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ABSTRACT

The image of fast-moving objects usually contains a blur stripe indicating the
blurred object that is mixed with backgrounds. To deblur the stripe and sepa-
rate the object from the background in this single image, in this work we propose
a novel LDINet that introduces an efficient decomposition-interpolation module
(DIB) to generate the appearances and shapes of the objects. In particular, under
the assumption that motion blur is an accumulation of the appearance of the ob-
ject over exposure time, in the latent space the feature maps of the long blur is
decomposed into several shorter blur parts. Specifically, the blurry input is first
encoded into latent feature maps. Then the DIB module breaks down the fea-
ture maps into discrete time indexed parts corresponding to different small blurs
and further interpolates the target latent frames in accordance with the provided
time indices. In addition, the feature maps are categorized into the scalar-like and
gradient-like classes which help the affine transformations effectively capture the
motion of feature warping in the interpolation. Finally, the sharp and clear im-
ages are rendered with a decoder. Extensive experiments are conducted and has
shown that the proposed LDINet achieves superior performances compared to the
existing competing methods.

1 INTRODUCTION

Motion deblurring is a special case of the deblurring task that aims to restore a clear and sharp image
or images from a blurred one caused by the moving of the object and/or the camera. Conventional
methods (Kupyn et al., 2018; 2019; Wieschollek et al., 2017; Sim & Kim, 2019) for motion deblur-
ring mostly recover a clear image at the median of the motion. Recently, some works (Jin et al.,
2018; Purohit et al., 2019; Xu et al., 2021; Zhong et al., 2022; Rozumnyi et al., 2021a; Zhong et al.,
2023) further focus on the finer structures of the blur and learn to generate sequences of clear images
of the object in chronological order, which is known as sequence from blur or single image temporal
super-resolution task.

In this work, we focus on a special case of the sequence from blur task, i.e., deblatting of fast-moving
objects (FMOs). FMOs, first defined by Rozumnyi et al. (2017), are moving objects that move over
a distance greater than their size within the exposure time of the camera in the scene. As a result,
the blurry portion of an FMO becomes a stripe due to the long-distance moving, which makes it
hard to distinguish the object’s appearance. The deblatting task aims to accomplish two goals, i.e.,
image deblurring which generates a sequence of clear and sharp images from the blurry input, and
image matting which separates the object in the scene from the background. Additionally, in this
task, it is assumed that the camera is fixed with static backgrounds, which is accordance with many
real-world scenarios. For example, in sports analysis, we want to detect and track the fast-moving
balls in pictures and videos which are captured by static cameras.

Formally, given an input pair of pictures, including one background picture and one picture with
the blurred fast-moving object, our goal is to generate a sequence of sharp appearances and masks
for deblurring and matting according to the given time indices. Since the time indices could be
chosen arbitrarily from a continuous interval, the targeting result is considered as a mapping to
sharp appearances and mask with a variable t which indicates the given time index. From the
physical perspective, the formation process of the motion blur can be formulated as the integral of
the mapping over the exposure time. Since solving the integral is difficult, several approximations
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have been proposed to simplify the formation model. Kotera & Šroubek (2018) and Kotera et al.
(2019) approximate the blurring and matting formation model by convolving a fixed moving blur
kernel with the appearance and shape of the object. However, a simple convolution kernel cannot
capture the variance of a moving object. To this end, TbD-3D (Rozumnyi et al., 2020) approximates
the integral with a piecewise linear model and leverages energy minimization to solve the deblatting
task. Specifically, the blurring stripe is considered as the sum of several small blurs according
to a partition of the exposure time and each small blur is approximated by a linear motion blur.
However, the linear approximation is performed in the image space directly and cannot well capture
motions with rotation when the shapes of the FMOs are complex. Furthermore, the inference time
consumption caused by the energy minimization method is usually prohibitively expensive.

On the other hand, DeFMO (Rozumnyi et al., 2021a) have firstly proposed to solve the deblatting
task with an encoder-decoder structure in a data-driven way. With a large-scale training dataset
and elaborately designed loss terms, DeFMO outperforms previous methods in terms of both the
performance and inference time cost. However, it adopts shared latent embedding for different time
index and directly concatenates the specific index with the embedding as intermediate features for
decoding, which would limit the flexibility of generating diverse outputs for different time indexes.

To address the limitations mentioned above, we propose our LDINet to exploit the intrinsic struc-
ture of the latent space and naturally introduce the time index via an interpolation architecture. In
particular, a simple yet effective decomposition-interpolation structure is introduced in the neural
network model for FMO deblatting, where the feature maps in latent space output by the encoder
are decomposed into several latent parts according to a fine partition of the exposure time. For any
time index in the exposure time interval, an interpolation method with affine transformations is pro-
posed to aggregate the adjacent parts into a latent frame for further decoding with a bi-branched
decoder to predict the mask and appearance on the time index. Further, since the complex mapping
of the encoder would introduce nonlinear behaviors, the application of the affine transformation is
not that direct as in the traditional image space. In light of that the convolution operation could be
regarded as a linear combination of summation and series of directional derivatives which are linear
projections of the gradient fields, the latent part of feature maps is disentangled into two categories,
the scalar fields and the gradient fields. And the affine transformations are applied to the fields in
two ways according to their categories.

Extensive comparison experiments and ablation studies are conducted to show the effectiveness of
our designs for FMO deblatting and our LDINet also achieves competitive performance compared
to the existing competing methods.

2 DEBLATTING METHOD

In this section, we first introduce the task setting of FMO deblatting and give an overview of the pro-
posed LDINet. Then the well designed Decomposition-Interpolation Block (DIB) in our LDINet is
elaborated in Section 2.1. Finally the corresponding learning objectives are presented in Section 2.2.

Preliminary. Given the appearance Ft and the mask Mt of the moving object at any time t within
the exposure time which is rescaled to [0, 1], the resultant blurred FMO image I could be formulated
as

I =

∫ 1

0

Ft Mt + (1−Mt)B dt, (1)

whereB is the static background. However, in the deblatting task for FMO, based on a blurred image
I and an estimated background B, the goal is to approximate a sharp rendering Rτ = [Fτ Mτ ] at
a given time index τ ∈ [0, 1]. Here both of the image I : D → R3 and background B : D → R3

are RGB images where D ⊂ R2 is the canvas. The rendering Rτ : D → R4 is an RGBA image
where the RGB part is the appearance Fτ and the alpha part is the mask Mτ . Our estimation for the
rendering Rτ is denoted as R̂τ = [F̂τ M̂τ ]. Besides, during training, the renderings {Rτi}ni=1 of
equally spaced time indices {τi}ni=1 are available in the dataset, where τi = i−1

n−1 .

The deblatting pipeline. As shown in Figure 1, our LDINet is composed of an encoder, a DIB
module, and a decoder. In particular, the encoder first takes as input a blurred image I and a back-
ground image B and outputs feature maps V . Then a Decomposition-Interpolation Block (DIB)
is introduced to decompose V and interpolate the target latent frame Qτ for the given time index
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Figure 1: Deblatting pipeline and the structure of the decoder. The encoder first encodes the
input pair I,B into feature maps V . Then the DIB module synthesizes the latent frame Qτ at time
index τ from V . Finally, the bi-branched decoder generates the rendering Rτ which is consisting of
the mask Mτ and the appearance Fτ from Qτ .

τ , which would be further explained in the following section. Finally, the decoder generates the
rendering Rτ with the target latent frame Qτ . The decoder is composed of several shared layers and
two branches, which estimate the mask Mτ and appearance Fτ separately.

2.1 THE DECOMPOSITION-INTERPOLATION BLOCK

In this section, we elaborate the proposed Decomposition-Interpolation Block (DIB), which aims to
explore the structure of the latent space more appropriately to generate a better latent frame for the
target time index.

Compared with the conventional deblurring tasks, the main differences of the FMO deblurring tasks
are the longer blurred stripe and more complex motion trajectory of the object, which makes it
difficult to be resolved. However, if we consider a small time segment ∆t of the total exposure time
interval ∆T , the size of the blurred stripe within this time segment is small and the motion of the
object is much simpler, which can be approximated by a linear motion as in Rozumnyi et al. (2020).
From this point of view, the blur formation model in Equation 1 can be reformulated as

I =

m−1∑

k=0

∫ (k+1)∆t

k∆t

FτMτ + (1−Mτ )Bdτ ≈ 1

m

∑

k

Htk ∗ Ftk + (1−Htk ∗Mtk)B, (2)

where ∆t = 1
m and Htk is the kernel containing the motion information around the time index

tk = k−1
m−1}.

Inspired by this observation, we consider that the feature maps could also be decomposed into a set
of parts corresponding to a series of discrete time indices. Then the latent frame of the target time
index would be obtained by interpolation. In particular, the feature maps V are first decomposed into
m discrete latent parts {Pti}mi=1 in the latent space corresponding to them time indices {ti}mi=1 with
a projector. Here we assume that the i-th part Pti contains the motion and appearance information
of the object around the time index ti. Then given the target time index τ , the required latent frame
Qτ could be synthesized with {Pti}mi=1 by interpolation.

Though interpolation can be accomplished with a simple affine transformation in the traditional im-
age space, the operation is more complex in the latent feature space. Specifically, since the FMOs we
deal with are mostly rigid objects, the changes of the appearances of moving object that are adjacent
in time indices can be modeled by affine transformations in the original image space. However, the
complex mapping of the encoder would introduce nonlinear behaviors for the affine transformations
in the feature space. In our case where the encoder is a convolution network, for a single input chan-
nel, the convolution operation could be regarded as a linear combination of summation and series of
directional derivatives. Since the directional derivatives are linear projections of the gradient fields,
it is reasonable to represent the convolution results by scalar fields and gradient fields. Although
the scalar fields of the target frame can still be obtained by affine transformations from those of the
neighboring parts, the gradient fields of the target frame could not be obtained in the same way.

To be specific, according to our analysis, the latent part Pt is composed of a scalar field P ′t and a
gradient field P ′′t . On the one hand, for the scalar field, the transformation behavior is the same as
the affine transformation in the image space,

P ′τ (x) = P ′t (A(x)) (3)
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Figure 2: The decomposition-interpolation block (DIB). (a) The overview of the decomposition-
interpolation block. (b) The detail structure of the AffNet.

where A is the affine transformation describing the motion from time index τ to t on the point x in
2D coordinate. On the other hand, for the gradient field, under the assumption that it is the gradient
of scalar field St, i.e., P ′′t (x) = ∂xSt(x), the behavior of the transformation on the gradient field
becomes

P ′′τ (x) = ∂xSτ (x) = ∂x′St(x
′)
∂x′

∂x
= P ′′t (A(x))Ã, (4)

where x′ is the transformed version of x under the affine transformation A and Ã is the Jacobian
of A. Therefore, it is necessary to interpolate the scalar field and gradient field of the target time
index in different ways. In particular, we first suppose that each latent part Pt could be represented
by a concatenation of the scalar field P ′t and the gradient field P ′′t , i.e., Pt = [P ′t P

′′
t ], and thus

they would be processed separately. Then we denote Φ[A,P ] as a function which applies the affine
transformation A to the latent part P in a way that the scalar field P ′t and the gradient field P ′′t are
first transformed by Equation 3 and Equation 4 respectively, and then concatenated as the result. In
this way, the latent frame of the target time index would be approximated more appropriately.

Based on the above transformation method, one remaining difficulty is how to estimate the affine
transformation in the feature space. To this end, we introduce a residual network named AffNet, as
shown in 2 (b), which takes as input two latent parts and predicts a pair of affine transformations
between them. Since there are several downsampling layers in the encoder, the size of the feature
maps shrink several times. Thus each grid in the feature maps indeed contains the information
of a patch of the input image. Therefore, we predict the affine transformations point-wisely that
the AffNet generates affine transformations for each grid of the latent parts separately. Further, to
make sure that the AffNet is capable of predicting the affine transformation between two parts as
expected, a pretraining stage is also introduced to train the AffNet in advance by enforcing it to
predict a randomly generated small affine transformation.

Finally, given the affine transformations estimated by AffNet, our interpolation process is presented
more formally. In particular, as shown in Figure 2, to interpolate the latent frame Qτ at the time
index τ ∈ [0, 1], we first find the two nearest latent parts Pt and Pt′ from the decomposition results,
which satisfy t ≤ τ ≤ t′, to obtain the affine transformations At→t′ and At′→t between these two
parts by AffNet. Next, to obtain the affine transformations from time τ to t and from time τ to t′, we
approximate them byAτ→t = I+ τ−t

t′−t (At′→t−I) andAτ→t′ = I+ t′−τ
t′−t (At→t′−I), respectively.

Then the target latent frame is interpolated with the affine transformations as

Qτ =
t′ − τ
t′ − tΦ[Aτ→t, Pt] +

τ − t
t′ − tΦ[Aτ→t′ , Pt′ ].

Note that here a weighting scheme is employed to fully leverage the information from both the
two neighboring parts. Besides the application of Φ is along the grids of the latent parts with the
corresponding affine transformations point-wisely.
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2.2 TRAINING LOSS

In this section, we introduce the training objectives of our LDINet, which can be divided into two
categories according to the space where the constraints are performed, i.e., the image and the latent
space. In particular, in the image space, a reconstruction loss LR is introduced to reconstruct the
masks, the appearances, and the blurry input, and a sharpness loss LS is employed to sharpen the
masks. As for the latent space, three objectives LL, Lid, and LC are introduced to encourage the
feature invariance to different background, stabilize the training of the AffNet, and improve the
feature consistency between adjacent latent parts, respectively.

Direction of motion trajectory. Before introducing the details of the loss functions, we first clar-
ify the correspondence between the predicted sequence {R̂τi}ni=1 and the ground truth {Rτi}ni=1.
Specifically, since the motion blur keeps invariant even when the motion trajectory is reversed, the
direction of the motion trajectory is ambiguous in fact. In order to determine the direction of the
motion trajectory, we use the relative error rate of the masks

Err(R̂, R) =
∑

τ

∑
D |M̂τ −Mτ |∑

DMτ
, (5)

as the criteria and select the direction with a smaller relative error rate. Here,
∑
D is the an operator

that sums over the pixels in canvasD. For simplicity, with some abuse of notation, {R̂τi}ni=1 is used
in the following description to represent the estimated rendering sequence in the selected direction.

Reconstruction loss. The reconstruction of the renderings at a given time index consists of three
parts, i.e., the reconstruction of the mask, the appearance, and the blurry input. We use Binary
Cross Entropy (BCE) loss for the reconstruction of the mask and L1 loss for the reconstruction of
the appearance and the input. In particular, for the reconstruction of the appearance, the constraint
is performed between the estimated and ground truth instance images Îτ = M̂τ F̂τ + (1 − M̂τ )B

and Iτ = MτFτ + (1 −Mτ )B instead of between the estimated and ground truth appearances F̂τ
and Fτ . As for the reconstruction of the blurry input, it encourages the consistency between the
rendering model and the formation model of the blurry input in a self-supervised manner, where the
estimation of the blurry input Î = 1

n

∑
τ Îτ is enforced to match the blur input image. Besides,

a shape-aware weighting scheme Wτ is further presented to reweight the appearance loss of each
pixel based on its location to the outline of the object. In practice, the weighting scheme is obtained
by blurring the mask Mτ with an average kernel Kavg , i.e., Wτ = Kavg ∗Mτ . Thus the overall
reconstruction loss LR is

LR =
1

n

∑

τ

1∑
DMτ

∑

D

(
`BCE(M̂τ ,Mτ ) +Wτ `1(Îτ , Iτ )

)
+

1∑
D[(
∑
τ Mτ ) > 0]

∑

D

`1(Î , I),

(6)
where `BCE is the point-wise BCE loss, `1 is the point-wise L1 loss, and

∑
D[(
∑
τ Mτ ) > 0]

denotes the number of pixels within the FMO blur.

Mask sharpening loss. To sharpen the predicted mask, we propose to further strengthen the cor-
rect prediction results in the estimated mask, by decreasing the prediction entropy for the correctly
classified pixels

LS =
1

n|D|
∑

τ

∑

D

H(M̂τGτ ), (7)

where Gτ is a one-hot map that indicates the correctly classified pixels and H is the point-wise
binary entropy.

Background reduction loss. Considering that the rendering results should be invariant to the back-
ground change, LL is designed to reduce the influence of background on the feature maps. Specif-
ically, given two inputs X and X ′ which only differ in the background, they are first encoded as V
and V ′ in the latent space and then constrained by

LL = `MSE(V, V ′), (8)

where `MSE is the mean square error loss.

Feature consistency between latent parts. Since the motion trajectory of the object are continuous,
we consider that the latent frames should also be similar when the corresponding time indices are
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close. Since the latent frames are the interpolated from the latent parts, we formulate the feature
consistency loss LC as

LC =
1

m− 1

m−1∑

i=1

`MSE(Pti , Pti+1
). (9)

Reversibility of the affine transformations. Since the output of the AffNet is a pair of forward and
backward affine transformations between the two input latent parts, we intend to constrain the two
affine transformations to be the inverse of each other,

Lid = `MSE(At→t′At′→t, I), (10)

where I is the identity matrix and At→t′ and At′→t are the forward and backward transformations
between the two latent parts at the time indices t and t′ estimated by AffNet, respectively.

Joint loss. Consequently, the joint loss function is a combination of the two aspects,

Ljoint = LR + LS︸ ︷︷ ︸
image space

+Lid + LL + αCLC︸ ︷︷ ︸
latent space

. (11)

3 TRAINING AND EVALUATION

In this section, the training and evaluation datasets are first introduced in Section 3.1 and 3.2 and
the training details are provided in Section 3.3. Then the proposed LDINet is compared with the
existing state-of-the-art methods in Section 3.4. Finally, extensive ablation studies are conducted to
evaluate the effect of each component in LDINet in Section 3.5 and visualization results are provided
in Section 3.6.

3.1 SYNTHESIZED TRAINING DATASET

The synthesized dataset for training is based on the one from DeFMO (Rozumnyi et al., 2021a),
which is generated with Blender Cycles (Community, 2018). Each training sample is created by a
3D object moving through a 6D linear trajectory over two background sequences and consists of two
backgrounds for background reduction, one FMO blur stripe for the construction of blurry inputs,
and 25 discrete frames of sharp renderings of the object at equally spaced time indices within the
exposure time [0, 1] including the start and end time. The 3D objects are sampled from ShapeNet
(Chang et al., 2015) dataset applied with DTD (Cimpoi et al., 2014) textures. The backgrounds
for training are sampled from the VOT (Kristan et al., 2016) sequences, and the backgrounds for
validation are sampled from Sports-1M (Karpathy et al., 2014).

There are 50,000 samples for training and 1,000 samples for validation.

3.2 EVALUATION DATASET

The evaluation datasets are three real-world datasets from the FMO deblatting benchmark (Rozum-
nyi et al., 2021a):

The TbD (Kotera et al., 2019) is composed of 12 sports sequences with uniformly colored and
mostly spherical objects. Each sequence contains 16˜60 frames.

The TbD-3D (Rozumnyi et al., 2020) is composed of 10 sequences and contains objects with
complex textures, and thus it is more difficult. Each sequence contains 37˜81 frames. The rotations
of the objects result in significant differences in their appearances. One limitation is that the objects
are mostly spherical, so their shapes remain constant when rotated.

The Falling Objects (Kotera et al., 2020) is composed of 6 sequences and is the most challenging
benchmark with objects of complex textures and 3D shapes. Each sequence contains 11˜19 frames.

For each dataset, the low-speed sequences are created by averaging over the full exposure high-speed
ground truths. The ground truths have a frame rate that is 8 times higher than that of the low-speed
sequences.
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Table 1: Evaluation and Comparing re-
sults on Falling Objects (Kotera et al., 2020),
TbD-3D (Rozumnyi et al., 2020) and TbD
(Kotera et al., 2019) datasets. The compared
methods are TbD(Kotera et al., 2019), TbD-
3D(Rozumnyi et al., 2020), BiT++(Zhong
et al., 2023), and DeFMO(Rozumnyi et al.,
2021a).

Dataset Score Compared Methods Proposed

TbD TbD-3D BiT++ DeFMO LDINet

Falling
TIoU↑ 0.539 0.539 N/A 0.684 0.692
PSNR↑ 20.53 23.42 23.92 26.83 28.09
SSIM↑ 0.591 0.671 0.596 0.753 0.770

TbD-3D
TIoU↑ 0.598 0.598 N/A 0.879 0.905
PSNR↑ 18.84 23.13 24.98 26.23 26.56
SSIM↑ 0.504 0.651 0.605 0.699 0.706

TbD
TIoU↑ 0.541 0.542 N/A 0.550 0.611
PSNR↑ 23.22 25.21 24.69 25.57 25.312
SSIM↑ 0.605 0.674 0.502 0.602 0.617
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Figure 3: Estimation of trajectories on se-
quences from the TbD-3D dataset (Rozum-
nyi et al., 2020) (left) and Falling Objects
dataset (Kotera et al., 2020) (right)

3.3 TRAINING SETTINGS

The training contains two stages, the pretraining stage and the finetuning stage. In the pretraining
stage, we aim to train the AffNet and provide a guidance to disentangle the original latent part
into the scalar part and gradient part. In particular, since the DIB module is not well trained at
beginning, we use the interpolation method with weighted summation over the latent parts during
the pretraining. To train the AffNet, we first introduce a pseudo input by applying a randomly
generated small affine transformation to the FMO blur stripe in the image space. Then the latent
parts of the original input and the pseudo input are fed into the AffNet to estimate this random affine
transformation. Furthermore, a consistency constraint between the transformation in the image space
and the transformation in the latent space is also introduced. Please refer to Appendix B for more
details. In the finetuning stage, we train the model for 20 epochs in total. For the first 10 epochs,
we use the learning rate lr = 1e − 4 and set αC = 0.01. The learning rate is reduced to 1e − 5
and αC = 0 is set for the next 10 epochs. During the training process, the part number of the DIB
module is m = 16, and the kernel size of the average kernel Kavg is 11 × 11. In both training
stages, we use Adam optimizer (Kingma & Ba, 2015) with batch size 24. The model is trained on
8 NVidia A5000 GPUs and the total training time is about 1.5 days. As for the implementation of
the LDINet, the encoder is a variant version of the ResNet50 (He et al., 2016). The shared layers of
the decoder are two ResNet bottleneck blocks with up-scaling layers, and the two branches of the
decoder are consisting of convolution layers and up-scaling layers. The projector of the DIB module
is a ResNet bottleneck block, and the AffNet is composed of four ResNet bottleneck blocks and
a predictor consisting of two convolution layers and a ReLU activation. For more implementation
details, please refer to Appendix A.

3.4 EVALUATION

In this section, we compare the proposed LDINet with the state-of-the-art methods on a variety of
datasets. To be specific, we first compare LDINet with the existing FMO deblatting methods based
on energy minimization (TbD (Kotera et al., 2019) and TbD-3D (Rozumnyi et al., 2020)) and the
data-driven methods (DeFMO (Rozumnyi et al., 2021a) and Bit++(Zhong et al., 2023)). Note that
Bit++ predicts the sharp image only, and thus we do not report its trajectory estimation results.
We do not compare to SfB (Rozumnyi et al., 2021b) which is based on differentiable rendering,
as its performance is highly related to the prior estimation of the silhouettes of the objects and the
time consumption is unaffordable. The Peak Signal-to-Noise Ratio (PSNR), Structure Similarity
Index Measure (SSIM), and Trajectory Intersection over Union (TIoU) are chosen as the evaluation
metrics. Following the protocols from DeFMO (Rozumnyi et al., 2021a), we generate the estimation
of the ground truths by averaging over the sequence every 5 frames to match the exposure time of
the ground truths in the evaluation datasets. Considering the ambiguity of the direction of motion
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Figure 4: Qualitative comparisons of methods. The leftmost column shows the input pairs, the
blurred image I and the backgroundB. The rightmost column shows the ground truth. We represent
the results for the shapes key from the dataset Falling Objects (Kotera et al., 2020). Our method is
compared with the DeFMO (Rozumnyi et al., 2021a). For each method, we show the estimated
appearance (left), the estimated mask (right), and the temporal super-resolution frames at t = 0
(top) and t = 1 (down).

trajectory, we choose the direction with a better PSNR score. The sub-frame trajectory (Figure 3) is
estimated using the mass center of the generated estimation of mask M̂τ .

The evaluation results are provided in Table 1. The datasets in the table are given in descending
order regarding to the shape complexity. It can be observed that the data-driven methods outperform
the energy-minimization methods by a wide margin and the performance gap increases as the shapes
of the objects in the datasets become more complex. We speculate that this is primarily due to the
limitations of the prior assumptions used in the energy-minimization methods. As the objects’ shape
becomes more complex, these prior assumptions no longer match the distribution of the datasets,
resulting in bias errors. This also suggests that the data-driven methods could derive a more precise
prior from the training data. Then compared to these existing methods, our LDINet achieves the best
performances in most cases on all the three datasets by introducing the decomposition-interpolation
block in the latent space. In particular, on the Falling Objects (Kotera et al., 2020), our method
outperforms DeFMO by 1.26 dB on the metric PSNR, demonstrating that our method can capture
the complex shapes of fast-moving objects. On the TbD-3D and TbD datasets, our method also
outperforms DeFMO in most metrics.

3.5 ABLATION STUDY

Table 2: Ablation study: architecture and objectives. In this table, we do ablation on the structure
of the decoder, the introduction of the reversible loss Lid, the background reduction loss LL, the
frame consistency loss LC , and the weighting scheme Wτ . The results on the Falling Object dataset
(Kotera et al., 2020) and TbD dataset(Kotera et al., 2019) are listed.

Arch. Objective Falling Objects TbD

bi-branched Lid LL LC Wτ TIoU↑ PSNR↑ SSIM↑ TIoU↑ PSNR↑ SSIM↑
7 3 3 3 3 0.689 27.39 0.755 0.590 24.74 0.598
3 7 3 3 3 0.686 28.08 0.771 0.605 25.07 0.615
3 3 7 3 3 0.687 27.66 0.767 0.606 23.79 0.577
3 3 3 7 3 0.681 27.50 0.763 0.605 23.80 0.581
3 3 3 3 7 0.679 27.34 0.753 0.612 24.44 0.592
3 3 3 3 3 0.692 28.09 0.770 0.611 25.31 0.617

In this section, we conduct ablation studies to analyze the effects of different components and the
hyperparameters in the proposed LDINet.

As shown in Table 2, we first observe that the introduction of the bi-branched structure provides
significant improvements on the metrics, by separating the estimation of the appearance and the
mask. On the other hand, it is seen that reducing the influence of the background on the feature maps
with LL shows a positive impact. However, lacking the regularization term LC between the adjacent
latent parts that are decomposed in the DIB module results in a significant drop in the performance
of the model. Moreover, without the reversible term Lid that keeps the affine transformation in two
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directions to be the inverse of each other, the metrics show a slight drop on the Falling Objects
dataset but a relatively large drop on the TbD dataset. This indicates that this term would provide
some regularization for the prediction of the affine transformations and reduce overfitting on the
training set. Finally, the weighting scheme Wτ also improves the performance of the model by
decreasing the supervision strength for the error-prone area (i.e., the border of the objects) and pays
more attention to the inner part of the object that are precisely segmented by the estimated mask.

Table 3: Ablation study: number of la-
tent parts. This table lists the results on the
Falling Object dataset (Kotera et al., 2020)
with the number of parts varying in the DIB
module.

Number of parts Falling Objects

TIoU↑ PSNR↑ SSIM↑
4 0.683 27.49 0.748
8 0.689 27.82 0.757

12 0.690 28.10 0.766
16 0.692 28.09 0.770
20 0.688 27.89 0.767

Table 4: Ablation study: portion of scalar
channels In this table, we study the effect of
the portion of the scalar channels in the latent
parts.

Portion Falling Objects

TIoU↑ PSNR↑ SSIM↑
1 0.684 27.76 0.757

1/2 0.669 27.90 0.769
1/3 0.692 28.09 0.770
0 0.686 27.78 0.762

Next, we investigate the effects of the number of latent parts in the decomposition and the proportion
of the scalar channels for the interpolation of the DIB module. The results are provided in Table 3
and Table 4. First, the number of parts in the decompostion of the DIB module controls the fidelity
of the DIB module. In particular, with more parts, the time interval between adjacent parts becomes
smaller and the transformation between the adjacent parts behaves more likely to a linear transfor-
mation, which improves the affine estimation quality. As shown in Table 3, increasing the number
of parts in the DIB structure brings a better performance. However, we note that the increase of the
number of parts also leads to the explosion of the memory footprint and a heavy calculation burden.
Thus, we set the number of parts to 16 in our implementation of the DIB module. On the other hand,
the effect of disentangling the latent part into the scalar fields and the gradient fields is shown in
Table 4. It is seen that the totally scalar-like (i.e., the portion is 1) or totally gradient-like (i.e., the
portion is 0) latent part does not obtain the best performance. This indicates that simply formulating
the latent parts as scalar fields or gradient fields is not enough to capture the complex transformation
behavior in the latent space under the affine transformation, while the mixture of the scalar fields
and gradient fields provides a more appropriate approximation.

3.6 QUALITATIVE COMPARISONS

The Qualitative results are given in Figure 3 and Figure 4. From Figure 3, it is seen that
DeFMO(Rozumnyi et al., 2021a) fails to deal with the trajectories near the ball’s rebounce. How-
ever, as illustrated in Figure 4, LDINet generates sharper appearances and more accurate masks. To
mention a few, the masks of the falling key generated by LDINet have a higher quality than DeFMO,
and the appearances of the falling marker are more precise in our results compared to DeFMO. For
more results, please refer to Appendix C.

4 CONCLUSION

In this paper, we propose a neural network based deblatting method for deblurring and matting of
FMOs. In particular, we introduce a decomposition-interpolation based module in the latent space
to incorporate the prior of the temporal sequential structure into the deblatting process and properly
generate the target latent frames. Thus the structure of the latent space is fully explored and the
feature maps is further disentangled into scalar fields and gradient fields based on the different
interpolation behavior under affine transformation. Extensive experiments are conducted and the
evaluation results show that our LDINet has achieved superior performances in most cases when
compared with the existing methods.
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Reproducibility statement To facilitate reproducibility, we illustrate the training details in subsec-
tion 3.3 and explain the network structure of LDINet in Appendix A. Moreover, we provide our
pretraining method in Appendix B.
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Jan Kotera and Filip Šroubek. Motion estimation and deblurring of fast moving objects. In 2018
25th IEEE International Conference on Image Processing (ICIP), pp. 2860–2864, 2018. doi:
10.1109/ICIP.2018.8451661.
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A THE IMPLEMENTATION OF THE LDINET

A.1 THE STRUCTURE OF THE ENCODER

The structure of the encoder is based on the ResNet-50 (He et al., 2016) with the nuance that we
only take the first three downsampling blocks and extend the last block with five ResNet bottlenecks.
The channel number of the feature generated by the encoder is 2048.

A.2 THE STRUCTURE OF THE DECODER

As shown in Figure 1, the decoder is several shared layers and two convolutional branches. To be
specific, the shared layers are two residual blocks. Each residual block is followed by a pixel shuffle
layer (Shi et al., 2016) which up-scales the spatial size of the latent frame by a factor of two. The
output channel numbers of the residual blocks are 256 and 64, respectively. Given the up-scaled
latent frame, we use two convolutional branches to estimate the RGB channels for appearance and
the alpha channel for mask respectively. These two branches are similar in structure. In each branch,
we first use a 3 × 3-conventional layer with the 64 output channels. Then a pixel shuffle layer is
applied to up-scale the size of the feature maps by a factor of two. Finally, the feature maps go
through two convolutional layers with the numbers of output channels being 16 and 4 respectively
and are transformed into outputs with the last layer.
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A.3 THE STRUCTURE OF THE DIB MODULE

Here we introduce the network structure in the DIB module, including the projector and the AffNet.
The projector is a ResNet bottleneck block and its channel number of the output is 512m where
m is the number of the output parts. The AffNet accepts an input with 1024 channels which is
concatenated by two latent parts. The structure of AffNet is shown in 2. The first ResNet bottleneck
block reduces the channel number to 64. And the rest three ResNet bottleneck blocks keep the
channel number. Finally, the predictor first reduces the channel number from 64 to 16 with the first
3× 3-convolution layer. After a ReLU activation layer, the second 3× 3-convolution layer predicts
the 6 parameters for each affine transformation.

B PRETRAINING

The prediction of the affine transformations is of significance in the DIB module. It is necessary to
train the affine transformation in advance as the prediction of transformations that are not precise
enough could impair the training of the model. To guide the training of the AffNet, we propose two
objectives, a pseudo supervision loss and a consistency loss.

We illustrate the pretraining stage in Figure 5. Specifically, the channels of the latent part is dis-
patched into the scalar fields and the gradient fields. Then we generate a pseudo input by applying
a small random affine transformation A to the FMO object in the input and align the latent parts
of the two inputs in the latent space by applying A to the latent parts of the original input with the
application operator Φ. And we use A as the ground truth to train the AffNet which takes the latent
parts with the same time index from the two input images as input. Since the AffNet is not yet
accurate enough and the latent space is not well constructed, the interpolation method is used with
weighted summation instead in the pretraining stage, as shown in the dashed line part of Figure 5.
The weighting scheme v(τ) in the interpolation is

Qτ =
∑

i

vti(τ)Pti , (12)

where the components vti(τ) = exp(−σ(ti−τ)2)∑m
k=1 exp(−σ(tk−τ)2) and the time index ti = i−1

m−1 . The parameter
σ is used for adjusting the correlation between the latent frame Qτ and the latent parts Pti and we
set σ = 800 in our implementation. We pretrain the model for 40 epochs with lr = 1e − 4 and
αC = 0.01.

B.1 PSEUDO SUPERVISION FOR AFFNET

Since there is no explicit supervising signal to train the AffNet, we construct a pseudo input with the
FMO part transformed by a small affine A. And we force the AffNet to estimate the transformation
from pairs of latent parts with the same time index from the two different inputs. Here, we denote the
latent parts of the original input and the transformed input as POi and PAi respectively, and denote
the predicted affine transformation from the original pieces to the transformed pieces as Âi. Thus
the prediction loss is

LA =
1

mWlHl

m−1∑

i=0

Wl−1∑

j=0

Hl−1∑

k=0

`MSE(Âj,ki , A), (13)

whereWl andHl are the width and height of the latent feature maps, and Âj,ki is the predicted affine
transformation on the position (j, k).

B.2 CONSISTENCY BETWEEN THE LATENT AND THE IMAGE SPACE UNDER AFFINE
TRANSFORMATION

Here, we aim to find an appropriate latent space where the features are represented as scalar fields
and gradient fields. According to the different behaviors shown by the scalar fields and gradient
fields under the affine transformation, we introduce a consistency constraint which forces the trans-
formation results of the latent parts approaching the latent parts which are generated from the inputs
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Figure 5: Pretraining stage. IO, B is the original input pair, IA, B is the pseudo input pair obtained
by applying the affine transformationA to IA. The latent parts PO and PA are generated from IA, B
and IO, B respectively. The dashed line part is the surrogate of interpolation in the original pipeline,
where we use weighted summation instead of the affine transformation. The AffNet predicts the
estimation of the affine transformation Â and its inverse Â−1 for each time index t ∈ { i−1

m−1}i=mi=1 .

transformed in the image,

LT =
1

m

m−1∑

i=0

`MSE(Φ[A,POi ], PAi ) (14)

C DEBLATTING RESULTS

In this section, we should the extensive deblatting results. Figure 6 shows the results for appearances
and masks.
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Figure 6: Extensive deblatting results. The leftmost column shows the input pairs, the blurred
image I , and the background B. The rightmost column shows the ground truth. We represent the
results for the shapes key, marker, and pen from the dataset Falling Objects (Kotera et al., 2020)
and aerobie from the dataset TbD-3D(Rozumnyi et al., 2020). Our method is compared with the
DeFMO (Rozumnyi et al., 2021a). For each method, we show the estimated appearance (left), the
estimated mask (right) and the temporal super-resolution frames at t = 0 (top) and t = 1 (down).
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