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ABSTRACT

We study separations between two fundamental models (or Ansätze) of anti-
symmetric functions, that is, functions f of the form f(xσ(1), . . . , xσ(N)) =
sign(σ)f(x1, . . . , xN ), where σ is any permutation. These arise in the con-
text of quantum chemistry, and are the basic modeling tool for wavefunctions of
Fermionic systems. Specifically, we consider two popular antisymmetric Ansätze:
the Slater representation, which leverages the alternating structure of determi-
nants, and the Jastrow ansatz, which augments Slater determinants with a product
by an arbitrary symmetric function. We construct an antisymmetric function that
can be more efficiently expressed in Jastrow form, yet provably cannot be ap-
proximated by Slater determinants unless there are exponentially (in N2) many
terms. This represents the first explicit quantitative separation between these two
Ansätze.

1 INTRODUCTION

Neural networks have proven very successful in parametrizing non-linear approximation spaces in
high-dimensions, thanks to the ability of neural architectures to leverage the physical structure and
symmetries of the problem at hand, while preserving universal approximation. The successes cover
many areas of engineering and computational science, from computer vision (Krizhevsky et al.,
2017) to protein folding (Jumper et al., 2021).

In each case, modifying the architecture (e.g. by adding layers, adjusting the activation func-
tion, etc.) has intricate effects in the approximation, statistical and optimization errors. An im-
portant aspect in this puzzle is to first understand the approximation abilities of a certain neural
architecture against a class of target functions having certain assumed symmetry (LeCun et al.,
1995; Cohen et al., 2018). For instance, symmetric functions that are permutation-invariant, ie
f(xσ(1), . . . , xσ(N)) = f(x1, . . . xN ) for all x1, . . . , xN and all permutations σ : {1, N} → {1, N}
can be universally approximated by several neural architectures, e.g DeepSets (Zaheer et al., 2017)
or Set Transformers (Lee et al., 2019); their approximation properties (Zweig & Bruna, 2022) thus
offer a first glimpse on their efficiency across different learning tasks.

In this work, we focus on quantum chemistry applications, namely characterizing ground states
of many-body quantum systems. These are driven by the fundamental Schröndinger equation, an
eigenvalue problem of the form

HΨ = λΨ ,

where H is the Hamiltonian associated to a particle system defined over a product space Ω⊗N ,
and Ψ is the wavefunction, a complex-valued function Ψ : Ω⊗N → C whose squared modulus
|Ψ(x1, . . . , xN )|2 describes the probability of encountering the system in the state (x1, . . . , xN ) ∈
Ω⊗N . A particularly important object is to compute the ground state, associated with the smallest
eigenvalue of H . On Fermionic systems, the wavefunction satisfies an additional property, derived
from Pauli’s exclusion principle: the wavefunction is antisymmetric, meaning that

Ψ(xσ(1), . . . , xσ(N)) = sign(σ)Ψ(x1, . . . , xN ) . (1)
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The antisymmetric constraint is an uncommon one, and therefore demands unique architectures to
enforce it. The quintessential antisymmetric function is a Slater determinant (Szabo & Ostlund,
2012), that we now briefly describe. Given functions f1, . . . , fN : Ω → C, they define a rank-one
tensor mapping f1 ⊗ · · · ⊗ fN : Ω⊗N → C by (f1 ⊗ · · · ⊗ fN )(x1, . . . , xN ) :=

∏
j≤N fj(xj). The

Slater determinant is then the orthogonal projection of a tensor rank one function into antisymmetric
space. In other words, the rank one tensor f1 ⊗ · · · ⊗ fN is projected to A(f1 ⊗ · · · ⊗ fN ) :=
1
N !

∑
σ∈SN

(−1)σfσ(1) ⊗ · · · ⊗ fσ(N). In coordinates, this expression becomes

A(f1 ⊗ · · · ⊗ fN )(x1, . . . , xN ) =
1

N !
det

 f1(x1) . . . f1(xN )
f2(x1) . . . f2(xN )

. . .
fN (x1) . . . fN (xN )

 ,

which shows that is antisymmetric following the alternating property of the determinant.

The Slater Ansatz is then simply a linear combination of several Slater determinants, of the form
F (x) =

∑
l≤L A(f l1⊗· · ·⊗f lN ), similarly as a shallow (Euclidean) neural network formed as a lin-

ear combination of simple non-linear ridge functions. While this defines a universal approximation
class for antisymmetric functions (as a direct consequence of Weierstrass universal approximation
theorems for polynomials), the approximation rates will generally be cursed by the dimensional-
ity of the input space, as is also the case when studying lower bounds for standard shallow neural
networks Maiorov & Meir (1998).

In the case of particles in Ω = R or C, it is classical that all antisymmetric functions can be written
as a product of a symmetric function with the Vandermonde (see Section 3). This setting is gener-
ally considered much easier than settings with higher-dimensional particles, as this Vandermonde
factorization no longer applies, though there are still ansätze that mimic this formulation (Han et al.,
2019b).

A more powerful variant is the Jastrow Ansatz, where each Slater determinant is ‘augmented’ with a
symmetric prefactor (Jastrow, 1955), ie G = p · A(f1 ⊗ · · ·⊗ fN ) where p is permutation-invariant.
Clearly, G is still antisymmetric, since the product of an antisymmetric function with a symmetric
one is again antisymmetric, but grants more representational power. Other parametrisations building
from Jastrow are popularly used in the literature, e.g. backflow (Feynman & Cohen, 1956), which
models particle interactions by composing the Slater determinant with a permutation equivariant
change of variables. Among practitioners, it is common knowledge that the Slater Ansatz is in-
efficient, compared to Jastrow or other more advanced parameterizations. Yet, there is no proven
separation evinced by a particular hard antisymmetric function. We note that the Jastrow ansatz is
strictly generalized by backflow (see Section 3), so separations between Slater and Jastrow would
have immediate consequences for separations from the stronger architectures as well.

In this work, we are interested in understanding quantitative differences in approximation power
between these two classes. Specifically, we wish to find antisymmetric target functions G such that
G can be efficiently approximated with the Jastrow ansatz, i.e. approximated to ϵ error in the infinity
norm with some modest dependence on the parameters N and ϵ by a single Slater determinant with
a single symmetric prefactor, yet no Slater representation can approximate G for reasonably small
widths. This question mirrors the issue of depth separation in deep learning theory, where one seeks
functions that exhibit a separation between, for example, two layer and three layer networks (Eldan
& Shamir, 2016), as well as recent separations between classes of symmetric representations (Zweig
& Bruna, 2022).

Main Contribution: We prove the first explicit separation between the two ansätze, and construct
an antisymmetric function G such that:

• In some norm, G cannot be approximated better than constant error by the Slater ansatz,
unless there are O(eN

2

) many Slater Determinants.
• G can be written in the Jastrow ansatz with neural network widths bounded by poly(N) for

specific activations, or in NO(N) using complex ReLU
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2 RELATED WORK

2.1 MACHINE LEARNING FOR QUANTUM CHEMISTRY

Numerous works explore how to use neural network parameterizations effectively to solve
Schrödinger’s equation. These include works in first quantization, which try to parameterize the
wavefunction Ψ directly (Pfau et al., 2020; Hermann et al., 2020), and second quantization, where
the wavefunction is restricted to an exponentially large but finite-dimensional Hilbert space, and
then the problem is mapped to a spin system (Carleo & Troyer, 2017).

2.2 ANTISYMMETRIC ANSÄTZE

Numerous architectures enforce antisymmetry. In this work we focus primarily on the Slater ansatz
and Jastrow ansatz, but others exist and are used in practice, with associated guarantees of universal-
ity (Han et al., 2019a). The backflow ansatz enables interaction between particles while preserving
antisymmetry (Luo & Clark, 2019). More recently, an ansatz that introduces hidden additional
fermions was introduced in Moreno et al. (2021).

2.3 ARCHITECTURE SEPARATIONS

A large body of work studies the difference in expressive power between different neural network ar-
chitectures. These works frequently center on the representational gap between two-layer and three-
layer networks (Eldan & Shamir, 2016; Daniely, 2017). Relatedly, several works have considered
the representational power of different networks architectures constrained to be symmetric (Wagstaff
et al., 2019; 2022; Zweig & Bruna, 2022).

The most closely related work to ours is Huang et al. (2021), which proves a non-constructive
limit on the representability of the backflow ansatz, but requires exact representation rather than
approximation in some norm. Conversely, Hutter (2020) demonstrates the universality of a single
backflow ansatz, but requires a highly discontinuous term that may not be efficiently representable
with a neural network.

3 PRELIMINARIES AND MAIN THEOREM

3.1 ANTISYMMETRIC ANSÄTZE

We consider N particles restricted to the complex unit circle. That is, x ∈ ΩN with Ω = {z ∈
C; |z| = 1}. We denote the tensor product ⊗ where, for f, g : Ω → C, we have f ⊗ g : Ω2 → C
such that (f ⊗ g)(x, y) = f(x)g(y). Given a permutation σ ∈ SN , and x ∈ ΩN , we denote by
σ.x = (xσ(1), . . . , xσ(N)) ∈ ΩN the natural group action.

Let A denote the antisymmetric projection, defined via:

A(ϕ1 ⊗ · · · ⊗ ϕN ) =
1

N !

∑
σ∈SN

(−1)σϕσ(1) ⊗ · · · ⊗ ϕσ(N) (2)

So up to rescaling we can consider Slater determinants as terms of the form A(ϕ1⊗· · ·⊗ϕN ). Each
ϕn is called an orbital. Intuitively, a Slater determinant is the simplest way to write an antisymmetric
function, inheriting the antisymmetry property from the determinant itself.

Thus the Slater determinant ansatz with L terms can be written as:

F =

L∑
l=1

A(f l1 ⊗ · · · ⊗ f lN ) . (3)
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Similarly, the Jastrow ansatz (with only one term) (Jastrow, 1955) can be written as:

G = p · A(g1 ⊗ · · · ⊗ gN ) (4)

where p is a symmetric function, namely p(σ.x) = p(x) for any σ and x. It is immediate to verify
that G is antisymmetric. Finally, the Backflow ansatz (Feynman & Cohen, 1956) (considering again
a single term) is defined as

G̃(x) = A(g̃1 ⊗ . . . g̃N )(Φ(x)) , (5)

where Φ : ΩN → Ω̃N is an equivariant flow, satisfying Φ(σ.x) = σ.Φ(x), and where in general Ω̃
might be higher-dimensional than Ω.

In particular, we verify that

Φ : ΩN → (C× Ω)N , (6)

x 7→ Φ(x) := ((p1/N (x);x1), . . . , (p
1/N (x);xN )) (7)

is equivariant. Given a collection of N orbitals ϕ1, . . . ϕN : Ω → C, we verify that the Jastrow
Ansatz G = p · A(g1 ⊗ · · · ⊗ gN ) can be written as G = A(g̃1 ⊗ . . . g̃N ) ◦Φ, with g̃j : C×Ω → C
defined as g̃j(z, x) = z · gj(x). Thus, the Jastrow ansatz can be recovered as a particular case of
the more general backflow ansatz. Therefore, quantitative separations between Slater and Jastrow
automatically imply the same rates for Backflow.

3.2 INNER PRODUCTS

To measure the distance between the Slater Determinant ansatz and the Jastrow ansatz, we need an
appropriate norm.

For univariate functions f, g : S1 → C, define the inner product:

⟨f, g⟩ := 1

(2π)

∫ 2π

0

f(eiθ)g(eiθ)dθ . (8)

For functions acting on N particles, F,G : (S1)N → C, the associated inner product is

⟨F,G⟩ := 1

(2π)N

∫
[0,2π]N

F (eiθ)G(eiθ)dθ . (9)

Let us introduce the notation that for x ∈ CN and α ∈ NN , xα =
∏N

i=1 x
αi
i . Then the orthogonality

of the Fourier basis may be written as ⟨xα, xβ⟩ = δαβ .

3.3 THEOREM STATEMENT

With this, we may state our main result explicitly:

Theorem 3.1. Consider a Slater ansatz with L terms:

F =

L∑
l=1

A(f l1 ⊗ · · · ⊗ f lN ) (10)

parameterized by orbitals f ln : S1 → C, and a Jastrow ansatz

Ĝ = p · A(g1 ⊗ · · · ⊗ gN ) (11)

parameterized by orbitals gn : S1 → C and a symmetric Jastrow factor p : (S1)N → C.
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(a) λ = (5, 4, 1) (b) λ′ = (3, 2, 2, 2, 1)

Figure 1: Example of Young diagram and conjugate partition

LetN ≥ 3 and 1 > ϵ > 0. Then there is a hard functionGwith ∥G∥ = 1, such that Ĝ parameterized
by neural networks with width, depth, and weights scaling in O(poly(NN , ϵ)) that can approximate
G:

∥Ĝ−G∥∞ < ϵ (12)

but, for a number of Slater determinants L ≤ eN
2

:

min
F

∥F −G∥2 ≥ 3

10
. (13)

Note the constraint ∥G∥ = 1 is just to prevent vacuous solutions by scaling G to be arbitrarily big.
We will describe the exact network structure of G in Section A.4.

We also remark that NO(N) ≪ eN
2

, so this is a true separation. Furthermore, the construction only
requiresNO(N) parameters due to the analysis of a generic complex ReLU activation. For particular
choices of the activation, the network only requires poly(N) parameters. Finally, the restriction of
Ĝ to only have one determinant is artificial, here to demonstrate the nature of the separation. In
practice, the Jastrow ansatz allows for multiple determinant terms in learning.

3.4 SCHUR POLYNOMIALS

To build up the difficult function G, we use several identities related to the symmetric Schur poly-
nomials. First, we introduce partitions as they will be used to index Schur polynomials:
Definition 3.2. An integer partition λ is non-increasing, finite sequence of positive integers λ1 ≥
λ2 ≥ · · · ≥ λk. The weight of the partition is given by |λ| =

∑k
i=1 λi. The length of a partition

l(λ) is the number of terms in the sequence. We call a partition even if every λi is even.

Partitions can be represented by their Young diagram, see Figure 1. Furthermore, we will need the
notion of a conjugate partition:
Definition 3.3. Given a partition λ, the conjugate partition λ′ is gotten by reflecting the Young
diagram of λ along the line y = −x. We call a partition doubly even if λ and λ′ are both even.

First, we introduce the Vandermonde written as:

V (x) =
∏
i<j

(xj − xi) . (14)

Then we denote the Schur polynomial indexed by partition λ as:

sλ(x) :=

{
V (x)−1det

[
x
λj+N−j
i

]
l(λ) ≤ N ,

0 l(λ) > N .
(15)

Given two partitions λ and µ, the following fact follows easily from linearity of the determinant:
⟨sλ · V, sµ · V ⟩ = N ! · δλµ . (16)

We will in the sequel assumeN is even, then we can cite the following formal identity of a particular
Pfaffian:
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Theorem 3.4 (Sundquist (1996) Theorem 5.2, Ishikawa et al. (2006) Corollary 4.2).

∑
λ doubly even

sλ · V = Pf

[
xi − xj
1− x2ix

2
j

]
(17)

=
∏
i<j

1

1− x2ix
2
j

·N ! · A(ϕ1 ⊗ · · · ⊗ ϕN ) , (18)

where we set the ϕ maps to be:

ϕj(xi) =

{
xi(x

2
i )

N/2−j(1 + x4i )
j−1 1 ≤ j ≤ N/2

(x2i )
N−j(1 + x4i )

j−1−N/2 N/2 + 1 ≤ j ≤ N
(19)

4 PROOF SKETCH

We give here a sketch of the tactic of the proof. If we simplify the problem to a question of antisym-
metric tensor products of vectors instead of functions, then inapproximability of Slater determinants
amounts to finding a high-rank antisymmetric tensor, that cannot be approximated in the l2 norm by
a small number of rank-one tensors.

The usual trick for this problem is to flatten all the tensors and rewrite them as matrices, so the
problem reduces to approximating a high rank matrix by a low rank one, which is solved by SVD.
To make the SVD tractable, the high-rank matrix is typically taken to be diagonal.

In our setting, we cannot simply choose a tensor that will be diagonal after flattening, because the
constraints of antisymmetry will enforce certain matrix elements to be equal. It turns out we can
focus on a particular subtensor, where it’s possible to flatten to a diagonal matrix, while nevertheless
keeping our hard function representable by the Jastrow ansatz.

Indeed, the hard function G can be written exactly in the Jastrow ansatz by the above identity:

G :=
C√
N !

∑
λ doubly even

r(|λ|+
N(N−1)

2 )sλ · V = C
√
N ! ·

∏
i<j

1

1− r4x2ix
2
j

· A(ϕ
(r)
1 ⊗ · · · ⊗ ϕ

(r)
N ) ,

(20)

for some choice of ϕj maps and C, r with |r| < 1.

Let us explain the signficance of restricting the support to doubly even Schur functions. Let δ =
(N − 1, N − 2, . . . , 1, 0). Then by simply canceling the Vandermonde factor, for an appropriate
partition λ, we have:

sλ(x) · V (x) = det
[
x
λj+δj
i

]
Furthermore, if λ is doubly even, then λ + δ will take the form (2a + 1, 2a, 2b + 1, 2b, . . . ) with
alternating odd and even terms with the odd term one above the subsequent even term. See Figure 2
for an example.

The significance of this structure is that, by knowing only the odd values of λ + δ, the even values
are determined. We will make essential use of this property to flatten an antisymmetric tensor to a
matrix with sets of odd indices as rows, and sets of even indices as columns. For this matrix, the
above structure implies diagonality, and from there we can proceed with a usual proof of low-rank
approximation from SVD.

6



Under review as a conference paper at ICLR 2023

(a) λ = (4, 4, 2, 2)

• • •
• •

•

(b) λ+ δ = (7, 6, 3, 2)

Figure 2: λ and λ+ δ for λ doubly even.
Note that λ+ δ ∼ (6 + 1, 2 + 1) ∪ (6, 2).

5 EXPERIMENTS

We illustrate the nature of this exponential separation in finite case, specifically by seeking to learn
our hard function in the Slater ansatz and Jastrow ansatz with N = 4, 6 particles. In particular, we
try to learn the hard function G with the two ansätze (rescaled with the C term as this constant is
extremely small to give normalization in the L2 norm).

(a) All training iterations with N = 4 (b) Last quarter of iterations with N = 4

(c) All training iterations with N = 6 (d) Last quarter of iterations with N = 6

Figure 3: Training MSE for Slater ansatz of varying number of determinants and Jastrow ansatz of
one determinant.

We consider the empirical approximation of mean squared training error in ∥ · ∥, where we compare
learning with the Slater ansatz and a large number of determinants, vs. the Jastrow ansatz with a
single determinant. We parameterize each orbital with a three layer neural network with hidden
width 30, and activation the complex ReLU that maps a + bi 7→ ReLU(a) + ReLU(b)i. We
parameterize the Jastrow term with the Relational Network (Santoro et al., 2017) and multiplication
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pooling where all networks are three layers and all hidden widths are also 30. Learning rate is set to
0.0005 in all runs, for 200000 iterations of full batch gradient descent on 10000 samples drawn i.i.d.
from the complex unit circle. We plot the normalized MSE, i.e. MSE divided by the error attained
by the naive zero function.

The results are given in Figure 3. Each Slater ansatz is labeled by the number of determinants it
is parameterized with. We observe that one Jastrow determinant suffices where a large number of
Slater determinants fails to achieve low MSE, alluding to the exponential nature of the separation as
the number of particles N increases.

6 DISCUSSION

6.1 PROOF LIMITATIONS

The proof technique relies on finding a symmetric function that is supported exclusively on doubly
even Schur polynomials. This is established in the Pfaffian identity given in Theorem 3.4. This
yields a function that requires exponentially many Slater determinants but may be written exactly in
Jastrow form.

However, the large magnitude of the Jastrow factor precludes efficient approximation in the infinity
norm. This cannot be overcome by changing the value of r: as r approaches 1, the magnitude of
support on high dimensional doubly even Schur polynomials increases while simultaneously the
magnitude of the Jastrow factor increases. So we must choose a sufficiently large r in order to
guarantee the induced matrices are effectively high-rank.

An alternative tactic would be to control approximation in the L2 norm given by ∥ · ∥. However,
calculating the L2 norm is most easily done after decomposing into the orthogonal basis of multino-
mials, which is challenging when multiplying terms together in the Jastrow product.

This proof also only uses 1-dimensional particles to evince a separation. A nearly identical proof
could be employed for higher-dimensional particles by only utilizing the first component, but there
would be no dependence on the dimension d. Understanding the simultaneous dependence on N
and d would therefore require a new proof technique.

6.2 OPEN QUESTIONS

The main result of this work represents a first step in understanding separations between relevant
antisymmetric ansätze. We conclude with a discussion of the natural open questions in this domain.

Stronger Separation It would be ideal to strengthen this bound to show polynomial efficiency in
approximating with the Jastrow ansatz, or to alternatively prove this is not possible.

Practical Wavefunctions Extending the analysis to consider wavefunctions that appear in more
practical applications would be informative. For example, in the one-dimensional case, famously
the eigenfunctions of the Sutherland model are known (Langmann, 2005), and the representability
of these functions in particular is an open question.

More Powerful Ansätze The separation we demonstrate in this work is between the two simplest
ansätze. Demonstrating separations among the more expressive network architectures, for example
the backflow or hidden fermion models discussed previously, would prove the merit of these more
complicated and time-intensive methods.
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Learnability separations Our current separation concerns exclusively the approximation proper-
ties of the two parametric families of antisymmetric functions, and as such neglects any optimization
question. It would be interesting to integrate the optimization aspect in the separation, similarly as
in (Safran & Lee, 2022) for fully-connected networks.
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