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Abstract

We introduce Non-Euclidean-MDS (Neuc-MDS), an extension of classical
Multidimensional Scaling (MDS) that accommodates non-Euclidean and
non-metric inputs. The main idea is to generalize the standard inner prod-
uct to symmetric bilinear forms to utilize the negative eigenvalues of dissim-
ilarity Gram matrices. Neuc-MDS efficiently optimizes the choice of (both
positive and negative) eigenvalues of the dissimilarity Gram matrix to re-
duce STRESS, the sum of squared pairwise error. We provide an in-depth
error analysis and proofs of the optimality in minimizing lower bounds of
STRESS. We demonstrate Neuc-MDS’s ability to address limitations of
classical MDS raised by prior research, and test it on various synthetic and
real-world datasets in comparison with both linear and non-linear dimen-
sion reduction methods.

1 Introduction

Many datasets in applications adopt dissimilarities that are non-Euclidean and/or non-
metric. Examples of such popular dissimilarity measures [19, 7] include Minkowski distance
(Lp), cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
Studies in psychology have long recognized that human perception of similarity is not a
metric [42]. Further, dissimilarity matrices with negative entries (e.g.: cosine similarity,
correlation, signed distance) have also been widely used in various problems. Negative inner
product norms also have deep connections to hyperbolic spaces as well as the study of
spacetime in special relativity theory.

In many machine learning practices, embedding in low dimensional vector space is often ex-
plicitly or implicitly done within the data processing pipeline. Such embedding may already
need to consider more general dissimilarities. For example, one branch of graph learning
adopts embedding in non-Euclidean spaces (e.g., hyperbolic spaces [9]), and machine learn-
ing for physics model and data (AI4Sicence) needs to consider more general inner product
norms [22]. In transformer models [45, 13], the attention mechanism can also be viewed as
learning a general bilinear form on tokens. Despite the wide adoption of general dissim-
ilarity measures in practice, theoretical study of embedding and dimension reduction for
non-Euclidean non-metric data appears to be still very limited.

In this paper we consider one of the most classical algorithms for data embedding and
dimension reduction — multidimensional scaling – and develop a non-Euclidean, non-metric
version with theoretical performance guarantee.

Background on MDS. Classical multidimensional scaling (cMDS) takes as input a Eu-
clidean distance matrix (EDM), i.e., a symmetric matrix D ∈ Rn×n where each entry is
the squared Euclidean distance between two points in Euclidean space, and recovers the
Euclidean coordinates. Using a standard double centering trick, D can be turned into a
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Gram matrix B = XTX where X encodes the Euclidean coordinates. For the purpose of
producing a low-dimensional vector, classical MDS takes k eigenvectors corresponding to
top k largest eigenvalues of the Gram matrix B. This minimizes the strain, the difference
(Frobenius norm) in terms of the Gram matrix.

When the input distance matrix is not a Euclidean distance matrix, this problem is called
metric MDS [1]. Metric MDS considers the minimization of STRESS [28], defined as the
sum of squared difference of pairwise embedding distances to the input dissimilarities. Min-
imizing STRESS makes the problem to be non-linear and there is no closed-form solution,
though one can use either gradient descent or Newton’s method [35, 26]. Nevertheless, in
practice, cMDS is often applied for non-Euclidean distance matrix. In this case, the centered
matrix B is no longer positive semi-definite. The common practice is keep the top positive
eigenvalues and throw away the negative eigenvalues.

Two recent papers [41, 38] pointed out that classical MDS produces suboptimal solutions
on non-Euclidean distance matrix when considering STRESS. This is not a surprise, since
cMDS, minimizing strain, does not minimize STRESS. However, a more problematic issue
is that when using more dimensions in cMDS (i.e., increasing k), the STRESS error first
drops and then increases. We call this phenomena Dimensionality Paradox. It is theoret-
ically unsatisfactory and counter-intuitive that embeddings by classical MDS using more
dimensions could yield worse results.

The error analysis in [38] sheds light on this issue. When the input matrix is Non-Euclidean,
the negative eigenvalues carry crucial information. cMDS, keeping only positive eigenvalues,
is intrinsically biased – the more positive eigenvalues used the more it deviates from the input
data. A real eradication of this issue must address the root cause, i.e., applying an algorithm
meant for Euclidean geometry on non-Euclidean data.

Our Contributions. We extend multidimensional scaling to non-Euclidean geometry, by
generalizing the dissimilarity function from the standard inner product (which defines Eu-
clidean geometry) to the broader family of symmetric bilinear forms Φ(u, v) = uTAv, where
the symmetric matrix A does not have to be positive semi-definite. For dimension reduction,
we look for both a low dimensional vector representation and an associated bilinear form,
that together approximate the input dissimilarity matrix with minimum STRESS error.
Specifically, the key contributions are as follows:

� We conduct an in-depth analysis on STRESS error for any chosen subset of k < n eigen-
values of the input centered dissimilarity matrix. We propose Neuc-MDS, an efficient
algorithm that finds the best subset of eigenvalues to minimize a lower bound of STRESS.

� Beyond the constraints of eigenvalue subsets, we extend our findings to the general linear
combinations of eigenvalues. Our advanced algorithm, Neuc-MDS+, finds the best linear
combination of eigenvalues to minimize the lower bound objective.

� We provide theoretical analysis for the asymptotic behavior of cMDS and Neuc-MDS on
random symmetric matrices. First, both necessarily produce large STRESS if the target
dimension k = o(n) – on completely unstructured data aggressive dimension reduction
shall not be expected. Further, when k = Θ(n), the STRESS of Neuc-MDS monotonically
decreases to 0 while the STRESS of cMDS increases and eventually reaches a plateau.

� Empirically we evaluate Neuc-MDS and Neuc-MDS+ on ten diverse datasets encompass-
ing different domains. The experiment results show that both methods substantially
outperform previous baselines on STRESS and average distortion, and fully resolve the
issue of dimensionality paradox in cMDS. Our codes are available on Github2.

2 Related Work

Our work is in the general family of similarity learning [25, 3] with dimension reduction,
going beyond metric learning and embedding. Due to the huge amount of literature on this
topic we only mention those that are most relevant.
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MDS Family and Embedding in Euclidean Spaces. As one of the most useful em-
bedding and dimension reduction techniques in practice, the MDS family has many vari-
ants. Non-metric MDS [36, 37] considers a monotonically increasing function f on input
dissimilarity and minimizes STRESS between {f(Dij)} and embedded squared Euclidean
distances. Generalized multidimensional scaling (GMD) considers the target space as an
arbitrary smooth surface [6]. In addition, non-linear dimension reduction methods such as
Isomap [39], Laplacian Eigenmaps [2], LLE [34], t-SNE [23, 44] consider data points from
a non-linear high-dimensional manifold and extract distances defined on the manifold. In
all these methods, the points are still embedded in Euclidean spaces. Some of these meth-
ods such as Isomap directly apply cMDS as the final step. If the dissimilarity is highly
non-Euclidean, we can replace cMDS by Neuc-MDS to get performance improvement.

Dimension Reduction in Non-Euclidean Spaces. There is also prior work that finds
embedding of manifold data in non-Euclidean spaces, e.g., on a piece-wise connected man-
ifold [50, 5], on a sphere [11, 15, 48], and in hyperbolic spaces [15, 48]. Very recently,
there is study of Johnson–Lindenstrauss style dimension reduction for weighted Euclidean
space [30], hyperbolic space [4], as well as PCA [8], dimension-reduction [16], and t-SNE in
hyperbolic space [20]. Our dissimilarity function generalizes beyond hyperbolic distances.

3 Dimension Reduction with Bilinear Forms

Let P denote a dataset of size n. Let D ∈ Rn×n be the dissimilarity matrix of dataset
P , Dij = Dji is a real-valued symmetric dissimilarity measure between pair pi, pj ∈ P ,
i ̸= j ∈ [n], and all diagonal entries Dii = 0 (i.e., D is a hollow matrix). D is the analog of
squared Euclidean distance matrix in classical MDS. But hereD is not necessarily Euclidean,
may not be a metric (e.g. violating triangle inequality) and may have negative entries. Our
goal is to obtain (1) a low-dimensional vector representation for each element in P , and (2)
a function f that computes a dissimilarity measure using the calculated low dimensional
vectors. Since the input dissimilarities are not necessarily Euclidean nor a metric, we look
for the function f beyond Euclidean distances, but stay within a broader family of inner
products or bilinear forms.

A bilinear form Φ on a vector space V is a function Φ : V × V → R which is linear in each
variable when the other variable is fixed. More precisely, Φ(au+ v, w) = aΦ(u,w)+Φ(v, w)
and Φ(w, au+v) = aΦ(w, u)+Φ(w, v) for all u, v, w ∈ V and any scalar a. We only consider
symmetric bilinear forms Φ, i.e., Φ(u, v) = Φ(v, u). A bilinear form is positive definite (or
positive semi-definite) if Φ(u, u) > 0 for ∀u ̸= 0 (or Φ(u, u) ≥ 0). Symmetric matrices and
symmetric bilinear forms are two sides of a coin. Namely, fix a basis W = {w1, ..., wn}
of the vector space, there is a one-to-one correspondence between them. That is, A =
[Φ(wi, wj)]n×n is a symmetric matrix. Conversely, give a symmetric matrix A, one defines
a symmetric bilinear form Φ(u, v) = uT

WAvW where uW is the coordinate of vector u in the
basis W .

Formally, we have the following problem definition.

Definition 1 (Non-Euclidean Dimension Reduction). Given a symmetric dissimilarity ma-
trix D of a dataset P of size n and a natural number k ≤ n, find a collection of n k-
dimensional vectors P̂ = (p̂1, · · · , p̂n : p̂i ∈ Rk) with a bilinear form f : Rk × Rk → R,
f(u, v) = uTAv, such that the STRESS error ||D̂ −D||2F for the dissimilarity matrix D̂ of

P̂ given by D̂ij = f(p̂i, p̂j) is minimized.

3.1 MDS in the Lens of Bilinear Forms

A special case of a symmetric bilinear form is the standard inner product ⟨, ⟩ on Rn. Indeed
the inner product ⟨u, v⟩ = uT v is a symmetric positive definite bilinear form. The inner
product of u − v and u − v is precisely the squared Euclidean distance ||u − v||2. The
Euclidean space is Rn equipped with the standard inner product. Thus metric geometry
of Euclidean space is governed by the inner product. On the other hand, a basic theorem
of linear algebra states that a finite dimensional vector space equipped with a symmetric
positive definite bilinear form is isometric to the Euclidean space of the same dimension.
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Thus geometry of a positive definite symmetric bilinear form, or symmetric positive definite
matrices, is nothing but Euclidean geometry.

When D represents the inner products of pairwise differences (i.e., squared Euclidean dis-
tances) of n points P in Rd, D is called a Euclidean distance matrix (EDM). It can be shown
that by taking B = − 1

2CDC, where C = I − 1
n1n1

T
n is the centering matrix and 1n is a

vector of ones, one obtains the Gram matrix B = XTX where X is d×n dimensional matrix
of the n coordinates of dimension d. The matrix B is a symmetric positive semi-definite
matrix. Thus using eigendecomposition of B one can recover the coordinates X. This pro-
cedure is classical multidimensional scaling (cMDS) [40]. Furthermore, if one would like to
use k-dimension coordinates with k < d, classical MDS suggests to take the eigenvectors
corresponding to the k largest positive eigenvalues of the Gram matrix B. This minimizes
the strain, the difference (Frobenius norm ∥ · ∥F ) in terms of the Gram matrix.

Xcmds ≜ argmin
X∈Rn×k

∥XTX − (
−CDC

2
)∥2F . (1)

Now consider a general symmetric dissimilarity matrix D of size n×n, it naturally associates
Rn with a symmetric bilinear form Φ. In many real-world situations, the dissimilarity matrix
is not positive, nor negative definite, i.e., the bilinear form is indefinite. This means the
intrinsic geometry (Rn,Φ) is non-Euclidean. The relationship between the Gram matrix
and square distance matrix still holds for indefinite bilinear forms. See Appendix A

In practice, classical MDS is often the default choice even when the input dissimilarity
matrix D is not an EDM, i.e., the centered matrix B = − 1

2CDC is not positive semi-
definite. Classical MDS, which simply drops negative eigenvalues of B to produce positive
semi-definiteness does not respect the geometry well. Indeed, multiple researchers have
observed suboptimal and counter-intuitive performance [41, 38]. For example, increasing k
may lead to increased STRESS error – keeping more dimensions makes the approximation
worse! On a second thought, such results are not surprising. If the input data does not carry
Euclidean geometry, forcing it through a procedure for Euclidean geometry is fundamentally
problematic.

Our main observation is that a vector space with an indefinite symmetric bilinear form
has its own intrinsic geometry. This geometry, even though may not be metrical, carries
the most accurate information about the dissimilarity matrix and the datasets. Suppose the
centered matrix B = − 1

2CDC has p > 0 positive eigenvalues and q > 0 negative eigenvalues.
The associated indefinite bilinear form Φ has signature (p, q). One such example is

Φ(u, v) =

p∑
i=1

uivi −
p+q∑

i=p+1

uivi. (2)

The geometry of a finite dimensional vector space with a symmetric bilinear form of signature
(p, q) where p, q > 0 is much less developed compared to Euclidean geometry. When q = 1,
this is the Minkowski geometry and is closely related to relativity theory in physics and
hyperbolic geometry [33] in mathematics. For general (p, q), one should probably abandon
the notion of distance for indefinite spaces. Namely, the expression Φ(u−v, u−v), even if it
is positive, should not be considered as the square of the distance between two points u, v.
According to [33], one calls

√
Φ(u− v, u− v) the Lorenzian distance between u, v. Despite

the term distance in the name, the Lorenzian distance does not satisfy triangle inequality
in general.

3.2 Non-Euclidean MDS

We propose Non-Euclidean MDS, a novel linear dimension reduction technique using bilinear
forms. For a vector v, we use Diag(v) as the diagonal matrix with v along the main diagonal
and zero everywhere else. For any given symmetric dissimilarity matrix D ∈ Rn×n, let the
eigen decomposition of the centralization of D be given as follows:

−CDC/2 = UΛUT (3)
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where U ∈ Rn×n is the orthogonal matrix of eigenspace and Λ ∈ Rn×n is the diagonal
matrix Λ =: Diag(λ) with eigenvalues λ ≜ (λ1, · · · , λn)

T , λ1 ≥ λ2 ≥ · · · ≥ λn. By using an
algorithm that will be discussed in Section 4 we will choose k of the eigenvalues, represented
by a binary indicator vector w = (w1, · · · , wn) ∈ {0, 1}n with a value of 1 (or 0) indicating
the corresponding eigenvalue is chosen (or not chosen). Let

X =
√
Λ ·Diag(w) · UT =: (X1, · · · , Xn), (4)

Note that
√
Λ contains complex numbers for non-PSD matrix D. Since w has only k non-

zero values, we can drop the n − k zero rows in X (corresponding to the eigenvalues not
selected) and have a k-dimensional vector representation of the data. Now we can derive
dissimilarities by defining

D̂i,j ≜ (Xi −Xj)
T (Xi −Xj), D̂ = DIS(X) :=

(
D̂i,j

)
.

See ?? 1 for details.

Algorithm 1: Non-Euclidean Multidimensional Scaling

Input: n× n dissimilarity matrix D, integer k ≤ n.
Output: k × n matrix X of k-dim vectors
B = − 1

2CDC, where C = I − 1
n1n1

T
n ;

Compute eigenvalue vector λ and eigenvectors U of B: λ = (λ1, λ2, · · ·λn)
T with

λ1 ≥ λ2 ≥ · · · ≥ λn;
Compute the indicator vector of k selected eigenvalues w = EV-Selection(λ, k);

Compute X by
√
Λ ·Diag(w) · UT with n− k zero rows dropped;

In the description above, we allow the coordinates in X to take complex numbers, such
that we can take D̂i,j to be the standard dot product of Xi − Xj with Xi − Xj . Al-

ternatively, we can keep X to take real coordinates, i.e., X =
√
Λ′ · Diag(w) · UT with

Λ′ = Diag(|λ1|, · · · , |λn|). Again we drop the n− k zero rows in X and take a bilinear form
f(u, v) = uTAv, where A is a k by k diagonal matrix, with the element at (i, i) to be 1
(or −1) if the corresponding eigenvalue chosen is positive/negative. Notice that the bilinear
form takes precisely the format of (p, q)-distance as in Equation (2).

We have a few remarks in place: First we are not throwing away the negative eigenvalues.
As will be explained later we actually keep eigenvalues of largest magnitude and some could
be negative. As a consequence D̂ may have negative real values, which is expected as we are
moving away from Euclidean distances and input entries in D may even start to be negative.
Second, when D is an EDM, i.e., all eigenvalues are non-negative, Neuc-MDS reduces to
classical MDS. Last, similar to cMDS, our method also starts with computing the eigenvalues
of the Gram matrix. For large datasets, fast (approximation) algorithm for partial SVD can
also be applied to our methods. For example, on n × n symmetric matrices, using power
methods one can iteratively compute partial SVD up to k largest/smallest eigenvalues in
O(kn2). With randomness introduced, it can be reduced to O(log k · n2) [18, 27]. For
really large datasets, the dissimilarity matrix with size O(n2) might already be too large
to be acquired or stored, one may extend MDS through local embedding methods like
Landmark MDS [12] or Local MDS [10]. This approach can also be applied to neuc-MDS
to substantially speed up computation without suffering too much on performance (See
Section 6 for empirical results).

4 Theoretical Results for Non-Euclidean MDS

To establish the foundation of theoretical analysis, we first analyze the STRESS error of
Neuc-MDS and decompose it into three terms. Next we show an efficient algorithm that
minimizes the first two terms that dominate. Last, we examine Neuc-MDS and classical
MDS on random Gaussian matrices.
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4.1 Error Analysis

Inspired by the analysis of STRESS of classical MDS [38], we adopt a similar approach and
decompose the STRESS error into three terms. Let λ ∈ Rn be the vector of all eigenvalues
λ = (λ1, · · · , λn)

T , λ(2) ∈ Rn be the vector of all squared eigenvalues λ(2) = (λ2
1, · · · , λ2

n)
T ,

w̄ ≜ 1n − w be the indicator vector of dropped eigenvalues, w̄ ∈ {0, 1}n, and ⊙ be the
Hadamard product. We have the following result with proof in Appendix B.

Theorem 2. It holds that ∥D̂ −D∥2F = C1 + C2 + C3, where

C1 = 4w̄Tλ(2), C2 = 4(w̄Tλ)2, C3 = 2n∥(U ⊙ U)(w̄ ⊙ λ)∥2F − C2/2.

Note that C1/4 is the sum of squared eigenvalues that are dropped, and C2/4 is the square
of the sum of eigenvalues that are dropped. Individually, we can minimize C1 by keeping
eigenvalues of large absolute value; and C2 by balancing the dropped eigenvalues such that
the summation has a small magnitude. For term C3, from Equation 21 in Proof B, we know
C3 ≥ 0. In [38] it is argued that if one takes the approximation ∥(U ⊙ U)(w̄ ⊙ λ)∥2F ≈
∥ 1√

n
1n1

T
n (w̄ ⊙ λ)∥2F for a random orthogonal matrix U , then C3 ≈ 0. Although it is

empirically observed in [38] that C3 is roughly constant and hence negligible for optimization,
there are some cases in our experiments in which C3 is not negligible.

In light of Theorem 2, we would like to approximately optimizing the STRESS by minimizing
the lower bound C1 + C2, which can be formulated as a quadratic integer programming
problem: Given a set of n values L = {λi} and a positive integer k > 0, choose a k-subset
S ⊆ L such that

min
S⊆L,|S|=k

∑
λ∈L\S

λ2 +
( ∑
λ∈L\S

λ
)2
. (5)

When λi’s are all positive, the best choice is to take the k largest eigenvalues of L, i.e.,
the cMDS’ solution. However, with a mixture of positive and negative eigenvalues, taking
the top k largest eigenvalues is no longer optimal — specifically, as k increases, the first
error term is monotonically reduced but the second error term could start going up. In the
following subsection, we discuss an optimal algorithm to solve Equation (5).

4.2 An Optimal Algorithm for Eigenvalue Selection

The optimization problem described in Equation (5) is a special case of the family of
quadratic integer programming problems. Though in general, quadratic integer program-
ming is NP-hard [31], we show that this particular one is actually solvable in polynomial
time. Formally, we have:

Theorem 3. For the optimization problem defined in (5), there exits an optimal solution
with r largest positive values and s smallest negative values in L, r + s = k. And, there is
an O(n)-algorithm that outputs an optimal solution.

Our algorithm (?? 2) is greedy and iteratively selects the eigenvalue with the highest absolute
value. Specifically, let S be the set of selected eigenvalues andH(S) be the sum of eigenvalues
not selected. Initially S = ∅. In each iteration, if H(S) < 0, select the negative eigenvalues
remained of the greatest magnitude and add it to S; if H(S) > 0, pick the largest positive
one. If H(S) = 0, pick the eigenvalue with the greatest magnitude. The complete proof of
Theorem 3 is delayed to Appendix C.

4.3 Analysis on Random Symmetric Matrices

Here, we analyze the important error term C1+C2 in Theorem 2 for cMDS and Neuc-MDS
when the input (centered) dissimilarity matrix is a symmetric random matrix. Our analysis
is established upon Wigner’s famous Semicircle Law [46, 47], which states the following.

Proposition 4 (Semicircle Law [47]). Suppose B ∈ Rn×n is a symmetric random matrix
where every element is independently distributed with equal densities and second moments
σ2. Let Sa,b(B) be the number of eigenvalues of B that lie in the interval (a

√
n, b

√
n). Then

the expected value E(Sa,b(B)) of Sa,b(B) satisfies

lim
n→∞

E(Sa,b(B))

n
=

1

2πσ2

∫ b

a

√
4σ2 − x2dx. (6)
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Algorithm 2: Eigenvalues Selection for Neuc-MDS

Input: L: sorted set of n eigenvalues, integer k.
Output: k eigenvalues S
Initialize S = ∅, repeat

Compute H(S) =
∑

λ∈L\S λ

Select an eigenvalue λ∗ such that λ∗ ·H(S) ≥ 0 and λ∗ has the largest absolute value.
Add λ∗ to S.

until |S| = k;

Our results are formally stated as follows with proof in Appendix D.

Theorem 5. Suppose a random symmetric matrix B ∈ Rn×n where Bij is independently
distributed with equal densities and second moments σ2, is taken as the centered matrix3 to
classical MDS and Neuc-MDS, both selecting k eigenvalues with k ≤ n. Let eC denote the
C1 + C2 error for cMDS and eN for Neuc-MDS, we have:

1. when k = o(n), eC ≈ n2σ2(1 + 4k2

n − 4k
n ), and eN ≈ n2σ2(1− 4k

n )

2. when k = cn, with c → 1, eN ≈ 0. When c ≥ 1/2, eC ≈ 0.1801 · n3σ2.

By Theorem 5, Neuc-MDS has a strictly better C1 + C2 error than cMDS. Second, if we
take |S| = k ≪ n = |L|, the term C1 =

∑
λ∈L\S λ2 is almost equal to

∑
λ∈L λ2 ≈ n2σ2.

Therefore the STRESS error of both classical MDS and Neuc-MDS cannot be very small
if the target dimension k is o(n). Lastly, when k = cn, with c → 1, eN is monotonically
decreasing and eventually reaches 0. On the other hand, for cMDS, when c ≥ 1/2, eC
reaches a plateau at about 0.1801 · n3σ2. Notice that this error has an extra factor of n
compared to the error for small k.

For real world data the Gram matrix is likely far from a random matrix. The analysis above
points out that aggressive dimension reduction can be indeed only a luxury for structured
data, even if we use inner products that are not limited to Euclidean distances. Second,
any real world data carries some random measurement noise. When the scale of such
random noise becomes non-negligible, STRESS error introduced by such noise cannot be
small with aggressive dimension reduction. We would recommend practitioners to examine
the spectrum of eigenvalues to gain insights on the power or limit in reducing dimensions.

5 Beyond Binary Selection of Eigenvalues

Both cMDS and Neuc-MDS choose a subset of k eigenvalues from the input Gram matrix.
This can be considered as applying Diag(w) to the eigenvalue vector Λ (Equation 4) to
filter some eigenvalues out. Such operators can be viewed as a special case of more general
low-rank linear maps T : Rn → Rn with rank(T ) = k ≤ n.

Here we consider a new family of embeddings X̃ = U Λ̃1/2 with Λ̃ being a rank-k diagonal
matrix whose diagonal entries are given by some λ̃ ∈ Rn with only k nonzero entries. Note
that there always exists a rank-k linear operator T such that λ̃ = T (λ). Then we ask if
we can improve Neuc-MDS further with a rank-k linear map of λ? This question can be
answered by the following theorem:

Theorem 6. Given a dissimilarity matrix D ∈ Rn×n with eigenvalues λ ∈ Rn of its
Gram matrix −CDC/2 = UΛUT , for any rank-k (k ≤ n) diagonal matrix Λ̃ = Diag(λ̃)

with λ̃ ∈ Rn with k nonzero entries only on coordinates given by some index k-set W ⊆
[n], let w := 1W ∈ {0, 1}n be the indicator vector of W , and let D̃ be the dissimilarity

matrix reconstructed from X̃ = Λ̃1/2UT . Then the STRESS error of D̃ can be expressed as:

3Here we take B as the centered matrix. Therefore the diagonal entries of B do not have to be
0. Further, the distribution of centered matrix (ignoring the scaling factor) CAC is the same as the
distribution of Φ(A) plus an additional zero eigenvalue. Therefore, one can consider Φ(A) sampled
from random matrices. When n → ∞, they are asymptotically the same. See more discussion in
the appendix (Lemma 12).
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∥D̃ −D∥2F = C̃1 + C̃2 + C̃3 with

C̃1 := 4
[
w̄Tλ(2) +wT∆λ(2)

]
, C̃2 := 4

[
w̄Tλ+wT∆λ

]2
, C̃3 := 2n∥(U ⊙U)(∆λ)∥2F − C̃2

2
,

where ∆λ := λ − λ̃. The first two terms, C̃1 + C̃2, as a lower bound of the STRESS, is
minimized as

4w̄Tλ(2) +
4(w̄Tλ)2

1 + k
with λ̃ to be λ̃∗ := λ⊙w +

w̄Tλ

1 + k
w. (7)

Remark 7. Recall the decomposition of STRESS in Theorem 2, the lower bound 4w̄Tλ(2)+
4(w̄Tλ)2 = C1 + C2/(k + 1) ≤ C1 + C2. Therefore, it has a better lower bound of STRESS
compared to Neuc-MDS.

Theorem 6 provides a constructive way to obtain the optimal λ̃ that (approximately) mini-
mizes the STRESS error for a prefixed w which is determined by an indicator set W served
as the constraints of nonzero entries on λ̃. The next question is how to find an optimal
k-set W on which the optimal λ̃∗ has the lowest lower bound. Essentially, we need to solve
the following optimization problem:

min
|W |=k

[∑
i/∈W

λ2
i +

1

1 + k
(
∑
i/∈W

λi)
2

]
(8)

Proposition 8. For the optimization problem (8), there exits an optimal solution with r
largest positive values and s smallest negative values in L, r + s = k. And, there is an
O(n)-algorithm that outputs the optimal solution.

The algorithm follows a similar greedy manner as EV-Selection, with only one adjustment:
in each step, compare the two marginal gains provided by the largest positive eigenvalue and
the lowest negative eigenvalue among the remained ones, and choose the positive/negative
eigenvalue of largest magnitude if the corresponding gain is smaller. We name the algorithm
Neuc-MDS+, and present the complete algorithm with its correctness proof in Appendix C.

6 Experiments

This section presents experimental results of Neuc-MDS and Neuc-MDS+. First, we evaluate
the performance on dissimilarity error of two proposed algorithms comparing with closely-
related baselines on three metrics: STRESS, distortion and additive error. Then we show
that the dimensionality paradox issue observed on cMDS is fully resolved by Neuc-MDS and
Neuc-MDS+.

Synthetic Data. We introduce two synthetic datasets: Random-simplex and Euclidean-
ball, both with non-Euclidean dissimilarities. See details in Appendix E.1. On a high level,
suppose the dataset has size n, we construct a Random-simplex such that for each vertex, the
first n− 1 coordinates virtually form a simplex, while the last coordinate almost dominates
the distances between the other points, which creates a large negative eigenvalue for the
Gram matrix. The Euclidean-ball dataset (similar to Delft’s balls [14]) considers n balls of
different radii with the distance of two balls defined as the smallest distance of two points
on the two respective balls. The dissimilarities by this definition no longer satisfy triangle
inequality.

Real-world Data. We consider both genomics and image data. For genomics data, we
include 5 datasets from the Curated Microarray Database (CuMiDa) [17], each indicating
a certain type of cancer. Following the practice mentioned in [43], pairwise dissimilarities
are generated with entropic affinity with the diagonal as zero. We also test three celebrated
image datasets: MNIST, Fashion-MNIST and CIFAR-10. The dissimilarity matrix for each
dataset captures 1000 images randomly sampled for each class. We use three measures
in [38] to calculate the dissimilarities.
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An essential guidance of our choice of datasets is the existence of substantial negative eigen-
values. Otherwise, Neuc-MDS and cMDS are equivalent. Figure 1 illustrates the eigenvalue
distribution of the Renal dataset. Table 1 shows the basic statistics of each dataset and the
number of negative eigenvalues of the Gram matrix. All datasets are non-Euclidean and
non-metric.

Figure 1: Negative (red), positive (blue). Table 1: Datasets used in experiments.

Dataset Size # {λ < 0} Classes Metric
Simplex 1000 900 N.A. ✗

Ball 1000 887 N.A. ✗

Brain 130 53 5 ✗
Breast 151 59 6 ✗

Colorectal 194 78 2 ✗
Leukemia 281 117 7 ✗

Renal 143 57 2 ✗

MNIST 1000 454 10 ✓
Fashion 1000 429 10 ✓

CIFAR-10 1000 399 10 ✓

Baselines. We include cMDS, Lower-MDS [38] and SMACOF (Scaling by MAjorizing
a COmplicated Function) [29] as baselines. Lower-MDS [38] looks for a symmetric, low-
rank, trace-zero, and positive semi-definite matrix. SMACOF minimizes STRESS using
majorization and is one of the best nonlinear optimization algorithms for MDS. All methods
are deterministic therefore variance is not concerned.

Table 2: Evaluation Results on STRESS.

Dataset cMDS Lower-MDS Neuc-MDS Neuc-MDS+ SMACOF
Random-Simplex 80.520 31.542 1.179 0.194 15.962
Euclidean Ball 36.975 17.303 1.196 1.351 4e6
Brain (50161) 2.894 0.289 0.046 0.045 0.081
Breast (45827) 2.822 0.423 0.029 0.029 0.078

Colorectal (44076) 1.464 0.221 0.017 0.026 0.036
Leukemia (28497) 2.958 0.624 0.078 0.096 0.005
Renal (53757) 0.490 0.090 0.026 0.036 0.017

MNIST 65.107 37.896 9.935 9.885 2.35e5
Fashion-MNIST 35.235 1.955 0.613 0.612 2.80e5

CIFAR10 26.598 1.276 0.858 0.850 1.63e5

Table 3: Evaluation Results on Average Geometric Distortion.

Dataset cMDS Lower-MDS Neuc-MDS Neuc-MDS+

Random-Simplex 1.049 1.049 1.010 1.004
Euclidean Ball 1.046 1.041 1.013 1.017
Brain (50161) 8.160 42.705 5.809 6.941
Breast (45827) 6.988 31.081 6.205 6.295

Colorectal (44076) 23.938 34.587 20.234 22.475
Leukemia (28497) 6.551 32.214 7.032 6.749
Renal (53757) 21.709 38.282 19.680 21.223

MNIST 1.119 1.104 1.064 1.063
Fashion-MNIST 1.135 1.096 1.068 1.068

CIFAR10 1.129 1.109 1.121 1.118

Performance on Dissimilarity Error. In addition to STRESS as the primary metric,
we also test the average distortion (i.e. multiplicative error) and scaled additive error on all
datasets. For all metrics, a smaller value indicates a more favorable performance. Limited
by space, we leave scaled additive error together with other observations in Appendix E.
With k as the target dimension, for synthetic datasets and images, we set k = 100, for
genomics data, k = 20. The details are presented in Table 2.
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The results4 show that in terms of STRESS, Neuc-MDS and Neuc-MDS+ outperform cMDS
and Lower-MDS consistently by a large margin. SMACOF has comparable performance with
Neuc-MDS in a couple data sets but can go out of bound in others. For average distortion,
the genomics datasets differentiate different methods drastically while the rest datasets
produce comparable results. Neuc-MDS+ occasionally gives slightly higher STRESS than
Neuc-MDS. Recall that both methods focus on optimizing for a lower bound of STRESS
(in Theorem 2 and Theorem 6). This shows that C3 may play a role in practice.

Neuc-MDS Addresses ‘Dimensionality Paradox’. Dimensionality paradox of classical
MDS refers to the observation that STRESS increases as the dimension goes up. When
raising this concern, [38] proposes a Lower-MDS algorithm as mitigation. We show that
Neuc-MDS and Neuc-MDS+ address this issue even better. For Lower-MDS the target
dimension cannot be larger than the number of positive eigenvalues. Our methods do not
have this limitation. Figure 2 shows STRESS on Random-simplex and Renal. In Random-
simplex, cMDS has an increasing STRESS with k = 75 ∼ 100 then stops, and in Renal the
STRESS keeps increasing. In contrast, Lower-MDS converges promptly while Neuc-MDS
and Neuc-MDS+ achieve even lower STRESS. Results on other datasets are in Appendix E.4.

Figure 2: Neuc-MDS and Neuc-MDS+ consistently produce lower STRESS on all dimensions.
Lower-MDS has a shorter curve because the target dimension k is limited to be smaller than the
number of positive eigenvalues.

Landmark MDS Landmark MDS [12] is a heuristic to speed up classical MDS. One chooses
a small number of landmarks and apply MDS on the landmarks first. The coordinates of the
remaining points are obtained through a triangulation step with respect to the landmarks.
We can use the same heuristic to speed up Neuc-MDS. On the random-simplex dataset,
with only 25% points randomly chosen as landmarks the STRESS is only a factor of 1.0644
of the STRESS obtained by Neuc-MDS. If we use only 10% points as landmarks, the final
STRESS is only 1.0898 of the STRESS of Neuc-MDS. This shows that Neuc-MDS can also
be significantly accelerated using the landmark idea, achieving nearly the same STRESS.

7 Discussion and Conclusion

This paper presents an extension of classical MDS to non-Euclidean non-metric settings. We
would like to mention a few future directions. Since we step out of the domain of Euclidean
embedding, both the input dissimilarity matrix and the one obtained after dimension reduc-
tion can have negative values. Therefore if one would like to feed the output dissimilarity
matrix to another data processing module that by default requires non-negative values, spe-
cial care must be taken to address the negative values. In experiments, we discovered that
Neuc-MDS+ achieves similar stress as Neuc-MDS and produces much fewer negatives values
in the output dissimilarity matrix (Appendix E.3). How to effectively use such dissimilari-
ties in downstream learning and inference tasks would be a major future work. Note that
the geometry of general bilinear forms is a largely unexplored territory.
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A Hollow Matrices and Relationship Between Gram and Squared
Distance Matrices

We will prove the following proposition relating hollow symmetric matrices and squared
“distance” matrices.

Proposition 9. (1) Given any symmetric matrix G = [gij ]n×n, there exists a symmetric
bilinear form ⟨, ⟩ on Rn and n vectors v1, ..., vn such that gij = ⟨vi, vj⟩.
(2) Given any hollow symmetric matrix M = [mij ]n×n, there exists a symmetric bilinear
form ⟨, ⟩ on Rn and n vectors v1, ..., vn such that mij = ⟨vi − vj , vi − vj⟩ for all i, j.

Note that the hollow condition mii = 0 is necessary.

Proof. Part (1) is a well known fact from linear algebra. We take v1, ..., vn to be the standard
basis of Rn. From the symmetric matrix G, one defines the symmetric bilinear form by the
formula ⟨u, v⟩ = uTGv and vice versa.

To see part (2), consider the centered symmetric matrix B = CMC where C = I − J
n is

the double centering matrix and J is the matrix whose entries are 1. One can see that its
(i, j)-th entry bij of matrix B is given by

bij = mij −
1

n

n∑
k=1

(mik +mkj) +
1

n2

n∑
k=1

n∑
l=1

mkl. (9)

One can easily verify from the formula that the centering condition holds:

n∑
k=1

bik = 0. (10)

By part (1) of the proposition, one finds n vectors v1, ..., vn in Rn and a symmetric bilinear
form ⟨, ⟩ on Rn such that −2bij = ⟨vi, vj⟩. Now we claim that mij = ⟨vi − vj , vi − vj⟩, i.e.,
−2mij = bii + bjj − 2bij .

Indeed, by dropping the constant term 1
n2

∑n
k=1

∑n
l=1 mkl in (9), we have

bii + bjj − 2bij (11)

=mii −
2

n

n∑
k=1

mik +mjj −
2

n

n∑
k=1

mkj − 2mij +
2

n

n∑
k=1

(mik +mkj)(12)

=− 2mij . (13)

The last step uses the fact that M is a hollow matrix, i.e., mii = mjj = 0.

In summary, we call G = [⟨vi, vj⟩] the Gram matrix and M = [⟨vi − vj , vi − vj⟩] and the
squared distance matrix of a symmetric bilinear form ⟨, ⟩. Obviously, we can determine M
from G by the formula ⟨vi−vj , vi−vj⟩ = ⟨vi, vi⟩+⟨vj , vj⟩−2⟨vi, vj⟩, i.e., mij = gii+gjj−2gij .
We can also recover the Gram matrix G from M from the double centering construction
CMC if the center of the vectors v1, ..., vn is 0, i.e.,

∑n
i=1 vi = 0. To see this, given a

squared distance matrix M associated to n vectors v1, .., vn, we can replace vi’s by vi − w
for a fixed vector w without changing M . Now by taking w = 1

n

∑n
i=1 vi to be the center of

v1, ..., vn, we can normalize
∑n

i=1 vi = 0. In this case, formula (9) states that

⟨vi, vj⟩ = −mij

2
+

1

2n

n∑
k=1

(mik +mkj)−
1

2n2

n∑
k=1

n∑
l=1

mkl, (14)

where mij = ⟨vi − vj , vi − vj⟩.
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B Proofs of Error Analysis of Non-Euclidean MDS

In this section, we want to prove our main Theorem 6 for the error analysis of STRESS
error. Note that Theorem 2 is a special case of Theorem 6 for ∆λ⊙w = 0, which is exactly
the case in MDS and Neuc-MDS with λ̃ given by λ⊙w.

Theorem 6. Given a dissimilarity matrix D ∈ Rn×n with eigenvalues λ ∈ Rn of its
Gram matrix −CDC/2 = UΛUT , for any rank-k (k ≤ n) diagonal matrix Λ̃ = Diag(λ̃)

with λ̃ ∈ Rn with k nonzero entries only on coordinates given by some index k-set W ⊆
[n], let w := 1W ∈ {0, 1}n be the indicator vector of W , and let D̃ be the dissimilarity

matrix reconstructed from X̃ = Λ̃1/2UT . Then the STRESS error of D̃ can be expressed as:
∥D̃ −D∥2F = C̃1 + C̃2 + C̃3 with

C̃1 := 4
[
w̄Tλ(2) +wT∆λ(2)

]
, C̃2 := 4

[
w̄Tλ+wT∆λ

]2
, C̃3 := 2n∥(U ⊙U)(∆λ)∥2F − C̃2

2
,

where ∆λ := λ − λ̃. The first two terms, C̃1 + C̃2, as a lower bound of the STRESS, is
minimized as

4w̄Tλ(2) +
4(w̄Tλ)2

1 + k
with λ̃ to be λ̃∗ := λ⊙w +

w̄Tλ

1 + k
w. (7)

The proof will essentially follow the pipeline in [38]. Our results and proofs can be viewed
as an extension to a more general family of problems. We first show that the STRESS error
can be decomposed into three terms C̃1 + C̃2 + C̃3. Then we analyze the approximate lower
bound C̃1 + C̃2 and figure out the minimum.

We first introduce some notations and lemmas we need to use later. Recall that C =
I − 1

n1n1
T
n is the centering matrix. First note the following fact:

Lemma 10. The n-dimensional vector 1n is an eigenvector with eigenvalue 0 of the matrices
C,U and X̃T X̃.

Proof. By definition of C = I − 1
n1n1

T
n , it is easy to check C1n = 0. Also by definitions of

U and X̃T X̃ we can get similar results.

As a corollary, we have the following lemma:

Lemma 11. −CD̃C/2 = CX̃T X̃C = X̃T X̃.

Proof.
D̃ = Diag(G)1n − 2X̃T X̃ + 1T

n Diag(G) (15)

By Lemma 10, we have
−CD̃C/2 = CX̃T X̃C (16)

By Lemma 10 again, we have
CX̃T X̃C = X̃T X̃ (17)

Let Q be a Householder reflector matrix defined as follows:

Q ≜ I − 2

vTv
vvT with v = [1, · · · , 1, 1 +

√
n]T (18)

For any symmetric matrix A ∈ Rn×n, let Φ(A) ∈ R(n−1)×(n−1), f(A) ∈ Rn−1, ξ(A) ∈ R be
given by QAQ through the following equation:

QAQ =:
[ Φ(A) f(A)
f(A)T ξ(A)

]
(19)

We need the following properties of Q:
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Lemma 12 ([32]). For a symmetric matrix A, we have

CAC = Q
[
Φ(A) 0
0 0

]
Q. (20)

Lemma 13 ([21, 38]). For any matrix M , we use diag(M) = (Mi,i) to denote the column
vector of M ’s diagonal entries. For a symmetric hollow matrix A[

2f(A)
ξ(A)

]
=

√
nQdiag

(
Q

[
Φ(A) 0
0 0

]
Q

)
Now we are ready to prove our main theorem.

Proof of Theorem 6.

∥D̃ −D∥2F =∥Q(D̃ −D)Q∥2F (21)

=∥Φ(D̃)− Φ(D)∥2F + ∥ξ(D̃)− ξ(D)∥2F + 2∥f(D̃)− f(D)∥2F (22)

For the first term:

∥Φ(D̃)− Φ(D)∥2F = ∥Q
[
Φ(D̃) 0
0 0

]
Q−Q

[
Φ(D) 0
0 0

]
Q∥

by Lemma 12 = ∥CD̃C − CDC∥2F

= 4∥−CD̃C

2
− −CDC

2
∥2F

by Lemma 11 = 4∥X̃T X̃ − −CDC

2
∥2F

= 4∥U(Λ− Λ̃)U∥2F
= 4∥∆λ∥2F
= 4

[
w̄Tλ(2) +wT∆λ(2)

]
= C̃1

(23)

For the second term:

From 0 = Tr(D − D̃) = Tr(Φ(D)− Φ(D̃)) + (ξ(D)− ξ(D̃)), we can get

C̃2 := ∥ξ(D̃)− ξ(D)∥2F = (ξ(D̃)− ξ(D))2 = 4(

n∑
i=1

∆λi)
2 = 4[w̄Tλ+wT∆λ]2 (24)

For the third term:

By Lemma 13, [
2f(D)
ξ(D)

]
=

√
nQdiag

(
Q

[
Φ(D) 0
0 0

]
Q

)
.[

2f(D̃)
ξ(D̃)

]
=

√
nQdiag

(
Q

[
Φ(D̃) 0
0 0

]
Q

)
.

Taking the difference and then using a theorem on diagonalization and the Hadamard prod-
uct from [24], we have:[

2f(D)− 2f(D̃)
ξ(D)− ξ(D̃)

]
=

√
nQdiag

(
Q

[
Φ(D)− Φ(D̃) 0

0 0

]
Q

)
by Lemma 12 =

√
nQdiag(C(D − D̃)C)

= −2
√
nQdiag(U Diag(∆λ)UT )

= −2
√
nQ(U ⊙ U)(∆λ)
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Therefore,

∥
[

2f(D)− 2f(D̃)
ξ(D)− ξ(D̃)

]
∥2F = 4n∥(U ⊙ U)(∆λ)∥2F (25)

Finally, we have that

2∥f(D)− f(D̂)∥2F = 2n∥(U ⊙ U)(∆λ)∥2F − C̃2/2 = C̃3 (26)

The above arguments prove the first part of the Theorem.

Now we want to analyze the lower bound of

C̃1 + C̃2 = 4[w̄Tλ(2) +wT (∆λ)(2)] + 4[w̄Tλ+wT∆λ]2 (27)

Denote C := w̄Tλ, Z := wT∆λ. By the Cauchy–Schwartz inequality, we know that

wT (∆λ)(2) ≥ 1

k
(wT∆λ)2.

The equality is obtained when ∆λ has the same value on all coordinates of W . Now check
that

wT (∆λ)(2) + [w̄Tλ+wT∆λ]2 ≥ 1

k
(wT∆λ)2 + (C + Z)2(28)

=
1

k
Z2 + (C + Z)2 (29)

=
1 + k

k
Z2 + 2CZ + C2 (30)

≥ C2

1 + k
(31)

The last inequality achieves the lower bound with Z = − k
1+kC through the standard analysis

of univariate quadratic equations. Based on the above arguments, we have that

C̃1 + C̃2 ≥ 4w̄Tλ(2) +
4(w̄Tλ)2

1 + k
(32)

Since the lower bounds from the Cauchy–Schwartz inequality and the univariate quadratic
equation are all tight, we can conclude that the final lower bound is tight and it can be
achieved with

∆λ = − w̄Tλ

1 + k
w ⇐⇒ λ̃ = λ⊙w +

w̄Tλ

1 + k
w (33)

This finishes the proof.

C Proofs of Eigenvalue Selection Algorithm

Proof of Theorem 3. For any subset S ⊆ L, define F (S) =
∑

λ∈L\S λ2+
(∑

λ∈L\S λ
)2
. Note

that this is the value we want to minimize (i.e., C1 + C2). Without loss of generality, we
may assume that none of the chosen eigenvalues in S is 0, since it does nothing to change
F (S).

We first prove the first claim of Theorem 3.

Proof. First, we show that an optimal solution S of size k exists. Assume we have some
optimal solution S of size less than k. Let b ∈ L \ S. Then we have:

F (S ∪ {b})− F (S) = (−b2) + (H(S)− b)2 −H(S)2 = −2bH(S) (34)

Now it is clear that if H(S) is 0, we can add any eigenvalue to S and F (S) would not
change. If H(S) is not 0, then adding an eigenvalue to S that matches the sign of H(S),
would reduce F (S) and the opposite would increase F (S). We will continue to make use of
this fact. Adding an eigenvalue that matches the sign of H(S) is also always possible since
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H(S) is the sum of the eigenvalues we are choosing from. Thus, we can just continue to add
eigenvalues to S until it is of size k.

Next, assuming S is of size k, we show that it must be the one as described in Theorem 3.
We can prove this by contradiction. Without loss of generality, we may assume that S
contains a positive eigenvalue b such that there exists some a ∈ L\S satisfying a > b. First,
we observe that since S is optimal:

0 ≤ F (S \ {b})− F (S) = b2 + (H(S) + b)2 −H(S)2 = 2bH(S) + 2b2 (35)

which reduces to H(S) ≥ −b. Then, we have:

F (S ∪{a} \ {b})−F (S) = (b2− a2)+ (H(S)+ b− a)2−H(S)2 = (b− a)(2b+2H(S)) (36)

We know that b − a < 0 and b > 0, H(S) ≥ −b, so we get that the expression is negative.
Thus, S ∪ {a} \ {b} has a lower value under F and contradicts our assumption that S is
optimal.

Let S be the optimal solution from Theorem 3. Let T be the solution obtained by EV-
Selection. We will show that F (S) = F (T ). We use contradiction again. Without loss of
generality, we assume that S has more positive eigenvalues than T . Now consider H(S∩T ).
From a similar argument used in the proof of Theorem 3 (1), due to S \ T containing only
positive eigenvalues, H(S ∩ T ) ≥ 0. Now if H(S ∩ T ) = 0, we know that S \ T contains
one eigenvalue, — otherwise, removing a positive eigenvalue from S would decrease F (S).
Then, we know that F (S) = F (T ) and that is a contradiction. If H(S ∩ T ) > 0, then we
have reached a contradiction in the definition of T because EV-Selection will only choose
eigenvalues in T \ S when all negative eigenvalues in T ∩ S, Q, has been chosen. However,
for all subsets P of positive eigenvalues of T , H(P ∪Q) > 0, so no eigenvalue in T \ S will
ever be chosen by EV-Selection.

Algorithm 3: Eigenvalue Selection for Generalized Neuc-MDS

Input: Sorted eigenvalues λ, integer k.
Output: Set S of selected eigenvalues
Let L be the set of all eigenvalues λ, S = ∅
while |S| < k do

T+ = S ∪ argmaxλ∈L\S,λ>0

T− = S ∪ argmaxλ∈L\S,λ<0

A1 =
∑

λ∈L\T+
λ2 + 1

|T+|+1

(∑
λ∈L\T+

λ
)2

A2 =
∑

λ∈L\T−
λ2 + 1

|T−|+1

(∑
λ∈L\T−

λ
)2

if A1 < A2 then
S = T+

else
S = T−

end
end

Proof of Proposition 8. For any subset S ⊆ L, define F (S) =
∑

λ∈L\S λ2 +
1

|S|+1

(∑
λ∈L\S λ

)2
. Note that this is the value we want to minimize (i.e., C1 + 1

|S|+1C2).

Without loss of generality, we may assume that none of the chosen eigenvalues in S is 0,
since it does nothing to change F (S).

We first prove the first claim in Proposition 8.

Proof. First, we show that an optimal solution S of size k exists. Assume we have some
optimal solution S of size less than k. Let b ∈ L \ S. Then we have:

F (S ∪ {b})− F (S) = (−b2) +
1

|S|+ 2
(H(S)− b)2 − 1

|S|+ 1
H(S)2 ≤ − 2

|S|+ 1
bH(S) (37)
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Now it is clear that if H(S) is 0, adding any eigenvalue to S would not increase F (S). If
H(S) is not 0, then adding an eigenvalue to S that matches the sign of H(S), would reduce
F (S). We will continue to make use of this fact. Adding an eigenvalue that matches the
sign of H(S) is also always possible since H(S) is the sum of the eigenvalues we are choosing
from. Thus, we can just continue to add eigenvalues to S until it is of size k.

Next, we will show there must be an S as described in Proposition 8. We can prove this
by contradiction. Without loss of generality, we may assume some optimal S contains a
positive eigenvalue b such that there exists some a ∈ L\S satisfying a > b. We can directly
observe since S is optimal

0 ≤ F (S ∪ {a} \ {b})− F (S) =(b2 − a2) +
1

|S|+ 1
((H(S) + b− a)2 −H(S)2)

=
1

|S|+ 1
(b− a)((|S|+ 2)b+ |S|a+ 2H(S))

Since we know b − a < 0, we get that (|S| + 2)b + |S|a + 2H(S) ≤ 0. First, for the case
where it is equal to 0, we can just take out b and put in a. If S still does not have the
greatest positive eigenvalues, we can repeat our analysis and examine another candidate
positive eigenvalue to be replaced. In the case that it is strictly negative, then we have
H(S) < 0 since |S|, b, a > 0. Then there must exist some negative eigenvalue c that has
not been chosen and if we replace a with c in our analysis, we get that b − c > 0 and
(|S| + 2)b + |S|c + 2H(S) < 0 which gives F (S ∪ {c} \ {b}) < F (S) which contradicts the
optimality of S.

Let S be the optimal solution from Proposition 8. Let T be the solution obtained by
?? 3. We will show that F (S) = F (T ). Note that now that we know |S| = k, we now define

F =
∑

λ∈L\S λ2+ 1
k+1

(∑
λ∈L\S λ

)2
. We use contradiction again. Without loss of generality,

we assume that S has more positive eigenvalues than T . Let a be the largest eigenvalue in
magnitude from T \ S. Let T ′ be the set chosen by ?? 3 right before choosing a. Then let
b be the largest eigenvalue in S \ T ′. By definition of T , we know that:

0 ≥ F (T ′ ∪ {a})− F (T ′ ∪ {b}) =(b2 − a2) +
1

k + 1
((H(T ′)− a)2 − (H(T ′)− b)2)

=(b2 − a2) +
1

k + 1
(a− b)(a+ b− 2H(T ′))

Now let’s compare that with:

F (S ∪ {a} \ {b})− F (S) =(b2 − a2) +
1

k + 1
((H(S) + b− a)2 − (H(S) + b− b)2)

=(b2 − a2) +
1

k + 1
(a− b)(a+ b− 2(H(S) + b))

Now clearly H(S) + b ≤ H(T ′). In the case that H(S) + b = H(T ′), we clearly have
S ∪ {a} \ {b} = T , so we get F (S) = F (T ). In the case that H(S) + b < H(T ′), we also
know that a− b < 0, so we get F (S ∪ {a} \ {b})− F (S) < F (T ′ ∪ {a})− F (T ′ ∪ {b}) ≤ 0.
That violates the fact that S is an optimal set, so we have a contradiction.

D Computations on Random Matrices

We compare the classical multidimensional scaling and our non-Euclidean multidimensional
scaling under the random matrix context, and give the proof of Theorem 5.

We start with a symmetric random matrix B ∈ Rn×n as in Proposition 4, and want to select
k eigenvalues by using the classical and non-Euclidean multidimensional scaling.

We start with classical multidimensional scaling. To select the largest k eigenvalues, we
need to select all eigenvalues greater than (2− r)

√
nσ such that

k

n
=

1

2πσ2

∫ 2σ

(2−r)σ

√
4σ2 − x2dx =

1

2
− 1

π
arcsin (1− r

2
)− 1

π
(1− r

2
)

√
r · (1− r

4
).(38)
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There is not an explicit way to write r as a function of k. For a fixed r, since we want to
drop all eigenvalues smaller than (2− r)

√
nσ, we have

eC

= Σλ∈L\Sλ
2 + (Σλ∈L\Sλ)

2

= n2 · (Σλ∈L\S(
λ√
n
)2 · 1

n
) + n3 · (Σλ∈L\S

λ√
n
· 1
n
)2

= n2 · 1

2πσ2

∫ (2−r)σ

−2σ

x2
√
4σ2 − x2dx+ n3 · ( 1

2πσ2

∫ (2−r)σ

−2σ

x
√

4σ2 − x2dx)2

= n2σ2
[1
2
+

1

π
arcsin (1− r

2
) +

1

π
(1− r

2
)(1− 2r +

r2

2
)

√
r(1− r

4
) +

16n

9π2
r3(1− r

4
)3
]
.

(39)

For non-Euclidean multidimensional scaling, to select the k eigenvalues with largest mag-
nitude, we need to select all eigenvalues with magnitude greater than (2 − r)

√
nσ such

that

k

n
=

1

2πσ2
(

∫ 2σ

(2−r)σ

√
4σ2 − x2dx+

∫ −(2−r)σ

−2σ

√
4σ2 − x2dx)

= 1− 2

π
arcsin (1− r

2
)− 2

π
(1− r

2
)

√
r · (1− r

4
).

(40)

For a fixed r, since we want to drop all eigenvalues with magnitude smaller than (2−r)
√
nσ,

we have

eN = Σλ∈L\Sλ
2 + (Σλ∈L\Sλ)

2

= n2 · (Σλ∈L\S(
λ√
n
)2 · 1

n
)

= n2 · 1

2πσ2

∫ (2−r)σ

−(2−r)σ

x2
√
4σ2 − x2dx

= n2σ2
[ 2
π
arcsin (1− r

2
) +

2

π
(1− r

2
)(1− 2r +

r2

2
)

√
r(1− r

4
)
]
.

(41)

We first consider the case that k = o(n), i.e. we want to reduce the dimension from n to a
much smaller k. Under this assumption, r is a very small positive number. In the classical
case, by applying the Taylor series to equation (38), we get r ≈ ( 3πk2n )

2
3 . Then we plug it

into equation (39) to get

eC ≈ n2σ2(1 +
4k2

n
− 4k

n
).

Similarly, in the non-Euclidean case, we apply the Taylor series to equation (40), we get

r ≈ ( 3πk4n )
2
3 . Then we plug it into equation (41) to get

eN ≈ n2σ2(1− 4k

n
).

This finishes the proof of Theorem 5 (1).

Now we turn to the case that k = cn for a constant c ∈ [0, 1]. We first solve c = k
n in

equations (38) and (40) to get the corresponding r, then plug the r-values in equations
(39) and (41) to get the corresponding eC and eN , respectively. Since equations (38) and
(40) can not be solved explicitly, we can only get numerical values of eC and eN . For
c ∈ (0, 0.5], numerical values of eC and eN as shown in Table 4. For c ∈ [0.5, 1], the classical
multidimensional scaling stabilizes, with eC ≈ (0.5 + 0.1801 · n)n2σ2. Meanwhile, the error
eN for non-Euclidean multidimensional scaling decreases to zero as c increases to 1. More
precisely, if c = 1− ϵ with very small ϵ > 0, equations (40) and (41) give

eN ≈ π2

12
ϵ3n2σ2.

Some numerical values of eN with c ∈ [0.5, 1] are shown in Table 5. This finishes the proof
of Theorem 5 (2).
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c 0.05 0.1 0.15
eC/(n

2σ2) 0.8432 + 0.0078 · n 0.7322 + 0.0265 · n 0.6513 + 0.0512 · n
eN/(n2σ2) 0.8278 0.6864 0.5666

c 0.2 0.25 0.3
eC/(n

2σ2) 0.5933 + 0.0785 · n 0.5531 + 0.1055 · n 0.5269 + 0.1304 · n
eN/(n2σ2) 0.4644 0.3771 0.3027

c 0.35 0.4 0.45
eC/(n

2σ2) 0.5112 + 0.1512 · n 0.5033 + 0.1670 · n 0.5004 + 0.1768 · n
eN/(n2σ2) 0.2397 0.1866 0.1425

Table 4: This table shows the error terms eC and eN of different choices of c ∈ (0, 0.5) with
c = k/n, normalized by dividing n2σ2.

c 0.5 0.55 0.6 0.65 0.7
eN/(n2σ2) 0.1063 0.0770 0.0537 0.0358 0.0225

c 0.75 0.8 0.85 0.9 0.95
eN/(n2σ2) 0.0130 0.0066 0.0028 0.0008 0.0001

Table 5: This table shows the error term eN of different choices of c ∈ [0.5, 1) with c = k/n,
normalized by dividing n2σ2.

E More Details and Results on Experiments

In this appendix we fill the missing details in the experiment section. Our experiments are
implemented with Intel Core i9 CPU of 32GB memory, no GPU is required and the execution
time is no longer than 30 seconds. In the rest of this section, we first introduce the generation
process of synthetic datasets in Appendix E.1; Next we define the evaluation metrics and
perturbation approaches in Appendix E.2; More results on dissimilarities regarding the
scaled additive error, negative distances and negative eigenvalues selected, are demonstrated
in Appendix E.3. With respect to the dimensionality paradox, we provide illustrations
similar to Figure 2 on other datasets in Appendix E.4.

E.1 Synthetic Datasets Generation

The random-simplex dataset is generated with the idea of creating a simplex with one
added dimension that generates all of the variance in the the distances such that the added
dimension corresponds with a negative eigenvalue. This way, we should have a dimension
with a large negative eigenvalue that is impactful on the stress of the embedding.

Specifically, this dataset was generated with points x1, ...x1000, each point having 1000
dimensions. For each point xi, the first 100 coordinates were chosen uniformly randomly
between 0 and .01. The next 899 coordinates were chosen uniformly randomly between 0
and

√
0.5/899. The last coordinate is i × 0.3/1000. Then, the distance between xi and xj

was found in the following way:

d(xi, xj) =

√√√√ 100∑
k=1

(xi(k)− xj(k))2 −
1000∑
k=101

(xi(k)− xj(k))2

where xi(k) is the kth coordinate of xi. The first 999 coordinates essentially form a simplex,
because selecting a large number of coordinates randomly from the same distribution causes
all of the distances to converge to a normal distribution with low variance. Thus, all of
the distances between points using just the first 999 coordinates are very similar. Then,
the last coordinate has “large” discrepancies between all of the points, causing most of the
differences in the distances.

The Euclidean-ball metric was inspired by [49]. The set of distances between objects in space
does not follow triangle inequality, so it becomes a non-euclidean dissimilarity measure. The
particular dataset we use generates the distances by first randomly selecting 1000 points
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uniformly in a 10 dimensional hypercube of length 100. Each of these points is now the
center of a ball. Then, for each ball, with probability 0.9, we select a radius uniformly
randomly between 0 and 5. With probability 0.1, we let the radius be 0.8 times the distance
between the center of this ball to the closest other ball. This closest other ball is based on
the radius of the other ball if it has already been decided. The final distance matrix is just
filled by the distances between the 1000 balls. In this way, we attempt to create some balls
with large radius, so that the triangle inequality is heavily violated, therefore causing the
dataset to deviate more from the Euclidean setting.

E.2 Evaluation and Perturbation Metrics

In addition to STRESS, our evaluation metric include scaled additive error and average
geometric distortion. Scaled additive error by definition is allowing scaling of the distance
matrix of our embedding before calculating stress. To do this, we first ran the embedding
method (e.g., cMDS, Neuc-MDS, or other methods) on the given dissimilarity squared ma-

trix D to get the output dissimilarity squared matrix D̃. Then, we would flatten both D
and D̃ to vectors, and project D onto the line through D̃ to get E. Then we calculate
∥D − E∥ to get scaled additive error. Clearly, this is equivalent to allowing scaling of D̃

to find the minimum stress. For average geometric distortion, we again input D to get D̃,
but this time, we evaluate the distortion of each dissimilarity by dividing entries of

√
D by

entries of
√
D̃. Since distortion is not well defined when dissimilarities become complex,

we skip those. Then, with the remaining valid distortions, we scale the distortions so that
there’s an equal number of them greater than 1 and less than 1, then for those that remain
less than 1, we take their reciprocal. Then, we finally take the geometric average of all of
these distortions. In this way, we basically again allowed scaling of the dissimilarities to find
the minimum possible average distortion.

Next, we had to decide on metrics to use for the image datasets. We took the following
3 metrics from [38]. For the first metric, the distance between two images is first finding
the Euclidean distance between their coordinate representations, and then adding Gaussian
noise to the distances. Because the noise is added directly onto the distances, the end
result is highly likely to be non-Euclidean. For the second metric, we build a k nearest
neighbor graph of the images based on their Euclidean distances. Since the end result is a
graph structure, the shortest path distances are also highly likely to be non-Euclidean. For
the third metric, we randomly removed entries from the coordinate representation of the
images. Then, the distance between two images is decided by taking the Euclidean distance
between coordinates that both images still included. Here, the Euclidean property breaks
down again because triangle inequality would no longer have to hold. In Table 2, we choose
the k-NN metric with k = 2. In the next Appendix section, we show results for higher k and
other metrics applied to the image datasets. As for genomics datasets, we use the entropic
affinities commonly used in t-SNE methods. The main idea is to apply an adaptive kernel,
whose bandwidth depends on a parameter termed as perplexity, to pairwise data entries.

E.3 More Results on Dissimilarity Error

In addition to STRESS and average distortion already reported in Table 2, we further show
the third metric: scaled additive error as defined in Appendix E.2. Note that our algorithms
may produce negative distances, we also report number of negative distances and number
of negative eigenvalues selected. All original results (without scaling) on 10 datasets are
demonstrated in Table 6. Recall we mentioned the results in Table 2 contains some scaling
on the synthetic data and images, we also provide the original values in Table 7.

On scaled additive error, our proposed methods still consistently outperform cMDS and
Lower-MDS considerably. Thus, we have shown that on all metrics our methods yield
more favorable results. It is interesting to observe that Neuc-MDS+ produces much fewer
negative distances than Neuc-MDS, though the number of negative eigenvalues selected are
quite close. Further, two methods have similar performance on STRESS and other metrics.
Therefore in practice, if there is a considerable concern on negative distances, Neuc-MDS+

should become a better choice.
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Table 6: Original Evaluation Results on All Datasets for Lower-MDS (L-MDS), Neuc-MDS
(N-MDS) and Neuc-MDS+ (N-MDS+). Metrics include scaled additive error, number of
negative distances and number of negative eigenvalues selected.

Dataset Scaled Additive Error # Neg Distances # Neg λ Selected

cMDS L-MDS N-MDS N-MDS+ N-MDS N-MDS+ N-MDS N-MDS+

Random-simplex 17758 17760 3415 1392 0 0 8 1

Euclidean-ball 14909 13093 3132 3631 798 523 90 87

Brain (50161) 0.131 0.132 0.063 0.062 5539 1081 8 9

Breast (45827) 0.039 0.039 0.016 0.015 9024 136 8 9

Colorectal (44076) 0.027 0.027 0.012 0.014 12041 1940 6 8

Leukemia (28497) 0.031 0.031 0.021 0.023 32705 2102 8 10

Renal (53757) 0.018 0.018 0.013 0.014 6650 713 7 9

MNIST 7592 6126 3148 3.135 1006 68 42 43

Fashion-MNIST 6153 4421 2.472 2.470 526 8 41 41

CIFAR10 3880 3564 2870 2.842 2968 201 43 44

Table 7: Original Evaluation Results on All Datasets. Metrics include STRESS and average
geometric distortion

Dataset STRESS Average Geometric Distortion

cMDS L-MDS N-MDS N-MDS+ cMDS L-MDS N-MDS N-MDS+

Random-simplex 28.376 17.760 3.433 1.392 1.049 1.049 1.010 1.004

Euclidean-ball 19.229 13.154 3.346 3.676 1.046 1.041 1.013 1.017

Brain (50161) 0.538 0.170 0.068 0.067 8.160 42.705 5.809 6.941

Breast (45827) 0.168 0.065 0.017 0.017 6.988 31.081 6.205 6.295

Colorectal (44076) 0.121 0.047 0.013 0.016 23.938 34.587 20.234 22.475

Leukemia (28497) 0.172 0.079 0.028 0.031 6.551 32.214 7.032 6.749

Renal (53757) 0.070 0.030 0.016 0.019 21.709 38.282 19.680 21.223

MNIST 25.516 6.156 3.152 3.144 1.119 1.104 1.064 1.063

Fashion-MNIST 18.771 4.422 2.475 2.473 1.135 1.096 1.068 1.068

CIFAR10 16.309 3.572 2.930 2.916 1.129 1.109 1.121 1.118

Figure 3: Dimensionality Paradox on Eight Datasets.

Until now all results reported on images are using kNN metric with k = 2 to produce
non-Euclidean dissimilarities. There could be other perturbations for the same purpose, as
mentioned in Appendix E.2. We further test with k = 10 and the other two metrics: adding
noise and random removal on the STRESS. We add noise sampled from Gaussian distri-
bution with variance as the maximum instance-wise difference scaled by 500; For random
removal, we skip 50 images for each. The results are shown in Table 8.
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Table 8: Evaluation Results on Image Datasets with other perturbation metrics.

Dataset STRESS # Neg distances # Neg λ Selected

cMDS L-MDS N-MDS N-MDS+ N-MDS N-MDS+ N-MDS N-MDS+

MNIST (k = 10) 10080 1979 1827 1830 554 63 42 41

Fashion (k = 10) 10249 2112 1936 1915 403 84 38 40

CIFAR10 (k = 10) 9032 1881 2309 2329 3236 996 39 37

MNIST (noise) 1.497e9 1.499e9 1.497e9 1.140e9 0 0 0 7

Fashion (noise) 4.815e9 4.130e9 3.382e9 3.327e9 0 0 2 14

CIFAR10 (noise) 2.303e10 2.116e9 2.303e9 1.848e9 0 0 0 9

MNIST (missing) 3.281e8 1.010e8 3.281e8 1.010e8 0 0 0 0

Fashion (missing) 5.165e8 1.726e8 5.165e8 1.726e8 0 0 0 0

CIFAR10 (missing) 2.132e9 5.756e8 2.132e9 5.756e8 0 0 0 0

E.4 More Results on Dimensionality Paradox

The purpose of this section is to show the consistent performance of Neuc-MDS and Neuc-
MDS+ on all datasets, with respect to mitigating the dimensionality paradox issue. There-
fore, in addition to Figure 2, we provide the same plots for other datasets, and the pa-
rameters all follow the main setup. Figure 3 gives a clear illustration that Neuc-MDS and
Neuc-MDS+ always have lower STRESS than cMDS and Lower-MDS as dimension grows.
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