an existing webpage), UICopi-
lot should be able to generate the corresponding HTML and CSS
code. After rendering, the generated webpage should closely align
with the input image, particularly in terms of structure, style, and
content. The generation of structure—specifically determining the
type, size, and position of page elements—is critical to shaping the

webpage’s overall visual appearance. As a result, a key focus of this
work is the precise generation of well-formed webpage structures.

3.2 Overview
As shown in Figure 2, we decouple the webpage generation pro-
cess into two stages: coarse DOM layout generation (Figure 2(a))
and fine-grained code synthesis (Figure 2(b&c)). In the first stage
(See Figure 2(a)), we leverage a model to predict the webpage’s
coarse-grained HTML DOM tree and its BBoxes. This model is
implemented using a ViT encoder and a transformer-based decoder
and is trained with a BBox-based pruning strategy to reduce noise
in the dataset, resulting in enhanced model accuracy and accel-
erated convergence. In the fine-grained code synthesis stage, our
framework incorporates an existing MLLM as a code agent to gen-
erate detailed local code and styles. The local images of the coarse
DOM tree’s leaf nodes are fed into the code agent to generate the
corresponding local code, which is then linked back to the tree (Fig-
ure 2(b)). Afterward, the integrated code is fed back into the code
agent to supplement the styles and attributes of the non-leaf nodes
in the coarse DOM tree while refining the global code (Figure 2(c)).
Through this hierarchical code generation approach, we ultimately
produce a complete webpage that effectively captures the structural
information while maintaining detailed accuracy.

This generation method is based on the assumption that "when
the UI elements and structure in an image are sufficiently simple
(such as local region images in design layouts), MLLMs can effectively
generate webpage code that captures both structure and detail." By
decoupling the generation of the DOM tree and positional informa-
tion from the detailed local code, this approach reduces the burden
on large models to generate excessively long code. Prioritizing the
DOM tree and positional information also ensures a more accurate

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

capture of the original webpage’s structural elements, addressing
the challenges outlined in the introduction.

3.3 Coarse DOM Layout Generation
To generate webpage structure information more accurately and
efficiently, we introduce and train a structure model specifically
designed to predict a coarse-grained version of the HTML DOM
tree, capturing only the node types, hierarchy, and BBoxes of the
nodes. Additionally, we carefully designed the data processing and
training procedures to optimize performance.
Structure Model. In our application scenario, high-resolution
webpage designs are typically presented in various resolutions.
Cropping or resizing the images can easily lead to the loss of crucial
information, which is not conducive to the final generation of UI
code. Given that the ViT processes images into multiple patches
to maximize the preservation of information from the original
image, we adopt the Pix2Struct model which is based on ViT, as our
fundamental structure model. Pix2Struct distinguishes itself by its
robustness towards extreme aspect ra- tios and on-the-fly changes
to the sequence length and resolution

The structure model’s task is framed as a sequence generation
problem using a next-token prediction mechanism. Given an input
image 𝐼 , a high-resolution webpage screenshot, the model generates
a structured representation of the webpage’s DOM tree in JSON-
formatted text. This JSON text encodes the DOM tree as nested
HTML code with accompanying BBox attributes. The process be-
gins by dividing the input image 𝐼 into fixed-size patches, repre-
sented as {𝑃1, 𝑃2, . . . , 𝑃𝑁 }. These patches are then passed through
the ViT encoder, denoted as Enc𝜃 , which converts them into hidden
state vectors {ℎ1, ℎ2, . . . , ℎ𝑁 }:

{ℎ1, ℎ2, . . . , ℎ𝑁 } = Enc𝜃 ({𝑃1, 𝑃2, . . . , 𝑃𝑁 })
These hidden state vectors are subsequently fed into the decoder,
Dec𝜙 , a conventional transformer-based text decoder, to predict
the JSON representation of the DOM tree and their corresponding
BBoxes. Leveraging the encoder’s hidden states, the decoder gen-
erates the JSON text one token at a time. At each time step 𝑡 , the
decoder generates a probability distribution for the next token 𝑦𝑡 ,
conditioned on all previous tokens 𝑦1, 𝑦2, . . . , 𝑦𝑡−1. This prediction
is computed using a softmax function applied to the decoder’s hid-
den state ℎ𝑡 , which integrates information from both the encoder’s
hidden states {ℎ1, ℎ2, . . . , ℎ𝑁 } and the previously generated tokens,
projected by a learned weight matrix𝑊 :

𝑃 (𝑦𝑡 | 𝑦1, 𝑦2, . . . , 𝑦𝑡−1) = softmax(𝑊 · ℎ𝑡)

BBox-based Data Pruning. We use the Vision2UI dataset, com-
prising real webpage screenshots and corresponding code, to train
our model. However, throughout our investigation, we find that the
BBoxes of HTML elements in real-world webpages often contain a
significant amount of noise, such as empty or very small elements,
as well as elements representing visually hidden parts of the web-
pages or parts that are not displayed correctly (as illustrated in
Figure 3(a)). This noise not only severely reduces the model’s learn-
ing efficiency but also contributes little to the overall structural
information of webpages. Therefore, we applied several heuristic
rules to prune the original BBoxes along with their corresponding
webpage elements: 1) We first remove BBoxes smaller than 3% of

(a) Original bboxes (b) Pruned bboxes

Figure 3: BBox-based data pruning.

the total area, along with all their child nodes. We reasonably as-
sume that for simple content within small areas, the MLLM can
efficiently generate the corresponding high-quality structure and
style code. 2) We eliminate BBoxes that contain only a single type
of pixel, along with all their child nodes. These BBoxes are usually
empty and contain no actual web elements. 3) We discard webpage
samples with fewer than 10 total BBoxes on the entire page. An
insufficient number of BBoxes typically indicates potential errors
during processing.

Figure 3(b) presents an example of the pruned BBoxes, where
most of the noise has been eliminated, revealing a clearer and sim-
plified hierarchical structure. During model training, we found that
this pruning method significantly accelerates model convergence
while preserving as much of the original hierarchical structure
of the webpage as possible. In the second phase, this streamlined
BBox information greatly improves both the generation quality and
efficiency of the MLLM.

During the inference process, we apply pruning rules to the
results generated by the structure model, primarily based on mini-
mum area (min_area) of BBoxes and maximum depth (max_depth)
of DOM tree. This ensures that the predicted DOM tree and BBoxes
are concise and appropriate, setting a better stage for fine-grained
code generation. In the experimental section, we conducted con-
trolled experiments to specifically study the impact of these two
parameters.
Model Training. To train the structure model, we formulate the
task as a conditional sequence generation problem. The primary
objective is to optimize the model parameters to maximize the
likelihood 𝑃 (𝐽 | 𝐼) of the correct JSON text 𝐽 given the input image
𝐼 . This is achieved by minimizing the negative log-likelihood of the
correct tokens:

L(𝜃) = −
𝑇∑︁
𝑡=1

log 𝑃 (𝑗𝑡 | 𝑗1, 𝑗2, . . . , 𝑗𝑡−1, 𝐼 ;𝜃)

where 𝜃 represents the model parameters. The probability 𝑃 (𝑗𝑡 |
𝑗1, 𝑗2, . . . , 𝑗𝑡−1, 𝐼 ;𝜃) is computed using the softmax function over
the decoder’s output logits:

𝑃 (𝑗𝑡 | 𝑗1, 𝑗2, . . . , 𝑗𝑡−1, 𝐼 ;𝜃) =
exp(𝑧𝑡, 𝑗𝑡)∑𝑉
𝑘=1 exp(𝑧𝑡,𝑘)

where 𝑧𝑡,𝑘 is the logit for token 𝑘 at time step 𝑡 , and𝑉 is the size of
the vocabulary.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

UICopilot: Automating UI Synthesis via Hierarchical Code Generation from Webpage Designs Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

You are a skilled web developer specializing in building webpages.

CONTEXT

I am working on a project that involves converting webpage design images into

functional code. Your task is to generate the corresponding HTML code for

specific segments of the webpage based on the provided module names and images.

OBJECTIVE

Generate the partial HTML code based on the input webpage image and the initial

node type.

RESPONSE

Provide the HTML code necessary to implement the module’s functionality,

including inline CSS.

INITIALIZE

In the upcoming messages, I will send you the webpage image and module name.

Upon receiving them, please follow the above instructions to generate the

corresponding HTML code (the highest-level node in the generated HTML tree

should match the given initial node type).

Figure 4: Prompts for leaf node HTML/CSS generation.

You are a skilled web developer specializing in building webpages.

CONTEXT

I am working on a project that converts webpage design images into functional code.

Your task is to adjust and optimize the styles of the already generated webpage code,

based on the webpage image, without altering the original DOM tree structure of the

code.

OBJECTIVE

Adjust and optimize the styles according to the input webpage image and original

HTML code.

Do not modify the node types or hierarchical structure of the DOM tree in the

original code!!!

Retain the original DOM tree nodes exactly as they are.

Do not change the image src attributes in the code.

RESPONSE

Adjust and optimize the CSS styles without altering the DOM tree structure in the

original HTML code.

INITIALIZE

In the upcoming messages, I will send you the webpage image and the existing

webpage code. Upon receiving them, please follow the above instructions to adjust

and optimize the CSS styles in the original HTML code.

Figure 5: Prompts for non-leaf style synthesis and global
refinement.

3.4 Fine-Grained Code Synthesis
While the generated coarse DOM tree contains the node types and
hierarchy, it omits two crucial aspects: (1) The structural and style
code for the local regions of the leaf nodes. Since the structure
model is designed to predict a coarse-grained DOM tree, and this
prediction is further refined based on min_area and max_depth,
the leaf nodes in the DOM tree actually serve as parent nodes for
sub-regions that still contain sub-trees requiring further prediction.
(2) The attributes and styles of the non-leaf nodes within the coarse
DOM tree. To address these two missing elements, we have devised
the following two steps to complete the generation process.
HTML/CSS Generation of Leaf Node. In practice, we employ
GPT-4V as our local code generation agent, leveraging its flexi-
bility and robust code generation capabilities. Since the BBoxes
contain the size and position information of the nodes, we use the
BBoxes of the leaf nodes in the predicted coarse DOM tree to crop
images of the corresponding regions from the original image. These
segmented images are then fed individually into the code agent
to predict the corresponding HTML/CSS code for each subregion.
After obtaining the HTML/CSS code for the leaf nodes, we embed
them back into the corresponding leaf nodes of the coarse DOM
tree. By doing so, we isolate the visual content associated with each
leaf node, allowing the agent to generate accurate HTML/CSS code

Table 1: A statistical comparison between bothWebSight and
Vision2UI. The statistical data of the two is referred to [36].

WebSight Vision2UI
Purpose Training Training&Tesing
Source Synthetic Real-World (Common Crawl)
Size 0.8M 3.1M
Avg. Len (tokens) 647±216 4661±2006
Avg. Tags 19±8 188±80
Avg. DOM Depth 5±1 15±5
Avg. Unique Tags 10±3 24±6

for these specific regions one by one, significantly alleviating the
burden of generating lengthy code and improving the generation
quality. We have carefully designed a prompt that instructs the
agent to generate the corresponding HTML/CSS code based on
the input subregion image and the parent node type, as shown in
Figure 4.
Non-Leaf Style Synthesis andGlobal Refinement. At this stage,
we feed the code obtained from the previous step along with the
entire design image into the agent, instructing it to supplement the
coarse DOM tree’s non-leaf nodes with styles and other attributes.
Specifically, the agent analyzes the global layout and visual ele-
ments of the full design image to infer styling information such as
fonts, colors, margins, paddings, and other CSS properties for the
non-leaf nodes. This ensures that the final code not only reflects
the correct structural hierarchy but also accurately represents the
visual aesthetics of the original design. Additionally, we require the
agent to refine the global code while ensuring that the input DOM
tree remains unchanged. The instructions used in this process are
presented in Figure 5.

4 Experiments and Analysis
4.1 Datasets
Training Dataset. We utilized two datasets, WebSight and Vi-
sion2UI, for training, each demonstrating distinct characteristics
across various metrics. The WebSight v0.1 dataset, comprising ap-
proximately 0.8 million data entries, is synthesized using two lan-
guagemodels (LM): a smaller LM first generates themes and designs,
which are then fed into an LLM trained on code bases to produce the
final HTML code using carefully crafted prompts. The Vision2UI
dataset, consisting of about 3.1 million data entries, is derived from
the real-world Common Crawl dataset2: the authors filter the orig-
inal dataset based on length and other criteria to eliminate noise,
such as invisible elements and comments, and subsequently employ
a scorer trained on a manually annotated dataset to further enhance
data quality. Compared to the WebSight dataset, Vision2UI’s data
is more complex, possesses a richer variety of styles and tag types,
and is significantly longer, making it closer to real-world HTML
code. Furthermore, Vision2UI provides the page’s BBox information
directly, which is essential for the training of our structure model.
For the WebSight dataset, we also extracted the BBox information
prior to training.
Test Dataset. We evaluate our framework on the Vision2UI test
datasets. Vision2UI test datasets are composed of three subsets:
2https://data.commoncrawl.org/

5

https://data.commoncrawl.org/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Vision2UI-short, Vision2UI-mid, and Vision2UI-long. These subsets
are obtained by dividing according to the length range of the ground-
truth HTML code, combined with manual selection. The length
ranges of the ground-truth HTML code for these three subsets are
[551, 2045], [2052,4085], and [4098,10990] respectively. Each subset
contains 256 samples.

4.2 Evaluation Metrics
CLIP Similarity. CLIP is a multi-modality model trained by con-
trastive objective in a dataset of millions of internet text-image pairs,
learning to align images and their textual descriptions in a common
representation space. The latent vectors produced by CLIP model
encode semantic information of the input. Images that are similar
will have similar context and thus similar vectors. Hence, the cosine
similarity of these vectors, which measures the cosine of the angle
between them, effectively captures the degree of similarity between
the images. It is caculated by 𝑐𝑜𝑠𝑖𝑛𝑒 (𝐶𝐿𝐼𝑃 (𝑖𝑚𝑎𝑔𝑒𝑖),𝐶𝐿𝐼𝑃 (𝑖𝑚𝑎𝑔𝑒 𝑗)).
SSIM. The Structural Similarity Index (SSIM) [46] considers changes
in structural, luminance, and contrast information in the images.
SSIM is a more comprehensive measure than traditional methods
like MSE or PSNR, as it simulates the human visual perception sys-
tem, which is highly adapted for extracting structural information.
Visual Score. This is a concept proposed by Design2code [36], and
is utilized to measure the matching degree of low-level elements in
terms of appearance. These scores primarily calculate the match
ratio between the reference and candidate blocks, as well as the
similarity at the block level in terms of color, text, and position.
Since there are numerous formulas involved, it is a little trivial to
list them all here.

4.3 Baselines
The baselines in our work can be categorized into finetune-based
MLLMs that are specialized for webpage generation and general-
purpose MLLMs. The specialized MLLMs include:
• WebSight VLM-8B. Hugging Face’s WebSight utilizes its train-

ing dataset and the DoRA [22] mechanism to finetune a VLM
that has been pre-trained on image/text pairs.

• Design2Code-18B. Stanford’s Design2Code is also fine-tuned
on the WebSight dataset. However, it adopts CogAgent as its
base model and utilizes LoRA [14] as the finetuning method to
accelerate the training process.

The general-purpose MLLMs (prompt-based) include:
• CogAgent-Chat-18B. CogAgent-Chat-18B is a general MLLM

that supports both low- and high-resolution images. Notably, it
performs well on webpage navigation, requiring only screen-
shots. We input the screenshot and a simple prompt Write an
HTML code to generate the webpage, similar to Design2Code.

• GPT-4V. GPT-4V, an advanced AI model, demonstrates remark-
able capabilities in image comprehension. It also possesses the
unique ability to generate code from images. We referred to the
prompt of the well-known open-source project screenshot-to-
code 3 on GitHub, with slight modifications.

• LLaVA-v1.5-7B [21]. LLaVA-v1.5-7B is an end-to-end trained
large multimodal model that connects a vision encoder and an

3https://github.com/abi/screenshot-to-code

LLM for general-purpose visual and language understanding.
We use the same prompt as GPT-4V to generate webpages from
images.
Although previous work [36] suggests that multi-round gener-

ation methods (e.g., self-revision) may outperform one-pass ap-
proaches, important baselines such as Design2Code-18B and Web-
Sight VLM-8B are models obtained through fine-tuning and only
support one-pass generation. Therefore, to ensure a fair comparison,
all baselines employ the one-pass generation method.

4.4 The effectiveness of UICopilot
Overall performance. Table 2 presents the performance break-
down of UICopilot and the baselines on the Vision2UI test datasets.
From the table, we observe that our method’s visual score and CLIP
similarity significantly outperform all the baselines across the three
test datasets. This leading performance in the CLIP metric indicates
that the webpages generated by UICopilot are more visually simi-
lar to the original ones in terms of overall appearance and features.
In terms of SSIM, LLaVA holds a slight advantage over the other
models, suggesting that the webpages it generates may be more
closely aligned with the originals concerning visual luminance,
contrast, and structure. However, the differences among all models
in this metric are not significant. Our UICopilot also performs well
on this metric compared to the other models.

Notably, while our approach utilizes GPT-4V for generating fine-
grained code, UICopilot still outperforms GPT-4V in terms of
visual score by 23%, 27%, and 48% across the three test datasets,
respectively. Additionally, our approach exhibits significantly lower
variance in visual scores, indicating higher stability across all test
samples. Moreover, it’s worth noting that as the length of the
sample webpages in the test datasets increases, the advantage of
UICopilot over GPT-4V grows substantially. This further demon-
strates thatUICopilot’s architecture—which focuses on decoupling
the structure parsing from the fine-grained code generation pro-
cesses—reduces complexity and results inmore accurate HTML/CSS
generation from design images.
Visual Score breakdown. The visual score is a composite met-
ric consisting of five sub-indicators: block-level color, text, position,
text color, and CLIP similarity information. In Figure 6, we provide
a detailed analysis of these sub-indicators. To further explore the
contribution of the refinement process in our framework, we intro-
duce UICopilot without code refinement (denoted as UICopilot
w/o opt) for comparison. As shown in Figure 6, UICopilot w/o opt
already outperforms GPT-4V in terms of CLIP similarity, text, posi-
tion, and text color. This demonstrates that the input coarse-grained
HTML DOM tree and BBoxes effectively enhance GPT-4V’s genera-
tion capability, particularly evident in the significant improvement
in the text color indicator. However, we observe that UICopilot
w/o refinement performs worse than GPT-4V in the block-level
color indicator. Our investigation suggests that strictly adhering to
the coarse-grained HTML DOM tree and BBoxes without refine-
ment can lead to missing styles or errors in the upper layers of
nodes, negatively impacting the block-level color. After incorporat-
ing the refinement process, as seen in Figure 6, there is a significant
improvement in the block-level color indicator, highlighting the
effectiveness of the refinement process.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

UICopilot: Automating UI Synthesis via Hierarchical Code Generation from Webpage Designs Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: The performance breakdown on the visual metrics.

Model Vision2UI-Short Vision2UI-Mid Vision2UI-Long
Visual Score CLIP SSIM Visual Score CLIP SSIM Visual Score CLIP SSIM

WebSight VLM-7B 0.57 (±0.24) 0.69 (±0.12) 0.62 (±0.17) 0.52 (±0.23) 0.67 (±0.11) 0.59 (±0.16) 0.48 (±0.27) 0.64 (±0.11) 0.61 (±0.15)
Design2Code 0.75 (±0.14) 0.68 (±0.10) 0.58 (±0.15) 0.69 (±0.23) 0.70 (±0.10) 0.56 (±0.14) 0.61 (±0.28) 0.68 (±0.10) 0.61 (±0.11)
CogAgent-Chat 0.46 (±0.31) 0.68 (±0.11) 0.59 (±0.15) 0.40 (±0.31) 0.66 (±0.10) 0.58 (±0.14) 0.39 (±0.30) 0.65 (±0.10) 0.60 (±0.13)
LLaVA-v1.5-7B 0.43 (±0.27) 0.63 (±0.11) 0.65 (±0.17) 0.21 (±0.28) 0.63 (±0.10) 0.65 (±0.14) 0.19 (±0.27) 0.61 (±0.10) 0.66 (±0.12)
GPT-4V 0.68 (±0.32) 0.74 (±0.10) 0.61 (±0.14) 0.65 (±0.33) 0.71 (±0.10) 0.55 (±0.12) 0.62 (±0.35) 0.67 (±0.10) 0.57 (±0.11)
UICopilot 0.84 (±0.18) 0.77 (±0.11) 0.60 (±0.13) 0.83 (±0.17) 0.77 (±0.10) 0.57 (±0.12) 0.78 (±0.24) 0.74 (±0.10) 0.60 (±0.11)

CLIP score block match text match position match text color match
0.5

0.6

0.7

0.8

0.9

1.0

sc
or

e

GPT-4V
UICopilot (w/o opt)
UICopilot

Figure 6: Detailed sub-indicators of Visual Score

4.5 The influence of min_area and max_depth
the structure model, based on two parameters: minimum area of
BBox (min_area) and maximum depth of DOM tree (max_depth).
To determine the optimal values for these parameters, we conducted
a grid search exploring different combinations. However, since per-
forming inference on the entire test dataset is time-consuming, we
optimized the grid search process by constraining the parameters
to practical ranges based on empirical experience: [10%, 20%, 30%,
No limit] for min_area and [4, 5, 6, No limit] for max_depth. We
focused on the metric with the greatest relative improvement in our
method, the visual score, for further experiments. By analyzing
all sub-metrics of the visual score under different combinations
of min_area and max_depth, we obtained the results presented in
Figure 7. Our analysis revealed that nearly all sub-metrics exhibit a
consistent and clear linear trend: as both max_depth and min_area
decrease, the metrics improve, indicating a visual enhancement in
the generated results. Specifically, we found that setting max_depth
to 4 and min_area to 10% yields a balanced local optimum in terms
of visual matching.

4.6 Human Evaluation
From Table 2, we observe minimal differences between UICopilot
and GPT-4V in terms of CLIP similarity and SSIM, both of which
primarily assess overall image similarity. To address the question
"Which model generates webpages closer to the original design?", we
conducted a human evaluation experiment. In this experiment, we
present pairs of webpages generated by UICopilot and GPT-4V to
six annotators, shuffling the samples in each pair to eliminate bias.
The annotators are asked to select the webpage they felt is most
aligned with the original design. As illustrated in Figure 8, over 60%
of the selections preferred UICopilot, providing strong evidence
of its effectiveness in producing webpages that more closely match
the original designs.

4 5 6 no limit
max depth

no
 li

m
it

10
%

20
%

30
%

m
in

 a
re

a

0.837 0.821 0.824 0.834

0.843 0.845 0.824 0.829

0.819 0.801 0.829 0.796

0.754 0.761 0.753 0.824

visual score

4 5 6 no limit
max depth

no
 li

m
it

10
%

20
%

30
%

m
in

 a
re

a

0.825 0.813 0.811 0.822

0.822 0.828 0.806 0.811

0.802 0.792 0.816 0.784

0.744 0.754 0.747 0.807

CLIP score

4 5 6 no limit
max depth

no
 li

m
it

10
%

20
%

30
%

m
in

 a
re

a

0.795 0.772 0.791 0.795

0.806 0.807 0.794 0.800

0.773 0.746 0.787 0.761

0.716 0.725 0.727 0.783

block match

4 5 6 no limit
max depth

no
 li

m
it

10
%

20
%

30
%

m
in

 a
re

a

0.935 0.922 0.918 0.931

0.939 0.944 0.919 0.925

0.919 0.904 0.927 0.884

0.841 0.848 0.839 0.920

text match

4 5 6 no limit
max depth

no
 li

m
it

10
%

20
%

30
%

m
in

 a
re

a

0.802 0.782 0.787 0.792

0.812 0.805 0.785 0.786

0.783 0.765 0.794 0.755

0.716 0.726 0.718 0.785

position match

4 5 6 no limit
max depth

no
 li

m
it

10
%

20
%

30
%

m
in

 a
re

a

0.826 0.815 0.812 0.828

0.834 0.843 0.816 0.823

0.815 0.800 0.823 0.794

0.753 0.751 0.736 0.822

text color match

0.76

0.78

0.80

0.82

0.84

0.76

0.78

0.80

0.82

0.72

0.74

0.76

0.78

0.80

0.84

0.86

0.88

0.90

0.92

0.94

0.72

0.74

0.76

0.78

0.80

0.74

0.76

0.78

0.80

0.82

0.84

Figure 7: Results of the parameter grid search.

0.0 0.2 0.4 0.6 0.8 1.0

Annotator 6

Annotator 5

Annotator 4

Annotator 3

Annotator 2

Annotator 1
GPT-4V
UICopilot

Figure 8: The preference of human annotators.

4.7 Case Study
To better illustrate the advantages of UICopilot in webpage gener-
ation, we select a representative example shown in Figure 9. The
images from left to right depict the original webpage, the webpage
generated by GPT-4V, and the one generated by UICopilot. As
observed, both GPT-4V and UICopilot capture the footer, body,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Original (b) GPT-4V (c) UICopilot

Figure 9: A representative example of generated webpages.

and header of the webpage, and the text content is fairly close to
the original. However, in terms of structural details, GPT-4V fails to
replicate the various small blocks on the right side of the original
image, opting instead for a simplified list layout. In contrast,UICopi-
lot successfully captures these structural details. This demonstrates
that decomposing webpage code synthesis into a coarse-grained
DOM tree and localized fine-grained code generation significantly
enhances the ability to capture structural elements. Nevertheless,
both models exhibit shortcomings in finer details: some text is miss-
ing, colors do not completely match the original, and the sizes of
certain sections differ from the original layout. These deficiencies
suggest that post-generation edits and localized fixes could consid-
erably enhance the quality of the generated webpages, indicating
an area for further exploration.

5 Related Work
Code Generation. Recently, notable advancements have been
made in code generation through various pre-trained code language
models. For instance, CodeGPT [23], a Transformer-basedmodel fol-
lowing a similar architecture to GPT-2 [30], was trained on a corpus
tailored for program synthesis. Another model, CodeT5 [45], built
upon T5 [31], was pre-trained across eight programming languages
and integrated an identifier-aware objective during its pre-training
phase. Additionally, Codex [6], a GPT-based model trained on code
from GitHub, has notably served as the foundational framework
for Copilot [1]. Moreover, AlphaCode [20] stands out as a code gen-
eration system designed to produce unique solutions for intricate
problems requiring deep cognitive engagement. More recently, the
landscape of code generation has been significantly influenced by
large language models (LLMs) such as CodeGen [26], CodeT5+[44],
InCoder[9], GPT-3.5 [27], StarCoder [19], Code Llama [35], and
WizardCoder [24].
Image Representation Learning. To obtain better image repre-
sentations, early works used Variational Autoencoders (VAEs) to
generate latent vectors [15, 41], while others employed contrastive
learning to derive image encoders from large datasets [7]. Unlike
conventional CNN-based models with attention mechanisms [5, 43],
the Vision Transformer (ViT) [2] breaks images into fixed-size

patches and processes them directly with transformers. To reduce
the computational burden of diffusion models (DMs) [12] in pixel
space, researchers proposed training DMs in the latent space of
advanced pre-trained autoencoders [34], transforming DMs into ro-
bust generators for various conditioning inputs via cross-attention
layers. Recently, notable works have explored large models for
image understanding, including SDXL [29], VideoLDM [4], and
others [38, 39, 42, 48].

Image to Code. With the rapid advancement of LLMs in re-
cent years, many researchers have focused on generating code
from images. Wu et al. [47] formulated the problem of screen pars-
ing, predicting UI hierarchy graphs from screenshots using Faster-
RCNN [32] to encode screenshot images and an LSTM attention
mechanism to construct graph codes and edges. Pix2Struct [18], pre-
trained to predict simplified HTML from masked website screen-
shots, significantly improved visual language understanding on
nine tasks across four domains. To address the computational bur-
den and non-differentiable issues of website rendering, Soselia
et al. [37] applied reinforcement learning to fine-tune a vision-
code Transformer (ViCT)—comprising a visual ViT [8] and a GPT-
2/Llama-based code decoder [30, 40]—by minimizing discrepancies
between the original and generated webpage without rendering.

6 Conclusion
In this work, to address the challenge of generating lengthy web-
page code and to better capture the structural information in web-
page design images, we decoupled the generation procedure into
coarse DOM tree generation and fine-grained code synthesis. We
introduced a ViT-based structure model to predict the coarse DOM
tree and trained the model along with a BBox-based data pruning
strategy. With the coarse DOM trees and BBoxes predicted by the
structure model, we decomposed the process of generating code
from the original image into generating code snippets of segmented
subregion images and assembling them together, which avoids gen-
erating long code in a single step. The experimental results and
feedback from human annotators demonstrate the effectiveness of
the proposed framework.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

UICopilot: Automating UI Synthesis via Hierarchical Code Generation from Webpage Designs Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] [n. d.]. Copilot. https://github.com/features/copilot.
[2] Dosovitskiy Alexey. 2020. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv: 2010.11929 (2020).
[3] Tony Beltramelli. 2018. pix2code: Generating Code from a Graphical User Inter-

face Screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS 2018, Paris, France, June 19-22, 2018. ACM,
3:1–3:6. https://doi.org/10.1145/3220134.3220135

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook
Kim, Sanja Fidler, and Karsten Kreis. 2023. Align Your Latents: High-Resolution
Video Synthesis with Latent Diffusion Models. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023. IEEE, 22563–22575. https://doi.org/10.1109/CVPR52729.2023.02161

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. 2020. End-to-End Object Detection with Trans-
formers. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12346), Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm
(Eds.). Springer, 213–229. https://doi.org/10.1007/978-3-030-58452-8_13

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A simple framework for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 1597–1607.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. ArXiv
abs/2010.11929 (2020). https://api.semanticscholar.org/CorpusID:225039882

[9] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[10] Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang, Yi Su, Shaoling Dong, Xing
Zhou, and Wenbin Jiang. 2024. VISION2UI: A Real-World Dataset with Layout
for Code Generation from UI Designs. arXiv preprint arXiv:2404.06369 (2024).

[11] Hongcheng Guo, Wei Zhang, Junhao Chen, Yaonan Gu, Jian Yang, Junjia Du,
Binyuan Hui, Tianyu Liu, Jianxin Ma, Chang Zhou, and Zhoujun Li. 2024. IW-
Bench: Evaluating Large Multimodal Models for Converting Image-to-Web. CoRR
abs/2409.18980 (2024).

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Proba-
bilistic Models. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.
cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

[13] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[14] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of
Large Language Models. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.
https://openreview.net/forum?id=nZeVKeeFYf9

[15] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1312.6114

[16] Hugo Laurenccon, L’eo Tronchon, and Victor Sanh. 2024. Unlocking the
conversion of Web Screenshots into HTML Code with the WebSight Dataset.
https://api.semanticscholar.org/CorpusID:268385510

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[18] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Mar-
tin Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. 2023. Pix2Struct: Screenshot Parsing as Pretraining for Visual Lan-
guage Understanding. In International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learning
Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 18893–18912.
https://proceedings.mlr.press/v202/lee23g.html

[19] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, et al. 2023. StarCoder: may
the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[20] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, et al. 2022. Competition-Level Code Generation with

AlphaCode. Science 378, 6624 (2022), 1092–1097.
[21] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual In-

struction Tuning.
[22] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank

Wang, Kwang-Ting Cheng, and Min-Hung Chen. 2024. DoRA: Weight-
Decomposed Low-Rank Adaptation. CoRR abs/2402.09353 (2024). https:
//doi.org/10.48550/ARXIV.2402.09353 arXiv:2402.09353

[23] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. In NeurIPS Datasets and Benchmarks.

[24] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. WizardCoder:
Empowering Code Large Language Models with Evol-Instruct. arXiv preprint
arXiv:2306.08568 (2023).

[25] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2020. Machine Learning-Based Prototyping of Graphical
User Interfaces for Mobile Apps. IEEE Trans. Software Eng. 46, 2 (2020), 196–221.
https://doi.org/10.1109/TSE.2018.2844788

[26] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. Codegen: An open large language model
for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[27] OpenAI. 2022. ChatGPT. https://openai.com/blog/chatgpt/.
[28] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:

//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774
[29] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn,

Jonas Müller, Joe Penna, and Robin Rombach. 2024. SDXL: Improving Latent
Diffusion Models for High-Resolution Image Synthesis. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net. https://openreview.net/forum?id=di52zR8xgf

[30] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, et al. 2020. Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer. JMLR 21 (2020), 1–67.

[32] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39 (2015), 1137–1149.
https://api.semanticscholar.org/CorpusID:10328909

[33] Alex Robinson. 2019. Sketch2code: Generating a website from a paper mockup.
CoRR abs/1905.13750 (2019). arXiv:1905.13750 http://arxiv.org/abs/1905.13750

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022. IEEE, 10674–10685. https://doi.org/10.
1109/CVPR52688.2022.01042

[35] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[36] Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. 2024.
Design2Code: How Far AreWe From Automating Front-End Engineering? https:
//api.semanticscholar.org/CorpusID:268248801

[37] Davit Soselia, Khalid Saifullah, and Tianyi Zhou. 2023. Learning UI-to-
Code Reverse Generator Using Visual Critic Without Rendering. https://api.
semanticscholar.org/CorpusID:265302631

[38] Yu Takagi and Shinji Nishimoto. 2023. High-resolution image reconstructionwith
latent diffusion models from human brain activity. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023. IEEE, 14453–14463. https://doi.org/10.1109/CVPR52729.2023.01389

[39] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath
Hariharan. 2023. Emergent Correspondence from Image Diffusion. In Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/
hash/0503f5dce343a1d06d16ba103dd52db1-Abstract-Conference.html

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. ArXiv
abs/2302.13971 (2023). https://api.semanticscholar.org/CorpusID:257219404

[41] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural
Discrete Representation Learning. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 6306–6315. https://proceedings.neurips.cc/paper/2017/hash/

9

https://github.com/features/copilot
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1109/CVPR52729.2023.02161
https://doi.org/10.1007/978-3-030-58452-8_13
https://api.semanticscholar.org/CorpusID:225039882
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/1312.6114
https://api.semanticscholar.org/CorpusID:268385510
https://proceedings.mlr.press/v202/lee23g.html
https://doi.org/10.48550/ARXIV.2402.09353
https://doi.org/10.48550/ARXIV.2402.09353
https://arxiv.org/abs/2402.09353
https://doi.org/10.1109/TSE.2018.2844788
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=di52zR8xgf
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:10328909
https://arxiv.org/abs/1905.13750
http://arxiv.org/abs/1905.13750
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://api.semanticscholar.org/CorpusID:268248801
https://api.semanticscholar.org/CorpusID:268248801
https://api.semanticscholar.org/CorpusID:265302631
https://api.semanticscholar.org/CorpusID:265302631
https://doi.org/10.1109/CVPR52729.2023.01389
http://papers.nips.cc/paper_files/paper/2023/hash/0503f5dce343a1d06d16ba103dd52db1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/0503f5dce343a1d06d16ba103dd52db1-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:257219404
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
[42] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali

Wang, and Yu Qiao. 2023. VideoMAE V2: Scaling Video Masked Autoencoders
with Dual Masking. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 14549–
14560. https://doi.org/10.1109/CVPR52729.2023.01398

[43] XiaolongWang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local
Neural Networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 7794–7803. https://doi.org/10.1109/CVPR.2018.00813

[44] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[45] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In EMNLP. 8696–8708.

[46] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[47] Jason Wu, Xiaoyi Zhang, Jeffrey Nichols, and Jeffrey P. Bigham. 2021. Screen
Parsing: Towards Reverse Engineering of UI Models from Screenshots. The
34th Annual ACM Symposium on User Interface Software and Technology (2021).
https://api.semanticscholar.org/CorpusID:237571719

[48] Feiniu Yuan, Zhengxiao Zhang, and Zhijun Fang. 2023. An effective CNN and
Transformer complementary network for medical image segmentation. Pattern
Recognit. 136 (2023), 109228. https://doi.org/10.1016/J.PATCOG.2022.109228

[49] Sukmin Yun, Haokun Lin, Rusiru Thushara, Mohammad Qazim Bhat, Yongxin
Wang, Zutao Jiang, Mingkai Deng, JinhongWang, Tianhua Tao, Junbo Li, Haonan
Li, Preslav Nakov, Timothy Baldwin, Zhengzhong Liu, Eric P. Xing, Xiaodan
Liang, and Zhiqiang Shen. 2024. Web2Code: A Large-scale Webpage-to-Code
Dataset and Evaluation Framework for Multimodal LLMs. CoRR abs/2406.20098
(2024). https://doi.org/10.48550/ARXIV.2406.20098 arXiv:2406.20098

10

https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://doi.org/10.1109/CVPR52729.2023.01398
https://doi.org/10.1109/CVPR.2018.00813
https://api.semanticscholar.org/CorpusID:237571719
https://doi.org/10.1016/J.PATCOG.2022.109228
https://doi.org/10.48550/ARXIV.2406.20098
https://arxiv.org/abs/2406.20098

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hierarchy Structure of Webpage Designs
	2.2 Image to Code by MLLMs

	3 UICopilot
	3.1 Task Description
	3.2 Overview
	3.3 Coarse DOM Layout Generation
	3.4 Fine-Grained Code Synthesis

	4 Experiments and Analysis
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Baselines
	4.4 The effectiveness of UICopilot
	4.5 The influence of min_area and max_depth
	4.6 Human Evaluation
	4.7 Case Study

	5 Related Work
	6 Conclusion
	References

