
Wasserstein Learning of Determinantal Point
Processes

Lucas Anquetil ∗
Criteo AI Lab

lucas.anquetil@insa-rouen.fr

Mike Gartrell
Criteo AI Lab

m.gartrell@criteo.com

Alain Rakotomamonjy
Criteo AI Lab

and University of Rouen
a.rakotomamonjy@criteo.com

Ugo Tanielian
Criteo AI Lab

and Sorbonne University
u.tanielian@criteo.com

Clément Calauzènes
Criteo AI Lab

c.calauzenes@criteo.com

Abstract
Determinantal point processes (DPPs) have received significant attention as an
elegant probabilistic model for discrete subset selection. Most prior work on DPP
learning focuses on maximum likelihood estimation (MLE). While efficient and
scalable, MLE approaches do not leverage any subset similarity information and
may fail to recover the true generative distribution of discrete data. In this work,
by deriving a differentiable relaxation of a DPP sampling algorithm, we present a
novel approach for learning DPPs that minimizes the Wasserstein distance between
the model and data composed of observed subsets. Through an evaluation on
a real-world dataset, we show that our Wasserstein learning approach provides
significantly improved predictive performance on a generative task compared to
DPPs trained using MLE.

1 Introduction
Generative models have enjoyed a great deal of success in the recent years due to their ability to
capture insights from data distributions. Those models have generally been applied to continuous data
by training them using maximum likelihood estimation (MLE) or, more recently, using adversarial
learning with the well-known Generative Adversarial Networks framework [12, 15].

When dealing with discrete data, generative models trained with MLE suffer from a bias due to the
asymmetrical definition of MLE. Equivalent to minimizing a Kullback Leibler divergence, the MLE
cost function pays extremely low cost for generating low-quality samples. Consequently, a generative
model trained by MLE tends to cover the full data distribution at the expense of covering unnecessary
regions [2, 23]. On the other hand, when considering adversarial learning of discrete generative
models, one usually exploits the gradient of the discriminator’s loss when optimizing the generator.
However, since the gradient computation requires backpropagation through the generator’s output, i.e.
the data, adversarial approaches are difficult to apply when generating discrete data. Depending on
the generative model and the structure of the data, there are some ways to overcome this issue. For
instance, [19] was the first to define a sampling scheme with the use of a Gumbel softmax distribution,
and several generalizations of this softmax trick have been recently proposed in the literature [26, 14].

In this work, we address the problem of training a determinantal point process (DPP), a probabilistic
model for subsets drawn from a large collection of items. A DPP parameterizes a probability

∗Currently at INSA Rouen.

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.



distribution over the combinatorial space of subsets of elements drawn from J , which is a discrete
space composed of M distinct items. DPPs are appealing models for this setting, since they are
known to also capture interactions between elements within subsets. More importantly, they offer
efficient polynomial-time algorithms for most probabilistic inference operations over the space of
2M possible subsets, such as normalization, learning, and sampling [10, 18]. In order to move away
from the standard MLE learning framework [8, 22], which may suffer from the flaw described above,
we define a new learning scheme for DPPs based on the minimization of the Wasserstein distance
between the samples generated by the DPP and the training data. Compared to MLE, one of the
main benefits of this Wasserstein-based approach is that it allows us to define a transportation cost
function (e.g a Jaccard distance) that induces a bias on the assumed structure of the space of subsets.
Minimizing this cost function allows the learning to take into account differences between pairs
of subsets and to reduce the distance between subsets based on their similarities. We argue that
this Wasserstein-based scheme leverages more information from the data and results in a better
approximation of the target distribution.

The contributions of this work are the following: 1.) We present a new framework when learning
DPPs that minimizes the Wasserstein distance between the DPP and data composed of observed
subsets. This framework can be applied to any generative probabilistic model for discrete sets. 2.)
Leveraging recent work on a DPP sampling algorithm with computational complexity that is sublinear
in the size of the ground set [3], and stochastic softmax tricks for gradient estimation of discrete
distributions [14], we present a differentiable DPP sampling algorithm that can scale to large ground
sets. 3.) We evaluate our Wasserstein learning approach on a real-world dataset, and show substantial
improvements in predictive performance compared to DPPs trained using MLE. This experimental
evaluation is one of the first to focus on a generative modeling task for DPPs.

2 Background and related work
Determinantal Point Processes Consider a finite set J = {1, 2, . . . ,M} of cardinality M , which
we will also denote by [[M ]]. A DPP defines a probability distribution over all 2M subsets. It is
parameterized by a matrix L ∈ RM×M , called the kernel, such that the probability of each subset
J ⊆ [[M ]] is proportional to the determinant of its corresponding principal submatrix: Pr(Y ) ∝
det(LJ), where LJ = [Lij ]i,j∈J is the submatrix of L indexed by J . The normalization constant for
this distribution can be expressed as a single M ×M determinant:

∑
J⊆[[M ]] det(LJ) = det(L + I)

[18, Theorem 2.1]. Therefore, Pr(J) = det(LJ)/ det(L + I).

In order to ensure that the DPP defines a probability distribution, all principal minors of L must
be non-negative: det(LJ) ≥ 0. Matrices that satisfy this property are called P0-matrices [4,
Definition 1]. Several decompositions of L that partially cover the P0 space are known. One common
decomposition that covers the space of symmetric P0-matrices exploits the fact that L ∈ P0 if L is
positive semidefinite (PSD) [29]. Any symmetric PSD matrix can be written as the Gramian matrix
of some set of vectors: L := V V >, where V ∈ RM×K . We restrict our work in this paper to such
symmetric DPPs with this decomposition, since efficient sampling algorithms, such as [3], are only
available for symmetric DPPs. There are decompositions of L that partially cover the nonsymmetric
P0 [9]; we leave an investigation of Wasserstein learning of nonsymmetric DPPs for future work.

In this work we use the DPP-VFX sampling algorithm [3], which has computational complexity
sublinear inM , and is therefore one of the most efficient exact sampling methods for DPPs. DPP-VFX
relies on a connection between ridge leverage scores [1] and DPPs to implement a distortion-free
intermediate sampling method that enables this sublinear time complexity. Since DPP-VFX requires a
base DPP sampling algorithm, we propose to use the Cholesky-based DPP sampling approach [20, 28].

Estimating gradients in discrete settings The Wasserstein learning approach requires computing
gradients over discrete subset samples drawn from a DPP. Two families of approaches for discrete gra-
dient estimation are score function estimators, such as REINFORCE [30], and continuous relaxations
of discrete distributions, most of which are based on the Gumbel-Max trick [21]. REINFORCE has
the drawback of high variance, making it impractical in many cases. While techniques for variance
reduction exist [24], they often involve highly engineered control variates. Relaxed gradient estima-
tors incorporate bias in order to reduce variance, and are often easier to implement [26]. We choose
the relaxation approach, and leverage recent work on stochastic softmax tricks [19, 26], which is a
unified framework for structured relaxations of discrete combinatorial distributions. In particular, we
use stochastic softmax tricks to develop a differentiable version of the DPP-VFX sampling algorithm,
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with a differentiable version of the Choleksy-based approach as the base DPP sampling algorithm.
As far as we are aware, this is the first instance of a differentiable DPP sampling algorithm.

3 Learning DPPs via Wasserstein minimization
The classical approach for learning a DPP kernel given a collection of subsets is to maximize the
likelihood of data samples drawn from the same distribution as the one used for obtaining training
examples [8, 9]. One advantage of optimizing the (log) likelihood is that the likelihood of samples has
a closed form expression with respect to the model parameters. Since that expression is continuously
differentiable, a gradient ascent algorithm is a natural solution for solving the problem. Instead
of likelihood maximization, we propose a DPP learning approach that minimizes the Wasserstein
distance between the training data and samples generated by the model. This optimization scheme
seeks to improve the approximation of the generative distribution of the data.

The Wasserstein distance is a distance between probability distributions defined on a given metric
space. We let Xn = {x1, · · · , xn} denote the training dataset of size n with empirical distribution
µ =

∑n
i=1 aiδxi , where δ refers to the Dirac distribution, and Yn = {y1, · · · , yn} be the collection

of n sets sampled from the DPP model with distribution ν =
∑m
i=1 biδyi , where the ai and bi

follow a uniform distribution. Given a transportation cost d defined on 2M × 2M , the Wasserstein
distance between µ and ν seeks an optimal coupling P defined on [1, n]2 that minimizes the cost
of transporting mass from µ to ν [27]. When dealing with discrete sets of items, we argue that the
use of the Jaccard distance [17] as as transportation cost function is a good choice. The Jaccard
distance between two sets takes into account both the difference in length and in the items chosen:
dJ(X,Y ) = (|X ∪ Y | − |X ∩ Y |)/|X ∪ Y |, where X,Y ∈ 2M . Since the cost function needs to
be differentiable, we use a differentiable proxy for Jaccard distance. For x ∈ Xn and y ∈ Yn, the
differentiable Jaccard distance dS is defined as follows:

dS(x,y) = 1− x>y

M − (1− x)>(1− y)
, (1)

where x,∈ {0, 1}M is a binary indicator vector and y ∈ [0, 1]M is a continuous relaxation of a binary
vector, with yk, k ∈ [1,M ] being the inclusion probability of item k in the sample. By combining the
definition of the Wasserstein distance with the chosen cost function in (1), we define the following
Wasserstein optimization problem for DPPs:

argmin
V ∈RM×K

n∑
i,j=1

P ?i,jdS(xi,yj) + α ‖V ‖2F with P ? = argmin
P∈Π(µ,ν)

n∑
i,j=1

Pi,jdS(xi,yj) , (2)

where {x1, · · · ,xn} is the training data, {y1, · · · ,yn} is a collection of n subsets drawn from the
DPP, and α ≥ 0 is a tunable hyperparameter for regularization. Recall that we use the decomposition
L = V V > for the DPP kernel.

Algorithm 1 Wasserstein learning
Input: training data, V ∈ RM×K , maxIter
for maxIter steps do

Sample subsets from training data.
Sample subsets from DPP.
Compute P ? in Eq. 2 with [6].
Update V using Eq. 2

end for

For the sake of completeness, the algorithm used
to solve this optimization scheme is described in
Algorithm 1. Solving the optimization problem
defined in Eq. 2 with backpropagation requires
computing the gradient on minibatches with re-
spect to the parameters V , and thus a differen-
tiable sampling algorithm is needed. We use an
estimation of the Wasserstein distance on a mini-
batch [5] by computing a Earth Mover distance,
and consider a new differentiable formulation of

the DPP-VFX sampling algorithm [3], shown in Algorithm 2 in Appendix A. We apply the Gumbel
softmax trick to the base Poisson, and multinomial, and Bernoulli sampling steps in DPP-VFX.
Combined with a differentiable DPP Cholesky-based sampler (Algorithm 6), this sampler generates
continuous relaxations of binary indicator vectors for subsets; see Appendix A for details.

4 Experiments
We perform experiments on the Amazon Baby Registries dataset. This dataset consists of registries
or "baskets" of baby products, and has been used in prior work on DPP learning [7, 9, 11, 22]. The
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Table 1: Wasserstein distance (WD), and test log-likelihood (test ll) for all datasets, for the symmetric
DPP (SDPP), nonsymmetric DPP (NDPP), and the Wasserstein DPP (WDPP). WD results show 95%
confidence estimates obtained via bootstrapping. Bold values indicate the best performance.

Amazon: Apparel (M = 100) Amazon: Diaper (M = 100) Amazon: Feeding (M = 100)
Metric SDPP NDPP WDPP SDPP NDPP WDPP SDPP NDPP WDPP
WD 0.76 ±0.01 0.76 ±0.01 0.58 ±0.01 0.72 ±0.01 0.73 ±0.01 0.63 ±0.01 0.69 ±0.01 0.69 ±0.01 0.65 ±0.01

Test ll -10.09 -9.60 -17.78 -10.54 -9.98 -14.27 -12.13 -11.67 -17.65
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Figure 1: Precision plot for the generated subsets from each model that have a Jaccard distance of at
most ε with at least one subset in the test set, for ε ∈ (0, 1], for the Amazon apparel dataset.

registries contain items from 15 different categories, such as “apparel”, with a catalog of up to
100 items per category. We evaluate on the most popular apparel category, which contains 14,970
registries, as well as the popular diaper and feeding categories.

4.1 Setup and evaluation metrics
A small set consisting of 300 randomly-selected baskets is kept for validation, and a further ran-
dom selection of 2000 baskets is used for testing. We implement our models using PyTorch [25];
Adam [16] is used for optimization, in conjunction with the solver from the POT package [6].

We use the low-rank symmetric DPP (SDPP) [8] and the low-rank nonsymmetric DPP (NDPP) [9],
both trained using MLE, as baseline models for all experiments. We evaluate these baselines and
our Wasserstein DPP model (WDPP) model on a subset generation task, where we estimate the
Wasserstein distance (WD) between subsets sampled from the model and subsets in the test set by
computing the Earth Mover’s distance between these two subset collections using POT [6].

4.2 Results
Consistent with prior work, we see that the MLE NDPP outperforms the MLE SDPP on the test
log-likelihood metric. However, we also observe that MLE is not directly connected to the generative
task, and higher performance on test log-likelihood does not result in higher performance on the
WD metric. As expected, since the Wasserstein learning approach directly optimizes a proxy for
the generative task, the WDPP model significantly outperforms the baseline models in terms of WD.
To provide some evidence of the connection between the WD metric and the quality of generated
subsets, Fig. 1 shows the percentage of generated subsets from each model that have a Jaccard
distance of at most ε with at least one subset in the test set, for ε ∈ (0, 1]. For any given ε, we see that
WDPP outperforms MLE models. This highlights that the WDPP, by being able to take the Jaccard
distance into account, exploits the underlying structure of the combinatorial space 2M , while the
MLE-trained models do not and thus treat all subsets as completely different. We present additional
experimental results in Appendix C. These results provide further evidence that, compared to MLE
DPPs, the WDPP model recovers significantly more structure, and is able to generate subsets that are
substantially closer to observed data.

5 Conclusion
We have presented a new Wasserstein learning approach for DPPs. Unlike conventional MLE
learning approaches for DPPs, this learning approach optimizes a proxy for discrete subset generation.
Empirical results indicate that the proposed approach leads to substantially improved generative
performance compared to MLE. This approach is fully general, and can be readily applied to other
families of models for discrete subsets. We leave such an investigation for future work.
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A Differentiable DPP-VFX Sampling Algorithm

As indicated in Section 2, we have leveraged stochastic softmax tricks (SST) [26] to develop a
differentiable version of the DPP-VFX sampling algorithm [3]. Compared to other DPP sampling
algorithms, DFF-VFX can be substantially faster, since it has time complexity sublinear in M . DPP-
VFX uses a connection between ridge leverage scores [1] and DPPs to implement a distortion-free
intermediate sampling method that enables this sublinear time complexity. The first step of the
sampling algorithm downsamples the items in [[M ]] i.i.d. with probability proportional to the ridge
leverage score of each item, and then runs a conventional DPP sampling algorithm on this thinned
or downsampled set of items, whose cardinality is much smaller than M . We use a differentiable
version of the Cholesky-based DPP sampling algorithm [20, 28] on this thinned set of items. When
downsampling the items, the first step is to select the number of items that will be kept using a Poisson
sampling step, followed by a multinomial sampling step that selects the items that will be included in
the downsampled set. Finally, a Bernoulli sampling step is used to perform rejection sampling, in
order to ensure that the final exact DPP sample will be contained within the downsampled set.

Our differentiable DPP-VFX sampling algorithm is presented in Algorithm 2, where β is a kernel
rescaling parameter that ensures that the Poisson parameter (s ∗ es/q) is equal to the catalog size M .
Differentiable versions of the Poisson, multinomial, Bernoulli, and Cholesky-based samplers invoked
by Algorithm 2 are shown in Algorithm 3, Algorithm 4, Algorithm 5, and Algorithm 6, respectively.

Algorithm 2 Differentiable DPP-VFX sublinear sampling S ∼ DPP(L)
Input: L ∈ RM×M , β > 0
Initialization: L← β ∗L,K ← I − (L + I)−1

li ← Kii ≈ Pr(i ∈ S), s←
∑
i li

if s > 1 then q ← s2 else q ← s

L̃← s
q [ 1√

lilj
Li,j ]i,j

Downsampling: Acc← False
while notAcc do
t ∼ SST-Poisson(s ∗ es/q) (Algorithm 3)
σ1, ..., σt

i.i.d∼ SST-Multinomial
(
l1
s , ...,

ln
s

)
(Algorithm 4)

Acc ∼ SST-Bernoulli
(

es det(I+L̃σ)

ets/q det(I+L̃)

)
(Algorithm 5)

end while
{Sample from thinned item catalog:} S̃ ∼ DPP(L̃σ) (Algorithm 6)
return S = {σi : i ∈ S̃}

Algorithm 3 SST-Poisson sampling
Input: λ, temperature τ
STEP 1: {Truncate the total support and compute the probabilities of the integers from 1 to 2 ∗λ}
massLogProb← log(Poissonλ(i)) for i in [0, ..., 2 ∗ λ]
STEP 2: {Differentiable sampling using the Gumbel Softmax trick over the massLogProb log
mass probability distribution}
oneHotSample ∼ GumbelSoftmaxτ (massLogProb)
STEP 3: {Rearrange the one-hot-vector sample into the desired output format using matrix
operations}
sstPoissonSample← I· oneHotSample
return sstPoissonSample

A.1 Gumbel-Softmax trick

Our differentiable DPP sampling approach relies on the Gumbel-Softmax reparameterization
trick [13], which is an efficient gradient estimator that replaces the non-differentiable sample from a
discrete distribution with a differentiable sample from a Gumbel-Softmax distribution. The Gumbel-
Max trick provides a simple and efficient way to draw samples z from a discrete distribution with
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Algorithm 4 SST-Multinomial sampling
Input: masslogprob, nbsample, upperbound, temperature τ
STEP 1: {Sample upperbound differentiable multinomial samples}
allSamples← [GumbelSoftmaxτ (masslogprob)] for i in [0,...,upperbound]
STEP 2: {Select nbsample unique samples from allSamples}
uniqueMultinomialSamples← unique(allSamples)
return uniqueMultinomialSamples

Algorithm 5 SST-Bernoulli sampling
Input: value, temperature τ
STEP 1: Sample a uniform value and build a massLogProb out of the two values
randValue← uniform(0, 1)
massLogProb← [log(value), log(randValue)], {massLogProb ∈ R2}
STEP 2: {Differentiable sampling using the Gumbel Softmax trick over the massLogProb log
mass probability distribution}
oneHotSample← GumbelSoftmaxτ (massLogProb)
return oneHotSample[0]

Algorithm 6 Differentiable DPP Cholesky linear sampling S ∼ DPP(L)
Input: L ∈ RM×M , temperature τ
K ← I − (L + I)−1

S ← []
for each item i in catalog do

itemValue ∼Differentiable-Bernoulli(Ki,i) (Algorithm 5)
{Add 0 or soft-value to S:}
S← S + binary(itemValue) ∗ sigmoid(itemValue/τ)
{Update the kernel according to the item sample:}
Ki,i ← Ki,i − (1− binary(itemValue))
K[i+1:M],i ← K[i+1:M],i/Ki,i
K[i+1:M],[i+1:M] ← K[i+1:M],[i+1:M] −K[i+1:M],i ⊗Ki,[i+1:M]

end for
return S

class probabilities πi :

z = oneHot
(

argmax
i

[gi + log(πi)]

)
(3)

where g1...gk are i.i.d samples drawn from Gumbel(0, 1). The softmax is used as a continuous,
differentiable approximation to argmax, and generates k-dimensional sample vectors y ∈ ∆k−1,
where each component yi is:

yi =
exp((log(πi) + gi)/τ)∑k
j=1 exp((log(πj) + gj)/τ

for i = 1, ..., k, (4)

where τ is the temperature hyperparameter. As the softmax temperature τ approaches 0, samples from
the Gumbel-Softmax distribution become one-hot and the Gumbel-Softmax distribution becomes
identical to the categorical distribution p(z).

B Hyperparameters for experiments in Table 1

We perform a grid search using a held-out validation set to select the best performing hyperparameters
for each model and dataset. The hyperparameter settings used for each model and dataset are
described below.

Baseline MLE SDPP [7]. For this model, we use K for the number of item feature dimensions
for the symmetric component V , and α for the regularization hyperparameter for V . We use the
following hyperparameter settings:
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• All datasets: K = 30, α = 0, batch-size = 200.

Baseline MLE NDPP [9]. For this model, to ensure consistency with the notation used in [9], we
use D to denote the number of item feature dimensions for the symmetric component V , and D′
to denote the number of item feature dimensions for the nonsymmetric components, B and C. As
described in [9], α is the regularization hyperparameter for the V , while β and γ are the regularization
hyperparameters for B and C, respectively. We use the following hyperparameter settings:

• All datasets: D = D′ = 30, α = β = γ = 0, batch-size = 200.

WDPP (ours). We use K to denote the number of item feature dimensions for V . α is the
regularization hyperparameter. τC , τP , τM and τB are the temperature hyperparameters for Cholesky-
based DPP sampling, stochastic softmax trick (SST) Poisson sampling, SST multinomial sampling,
and the SST Bernoulli sampling, respectively. We use the following hyperparameter settings:

• All datasets: K = 30, α = 0.01, τC = τP = 0.1, τM = 1, τB = 10−8, batch-size = 400.

During WDPP training, we anneal both the learning rate and α.

C Additional Experimental Results

Fig. 2 shows a plot of the kernels learned by the MLE SDPP and WDPP models for the Amazon
feeding dataset. We see more apparent structure in the WDPP kernel, suggesting that our Wasserstein
learning approach allows the DPP to capture more structure from the data than when trained using
MLE. In Fig. 3 we compare a portion of the empirical marginal item distribution with the marginals
captured by the MLE SDPP and WDPP models when trained on the Amazon diaper dataset. We
see that WDPP appears to learn a better approximation of the true marginal distribution of the items
in the data. Finally, Table 2 shows a collection of some of the most common non-singleton subsets
(modes) from the test set, and samples generated by the WDPP, SDPP, and NDPP models, for the
Amazon apparel dataset. Compared to the DPPs trained by MLE, we see that our WDPP model
generates subsets that are much closer to subsets found in the empirical test set.

Table 2: Most common subsets in the empirical test set and samples generated by the WDPP, MLE
SDPP, and MLE NDPP models, for the Amazon apparel dataset.

Most represented
Test subsets

Most represented
sampled subsets for WDPP

Most represented
sampled subsets for SDPP

Most represented
sampled subsets for NDPP

(1, 12) (1, 12) (1, 9) (1, 9)
(12, 23) (11, 12) (9, 20) (9, 20)
(12, 22) (12, 26) (9, 21) (9, 64)
(12, 50) (2, 12) (9, 64) (9, 28, 78)
(2, 12) (12, 23) (9, 88) (9, 37)

(12, 57) (12, 22) (9, 28) (9, 43)
(12, 26) (12, 57) (1, 8) (9, 19)
(11, 12) (12, 39) (9, 95) (9, 49)
(4, 12) (3, 12) (9, 66) (9, 24)

(31, 82) (1, 22) (9, 54) (17, 28)
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Figure 2: Comparison of the learned DPP kernels for the MLE SDPP, MLE NDPP, and WDPP
models, for the Amazon feeding dataset.
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Figure 3: Comparison of the empirical marginal probabilities to the learned marginal probabilities
captured by the SDPP and WDPP models, for the Amazon diaper dataset.

10


	Introduction
	Background and related work
	Learning DPPs via Wasserstein minimization
	Experiments
	Setup and evaluation metrics
	Results

	Conclusion
	Differentiable DPP-VFX Sampling Algorithm
	Gumbel-Softmax trick

	Hyperparameters for experiments in tab:predictive-qual
	Additional Experimental Results

