Under review as a conference paper at ICLR 2022

BOOLNET: STREAMLINING BINARY NEURAL
NETWORKS USING BINARY FEATURE MAPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works on Binary Neural Networks (BNNs) have made promising progress
in narrowing the accuracy gap of BNNss to their 32-bit counterparts, often based on
specialized model designs using additional 32-bit components. Furthermore, most
previous BNNs use 32-bit values for feature maps and residual shortcuts, which
helps to maintain the accuracy, but is not friendly to hardware accelerators with
limited memory, energy, and computing resources. Thus, we raise the following
question: “How can accuracy and energy consumption be balanced in a BNN
design?” We extensively study this fundamental problem in this work and propose
BoolNet: an architecture without most commonly used 32-bit components that uses
1-bit values to store feature maps. Experimental results demonstrate that BoolNet
can achieve 63.0% Top-1 accuracy on ImageNet coupled with an energy reduction
of 2.95x compared to recent state-of-the-art BNN architectures. Code and trained
models are available at: (URL in final version)

1 INTRODUCTION

The recent success of Deep Neural Networks (DNNGs) is like the jewel in the crown of modern
Al waves. However, the large size and the high number of operations cause the current DNNs to
heavily rely on high-performance computing hardware, such as GPU and TPU. Training sophisticated
DNN models also results in excessive energy consumption and CO5 emission, e.g., training the
OpenAl’s GPT-3 by Brown et al.| (2020) causes as much CO, emissions as 43 cars during their
lifetime (Patterson et al.,|2021]). Moreover, their computational expensiveness strongly limits their
applicability on resource-constrained devices such as mobile phones, IoT devices, and embedded
devices. Various works aim to solve this challenge by reducing memory footprints and accelerating
inference. We can roughly categorize these works into the following directions: network pruning
(Han et al.| |2015a3b), knowledge distillation (Crowley et al., 2018} |Polino et al., [2018), compact
networks (Howard et al., [2017;|2019; |Sandler et al., 2018 Ma et al., 2018b;; [Tan et al.,[2019), and
low-bit quantization (Courbariaux et al.l 2015} |[Rastegari et al.| 2016} Zhou et al., |2016; Hubara et al.}
2016). From the latter, there is an extreme case, Binary Neural Networks (BNNs), first introduced by
Courbariaux et al.|(2016), that uses only 1 bit for weight and activation.

As shown in the literature (Rastegari et al., [2016), BNNs can achieve 32 x memory compression and
up to 58 x speedup on CPU, since the conventional arithmetic operations can be replaced by bit-wise
xnor and bitcount operations. However, BNNs suffer from accuracy degradation compared to
their 32-bit counterparts. For instance, XNOR-Net leaves an 18% accuracy gap to ResNet-18 on
ImageNet classification (Rastegari et al.,[2016). Therefore, recent efforts (analyzed in more detail
in Section [2) mainly focus on narrowing the accuracy gap, including specific architecture design
(Liu et al.| 2018 |[Bethge et al., [2019; [2020; |Liu et al., |2020b)), real-valued weight and activation
approximation (Lin et al.; 2017a};Zhuang et al.||2019)), specific training recipes (Martinez et al., 2020,
a dedicated optimizer (Helwegen et al., 2019), leveraging neural architecture search (Bulat et al.|
2020; [Zhao et al.,|2020) and dynamic networks (Bulat et al., 2021). In the existing work, efficiency
analysis usually only considers the theoretical instruction counts. However, memory usage, inference
efficiency and energy consumption, which are essential to practical applications, have received little
attention. Furthermore, [Fromm et al.| (2020); [Bannink et al.| (2021) point out that the theoretical
complexity is often inconsistent with the actual performance in practice and measurable performance
gains on existing BNN models are hard to achieve as the 32-bit components in BNNs (such as
BatchNorm, scaling, and 32-bit branches) become bottlenecks. Using 32-bit information flow (e.g.,

Under review as a conference paper at ICLR 2022

§ IR U T Bitwidth Energy Top-1 OPs
: v Beaaam Method -\ im (m)) Ace. (-10°)
2 1 % =il | =l Bi-Real-Net 1/1/32 390 56.4% 1.63
§ ey £ Y BoolNet (ours) 1/1/4 133 63.0% 1.81
g w T e 4 .4 .5 BaseNet(ours) 1/1/4 0.83 582% 154
3 _3 E Al BaseNet (ours) 1/1/1 0.70 53.3% 1.51
3 : g
S #3145 gy oo3+261 g o+l ol pachNom+ () BoolNet reduces the energy consumption by
S -.1+.2+.3 operations -.2+.1+.4 Foo -1 41 4 “»S'gzu":iﬁgge" 2.9x compared to Bi-RealNet by [Ciu et al.
¢ EEERE =22 =i =i = inference (2018).

(a) Design in previous work. (b) BoolNet design.

Figure 1: The main differences between previous work and BoolNet. BoolNet uses 1-bit feature
maps and a shifted sign function reducing memory requirements and the need for 32-bit operations.

32-bit identity connections, 32-bit downsampling layers are equipped by almost all latest BNNGs,
see Figure[Ta), and multiplication/division operations (in BatchNorm, scaling, average pooling etc.)
significantly increase the memory usage and power consumption of BNNs and are thus unfriendly
to hardware accelerators. For these reasons, even if BNNs have achieved MobileNet-level accuracy
with a similar theoretical number of OPs (Bethge et al., 2020; |[Martinez et al., 2020), they still cannot
be used as conveniently as compact networks (Howard et al.,|2017;2019; [Sandler et al.| [2018).

In this paper, we extensively study the trade-off between BNN’s accuracy and hardware efficiency. We
propose a novel BNN architecture: BoolNet, which replaces most commonly used 32-bit components
(see Section[3). First, BoolNet only uses binary feature maps in the network (see Figure[Ib). Second,
during inference, we fuse the BN layer into the Sign function through a lossless transformation,
thereby effectively removing the Mult-Adds brought by BN. Other changes include removing com-
ponents that require additional 32-bit multiplication/division operations: (1) PReLU, (2) average
pooling, and (3) binary downsampling convolutions. We then propose a Multi-slice strategy to help
alleviate the loss of representational capacity incurred by binarizing the feature maps and removing
32-bit components. We show the effectiveness of our proposed methods and the increased energy
efficiency of BoolNet with experiments on the ImageNet dataset (Deng et al., 2009). The results
show the key benefit of BoolNet: a reasonable accuracy coupled with a higher energy efficiency
over state-of-the-art BNNs (see Figure[Ic|for a brief summary and Section 4] for more details). The
energy data is obtained through a hardware accelerator simulation (see Section [4.4]for details). We
summarize our main contributions as follows:

* The first work studying the effects of 32-bit layers often used in previous works on BNNs.
* A novel BNN architecture BoolNet with minimal 32-bit components for higher efficiency.
* A Multi-slice strategy to alleviate the accuracy loss incurred by using 1-bit feature maps.

* State-of-the-art performance on the trade-off between accuracy and energy consumption
with a 2.9x lower power consumption than Bi-RealNet (Liu et al.,|2018) and 6.6% higher
accuracy.

2 RELATED WORK

In recent years, Efficient Deep Learning has become a research field that has attracted much attention.
Technical directions, such as, compact network design (Howard et al., 2017} 2019; |Sandler et al.,
2018} |Zhang et al., 2018; Ma et al.| 2018b)), knowledge distillation (Crowley et al., [2018}; [Polino
et al.| |2018)), network pruning (Han et al.| [2015ajb; L1 et al., 2017; He et al., |2017), and low-bit
quantization (Courbariaux et al., [2015} |Rastegari et al.,[2016; |Liu et al., 20185 2020b; Bethge et al.,
2020) are proposed for model compression and acceleration. The efficient models have evolved from
the earliest handcrafted designs to the current use of neural architecture search to search for the best
basic block and overall network structure (Tan et al., [2019; Howard et al., 2019; [Tan & Lel [2019;
Radosavovic et al.| 2020). The criterion of efficiency evaluation has also changed from instruction
and parameter counts to more precise measurements of actual memory and operating efficiency on
the target hardware (Cai et al., 2019;2018)).

Under review as a conference paper at ICLR 2022

Binary Neural Networks were first introduced by |(Courbariaux et al.|(2016)) and their initial attempt
only evaluated on small datasets such as MNIST (LeCun & Cortes},[2010), CIFAR10 (Krizhevsky et al.
2009) and SVHN (Netzer et al.l 2011). The follow-up XNOR-Net (Rastegari et al., 2016)) proposes
channel-wise scaling factors for approximating the real-valued parameters, which achieves 51.2%
top-1 accuracy on ImageNet. However, there is an 18% gap compared with its 32-bit counterpart,
ResNet-18. Therefore, recent efforts mainly focused on narrowing the accuracy gap. WRPN by
Mishra et al.|(2018)) shows that expanding the channel width of binary convolutions can obtain a
better performance. ABC-Net by |Lin et al.| (2017al), GroupNet by [Zhuang et al.| (2019)), and (Zhu
et al.| [2019) use a set of k binary convolutions (referred to as binary bases), instead of using a
single binary convolution, to approximate a 32-bit convolution. This sort of method achieves higher
accuracy but increases the required memory and number of operations of each convolution by the
factor k. Bi-RealNet by |Liu et al.[(2018) proposes using real-valued (32-bit) shortcuts to maintain
a 32-bit information flow, which effectively improves the accuracy. This design strategy became a
standard for later work, e.g., Bethge et al.| (2019; |2020); [Liu et al.|(2020b). Martinez et al.| (2020)
propose using a real-valued attention mechanism and well-tuned training recipes to boost the accuracy
further. Thanks to the special architecture design, the recent MeliusNet (Bethge et al.| 2020) and
ReActNet (Liu et al.,|2020b) achieve MobileNet-level accuracy with similar number of theoretical
operations. Other attempts, such as leveraging neural architecture search (Bulat et al.|, [2020; Zhao
et al.,[2020) and dynamic networks (Bulat et al., 2021)), show that those successful methods on regular
real-valued networks are also effective for BNN. Another method by |Shen et al.[(2019)) combines
neural architecture search to dynamically increase the number of channels for more accurate BNNs.
Often, with improved accuracy, 32-bit components are used more frequently as well, such as PReLU
and BatchNorm after each binary convolution (Liu et al., [2020b)), a real-valued attention module
(Martinez et al., [2020) and scaling factors, etc. Apart from some works that include and optimize
real-time measurements on mobile devices, such asBannink et al.|(2021)); [Umuroglu et al.| (2017),
efficiency analysis in the literature often only considers the theoretical operation number. However,
the memory usage and the actual energy consumption has received very little attention so far.

3 BOOLNET

In this section, we first revisit the latest BNNs and recap how they enhanced the accuracy by adding
more 32-bit components (in Section [3.I). Afterwards, we propose to replace most commonly used
32-bit components from current BNN designs and instead use a fully binary information flow in
the network (in Section [3.2). However, abandoning 32-bit information flow results in a serious
degradation of the representative capacity of the network. Thus, we also present our strategies to
restore the representative capacity (in Section[3.3). The focus on boolean operations and binary
feature maps leads to the name of our network: BoolNet.

3.1 IMPROVING ACCURACY WITH ADDITIONAL 32-BIT COMPONENTS

Recent works on BNNs have made promising progress in narrowing the gap to their 32-bit coun-
terparts. The key intention is to enhance the representative capacity by fully exploiting additional
32-bit components. However, such additional 32-bit components significantly reduce the hardware
efficiency (as shown by [Fromm et al (2020) and further discussed in Sectiond.4). The following
list summarizes the 32-bit components commonly used in the latest BNNs: (1) The channel-wise
scaling factor was first proposed by |[Rastegari et al.| (2016)) for approximating the 32-bit parameters.
It increases the value range of activation and weight. (2) Bi-RealNet (Liu et al.| 2018)) proposes to
use a 32-bit shortcut for enclosing each binary convolution. The key advantage is that the network
can maintain an almost completely 32-bit information flow (cf. Figure[2a). (3) XNOR-Net (Rastegari
et al.| 2016) uses 32-bit 1x1 downsampling convolutions, which is also used by many subsequent
methods (Liu et al.| 2018 Martinez et al.| 2020; Bethge et al.| 2020). Bethge et al.| (2019) shows
that this simple strategy can achieve about 3.6% Top-1 accuracy gains on ImageNet based on a
binary ResNet-18 model. (4) Martinez et al.| (2020); Bulat et al.| (2020} 2021)) show that PReLU
activation effectively improves accuracy of BNNs. ReActNet (Liu et al., 2020b) constructs the
RPReLU activation function and uses it before every sign function. (5) Martinez et al.|(2020) reuse
the 32-bit activation in their Real-to-Binary Net after BN with a squeeze and excitation (SE) attention
mechanism. This module can adaptively re-scale the outputs of each binary convolution but needs
additional 32-bit operations.

Under review as a conference paper at ICLR 2022

- . | paining inforence _
(@ e f 32-bit N BConv BConv
o 16-bit . [BatchNorm| ‘==>:1 ghifteq |
+ pg —_— -’ Slgn . g Slgn H
1-bit e S e .
(a) Typical binary basic block. (b) Our binary block design without 32-bit operations.

Figure 2: Comparison between a conventional binary convolution block with 32-bit data flow (a) and
our proposed binary convolution block with 1-bit data flow (b).

Although these techniques can effectively improve the accuracy, they increase the number of 32-bit
values and floating point operations, making them not particularly efficient on hardware accelerators.
They are closer to mixed-precision neural networks rather than being highly efficient binary neural
networks, as one might expect.

3.2 BASENET: REPLACING 32-BIT COMPONENTS WITH BOOLEAN OPERATIONS

To better balance accuracy and efficiency, we rethink the additional 32-bit components (Batch
Normalization, 32-bit feature maps, scaling factors and PReL.U) elaborated in the previous section
and propose to remove or replace them with more efficient operations. We further propose a new
basic convolution block without 32-bit operations, as shown in Figure|2b| where we rearranged the
order of convolution basic block as [BinaryConv, BatchNorm, Sign], so that all feature maps are
binary. These general changes constitute our BoolNet baseline, in short BaseNet.

Integrating the BatchNorm into the Sign Function Umuroglu et al.| (2017) suggested to replace
the BatchNorm (BN) with a thresholding operation during inference on FPGAs. However their
suggestion can not be applied to more recent work (Hubara et al.| 2016} |[Rastegari et al., 2016}
Liu et al., 2018} 2020b; [Bethge et al., |2020), because the layer order in these works is [Sign,
BinaryConv, BN] surrounded by 32-bit valued shortcuts. Instead, these recent works have kept the
32-bit BatchNorm layer in both the training and testing stages. However, using a 32-bit BN right after
the 1-bit convolution layer decreases the computational efficiency on hardware, using more memory
and energy. Thus, in the following we propose to fuse the BN layer into the Sign function during the
inference stage and do not use the 32-bit output of BN layer for shortcut connection.

During the training phase, the batch normalization layer normalizes feature maps with a running
mean g and a running variance o. For inference, it utilizes the constant statistic mean and variance
instead, which in result can be reformulated as a linear process, expressed as:

yisz+ﬂ=7xi+<ﬁ—w> (1)
Vile? + € Vilo? + €| Vile? + €

where x; and y; represent the N-dimensional input and output of a BN layer. v and 3 are trainable
scale and shift parameters, which are constant during the inference. || .. .|| is the absolute function.
We can therefore simplify the formula as follows:

b
yiaxi+ba(zi+)a(1i+c), 2)
a

where a, b, and c denote constants in the formula. By transforming a into its sign and its absolute
value, we have

yi = |lal| ® Sign (a) © (z; + ¢), 3)

As arranged in our basic block, Equation (3)) is followed by a sign function, and Sign(y;) only depends
on Sign(a) and (z; + ¢). We thus derive a parameterized sign function as:

Sign(y;) = XNOR(Sign(a), Sign(z; + ¢)) “4)

We further replace © by using XNOR operator so that only bit-wise operations are adopted in the
inference.

Under review as a conference paper at ICLR 2022

in: 512*k
Channel Split
out: 256"k in: 512"k
g MS-BConv
S roups =k
out: 256k 2 (ooue) out: 512k
E
=1
out: 256k °© out: 512k
Channel Concate Channel Concate
out: 512*%k out: 1024*k
Channel Shuffle Channel Shuffle
out: 512*k out: 1024*k
(a) MS-BConv module (b) BoolNet basic block (c) BoolNet downsample block

Figure 3: The detailed architecture of BoolNet. To enhance the information flow, we modify the
baseline architecture in two aspects: a) Reducing information loss with our multi-slices binary
convolution. b) Strengthening the information propagation by using split and concatenate operations.

Further Reducing 32-bit Operations We rarely use the PReL.U activation function, which is com-
monly used in the recent literature (Liu et al.| [2018; Martinez et al., [2020; Bulat et al.| [2021) and
brings a lot of extra overhead to the hardware implementation (it is only used once before the final
dense layer). We also decided not to use scaling factors as suggested by |Liu et al.| (2018); [Bethge
et al.| (2019). There are two components which use 32-bit operations and parameters in previous
work, which are kept in 32-bit in BoolNet: the first convolution and the last dense layer. Directly
replacing them with binary versions leads to a severe accuracy loss (Rastegari et al., 2016), thus we
leave the investigation of alternatives for these special layers for future work.

3.3 BOOLNET: ENHANCING BINARY INFORMATION FLOW

The network design changes explained in the previous section, constitute our BoolNet baseline, called
BaseNet. Although it uses a completely binary information flow which minimizes the energy and
memory consumption, the representative capacity of BaseNet is drastically degraded compared to
its 32-bit counterparts and previous BNN methods, which accumulate information in 32-bit values.
To counter this reduction of representative capacity, we propose the following three ideas, which
constitute our proposed BoolNet.

Multi-slice Binary Convolution. Instead of using a single 1-bit value for each 32-bit value in a
regular BNN, our multi-slice strategy proposes of using a set of k 1-bit values. The key intention
is to reduce the information loss caused by the sign function. We consider the typical binarization
process Sign(z;, zero-point) as a special case of single-slice numerical projection. Thus, we propose
a multi-slice projection strategy for binary convolution to retain more relative magnitude information.
Specifically, we redesign sign function as follows:

xﬁ’ = Sign(z;, by), (5)
where b,, indicates a set of constant bias:
+2

b, = Tn,wherenzO,l,...,k/Q (6)

We adopt b,, to conveniently expand the channel dimension to enhance the capacity of the binary
feature map. If n = 0, k = 1, Equation (6) degenerates to the ordinary sign function. In Equation
(5), 2 denotes the binary projection output with the dimension of [N, C * k, H, W], which will be
fed into the subsequent binary convolution layer. The constant k also denotes the group number
of the convolution. That is, by setting the number of groups to k in each convolution, the overall
amount of parameters and operations of each convolution is unchanged. We found three conceptually
related works by |[Lin et al.| (2017b); [Zhuang et al.| (2019); Zhu et al.|(2019), but they have a different
motivation and implementation compared to our work: 1) They use a higher number (k) of 32-bit
feature maps and weights to close the accuracy gap to 32-bit networks. This increases the computation
and memory cost of a single convolution by the factor & (k2 in (Lin et al., 2017b)). 2) These works
use differing composition strategies, but they usually require additional 32-bit computation, such as

Under review as a conference paper at ICLR 2022

addition and 32-bit scaling factors. For comparison, the Multi-slice Binary Convolution reduces the
memory requirement by replacing each 32-bit value with k 1-bit values and uses a grouped binary
convolution to keep the number of operations constant. Motivated by FReLU (Ma et al., [2020),
we enhance the first multi-slices projecting module, after the input convolution of network, with a
Local Adaptive Shifting module. This module consists of a binary depth-wise 3 x 3 convolution
and a batch normalization layer and is able to adaptively change the zero points of each pixel, in a
light-weight manner. For simplicity, the multi-slices binary convolution is referred to as MS-BConv,
subsequently. Figure [3a]shows the detailed block design of MS-BConv.

Strengthening The Information Propagation in BoolNet. The layer-by-layer feature extraction
and accumulation mechanism are key reasons deep neural networks have strong representative
capacity. However, accumulating information from shallow to deep based on addition operation
involves extra 32-bit data-flow, which is conflicted with our motivation of building hardware friendly
binary neural network. To avoid 32-bit data-flow while maintaining the accumulation mechanism, we
strengthen BaseNet by reusing binary features. In ShuffleNet-V2 (Ma et al., 2018a)), the input tensor
is divided into two equal parts, the first half is used for feature extraction, and the other half is directly
copied and concatenated with the extracted features. Inspired by its characteristics of information
fusion and retention, we use a similar method to enhance the information retention capability of the
BoolNet block. As demonstrated in Figure [3b] the feature extraction branch consists of two MS-
BConv modules, and the other branch remains identity. Two branches are concatenated and followed
by channel shuffle, ensuring that the features from different layers are uniformly distributed. Figure
shows the downsampling block design of BoolNet, where no channel splitting is required, and it
doubles the number of channels in the output. Changing this information accumulation mechanism
constitutes our proposed BoolNet over the BaseNet (as referred to in Section).

Rethinking the Downsample Branch. Furthermore, we modify the downsampling block compared
to previous methods, which usually use the layers [2x2 AvgPool (Stride 2), 32-bit 1 x 1 Conv, BN]
in this branch (Liu et al., |2018; Martinez et al., 2020). Instead, we propose to use the layers [1-bit
1x1 Conv, 2x2 MaxPool (Stride 2), BN, Sign] and replace the 1-bit 3 x3 Conv (stride 2) in the main
branch with [1-bit 3x3 Conv, 2x2 MaxPool (stride 2)]. Overall, this removes all 32-bit operations
and 32-bit parameters from the downsample block of BoolNet, but due to space limitations, we
discuss the details in the appendix (including alternatives and experimental results).

3.4 TRAINING WITH PROGRESSIVE WEIGHT BINARIZATION

Though we intend to build highly efficient BNNs with fully binary information flow, this strategy
makes the network more sensitive to weight initialization during training. Traditional methods tried to
alleviate similar problems through two-stage training (Martinez et al., 2020; [Liu et al.,|2020b)), which
makes the training more complicated. In this paper, we adopt a progressive binarization technique
based on the traditional Hardtanh-STE method (Courbariaux et al.,|2016)). This can be understood as a
smooth version of a multi-stage training approach. Specifically, in the training phase, a differentiable
function F'(z) is used to replace sign function. The slope of this function is adjusted by a single
scalar A. As the slope increases, the weight gradually changes from 32-bit to 1-bit. During backward
propagation, we approximate F'(x/\) with F'(x/1), to avoid the problem of gradients clipping as A
decreases. In the testing phase, we use the regular sign function for inference. The whole process can
be formulated as:

F(a,) = lim Hardtanh (%) ~ Sign(z).)

To smooth the weight binarization process, we schedule A during training with an exponential decay
strategy \; = 0(*), where o < 1 is the exponential decay rate of \.

4 EXPERIMENTS

We evaluated our baseline network BaseNet and our proposed BoolNet (as described in Sections [3.2]
and @ respectively) on the ImageNet dataset (Deng et al.,2009). In the following section, we first
present the training details for our experiments. Afterwards, we conduct an ablation study on our
proposed network design changes and the Multi-slice convolution (in Section #.2]and[4.3), analyze
the energy consumption of BoolNet and other recent work on BNNs (in Section 4.4}, and compare
our model accuracy to state-of-the-art BNN models (in Section [4.3]).

Under review as a conference paper at ICLR 2022

Table 1: Our ablation study on ImageNet (Deng et al.|(2009)) regarding accuracy, number of 32-bit
operations (FLOPs), 1-bit operations (BOPs), and model size. (OPs = FLOPs + 1/64-BOPs)

BaseNet BoolNet
Network Confieuration Topl FLOPs BOPs OPs Model Topl FLOPs BOPs OPs Model
g Acc. (-10%) (-10%) (-10%) Size Acc. (-10%) (-10%) (-10%) Size
Baseline (60 epochs, CE Loss) 47.69% 1.22 1.68 1.49 347MB | 54.07% 2.78 1.85 3.07 5.05 MB
+ Multi-Slice strategy (k=4) 52.27% 1.22 1.69 149 347MB | 56.84% 2.78 1.86 3.07 5.05 MB
+ (1) Modified downsample branch (BaseNet has no downsample branch) 58.66% 1.23 2.48 1.62 3.84 MB
+ (2) Local Adaptive ShiftingT 52.08% 1.25 1.69 1.51 347 MB | 59.56% 1.26 248 1.65 3.84 MB
+ (3) MaxPool instead of stride 55.14% 1.23 221 1.57 347MB | 5998% 1.26 3.53 1.81 3.84 MB
+ (4) Knowledge distillation* 56.84% 1.23 221 1.57 347MB | 6198% 1.26 3.53 1.81 3.84 MB
+ Long training (256 epochs) 58.20% 1.23 221 1.57 347MB | 63.00% 1.26 353 1.81 3.84 MB
T Local Adaptive Shifting is not used for the subsequent BaseNet experiments ¥ Replaces the cross-entropy loss with the distributional loss by|Liu et al.|(2020b)
BaseNet baseline + (3) + (4) BoolNet baseline + (1) + (2) + (3) + (4)
X Top 1 A Top5 FLOPs BOPs OPs Model Top 1 A Top5 FLOPs BOPs OPs Model
Acc. Acc. (-10%) (-10%) (-10%) Size Acc. Acc. (-10%) (-10°%) (-10%) Size
1| 51.74% - 75.39% 1.23 2.20 1.57 3.47MB | 57.62% - 80.47% 1.26 3.05 1.74 371 MB
2| 5575% +4.01 79.08% 123 2.20 1.57 347MB | 60.57% +3.95 82.56% 1.26 3.21 1.76 3.76 MB
4156.84% +1.09 79.85% 1.23 221 1.57 347MB | 61.98% +141 83.75% 1.26 3.53 1.81 3.84 MB
8 157.19% +0.35 80.33% 1.23 222 1.58 347MB | 62.54% +0.56 84.14% 1.26 4.16 191 4.01MB

4.1 TRAINING DETAILS

Our training strategy and hyperparameters are mostly based on Bethge et al.| (2020)), but we train for
256 epochs and replace the Cross-Entropy loss with the knowledge distillation approach proposed
by [Liu et al.| (2020b) where the teacher model is a 32-bit ResNet-34 (He et al., 2016). The exact
hyperparameters, details and code are available in the appendix and the supplementary material.

We proposed progressive weight binarization (see Section[3.4] Equation[7) as an alternative to the
two-stage training approach taken by |Liu et al.[(2020b)); Martinez et al.|(2020). For our experiments,
we use 0 = 0.965 and thus A = 0.965°, where ¢ is the number of samples processed divided by
256000, rounded down. The progressive weight binarization is replaced with the sign function during
the validation pass. The two-stage training strategy aims to provide a good initialization for a BNN
training, by first training a model with 1-bit activations/32-bit weights and weight decay of 10>, and
use it to initialize the training of a 1-bit activations/1-bit weights model. We tested the effect of both
strategies with a plain ResNet-like model with binary feature maps. The two-stage training (trained
60 epochs in each stage - a total of 120 epochs) achieved 49.60% accuracy. Our progressive weight
binarization achieves 48.39% when training for 60 epochs, but achieves 50.19% when training for
120 epochs. Thus we deduce that our training strategy effectively removes the need for a two stage
training (based on a similar total training time) and leads to a similar or slightly better result.

4.2 ABLATION ON NETWORK DESIGN AND TRAINING STRATEGIES

We conducted an ablation study to determine the influence of our proposed design changes and
the used training techniques (see the top half of Table [I). Our results show a 4.58% (BaseNet)
/ 2.77% (BoolNet) increase of accuracy by using our Multi-Slice strategy with £ = 4 over our
baseline training (both trained only for 60 epochs with cross-entropy loss). Although adopting our
BoolNet over BaseNet increases accuracy by 4.57% / 6.38% (with/without the Multi-Slice strategy),
BoolNet uses a much higher number of 32-bit operations. However, modifying the downsample
branch (as proposed in Section [3.3) eliminates these additional 32-bit operations in BoolNet and
boosts accuracy by 1.82%. The Local Adaptive Shifting module increases accuracy by 0.90% for
BoolNet but does not increase the accuracy of a BaseNet (and thus was not used for our subsequent
BaseNet experiments). The reason is likely that the module only shifts the zero points of the very first
block of BaseNet which does not aid optimization. Using a MaxPool layer (see Section [3.3) instead
of a strided convolution especially helps BaseNet to retain information (which has no traditional
shortcut branch in the downsampling block).

Regarding the training techniques, we found that replacing the cross-entropy loss with the knowledge
distillation approach by Liu et al.|(2020b) contributes 1.70% (BaseNet) / 2.00% (BoolNet) accuracy
and extending the training time from 60 to 256 epochs further increases accuracy by 1.36% (BaseNet)

Under review as a conference paper at ICLR 2022

/1.02% (BoolNet). We conclude that all proposed techniques (and the knowledge distillation by |Liu
et al.| (2020b)) help to increase the accuracy of BaseNet and/or BoolNet.

4.3 ABLATION ON THE MULTI-SLICE BINARY CONVOLUTION

The previous section has already shown that our Multi-slice Binary Convolution (see Section [3.3))
can reduce the accuracy loss caused by using 1-bit feature maps. However, we further evaluated
the influence of the number of slices & in these convolutions based on the best configuration of the
previous section but only training for 60 epochs (see the lower half of Table[T). Our results show that
the final accuracy increases with each increase of k, but there are diminishing returns. Doubling k
from 1 to 2, from 2 to 4, and from 4 to 8 increases accuracy by 3.95%, 1.41%, and 0.56% respectively
(for BoolNet). Based on the increase of the number of operations, model size, and projected memory
consumption, we use k = 4 for the best trade-off between accuracy and energy efficiency for our
following experiments.

4.4 ENERGY CONSUMPTION EVALUATION

This section aims to efficiently compare the energy consumption of BoolNet to classic BNN architec-
tures under strictly fair design conditions. We thus implemented five BNN accelerators (BaseNet,
BoolNet, XNOR-Net, Bi-RealNet, ReActNet (based on a Bi-RealNet backbone)). Considering the
scope of this work, we leave the details of further hardware optimization of individual accelerators
for future work.

We designed the five accelerators in the RTL language. Then, the power and area of computing
circuits is given by Design Compiler (DC) with a TSMC 65nm process and 1GHz clock frequency.
We refer to the design and implementation methods of computing units of (Conti et al.|(2018)); Zhang
et al.| (2021). For a fair comparison between the different BNNs, we keep the design of architecture,
data stream, the parallelism of computing units, and total on-chip cache (192KB for feature maps
and 288KB for weights) consistent and only change the bit-width of the data stream and computing
units. More specifically, the parallelism of binary convolution is 64 x 64, and the parallelism of other
units is 64 in all accelerators (except the IntConv module is 8 x64). These modules are pipelined
and run at 1GHz. When DRAM bandwidth can be fully utilized, the performance depends on the
parallelism and is bounded by the convolution, so each accelerator has the same peak performance for
convolution, i.e., 4096 GOPs/s. Therefore, we achieve similar throughputs between 2044 and 2237
samples per second and it is reasonable to compare the energy consumption of the whole inference
process.

DC can provide the hierarchical circuit area and power of computing units, including static power
(Ps) and dynamic power (FP,;). For each layer of the network, we know the amount (A) of each
operation. According to the circuit parallelism (F,), we can calculate the required number of cycles
(C, = A/ P,) and then the energy consumption according to the frequency and power (£, = C,, X
(P + Py) / 107°). For the operations with fewer cycles, the energy consumption waiting for other
units is estimated by static power (Es = (C™% - C,,) x P, /107?). Similar to Wang et al.| (2021);
Jiang & Zokaee| (2021)); |L1 et al.| (2021)), we evaluate the energy consumption of on-chip SRAM
access and off-chip DRAM access by using CACTI 6.5 (CACTI) and the power calculator of DDR
provided by Micron (Micron). According to the cycle accurate simulation above, we can get the
access amount of SRAM and DRAM, then get the energy consumption. The above components
sum the overall energy consumed by a single inference pass. More details of simulation and energy
estimation can be found in

Memory access and computation are the primary factors that affect energy consumption of a hardware
accelerator. In the existing BNNGs, efficiency analysis only considers the theoretical instruction counts,
while the impact of memory access is often not considered. However, |Yang et al.|(2017) has shown
that computation energy only accounts for 10% of the overall energy consumption of a (32-bit)
GoogleNet. Moreover, |[Han et al.| (2015b)) evaluated the energy consumption ratio of computation
and memory access. In their estimation, the energy consumption of SRAM access with the same
amount of data is 50 that of 32-bit addition operations, and the energy consumption of DRAM
access is 6400x that of computations. A theoretical analysis of the required memory shows that the
total memory by BoolNet is much lower than previous BNNs, especially during the earlier stages of
the network (details are presented in Figure[/b|in the appendix). Thus, we expect that our design

Under review as a conference paper at ICLR 2022

Bitwidth Energy Top-1 OPs 38 Energy used by
Methods (W/A/F) Consumption A(I:)C. (-108) g s o < computation
ReActNet (Bi-Real) 1/1/32 3.93mJ 659% 1.63 ‘%O 8 8 SRAM access
Bi-RealNet /132 390m) 564% 163 28 1 DRAM access
XNOR-Net 1/1/32 1.92m] 51.2% 1.59 o 911 g]
BoolNet, k=4 (ours) 1/1/4 1.33mJ] 63.0% 1.64 © |losaa | & = & sgen [5003) 8960
BaseNet, k=4 (ours) 1/1/4 0.83mJ 582% 154 & © 7 (T (T AR T ;‘f“
BaseNet, k=1 (ours) 1/1/1 0.70mJ 53.3% 1.51 FOPT G RET ohCl M e et
(a) The advantage of BoolNet is reduced energy consumption. (b) Energy consumption regarding

fThe ReActNet result based on a Bi-RealNet backbone is stated computations and access to DRAM/SRAM.
on the official Github repository (Liu et al.| [2020a)).

Figure 4: Comparison between BoolNet and state-of-the-art BNNs. The energy consumption is
calculated through hardware simulations.

should achieve much higher energy efficiency due to a lower memory access. Other BNNs store and
read 32-bit feature maps in and from memory. On the contrary, BoolNet adopts 1-bit data streams
everywhere, except for the accumulation result of convolutions, which is 16-bit. However, because of
our Shifted Sign network design, the result can be quantized to 1 bit immediately without cache or
DRAM access. This is not as efficiently possible in other BNN designs that use 32-bit aggregation
requiring the intermediate 32-bit data to be cached. Due to the small size of on-chip memory, it
must be written to DRAM and read out at the next layer. The differences in the bit-width of the data
path and the amount of data reading and writing result in a significant gap in energy consumption
(highlighted in Figure[8)). Our evaluation results (see Figure [4b) show that the energy consumption
proportion between computing units and memory access is even more extreme than shown by [Yang
et al. (2017);[Han et al.[(2015b). Our interpretation is that the simplified operations of BNNs with the
bitwise operations XNOR and popcount further reduces their share of overall energy consumption.
This insight shows that memory optimization is more desirable in BNNs compared to 32-bit DNNs to
achieve highly energy-efficient Al accelerators.

4.5 COMPARISON TO STATE-OF-THE-ART BNNS

We compared our proposed networks to the state-of-the-art BNNs, e.g., ReActNet, Bi-RealNet,
XNOR-Net (Liu et al., 2018};[2020b} |Rastegari et al.,[2016). (For a fair comparison we used the result
of a ReActNet based on a Bi-RealNet backbone read from the official Github repository provided
by Liu et al.|(2020a) which is the same backbone that our network uses.) We found that removing
32-bit elements from previous BNNs, leads to an energy reduction by up to 5.6 x (BaseNet with k=1),
but accuracy drops by 12.6% (see Table[da). Using the proposed Multi-slice strategy (k=4) reduces
the accuracy drop by 4.9% and still achieves 4.7 x energy reduction. Our BoolNet design further
increases the accuracy by 4.8% which overall results in a 2.95 x reduction of energy and a 2.9%
accuracy drop. Compared to the result of Bi-RealNet (Liu et al.,|2018)), which has been the basis for
other works (Martinez et al., 2020), BoolNet with k=4 provides an accuracy improvement of 6.6%
(and a 2.9x energy reduction). Overall our results show that our proposed BaseNet and BoolNet
can achieve significant energy reduction with little accuracy loss compared to recent state-of-the-art
models.

5 CONCLUSION

In this paper, we studied how to balance energy consumption and accuracy of binary neural networks.
We proposed several simple yet useful strategies to remove or replace 32-bit components from BNNs.
Our novel BoolNet with fully binary information flow is constructed and still maintains reasonable
accuracy. Experiments on ImageNet and the hardware simulations show that (1) theoretical number
of operations does not fully reveal the actual efficiency and (2) BoolNet is more energy-efficient with
less computing requirements, lower memory usage and lower energy consumption. We believe this is
orthogonal to the goals of previous works and a meaningful first step towards achieving extremely
energy-efficient BNNs.

Under review as a conference paper at ICLR 2022

REFERENCES

Tom Bannink, Adam Hillier, Lukas Geiger, Tim de Bruin, Leon Overweel, Jelmer Neeven, and Koen
Helwegen. Larq compute engine: Design, benchmark and deploy state-of-the-art binarized neural
networks. Proceedings of Machine Learning and Systems, 3, 2021.

Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel. Binarydensenet: developing an
architecture for binary neural networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pp. 0-0, 2019.

Joseph Bethge, Christian Bartz, Haojin Yang, and Christoph Meinel. Meliusnet: Can binary neural
networks achieve mobilenet-level accuracy? arXiv preprint arXiv:2001.05936, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp- 1877-1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0dobfcb4967418bfb8acl42f6d4a—-Paper.pdf.

Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Bats: Binary architecture search. In
European Conference on Computer Vision, 2020.

Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. High-capacity expert binary networks.
In International Conference on Learning Representations, 2021.

CACTIL CACTI. URL http://www.hpl.hp.com/research/cacti/. Accessed: 2021-09-
29.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Francesco Conti, Pasquale Davide Schiavone, and Luca Benini. Xnor neural engine: A hardware
accelerator ip for 21.6-fj/op binary neural network inference. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(11):2940-2951, 2018.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing
systems, pp. 3123-3131, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Elliot J Crowley, Gavin Gray, and Amos J Storkey. Moonshine: Distilling with cheap convolutions.
In Advances in Neural Information Processing Systems, pp. 2888-2898, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Joshua Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwetak Patel. Riptide: Fast
end-to-end binarized neural networks. Proceedings of Machine Learning and Systems, 2:379-389,
2020.

Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian Shi, Chenguang Wang,
Junyuan Xie, Sheng Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue Zhang, and Shuai
Zheng. GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language
Processing. arXiv preprint arXiv:1907.04433, 2019.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://www.hpl.hp.com/research/cacti/

Under review as a conference paper at ICLR 2022

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. 2015a. URL http://arxiv.org/
abs/1510.001409, cite arxiv:1510.00149Comment: Published as a conference paper at ICLR
2016 (oral).

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135-1143,
2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389-1397, 2017.

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and Roe-
land Nusselder. Latent weights do not exist: Rethinking binarized neural network optimiza-
tion. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
9ca8c9b0996bbf05ae7753d34667abfd-Paper.pdf.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 4114-4122, 2016.

Lei Jiang and Farzaneh Zokaee. Exma: A genomics accelerator for exact-matching. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), pp. 399-411.
IEEE, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann,
lecun.com/exdb/mnist/.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=rJgFGTslg.

Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. Cscnn: Algorithm-hardware co-
design for cnn accelerators using centrosymmetric filters. In 2021 IEEFE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 612-625. IEEE, 2021.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017a. URL https://proceedings.neurips.cc/paper/2017/file/
b1a59p315fc9a3002ce38bbel070ec3f5-Paper.pdf.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. arXiv
preprint arXiv:1711.11294, 2017b.

11

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://proceedings.neurips.cc/paper/2019/file/9ca8c9b0996bbf05ae7753d34667a6fd-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9ca8c9b0996bbf05ae7753d34667a6fd-Paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=rJqFGTslg
https://proceedings.neurips.cc/paper/2017/file/b1a59b315fc9a3002ce38bbe070ec3f5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b1a59b315fc9a3002ce38bbe070ec3f5-Paper.pdf

Under review as a conference paper at ICLR 2022

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the Variance of the Adaptive Learning Rate and Beyond. arXiv preprint arXiv:1908.03265,
2019.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European conference on computer vision (ECCV), pp.
722-737, 2018.

Zechun Liu, Zhigiang Shen, Marios Savvides, and Kwang-Ting Cheng. Official source code of re-
actnet on github, 2020a. URL https://github.com/liuzechun/ReActNet. Accessed:
2021-10-01.

Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise
binary neural network with generalized activation functions. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV, volume 12359 of Lecture
Notes in Computer Science, pp. 143—159. Springer, 2020b. doi: 10.1007/978-3-030-58568-6_9.
URLhttps://doi.org/10.1007/978-3-030-58568-6_09.

N. Ma, X. Zhang, H. T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In European Conference on Computer Vision, 2018a.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision

(ECCV), pp. 116131, 2018b.

Ningning Ma, Xiangyu Zhang, and Jian Sun. Funnel activation for visual recognition. arXiv preprint
arXiv:2007.11824, 2020.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural net-
works with real-to-binary convolutions. In International Conference on Learning Representations,
2020.

Micron. Micron. URL https://media-www.micron.com/—/media/client/global/
documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz/
pdf?rev=32d87a7b4a2b4d05ae8d2a047361700d. Accessed: 2021-09-29.

Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: Wide reduced-precision
networks. In International Conference on Learning Representations (ICLR), 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in neural information processing systems, pp.
8026-8037, 2019.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-
tion. In ICLR (Poster). OpenReview.net, 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10428-10436, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525-542. Springer, 2016.

12

https://github.com/liuzechun/ReActNet
https://doi.org/10.1007/978-3-030-58568-6_9
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz.pdf?rev=32d87a7b4a2b4d05ae8d2a047361700d
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz.pdf?rev=32d87a7b4a2b4d05ae8d2a047361700d
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz.pdf?rev=32d87a7b4a2b4d05ae8d2a047361700d

Under review as a conference paper at ICLR 2022

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

Mingzhu Shen, Kai Han, Chunjing Xu, and Yunhe Wang. Searching for accurate binary neural
architectures. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) Workshops, Oct 2019.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105-6114. PMLR, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus
Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural network inference.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 65-74, 2017.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 97-110. IEEE, 2021.

Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method to estimate the energy
consumption of deep neural networks. In 2017 51st asilomar conference on signals, systems, and
computers, pp. 1916-1920. IEEE, 2017.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848—-6856, 2018.

Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, and Zhiru Zhang. Fracbnn:
Accurate and fpga-efficient binary neural networks with fractional activations. In The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 171-182, 2021.

Tianchen Zhao, Xuefei Ning, Xiangsheng Shi, Songyi Yang, Shuang Liang, Peng Lei, Jianfei Chen,
Huazhong Yang, and Yu Wang. Bars: Joint search of cell topology and layout for accurate and
efficient binary architectures. arXiv preprint arXiv:2011.10804, 2020.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network or more
networks per bit? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4923-4932, 2019.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Peng Chen, Linggiao Liu, and Ian Reid. Structured
binary neural networks for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 413-422, 2019.

A APPENDIX

Before we present further details in the following sections, we present an overview on the total
amount of computation that was used during this work. We measured the total GPU hours for the
three experiments in Section [.5] of our paper. These experiments (BaseNet k=1, BaseNet k=4,
BoolNet k=4) required 192, 256, and 336 GPU hours respectively, in total: 784 GPU hours.

We have recorded more than 7191 GPU hours for our ablation studies and our intermediate, initial, or
discarded experiments (some of which were not presented in the paper), but estimate that a further
1500-2000 hours were needed in experiments before we started measuring the GPU runtime.

13

Under review as a conference paper at ICLR 2022

A.1 TRAINING DETAILS AND FURTHER EXPERIMENTAL RESULTS

The training strategy is mostly based on|Bethge et al.|(2020). More specifically, we use the RAdam
optimizer by [Liu et al.| (2019) with a learning rate of 0.002 without weight decay, use the cosine
learning rate decay by (Guo et al.|(2019), and train with a batch size of 256 for 60 epochs. We only
use random flipping and cropping of images to a resolution of 224 x 224 for augmentation and finally
normalize the data according to the mean and standard deviation of the dataset. During validation we
resize the images to 256 x 256, and then crop the center with a size of 224 x 224 (and normalize
in the same manner as during training). Our implementation is based on PyTorch (Paszke et al.,
2019), and the code can be found in the supplementary material ZIP archive. The implementations
of many previous works can not be sped up with XNOR and popcount (also observed by Fromm
et al.| (2020)), since they use padding with zeros, which introduces a third value ({—1,0, +1}) in the
feature map. To circumvent this issue, we use Replication padding, which duplicates the outer-most
values of the feature map, thus the values are limited to {—1, +1}. A further difference to previous
work, is our progressive weight binarization technique to remove the need for two-stage trainings, as
discussed in the following Section.

A.1.1 PROGRESSIVE WEIGHT BINARIZATION VS. TWO-STAGE TRAINING

We have introduced the progressive weight binarization strategy in Section [3.4] Equation [7] and
discussed the results briefly in Section[4.] As presented in our main paper, training with progressive
weight binarization leads to a higher accuracy, if we train for the same total number of epochs.
However, we also conducted an experiment using a linear increase (\'y = 1 —t +¢, € = 10-9)
instead of our proposed exponential increase (\; = o?) of the slope (see Figure . We chose o, so
the final A values are equal, i.e. if ¢yax represents the final epoch, then A\ = X = 106, The

learning curves show that our progressive weight binarization gains the largest advantage by only
“initializing” the values during a brief initial phase of the training.

A.1.2 CODE SUBMISSION

Within the supplementary material ZIP archive we provide our training code. We added all details
needed to reproduce each of our experiments depicted in Section [4.5]of our paper in the respective
folders:

¢ BaseNet(k=1) in BaseNet_k=1
¢ BaseNet(k=4) in BaseNet_k=4
¢ BoolNet(k=4) in BoolNet_k=4

The complete code used for each run can be found in the subfolder src and the exact running

command is saved in src/run. sh (in some cases the number of GPUs needs to be provided in the
environment variable NUM_GPU or replaced in the run command).

-— Validation Acc. Train Acc. & Validation Acc. (Top K=5) Train Acc. (Top K=5)

Ours (linear) Ours (exponential)

R 18,6
713 713
9: .] T .]]
0 20 40 60 0 20 40 60
Epoch

Figure 5: The training and validation accuracy curves of our proposed Progressive Weight Binarization.
An exponential increase of the slope leads to much better results, than a linear increase.

14

Under review as a conference paper at ICLR 2022

-— Validation Acc. Train Acc. % Validation Acc. (Top K=5) Train Acc. (Top K=5)

BaseNet (k=1) BaseNet (k=4) BoolNet (k=4)
e e LI s e SEEE Vs SEi h b b
: —63.0
M.B M'Z CEEET Sty SR
15
0: t

3

BO.

13,

T T T T T T T T Oi T T T T

64 128 192 256 0 64 128 192 256 O 64 128 192 25¢
Epoch

COO00O00000
oRNWhUION®

olow

Figure 6: The training and validation accuracy curves of our trainings discussed in the comparison to
the state-of-the-art BNNs in Section@

AvgPool Acc. (%) | MaxPool Acc. (%) | Stride=2 Acc. (%)
k Bits Groups | Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
1 32 1 63.5 87.8 63.0 87.7 60.7 86.4
1 1 63.1 88.0 62.5 87.2 60.9 86.7
32 1 66.0 89.4 67.0 90.0 63.4 87.9
8 32 8 65.0 88.0 65.3 88.9 62.2 87.0
1 1 64.1 88.5 65.0 89.0 62.6 87.3

Table 2: Our ablation study on CIFAR100 regarding different downsampling methods. The number
of bits refers to both the input activation and weight binarization of the 1 x 1 convolution in the
shortcut branch.

We also added the output logs (Logs/training.log), data CSV (logs/data.csv), and total
training time (1ogs/time). Further, we plotted the learning curves regarding training and validation
accuracy (lLogs/acc.png - a summary of all runs can be seen in Figure|[6).

We use a virtualized environment for PyTorch (Paszke et al.,[2019) based on Ubuntu for our code
setup. The hosts system thus needs support for enrooﬂ (or docke. Further, the host system requires
the nvidia-containerﬂ library and a recent NVIDIA CUDA driver (we tested driver version 465.27
with CUDA 11.3) for training with GPU. Since several additional requirements are needed to be
installed within the Pytorch base image, we provide an example installation script install. sh,
that can be used to set up the additional requirements inside a virtual container. The install. sh
script also contains complete commands (in the comments) to setup a container based on enroot.
Note, that the ImageNet dataset also needs to be downloaded and prepared manually in the usual
manner (using a train and val folder for the respective split). The validation images need to be moved
into labeled subfolders. The dataset then needs be mounted into the container, example commands are
in the file install. sh (default path inside the container is /mnt /imagenet/{train, val}).

A.2 ABLATION STUDY ON THE DOWNSAMPLE STRUCTURE

As described in Section[3.2] we modify the 1 x 1 convolution in the downsampling branch in contrast
to many previous works (Rastegari et al., 2016} [Liu et al.| 2018 |2020b; Martinez et al.} 2020). While
being helpful for accuracy, the 32-bit 1 x 1 convolution involves extra computing, memory and energy
consumption, which is in conflict with our motivation. Using our multi-slice strategy with k = 8, the
number of input channels for the 1 x 1 convolution also increases by the same factor of 8. To counter
this increase of 32-bit operations, it could be an option to use 8 groups in the convolution, which
would keep the number of 32-bit operations constant, compared to previous work. However, this
strategy still conflicts with our motivation to remove most 32-bit operations. Furthermore, the average

"https://github.com/NVIDIA/enroot
https://www.docker.com/
*https://github.com/nvidia/libnvidia-container

15

https://github.com/NVIDIA/enroot
https://www.docker.com/
https://github.com/nvidia/libnvidia-container

Under review as a conference paper at ICLR 2022

Overati Power| Area Overati Power| Area %7 5
pera 10N (mw) (um2) pera 10N (mw) (umz) g % &":
BConv | 108.8 | 131737 | Int3 Conv(1/8) | 504 | 836269 & ~ =
- - - Int Agg 43.5 | 53238 %
T6-bit Sign| 1.4 | 7056 | 32bitSign | 3.3 | 13548 §_ _.—|_| |—|—|_|
32-bit a7 61310671 Int8 BN 50.1 |274606 S Sagel Sagez Staged Staged
RPReLU [BoolNet (k=1) [] BoolNet (k=4) [] Regular BNN

(a) Energy consumption per unit operation and circuit area of (b) Memory usage comparison between
commonly used components. blocks of different stages.

Figure 7: A theoretical memory usage comparison of one convolution block between BoolNet and
previous work. Actual numbers can differ during implementation, but BoolNet shows significantly
lower memory usage, especially in early stages, even when using our Multi-slice strategy with k = 4.

pooling layer used in previous work, requires additional 32-bit addition and division operations,
which could be reduced with either using a max pooling layer or a stride of 2.

Therefore, to find a good downsample module with binary data flow, we first design the downsample
template as [Conv,, x, BN, Sign]. In this template, x indicates the different candidate downsample
operations (e.g., average pooling, max pooling, or adding stride=2 to the convolution) and y the
number of bits used for weights and activations in the convolution.

We conducted a detailed ablation study on the CIFAR100 dataset for both k = 1 and k = 8 (see
Table[2). The results show, that max pooling combined with 1-bit 1 x 1 convolution (groups = 1) has
the same Top-1 accuracy as average pooling combined with 32-bit 1 x 1 convolution (groups = 8).
Thus, we decide to use max pooling instead of average pooling, since it does not involve any 32-bit
operations, such as addition and division.

Based on the above analysis, we suggest using the [32-bit Conv (groups = k), AvgPool2d, BN, Sign]
structure for the downsample branch if we want to increase accuracy. However, if we intend to build a
fully binary data flow, we suggest using the [1-bit Conv (groups = 1), MaxPool2d, BN, Sign] structure
(independent of k) instead to balance the accuracy and hardware efficiency. The latter is also the
structure we used for our experiments in the main paper.

A.3 MORE DETAILS ABOUT THE ENERGY CONSUMPTION SIMULATION

In Table [3] we give an example of calculating the memory consumption among different stages of our
network. Compared with regular BNNs with mixed precision data flow, the fully binary representation
of BoolNet significantly lowers the memory consumption during inference process. This change leads
to less memory access operations to DRAM which has a much higher power consumption than the
on-chip SRAM. To the best of our knowledge, our work is the first one to study the impact of memory
access on energy consumption. The details of simulation and energy estimation are introduced as
follow.

Overall hardware architecture. An illustrative graph on the data flow between the hardware
components is provided in Figure[§] In the typical BNN Bi-RealNet, only the convolution is binary,
the shortcut branch adopts high precision, and other calculations adopt high precision, too. The
corresponding accelerators we designed have different computing modules (but their parallelisms
are the same, that is, the computing time of the whole block is roughly the same, and the binary
convolution units are exactly the same). In addition, for fair comparison, these accelerators have the
same size of on-chip memory (192KB for feature map and 288KB for weight) and the same off-chip
memory.

Computing unit. The binary convolution units of different BNN accelerators are exactly the same, but
other calculation units of BoolNet are simpler. The first is the shortcut branch of downsample blocks.
The shortcut branch of traditional BNNs are high-precision, and the high-precision convolution
downsampling is adopted. Although the convolution on the shortcut branch accounts only for a
small amount of calculation, the power consumption of a high-precision convolution is 37 times that
of a binary convolution, and the extra convolution unit also increases the complexity of the circuit.

16

Under review as a conference paper at ICLR 2022

Table 3: Theoretical minimum memory requirement of all convolution blocks (can differ depending
on the implementation). k is the number of slices. The stages have different input size and thus lead
to different memory requirements.

Memory Stage 1 with 64 x 56 x 56 Stage 2 with 128 x 28 x 28
Usage of | BoolNet (k=1) BoolNet (k=4) Regular BNN | BoolNet (k=1) BoolNet (k=4) Regular BNN
Weights 36,864 36,864 36,864 147,456 147,456 147,456
Activation 200,704-1 200,704-4 200,704-1 100,352-1 100,352-4 100,352-1
= 200,704 = 802,816 = 200,704 = 100,352 = 401,408 = 100,352
Output & | 2-200,704-1 2-200,704-4 2-200,704-32 | 2-100,352-1 2-100,352-4 2-100,352-32
Features =401,408 =1,605,632 = 12,845,056| = 200,704 = 802,816 = 6,422,528
Total 638,976 2,445,312 13,082,624 448,512 1,351,680 6,670,336
Memory Stage 3 with 256 x 14 x 14 Stage 4 with 512 X 7 x 7
Usage of | BoolNet (k=1) BoolNet (k=4) Regular BNN | BoolNet (k=1) BoolNet (k=4) Regular BNN
Weights 589,824 589,824 589,824 2,359,296 2,359,296 2,359,296
Activation 50,176-1 50,176-4 50,176-1 25,088-1 25,088-4 25,0881
= 50,176 = 200,704 = 50,176 = 25,088 = 100,352 = 25,088
Output & | 2:50,176-1 2-50,176-4 2-50,176-32 2-25,088-1 2-25,088-4 2-25,088-32
Features = 100,352 = 401,408 = 3,211,264 = 50,176 = 200,704 = 1,605,632
Total 740,352 1,191,936 3,851,264 2,434,560 2,660,352 3,990,016
D 32-bit Inputs Comp?xltjlljg Unit (I 1-bit Inputs Compilt\illl:lg Unit
. . v L v
32-bit Zero Points > Binarization 1-bit Weights BinaryConv
1-bit Weights > BinajConv
SRAM SRAM 16-bit Zero Points Parameterized
Ghost-Sign
16-bit Weights Batch
Normalization
32-bit v 1-bit l
Residual Connection . Residual Connection
> Aggregation >
32-bit Outputs] | 1-bit Outputs]
(a) Bi-RealNet Data Flow on Hardware (b) BoolNet Data Flow on Hardware

Figure 8: Hardware data flow comparison between Bi-RealNet and BoolNet.

Secondly, regarding batch normalization and binarization, since the shortcut branch has changed from
high-precision to binary, the aggregation position of the shortcut branch and the main branch has
also changed, so that the binarization and batch normalization can be simplified together, while the
calculation of typical BNN can not be simplified, and their power consumption is high. In addition,
there is a difference in the complexity of the aggregation operation itself (boolean logic operation
vs. 32-bit addition) and the computational overhead of non-linear functions (i.e. RPReLU) added in
networks such as ReActNet. These aspects show the efficiency of BoolNet.

Energy consumption per unit. The energy consumption per unit operation of some commonly used
components is shown in Figure However, since the units are not operated the same number of
times, the total energy consumption during one inference graph is different. For instance, the energy
consumption of Int8 downsampling convolution is 37 x larger than binary downsamplinﬂ Surpris-
ingly, per unit operation, a 32-bit RPReLU consumes 26% more energy than a binary convolution,
Int8 BN consumes about half of a binary convolution, and those two components are commonly used
in conjunction with binary convolutions in existing BNNs.

On-chip memory. We use CACTI 6.5 to simulate the power of on-chip SRAM. According to the
requirements of the computing unit, we configure the on-chip SRAM to meet the parallelism of the
corresponding data reading bandwidth (64 bits for BoolNet and 2048 bits for traditional BNNs),
while keeping the total storage unchanged. In addition, we split a large SRAM into multiple SRAMs

437=504 % 8/108.8, where Int8 Conv has only 1/8 of the parallel capability of BConv.

17

Under review as a conference paper at ICLR 2022

to meet the requirement that the read time is less than the clock cycle (1ns) of the computing unit.
Finally, the simulation software can give the energy consumption of one read or one write of each
SRAM unit. For each layer of the network, we know the total number of operations for each type
of operation. According to the circuit parallelism, we can calculate the number of cycles. Then,
according to the amount of data that needs to be read from (or written to) SRAM in each cycle, we
can get the energy that the accelerator spends to access on-chip SRAM.

Off-chip memory. Due to the limited amount of on-chip memory, it is inevitable to save some data
to (or read from) off-chip DRAM in BNN computing. In our BoolNet design, due to the large total
number of weights, all BNN accelerators need to read weights from DRAM and write to SRAM
before the computation of each layer. In addition, for traditional BNN, the intermediate feature maps
are larger, which cannot be completely cached on-chip. It is also necessary to save the extra part to
DRAM, to read it back in the next layer. With the amount of read-write operations of data to (and
from) DRAM and SRAM, the power consumption data of DRAM read-write operations (SRAM
has been given by the CACTI simulation in the previous step) is also needed to estimate the overall
energy consumption. We use the DDR4 Power Calculator provided by Micron, to configure a DDR
UDIMM module composed of four 8Gb x16 chips, which adopts the speed grade of -075E, and the
maximum transmission rate is 2666MT/s. The calculator gives the average energy consumption of
reading and writing data with 64 bits parallelism.

Detailed throughput. The detailed throughput of the accelerators for BaseNet, BoolNet, BiRealNet,
ReActNet, XnorNet are 2125, 2044, 2237, 2237, 2237 samples per second, respectively.

18

	Introduction
	Related Work
	BoolNet
	Improving Accuracy with Additional 32-bit Components
	BaseNet: Replacing 32-bit Components with Boolean Operations
	BoolNet: Enhancing Binary Information Flow
	Training with Progressive Weight Binarization

	Experiments
	Training Details
	Ablation on Network Design and Training Strategies
	Ablation on the Multi-slice Binary Convolution
	Energy Consumption Evaluation
	Comparison to State-of-the-Art BNNs

	Conclusion
	Appendix
	Training Details and Further Experimental Results
	Progressive Weight Binarization vs. Two-Stage Training
	Code Submission

	Ablation Study on the Downsample Structure
	More Details About the Energy Consumption Simulation

