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ABSTRACT

Out-of-distribution (OOD) detection methods have recently become more promi-
nent, serving as a core element in safety-critical autonomous systems. One major
purpose of OOD detection is to reject invalid inputs that could lead to unpre-
dictable errors and compromise safety. Due to the cost of labeled data, recent
works have investigated the feasibility of self-supervised learning (SSL) OOD de-
tection, unlabeled OOD detection, and zero shot OOD detection. In this work, we
identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD
detection algorithms from an information-theoretic perspective. These conditions
are present in all OOD tasks dealing with real-world data: I) we provide theo-
retical proof of unlabeled OOD detection failure when there exists zero mutual
information between the learning objective and the in-distribution labels, a.k.a.
‘label blindness’, II) we define a new OOD task – Adjacent OOD detection –
that tests for label blindness and accounts for a previously ignored safety gap in
all OOD detection benchmarks, and III) we perform experiments demonstrating
that existing unlabeled OOD methods fail under conditions suggested by our la-
bel blindness theory and analyze the implications for future research in unlabeled
OOD methods.

1 INTRODUCTION

Safety-critical applications of deep neural networks have recently become an important area of in-
vestigation in the domain of artificial intelligence, ranging from autonomous driving (Ramanagopal
et al., 2018) to biometric authentication (Wang & Deng, 2021) to medical diagnosis (Bakator &
Radosav, 2018). In the setting of safety-critical systems, it is no longer possible to rely on the
closed-world assumption (Krizhevsky et al., 2012), where test data is drawn i.i.d. from the same
distribution as the training data, known as the in-distribution (ID). These models will be deployed in
an open-world scenario (Drummond & Shearer, 2006), where test samples can be out-of-distribution
(OOD) and therefore should be handled with caution. OOD detection seeks to identify inputs con-
taining a label that was never present in the training distribution. The motivation for OOD detection
is simple: we do not want safety-critical systems to act on an invalid prediction, where the predicted
label cannot be correct because the label was never present in training.

There is significant interest in unlabeled OOD detection due to various factors. A method that does
not rely on labels can save significant costs in labeling data, as proposed by (Sehwag et al., 2021).
It is also be possible to skip training on the in distribution data if such a model is generalizable, as
proposed by (Wang et al., 2023). Self supervised and unlabeled learning methods can also scale
to much larger datasets and it is important for these models to be robust to OOD data. Recent
work in unlabeled OOD detection methods, including (Sehwag et al., 2021; Tack et al., 2020; Liu
et al., 2023; Guille-Escuret et al., 2024; Wang et al., 2023), promise to improve safety using only
unlabeled data. These methods can achieve even greater performance than a simple supervised
baseline (Hendrycks & Gimpel, 2016), suggesting that one could replace supervised training with
self-supervised learning (SSL) for a safety critical OOD detection task. This family of SSL OOD
methods differ from traditional supervised OOD methods, including (Fort et al., 2021), by the use
of only unlabeled data. The importance of labels is an active area of research in OOD detection (Du
et al., 2024a;b). Figure 1 illustrates an example labeled and unlabeled OOD detector.

When we view SSL from an information-theoretic perspective, the selection of features depends
solely on the SSL objective and not on the labels. This, however, provides no guarantee that any
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Figure 1: Visualization of Labeled and Unlabeled OOD detection processes. Unlabeled methods do
not need labels for each training image or may not use ID training images at all.

features relevant for label prediction will be retained. Figure 2 provides an example of how SSL
features can be less effective for identifying a label. Our theory importantly shows that, when the
label-relevant features are independent of the features relevant for the SSL algorithm’s successful
operation, OOD detection is guaranteed to fail due to what we call ‘label blindness’ and that this
label blindness occurs regardless of how one selects the ID dataset from the population of all data.
Our experiments also suggest that Zero Shot OOD methods (Wang et al., 2023; Esmaeilpour et al.,
2022) may also suffer from this issue. We show that unsupervised OOD detection methods behave
in the same way as SSL in the context of information theory.

Figure 2: An example failure case by visualizing
the heatmaps of the gradient of a unlabeled SimCLR
trained Resnet (Chen et al., 2020) using the GradCAM
method (Selvaraju et al., 2017). The OOD detection
task is to detect OOD facial expressions. In this case,
the OOD detection method as justified by our theoret-
ical work, where the representations do not exhibit a
strong gradient in regions commonly associated with
facial expressions (i.e., eyebrows, mouth, etc.).

However, one can unintentionally avoid
label blindness problem via the selection
of the OOD dataset when constructing
OOD benchmarks. Existing methods gen-
erally consider ID and OOD data from dif-
ferent datasets, e.g., (Fort et al., 2021),
(Sehwag et al., 2021), and (Hendrycks
et al., 2019). In these benchmarks, there is
no significant overlap between the ID and
OOD input data, allowing OOD detection
algorithms to succeed on features indepen-
dent of the label. To address this issue and
to test for label blindness, we introduce
the Adjacent OOD detection task to evalu-
ate the performance on OOD detection al-
gorithms when there is significant overlap
between the OOD input data and ID input
data. We also prove that it is impossible
to guarantee that a real world system will
never encounter OOD input data that sig-
nificantly overlaps ID input data.

This work aims to answer the following question: can we ignore labels when engaging in OOD
detection? Through numerous experiments and theoretical proofs, we show that it is not safe to
ignore labels when performing OOD detection. This is contrary to the increasing recent efforts
that propose new self supervised, unsupervised, and other unlabeled OOD detection methods. This
work’s key contributions include:

• The Label Blindness Theorem. We theoretically prove that any SSL or Unsupervised Learning
algorithm will fail when its information required for the surrogate task is independent of the
information required for predicting labels. Through this proof, we conclude that there cannot
be a generally applicable SSL or Unsupervised learning OOD detection algorithm as there will
always exist independent labels due to the no free generalization theorem, see theorem 3.5.

• Adjacent OOD detection benchmarks. We introduce the concept of bootstrapping without re-
placement of the ID labels to create the Adjacent OOD detection task. To the authors’ knowledge,
this OOD detection task is novel to and absent from research in OOD detection. This task evalu-
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ates OOD detection when there is significant overlap in OOD data and ID. We also theoretically
prove that overlapping OOD and ID data is possible in every real world dataset.

• Impact on existing and future OOD methods. We demonstrate that existing SSL and Unsuper-
vised Learning OOD methods fail under the conditions suggested by our theory and that existing
benchmarks do not capture such failures. We also evaluate zero shot OOD detection methods,
which fail in a similar manner to SSL and Unsupervised Learning OOD methods. We make
recommendations on the development and testing of future OOD methods.

2 PRELIMINARIES

2.1 LABELED AND UNLABELED OUT-OF-DISTRIBUTION DETECTION

The task of out-of-distribution detection is to identify a semantic shift in the data (Yang et al.,
2021). This is determining when no predicted label could match the true label y /∈ Yin, where Yin

represents the set of in-distribution training labels. In this case, we would consider the semantic
space of the sample and the training distribution to be different, representing a semantic shift. We
can express the probability that a sample is out-of-distribution via P (y /∈ Yin|x). One baseline
method to calculate P (y /∈ Yin|x) is to take 1 − MSP(x), where MSP is the maximum softmax
probability from a classifier for a particular datapoint.

Furthermore, we are only concerned with labels that can be generated using only x, via function f
which depends solely on x and no other information. f may represent human labelers that generate
y. If we consider Yall as the set of all possible labels that can be generated from f(x ∈ Xall), a
subset of Xall considered as Xtraining may not contain all labels in Yall. For real world datasets, it
is possible that Yin ⊊ Yall.

We can also approach the problem of OOD detection without the use of labels. One can train a
model on ID data using a surrogate task for the purposes of computing a metric. For example, (Se-
hwag et al., 2021) trains a resnet with SimCLR and computes the Mahalanobis distance between
the training representations and the test sample representations to compute the OOD score. Alterna-
tively, one could utilize a pretrained model with broad knowledge to compute a metric to use as the
OOD score, such as in (Wang et al., 2023).

2.2 SELF-SUPERVISED AND UNSUPERVISED LEARNING

This section covers representation learning and its implications for SSL and unsupervised learning.
If there is no mutual information between two random variables, neither can be used to reduce un-
certainty about the other (Shannon, 1948). In both self-supervised and unsupervised OOD detection,
if there is no mutual information between the intermediate representations and the OOD detection
task, the OOD detection system cannot reduce uncertainty with respect to the OOD detection task
using the intermediate representations.

Representation learning can be formulated as finding a distribution p(z|x) that maps the observa-
tions from x ∈ X to z ∈ Z, while capturing relevant information for some primary task. When
y represents some primary task, we consider only z that is sufficiently discriminative for accom-
plishing the task y. For simplicity, we consider y as a classification label, but y can represent
any objective or task. Federici et al. (2020) show that this sufficiency is met when the information
relevant for predicting y is unchanged when encoding x→ z.

Definition 2.1. Sufficiency: A representation z of x is sufficient for y if and only if I(x;y | z) = 0.

Since there exists the sufficient statistic x = z, we must consider the minimal sufficient statistic
which conveys only relevant information for predicting y. An SSL algorithm seeks to learn the
minimal sufficient statistic via the information bottleneck framework (Shwartz-Ziv & LeCun, 2023).

Definition 2.2. Minimal Sufficient Statistic. A sufficient statistic z is minimal if, for any other
sufficient statistic s, there exists a function f such that z = f(s).

Information bottleneck optimization can be expressed as the minimization of the representation’s
complexity via I(x; z) and maximizing its utility I(z;y). This results in the information theoretic
loss function below, where β is a trade-off between complexity and utility (Shwartz-Ziv & LeCun,
2023). In practice, learning z without y requires a surrogate task ys, e.g., (Chen et al., 2020), with
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the loss defined as:
L = I(x; z)− βI(z;y). (1)

It should be noted that the primary task y may be equal to the SSL task ys. In such a case, com-
pression towards the minimal sufficient statistic still occurs. This is important because unsupervised
methods for deep neural networks (DNNs) will use a surrogate task yu to train the DNN’s weights.
Thus, if we assign the primary task for an unsupervised learning method to be equal to its surrogate
task, it will behave identically to SSL from the perspective of information theory.

When x has higher information content than y, there exists information in x that is not relevant for
predicting y. This can be better understood by dividing I(x; z) into two terms (Federici et al., 2020)
as follows:

I(x; z) = I(x; z | y)︸ ︷︷ ︸
superfluous information

+ I(z;y)︸ ︷︷ ︸
predictive information

. (2)

However, superfluous information is not affected by the labels of primary task, only by x and ys.
Using information theory, we can show that any SSL OOD detection algorithm will fail when the
surrogate task ys is independent of the labels in the in-distribution dataset. This applies to unsuper-
vised OOD detection algorithms that also use a surrogate task.

3 GUARANTEED OOD DETECTION FAILURE

This section introduces the concept of Label Blindness, with one key supporting theorem and one
key supporting lemma. The full proofs for these theoretical results are provided in Appendix D.
Note that Rx represents the support of random variable x such that Rx = {x ∈ R : P (x) > 0}. For
clarity, we refer to cases where I(x1;x2) = 0 as Strict Label Blindness and discuss Approximate
Label Blindness I(x1;x2) ≈ 0 at the end of section 3.1.

3.1 LABEL BLINDNESS THEOREM (STRICT LABEL BLINDNESS)
We identify a guarantee of OOD detection failure for any information bottleneck-based optimization
process if the unlabeled learning objective is independent from labels used to determine the ID set,
described by Corollary 3.3. This corollary is derived from two concepts: strict label blindness in
the minimal sufficient statistic and the independence of filtered distributions. We first consider the
minimal sufficient statistic and how it leads to strict label blindness; see Theorem 3.1.
Theorem 3.1. Strict Label Blindness in the Minimal Sufficient Statistic.
Let x come from a distribution. x is composed of two independent variables x1 and x2. Let y1 be
a surrogate task such that H(y1|x1) = 0. Let z be any sufficient representation of x for y1 that
satisfies the sufficiency definition 2.1 and minimizes the loss function L = I(x1x2; z) − βI(z;y1).
The possible z that minimizes L and is sufficient must meet the condition I(x2; z) = 0.

Detailed proof in Appendix D.4.

Intuitively, the minimal sufficient representation cannot encode any information independent of the
surrogate learning objective, otherwise it would not be minimal. This means that the representation
will be blind to any label built upon the independent information.

However, Theorem 3.1 is not sufficient to guarantee OOD failure. This is because the selection of
the ID training set could change the learned representation z, possibly improving OOD detection
performance by increasing mutual information, I(x2; z) > 0. We formally disprove this possibility
through Lemma 3.2.
Lemma 3.2. Independence of Filtered Distributions.
Let x come from a distribution. x is composed of two independent variables x1 and x2. For x′

2
where Rx′

2
⊂ Rx2 , there exists no x′

2 such that H(x1|x′
2) < H(x1).

Detailed proof in Appendix D.5.

Lemma 3.2 states that filtering on a label generated on one of two independent variables cannot
provide information about the other. This applies to the selection of ID data from the population,
if the selection criteria is independent of the learning objective. This means that the strict label
blindness properties predicted by Theorem 3.1 will apply to ID training data. These two concepts
bring us to our main result – strict label blindness in filtered distributions; see Corollary 3.3.
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Corollary 3.3. Strict Label Blindness in Filtered Distributions.
Let x come from a distribution. x is composed of two independent variables x1 and x2. Let y1

be a a surrogate task such generated by y1 = f1(x1) H(y1|x1) = 0. Let y2 be a label such
that H(y2|x2) = 0 and y2 = f2(x2). Let Yin be as subset of labels Yin ⊂ Ry2

. Let x′ be a
subset of x where Rx′ = Rx ∩ {x ∈ R : f2(x2) ∈ Yin} such that x′ is composed of independent
variables x′

1 and x′
2 and y′

1 = f1(x
′
1). The sufficient representation z learned by minimizing

L = I(x′
1x

′
2; z)− βI(z;y′

1) must have I(x2; z) = 0 and I(y2; z) = 0.

Detailed proof in Appendix D.6.

This means that, when we select the ID training data, if the selection criteria and labels are indepen-
dent of the surrogate learning objective, then we can guarantee failure in OOD detection due to the
absence of any information in the learned representation z. For simplicity, we refer to this concept,
supported by Corollary 3.3, as the problem of Strict Label Blindness.

In summary, when the surrogate learning task can be achieved without learning about features rele-
vant for the label, it will not learn any features relevant for the label. Figure 2 is a visualized example
of this. If the SSL or unsupervised learning method fails to learn any label-relevant features, then
any OOD detection algorithm built from those representations cannot differentiate between the la-
bels selected as ID and those not selected as ID. This guarantees failure in OOD detection because
no label information passes through the information bottleneck.

Implications of Strict Label Blindness in Real World Situations We can utilize Fano Inequality
to extend our understanding of strict label blindness to consider situations of where the variables are
not fully independent. The lower bound for prediction error is defined by the entropy of the target
label y less the mutual information between the input x and target label, as shown in Theorem 3.4.
Under strict label blindness, when I(x;y) = 0, the lower bound for error is at its maximum. When
I(x;y) ≈ 0, the lower bound for error is large enough to be unreliable. We refer to this condition
as Approximate Label Blindness and we conduct experiments to evaluate this condition. Unless
specified as strict, label blindness refers to the approximate case.

Theorem 3.4. Fano’s Inequality (See (Robert, 1952)).
Let y be a discrete random variable representing the true label with Y possible values and car-
dinality of |Y| and x be a random variable used to predict y. Let e be the occurrence of an er-
ror such that y ̸= ŷ where ŷ = f(x). Let Hb represent the binary entropy function such that
Hb(e) = −P (e) logP (e) − (1 − P (e)) log(1 − P (e)). The lower bound for P (e) increases with
lower I(x;y).

Hb(e) + P (e) log(|Y| − 1) ≥ H(y)− I(x;y). (3)

3.2 DISTINCTIONS FROM THE STATE-OF-THE-ART

Previous work by (Federici et al., 2020) introduced the No Free Generalization Theorem, which
contains some similar concepts. It states that a compressed representation of x cannot contain
information for all possible labels of x, but does not guarantee OOD detection failure.
Theorem 3.5. No Free Generalization (See (Federici et al., 2020)).
Let x, z and y be random variables with joint distribution p(x,y, z). Let z′ be a representation of
x that satisfies I(x; z) > I(x; z′), then it is always possible to find a label y for which z′ is not
predictive for y while z is.

Our theoretical work shows the exact conditions that guarantee OOD failure based on the mutual in-
formation between the labels and the loss function, when performing SSL or unsupervised learning.

Recent work by (Du et al., 2024b) investigates how labels can improve the performance of OOD
algorithms. Their work does not describe any guarantee of failure in OOD detection in the absence
of labels, but does support the idea that labels are important for OOD detection.

3.3 THEORETICAL IMPLICATIONS

Our work applies to deep neural networks (DNNs) trained without labels for the purpose of OOD
detection. The key assumption of information bottleneck compression is generally applicable to
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DNNs (Shwartz-Ziv & Tishby, 2017). Regardless of other assumptions, such as the multi-view as-
sumption, an information bottleneck DNN trained without labels will still compress data irrelevant
to its loss objective, even if that data is relevant for its intended task. It does not matter what task
the training process was originally designed for because the unlabeled training process ultimately
generates/adheres to its own learning objective. For any learning objective, there will exist an inde-
pendent feature unless compression is not possible, as in I(x;y) = I(x;x). If there is compression,
then there exists labels for which OOD detection failure is guaranteed.

Our work predicts a guarantee of failure only when we consider the OOD set of all non-ID data.
In our own experiments and in work by (Sehwag et al., 2021; Hendrycks et al., 2019; Liu et al.,
2023), purely self-supervised and unsupervised OOD methods can perform well against common
benchmark OOD sets. This suggests that the choice of ID set and OOD set pairs can unintentionally
hide label blindness failure. Alternatively, we can also construct a test to identify if the OOD de-
tection algorithm suffers from label blindness. To construct such a test, we rely on the insight from
Corollary 3.3 and the use of a simple statistical method.

4 BENCHMARKING FOR LABEL BLINDNESS FAILURE

4.1 BOOTSTRAPPING AND THE ADJACENT OOD BENCHMARK

One logical consequence of Corollary 3.3 is that one cannot avoid failure due to label blindness
by selecting different labels for one’s ID set, so long as the label selection is independent from the
bluelearning objective. To test any OOD detection algorithm for label blindness failure, this simply
entails selecting different labels for one’s ID set. To construct this benchmark, we randomly sample
labels to be considered as ID and other labels to be consider OOD. This is similar to bootstrapping,
but without replacement. If an OOD detection algorithm is ‘approximately label blind’, its average
OOD detection performance across the samples should be poor. We refer to this as the Adjacent
OOD Detection Benchmark.

4.2 WHY ADJACENT OOD IS SAFETY-CRITICAL TO ALMOST ALL REAL WORLD SYSTEMS

The Adjacent OOD detection benchmark evaluates the performance of OOD detection algorithms
when there may be a significant overlap between the ID data and OOD data. This condition applies
to all systems where it is impossible to guarantee that there will be no significant overlap in the
feature space between ID and OOD data. This is true for almost all real world systems and is
theoretically proven below.
Theorem 4.1. Unavoidable Risk of Overlapping OOD Data

Let x come from a distribution. Let f be some labeling function to generate labels y such that
y = f(x), where there are at least two unique labels |Ry| > 1. Let xin be a random subset of
x where Rxin ⊊ Rx and |Rxin | < ∞. Let yin be labels generated from yin = f(xin). The
probability that a randomly selected x contains y not present in Ryin is always greater than 0.
Detailed proof in Appendix D.7.

In theory, this risk can be reduced to an acceptable level by adding more data to the training dataset.
However, this reduction in risk requires the assumption that the collected data is randomly sampled.
This is almost never true for real world datasets and often the opposite is true, where the nature of
sampling can significantly increase this risk.

One risk factor present in every real world dataset is the dataset creation date. By creating the
dataset at any specific point in time, the dataset cannot be randomly sampled with respect to time
because it is impossible to collect data from the future. For example, if one where to create a
dataset of diseases today, it would not contain any future diseases. In this example, the probability
that the training dataset is incomplete is 100%, which guarantees that there will be OOD data that
significantly overlaps with ID data. For most real world systems, the only safe assumption is that
there may be OOD data that overlaps with ID data and it is necessary to plan accordingly.

The failure predicted by the label blindness theory is easiest to detect in the adjacent OOD situation.
Where there is a likelihood of adjacent data, Theorem3.3 predicts OOD detection failure. Where
there is no adjacent data, features independent of the label can still be used to distinguish between ID
data and non adjacent OOD data, as shown in various experiments in this paper and others (Sehwag
et al., 2021; Hendrycks et al., 2019; Liu et al., 2023).
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4.3 COMPARING ADJACENT, NEAR, AND FAR OOD BENCHMARKS

Many unlabeled OOD methods generally perform quite well on far and near OOD tasks. Far OOD is
often defined by ID and OOD sets with different semantic labels and styles (Fang et al., 2022). One
such far OOD benchmark is MNIST as ID data and CIFAR10 as OOD data. Near OOD contains
ID and OOD sets with similar semantic labels and styles (Fang et al., 2022). These tasks tend to
be more difficult for existing OOD detection methods than far OOD detection tasks. One such
near OOD benchmark is CIFAR10 as ID and CIFAR100 as OOD. However, the overlap in the near
OOD detection benchmarks is significantly less than the adjacent OOD detection benchmark, which
evaluates the maximum possible feature overlap. For example, an Adjacent OOD benchmark on the
ICML Facial Expressions dataset may contain the same face with different expressions, resulting in
significant feature overlap. These existing benchmarks do not provide sufficient safety guarantees
in applications where there may be significant overlap between ID and OOD data.

4.4 IMPLICATIONS FOR OOD FROM UNLABELED DATA

While methods that utilize only unlabeled data, such as (Sehwag et al., 2021; Liu et al., 2023; Guille-
Escuret et al., 2024), show promising results on both near and far OOD tasks, their performance in
the adjacent OOD detection tasks depends on the mutual information between the learned represen-
tation and the ID labels. Our theoretical work suggests that such methods will perform poorly, if the
surrogate task is independent of the labels.

The adjacent OOD detection benchmark can also evaluate the performance of zero shot OOD detec-
tion methods. While our theoretical work does not extend to pretraining due to the use of labels, it
is also still important to consider the performance when OOD data overlaps ID data.

5 EXPERIMENTAL RESULTS

We conduct the following experiments to verify the existence of label blindness in unlabeled OOD
detection methods. All hyperparameters and configurations were the best performing from their
respective original paper implementations, unless noted otherwise. Experiments are repeated 3
times. Note that code for fully replicating experiments of this work can be found at https:
//anonymous.4open.science/r/ProblematicSelfSupervisedOOD-EA64/

5.1 EXPERIMENTAL SETUP

Supervised Baseline. We use Maximum Softmax Probability (MSP) (Hendrycks & Gimpel,
2016) as our baseline supervised method for comparison. We augment the training data using ran-
dom rotation, horizontal flip, random crop, gray scale, and color jitter. Images are resized to 64×64.
We train using stochastic gradient descent with momentum and a cosine annealing learning sched-
ule. We train for 10 warm up epochs followed by 150 regular epochs, selecting the weights with the
highest validation accuracy. We use a standard ResNet50 architecture.

Self-supervised Baselines. We use two SSL methods to evaluate how representations are learned,
SimCLR (Chen et al., 2020) and Rotation Loss (RotLoss) (Hendrycks et al., 2019). Images are
resized to 64×64 for both cases. For SimCLR, we augment the training data using random rotation,
horizontal flip, random crop, gray scale, and color jitter. For Rotation Loss, we use only random
crop and horizontal flip. We train using stochastic gradient descent with momentum (and a cosine
annealing learning schedule) and employ a standard ResNet50 architecture and train for 10 warm up
epochs followed by 500 regular epochs, selecting the weights with the best-learned representations.
We use a KNN classifier to determine the best representations during validation at the end of each
epoch.

To evaluate OOD performance, we use two methods to generate the OOD score of each sample, SSD
(Sehwag et al., 2021) and KNN, similar to (Sun et al., 2022). SSD considers the OOD score as the
Mahalanobis distance of the sample from the center of all in-distribution training data samples. The
KNN method considers the OOD score as the Euclidean distance from the N th nearest neighbor
of the test sample to all in-distribution training samples. Both methods are distance based OOD
detection and are commonly used with representation learning. We use the same representation
mentioned in the previous paragraph.
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Unsupervised Baseline. To consider how an unsupervised OOD detection method functions, we
evaluate the diffusion impainting OOD detection method proposed by (Liu et al., 2023) using code
provided in their paper’s linked repository. We utilize the training configuration that generated the
paper’s main results, which involved an alternating checkerboard mask 8 × 8, an LPIPS distance
metric to calculate the OOD score, and 10 reconstructions per image. We modify only the input
image size to be 64× 64 for all datasets and run additional experiments to evaluate performance on
their alternative MSE distance metric. This method is representative of other generative methods,
such as Xiao et al. (2020).

Zero-shot Baseline. To consider how well zero shot learning algorithms perform, we evaluate the
CLIPN model presented by (Wang et al., 2023). We utilize their pretrained weights provided in their
paper’s repository and perform zero shot OOD detection on our adjacent OOD detection bench-
mark. We evaluate CLIPNs performance using 3 of their paper’s algorithms, Maximum Softmax
Probability, Compete to Win (CTW), and Agree to Differ (ATD).

5.2 ADJACENT OOD DATASETS

To create the Adjacent OOD detection task, we randomly split 25% of all classes into the OOD set
and retain 75% as the ID set. We also repeat our experiments three times with different seeds to
account for different splits of the ID and OOD set. Only ICML Facial expressions has a major class
imbalance for one of its seven classes. See Appendix E for examples of the datasets.

The ICML Facial Expressions dataset (Erhan et al., 2013) contains seven facial expressions split
across 28, 709 faces in the train set and 7, 178 in the test set. The expressions include anger, disgust,
fear, happiness, sadness, surprise, and neutral. Self-supervised algorithms may not learn relevant
features for distinguishing expressions and instead learn features relevant for distinguishing faces.

The Stanford Cars dataset (Krause et al., 2013) contains 16, 185 images taken from 196 classes of
cars. The data is split into 8, 144 training images and 8, 041 testing images, with each class being
split roughly 50-50. Classes are typically very fine-grained, at the level of Make, Model, Year, e.g.,
2012 Tesla Model S or 2012 BMW M3 coupe. This creates a particularly challenging Adjacent
OOD task because of the reliance on more subtle features to differentiate cars.

The Food 101 dataset by (Bossard et al., 2014) consists of 101 food categories and 101, 000 images.
There are 250 manually reviewed test images and 750 training images for each class. Note that
training images were not cleaned to the same standard as the test images and will contain some
mislabeled samples. We believe that this should not significantly detract from the Adjacent OOD
nature of the dataset.

5.3 EXPERIMENTAL RESULTS

Experimental results for Adjacent OOD are presented in Table 1. It is apparent that the baseline
supervised method performs better than most unlabeled methodss on the Adjacent OOD detection
task. In cases where the unlabeled methods exhibits performance as good as random guessing, it
is likely that the learned representation contains little information about the semantic label. This is
contrary to the reported performance improvements presented in unlabeled OOD papers (Sehwag
et al., 2021; Hendrycks et al., 2019; Liu et al., 2023), as our experimental results suggest unlabeled
OOD is significantly worse than a simple MSP baseline.

It is important to note that the zero shot CLIPN method performs well when the label text’s usage
in pretraining is similar to the label text’s usage in the ID data. In the case of the Cars dataset, the
pretraining dataset CC3M (Sharma et al., 2018) contains many images captioned with the make and
model of various cars, resulting in good performance. The Food dataset also sees similar label usage
in the pretraining set. However, the Faces dataset’s labels are not aligned. For example, there are
multiple images associated with the emotion angry that do not contain a human face, such as an
image of a angry fist. When there is little or no mutual information between the pretraining data
and the ID labels, zero shot methods will perform poorly in OOD detection tasks. Examples of
pretraining data are provided in the appendix G.

In appendix F.1, we show adjacent OOD results for CIFAR10 and CIFAR100. We observe decent
OOD performance on the unlabeled SimCLR compared to the labeled supervised MSP. This is likely
because the SimCLR algorithm is better at learning the relevant features in these datasets and that the
classes are more visually dissimilar, resulting in less overlap of OOD and ID data. In appendix F.2
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Table 1: Results from experiments across various datasets and methods. Unlabeled methods perform
poorly in adjacent OOD detection. CLIPN performance is due to labels present in the pretraining
dataset and is discussed in section 5.3. Higher AUROC and lower FPR is better.

Faces Cars Food
Method AUROC FPR95 AUROC FPR95 AUROC FPR95

Supervised MSP 70.8±0.3 88.2±0.2 69.2±0.9 88.8±0.8 78.8±1.2 81.1±1.6

SimCLR KNN 52.0±4.2 95.0±1.3 52.5±0.4 94.0±0.5 61.1±2.8 91.6±1.6
SimCLR SSD 55.0±4.5 95.1±2.0 52.7±0.7 93.7±1.1 64.4±0.8 89.3±0.5
RotLoss KNN 46.1±2.5 95.8±0.4 51.1±0.6 94.8±0.7 49.7±3.8 94.9±0.9
RotLoss SSD 46.6±3.0 95.7±0.5 50.7±1.9 95.0±1.2 50.7±3.6 94.9±0.9

Diffusion LPIPS 54.7±4.6 94.2±3.7 53.8±1.8 93.9±1.2 52.9±2.2 94.4±0.6
Diffusion MSE 55.3±2.2 94.2±1.4 51.6±1.6 94.4±0.5 52.5±3.4 94.2±0.6

CLIPN CTW 47.0±1.4 97.3±0.3 65.0±5.1 69.4±9.4 70.9±2.9 69.1±7.0
CLIPN ATD 44.2±1.4 97.5±0.2 81.1±4.3 56.6±10.4 84.9±0.2 53.9±4.5
CLIPN MSP 58.7±4.4 95.9±1.4 76.5±1.4 75.4±0.6 80.5±1.6 74.0±1.4

we show strong results far OOD performance for SimCLR based OOD detection, which confirms
findings in papers that test unlabled OOD methods against a far OOD detection benchmark, (Sehwag
et al., 2021; Tack et al., 2020; Liu et al., 2023; Guille-Escuret et al., 2024; Wang et al., 2023).

6 RELATED WORK

Out-of-Distribution Detection. (Yang et al., 2021) defines OOD detection as the detection of a
semantic shift. A semantic shift is a shift in the label space, where the label for a sample does not ex-
ist in the training set. OOD detection is crucial in applications where failure is very costly and/or the
probability of OOD inputs are very high, as in autonomous driving (Huang et al., 2020). Following
(Hendrycks & Gimpel, 2016), there have been many advances in supervised OOD detection. Some
of these improved methods include those based on the ODIN score (Liang et al., 2017), Mahalanobis
distance (Lee et al., 2018), energy score (Liu et al., 2020), minimum other score (Huang & Li, 2021),
and deep Adjacent-neighbors (Sun et al., 2022). These methods differ from self-supervised methods
through the use of label information during training.

Self-Supervised and Unsupervised Learning. Unsupervised learning involves finding underly-
ing patterns within unlabeled data. Diffusion models (Ho et al., 2020) and generative adversarial
networks (GAN) (Karras, 2017) can be considered as unsupervised learning. Most DNN unsuper-
vised learning methods define some task based learning objective, such as the reconstruction task
via autoencoders (Baldi, 2012) or the discrimination between real and fake data in GANs (Creswell
et al., 2018).

SSL can be considered a variation of unsupervised learning that focuses on learning a representation
Z from input X , with respect to task Y , such that I(Z;Y ) is maximized and I(X;Z) is minimized.
The unsupervised methods referenced in previous paragraph can be considered SSL with respect to
their learning objectives. Notably, (Shwartz-Ziv & LeCun, 2023) provides a unified information-
theoretic view of SSL. Recent advances in SSL methodology include joint embeddings based on
SimCLR (Chen et al., 2020) and SimSiam (Chen & He, 2021), as well as those based on generative
models (He et al., 2022).

Unlabeled Out-of-Distribution Detection. Unlabeled OOD detection methods include self su-
pervised and unsupervised methods. Self-supervised OOD detection methods can vary significantly
in their definition of the term self-supervised. Methods that train on OOD information (Mohseni
et al., 2020) are inherently biased towards better performance on the trained OOD sets. Methods
accessing in-distribution labels (Vyas et al., 2018) are not self-supervised. We consider the self-
supervised OOD detection as any OOD method that does not access in-distribution labels nor the
out-of-distribution set. With this definition, all self-supervised OOD methods must contain an SSL
objective and some way to determine the OOD score based on model output, which is often times a

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

metric based on the model’s learned representation(s). Many unsupervised OOD detection methods
fall under this definition as well, such as (Daxberger & Hernández-Lobato, 2019; Liu et al., 2023;
Xiao et al., 2020).

Methods based on representation and scoring were presented in the following key efforts.
(Hendrycks et al., 2019) combines a rotation loss and rotation score whereas (Sehwag et al., 2021)
utilizes SimCLR (Chen et al., 2020) and the Mahalanobis distance. (Khalid et al., 2022) combines
adversarial contrastive learning with singular value decomposition while (Zhang et al., 2021), in con-
trast, combines flow-based generated models with the Kolmogorov–Smirnov distance. The method
of (Xiao et al., 2020) is based on integration of variational auto encoders with likelihood regret.

Contrastive representation learning methods have been used to improve the robustness of supervised
OOD detectors. (Sun et al., 2022) uses supervised contrastive learning (Khosla et al., 2020) to
improve the performance of a KNN-based OOD detector. Most recently, work by (Guille-Escuret
et al., 2024) utilizes maximum mean discrepancy combined with contrastive SSL.

Zero shot OOD detection methods are a more recent development in unlabeled OOD detection.
These methods utilize the CLIP model presented in (Radford et al., 2021) with two notable and
recent publications (Esmaeilpour et al., 2022) and (Wang et al., 2023).

7 DISCUSSION

7.1 IMPACT OF LABEL BLINDNESS ON FUTURE RESEARCH

A consequence of the label blindness theorem is that there cannot exist a single unlabeled OOD
detection algorithm for all unlabeled data. However, unlabeled learning methods, such as SimCLR,
are vital for improving OOD detection. The model of (Sun et al., 2022) learns representations using
a supervised version of SimCLR, similar to (Khosla et al., 2020). The combination of a multi-
view information bottleneck with supervised classes produces a more robust representation of the
in-distribution data than using only a supervised loss. Recent work by (Du et al., 2024a) provides a
strong theoretical basis for why unlabeled data can improve OOD detection performance.

Future work should focus on overcoming approximate label blindness through few or one shot meth-
ods that can better incorporate label information. Such methods could incorporate a tiny amount of
labeled data to avoid the complete independence condition described in Theorem3.3. More work
needs to be done to determine how much label information is sufficient for the adjacent OOD detec-
tion detection benchmark.

7.2 IMPACT OF LABEL BLINDNESS ON REAL WORLD PROBLEMS

One can still enjoy the benefits of unlabeled OOD methods when the consequences of label blindness
are acceptable. For example, if the objective was to detect any disease at all, then detecting a novel
disease as in distribution would not be problematic. Unlabeled OOD can also be used in cases where
the risk of adjacent OOD data is acceptably low. The risk defined by Theorem 4.1 is less relevant
when randomness in the collection of ID data can be ensured. For example, an ID dataset of World
War 2 aircraft would not be biased by the collection date and the risk of overlapping OOD data can
be reduced to effectively zero.

Unlabeled OOD detection can also work well when the learned features are relevant for the OOD
setting. In the case of adjacent OOD detection, an unlabeled method should perform well if the
learning objective is closely related to the ID labels. Alternatively, unlabeled OOD detection can be
in used cases where one expects only near and far OOD data.

8 CONCLUSION

In this work we provide an answer to the question, can we ignore labels for OOD detection? Our
theoretical work shows that the answer is no, unless the unlabeled method happens to capture the
relevant features and does not need to work for different sets of labels. Due to the lack of existing
benchmarks that capture the theoretically expected failure, we introduce a novel type of OOD task,
Adjacent OOD detection. This task addresses the critical safety gap caused by significant overlap of
ID and OOD data. We show that the Adjacent OOD task accurately captures the failure in unlabeled
OOD detection that is hypothesized by our theory. We hope our work will help support more robust
research into OOD detection and improve the safety of AI applications.
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Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
representations via multi-view information bottleneck. arXiv preprint arXiv:2002.07017, 2020.

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
detection. Advances in Neural Information Processing Systems, 34:7068–7081, 2021.

Charles Guille-Escuret, Pau Rodriguez, David Vazquez, Ioannis Mitliagkas, and Joao Monteiro.
Cadet: Fully self-supervised out-of-distribution detection with contrastive learning. Advances in
Neural Information Processing Systems, 36, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

11

https://kaggle.com/competitions/challenges-in-representation-learning-facial-expression-recognition-challenge
https://kaggle.com/competitions/challenges-in-representation-learning-facial-expression-recognition-challenge


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learn-
ing can improve model robustness and uncertainty. Advances in neural information processing
systems, 32, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Rui Huang and Yixuan Li. Mos: Towards scaling out-of-distribution detection for large semantic
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8710–8719, 2021.

Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min
Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science Review, 37:100270,
2020.

Tero Karras. Progressive growing of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017.

Umar Khalid, Ashkan Esmaeili, Nazmul Karim, and Nazanin Rahnavard. Rodd: A self-supervised
approach for robust out-of-distribution detection. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 163–170. IEEE, 2022.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition
(3dRR-13), Sydney, Australia, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in neural information processing systems, 33:21464–21475, 2020.

Zhenzhen Liu, Jin Peng Zhou, Yufan Wang, and Kilian Q Weinberger. Unsupervised out-of-
distribution detection with diffusion inpainting. In International Conference on Machine Learn-
ing, pp. 22528–22538. PMLR, 2023.

Sina Mohseni, Mandar Pitale, JBS Yadawa, and Zhangyang Wang. Self-supervised learning for
generalizable out-of-distribution detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5216–5223, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Manikandasriram Srinivasan Ramanagopal, Cyrus Anderson, Ram Vasudevan, and Matthew
Johnson-Roberson. Failing to learn: Autonomously identifying perception failures for self-
driving cars. IEEE Robotics and Automation Letters, 3(4):3860–3867, 2018.

M Robert. Fano. class notes for mit course 6.574: Transmission of information. MIT, Cambridge,
MA, 8:33, 1952.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. arXiv preprint arXiv:2103.12051, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2556–2565, 2018.

Ravid Shwartz-Ziv and Yann LeCun. To compress or not to compress–self-supervised learning and
information theory: A review. arXiv preprint arXiv:2304.09355, 2023.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, pp. 20827–20840. PMLR, 2022.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. Advances in neural information processing systems,
33:11839–11852, 2020.

Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and Theodore L
Willke. Out-of-distribution detection using an ensemble of self supervised leave-out classifiers.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 550–564, 2018.

Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
clip to say no. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1802–1812, 2023.

Mei Wang and Weihong Deng. Deep face recognition: A survey. Neurocomputing, 429:215–244,
2021.

Zhisheng Xiao, Qing Yan, and Yali Amit. Likelihood regret: An out-of-distribution detection score
for variational auto-encoder. Advances in neural information processing systems, 33:20685–
20696, 2020.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. arXiv preprint arXiv:2110.11334, 2021.

Lily Zhang, Mark Goldstein, and Rajesh Ranganath. Understanding failures in out-of-distribution
detection with deep generative models. In International Conference on Machine Learning, pp.
12427–12436. PMLR, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A IMPACT STATEMENT

This paper presents work whose goal is to advance the field of machine learning. In particular, this
paper seeks to improve the theoretical understanding of safety in machine learning based systems.
We hope to positively impact society by improving the work of future researchers and practitioners
in building safer AI systems.

B PROPERTIES OF MUTUAL INFORMATION AND ENTROPY

In this section we enumerate some of the properties of mutual information that are used to prove the
theorems reported in this work. For any random variables w,x,y and z :

(P1) Positivity:

I(x;y) ≥ 0, I(x;y | z) ≥ 0

(P2) Chain rule:

I(xy; z) = I(y; z) + I(x; z | y)

(P3) Chain rule (Multivariate Mutual Information):

I(x;y; z) = I(y; z)− I(y; z | x)

(P4) Positivity of discrete entropy: For discrete x

H(x) ≥ 0, H(x | y) ≥ 0

(P5) Entropy and Mutual Information

H(x) = H(x | y) + I(x;y)

(P6) Conditioning a variable cannot increase its entropy

H(y|z) ≤ H(y)

(P7) A variable knows about itself as much as any other variable can

I(x;x) ≥ I(x;y)

(P8) Symmetry of Mutual Information

I(x;y) = I(y;x)

(P9) Entropy and Conditional Mutual Information (This is simply P5 conditioned on z)

I(x;y|z) = H(x|z)−H(x|yz)

(P10) Functions of Independent Variables Remain Independent

I(x;y) = 0→ I(f(x);y) = 0
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C THEOREMS AND PROOFS OF PREVIOUS WORK

This section contains the supporting theorems and proofs provided by previous work (Federici et al.,
2020).

When random variable z is defined to be a representation of another random variable x, we state
that z is conditionally independent from any other variable in the system once x is observed. This
does not imply that z must be a deterministic function of x, but that the source of stochasticity for z
is independent of the other random variables. As a result whenever z is a representation of x :

I(z;a | xb) = 0,

for any variable (or groups of variables) a and b in the system. This condition is accounts for the
randomness experienced in training neural networks and the error expected from human labelers.
This condition applies to this and the following sections.

C.1 SUFFICIENCY

Proposition C.1. Let x and y be random variables from joint distribution p(x,y). Let z be a
representation of x, then z is sufficient for y if and only if I(x;y) = I(y; z)

Hypothesis:

(H1) z is a representation of x : I(y; z | x) = 0

Thesis:

(T1) I(x;y | z) = 0⇐⇒ I(x;y) = I(y; z)

Proof.

I(x;y | z) (P3)
= I(x;y)− I(x;y; z)

(P3)
= I(x;y)− I(y; z) + I(y; z | x)

(H1)
= I(x;y)− I(y; z)

Since both I(x;y) and I(y; z) are non-negative (P1) , I(x;y | z) = 0⇐⇒ I(y; z) = I(x;y)

D MAIN THEOREMS AND PROOFS

We ignore cases where the determined variable has an entropy of 0. Generally, if H(y|x) = 0 →
H(y) > 0. Also, we only consider cases where the random variables have more than zero entropy.

Note that Rx represents the support of random variable x such that Rx = {x ∈ R : P (x) > 0}.

D.1 LOWER BOUND OF MUTUAL INFORMATION FOR SUFFICIENCY

Lemma D.1. Let x and y be random variables with joint distribution p(x,y). Let z be a represen-
tation of x that is sufficient, as per definition 2.1. Then I(x; z) ≥ I(z;y) and I(x; z) ≥ I(x;y).

Hypothesis:

(H1) z is a representation of x : I(y; z | x) = 0

(H2) z is a sufficient representation of x : I(x;y|z)) = 0

Thesis:

(T1) ∀z.I(x; z) ≥ I(z;y), I(x; z) ≥ I(x;y)

Proof. By Construction
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I(xy|z)) (H2)
= 0

(P2)
= I(zy;x)− I(z;x)

(P2)
= I(x;y) + I(x; z|y)− I(z;x)

(PropB1)
= I(z;y) + I(x; z|y)− I(z;x)

I(z;x) = I(z;y) + I(x; z|y)

I(z;x)
(P1)

≥ I(z;y)

Note that I(z;y) = I(x;y) for all sufficient representations, as per proposition C.1.

This supports our intuition that the information in the representation consists of relevant information
I(z;y) and irrelevant information I(x; z|y). By definition of sufficiency, there must be enough
information for I(z;y) in I(x; z), which is to say that the size of the encoding cannot be smaller
than the minimum size to encode all of I(x;y).

D.2 CONDITIONAL MUTUAL INFORMATION OF NOISE

Lemma D.2. Let x and y be independent random variables and z be a function of x with joint
distribution p(x,y, z). The conditional mutual information I(x; z|y) is always equal to the mutual
information I(x; z). As in the information content is unchanged when adding noise.

Hypothesis:

(H1) Independence of x and y : I(x;y) = 0

(H2) z is fully determined by x : H(z|x) = 0

Thesis:

(T1) I(x; z|y) = I(x; z)

Proof. By Construction.

(C1) Demonstrates that H(z|xy) = 0

0
(P4)

≤ H(z|xy)
(P6)

≤ H(z|x)

H(z|xy)
(H2)

≤ 0

(C2) Demonstrates that I(z;y) = 0

I(z;y)
(H2)
= I(f(x);y)

(P10)
= I(x;y)

(H1)
= 0

Thus
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I(x; z|y) (P9)
= H(z|y)−H(z|xy)

(C1)
= H(z|y)− 0

(P5)
= H(z)− I(z;y)

(C2)
= H(z)− 0

(H2)
= H(z)−H(z|x)

(P5)
= I(x; z)

This supports the intuition that if one added a random noise channel it will not change the mutual
information.

D.3 FACTORIZATION OF BOTTLENECK LOSS

Lemma D.3. Let x be a random variable with label y such that H(y|x) = 0 and z is a sufficient
representation of x for y. The loss function L = I(x; z) − βI(z;y) is equivalent to L = H(z) −
βI(z;y), with β as some constant.

Hypothesis:

(H1) z is fully determined by x : H(z|x) = 0

Thesis:

(T1) I(x; z)− βI(z;y) = H(z)− βI(z;y)

Proof. By Construction.

I(x; z)− βI(z;y)
(P5)
= H(z)−H(z|x)− βI(z;y)

(H1)
= H(z)− βI(z;y)

Due to the relationship between x and z, we can create an intuitive factorization of the bottleneck
loss function. Effectively, we want to maximize I(z;y) while minimizing the information content
of z

D.4 STRICT LABEL BLINDNESS IN THE MINIMAL SUFFICIENT STATISTIC

Theorem D.4. Let x come from a distribution. x is composed of two independent variables x1 and
x2. Let y1 be a surrogate task such that H(y1|x1) = 0. Let z be any sufficient representation of x
for y1 that satisfies the sufficiency definition 2.1 and minimizes the loss function L = I(x1x2; z)−
βI(z;y1). The possible z that minimizes L and is sufficient must meet the condition I(x2; z) = 0.

Summary This proof uses the derivative of the loss function to establish the possible set of local
minima that satisfiesL. For any possible minima ofL, the representation z must contain information
of only x1− > H(z|x1) = 0 or only x2− > H(z|x2) = 0) or both x1,x2− > H(z|x1,x2) = 0.
We show that possible set of all local minima must satisfy H(z|x1) = 0 by showing that the other
two cases must always have greater L. This proves the Theorem that the learned representation
cannot contain information about x2.

(H1) z is fully determined by x : H(z|x) = 0
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(H2) z is a representation of x : I(y; z | x) = 0

(H3) z is a sufficient representation of x : I(x;y|z) = 0

(H4) x is composed of two independent variables x1,x2 : x = x1,x2, I(x1;x2) = 0

(H5) y is fully determined by x1: H(y|x1) = 0

Thesis:

(T1) ∀z.I(x2, z) = 0

Proof. By Construction

(C1) demonstrates that L = H(z)− βI(z;y) via factoring I(x1x2; z). Alternatively, Theorem D.3
creates the same result.

I(x1,x2; z)
(P2)
= I(x1; z) + I(x2; z|x1)

(P5)
= H(z)−H(z|x1) + I(x2; z|x1)

(P9)
= H(z)−H(z|x1) +H(z|x1)−H(z|x1x2)

(H1)
= H(z)−H(z|x1) +H(z|x1)− 0

L = H(z)− βI(z;y)

(C2) Demonstrates that I(z;y) = I(x;y) as per Theorem C.1.

(C3) Demonstrates that I(z;y) is a constant across all sufficient representations because Theorem
C.1 applies.

(C4) Demonstrates that for all possible z satisfying (H3), their loss can be compared using only
Lz = H(z) for comparing across z

dL
dz

(C1)
=

H(z)

dz
− βI(z;y)

dz
(C3)
=

H(z)

dz
− 0

(C5) Demonstrates that the value of H(z) at all possible z that minimizes L is the same. Even for
different minimal z, they must have the same H(z) to all be minimal. When comparing possible
minimal solutions to L, H(z) is constant across all minimal solutions.

(C6) Demonstrates that any z that satisfies sufficiency must satisfy I(z;x) ≥ I(z;y) and I(z;x) ≥
I(x;y) as per Theorem D.1.

(C7) Demonstrates that minima(s) exists only where H(z) = I(z;y) and H(z|x) = 0. Note that
H(z) = I(x;y) = I(z;y) is the most compact representation size that is sufficient.

I(z;x)
(C6)

≥ I(z;y)

H(z)−H(z|x)
(P5)

≥ I(z;y)

∀z|C6 ∧H3 ∧ I(z;x) > I(z;y).∃z′|z′ = f(z) ∧ I(z;x) > I(z′;x) ∧ C6 ∧H3

From (C7) there exists only 3 types of minimas, separated by their dependence on the variables
x1,x2. As per (H1), any z must follow one of the 3 types.

1. Dependent only on x1: ∀z|H(z|x1) = 0→ I(x2; z) = 0

2. Dependent only on x2: ∀z|H(z|x2) = 0→ I(x2; z) > 0
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3. Dependent on both x1x2: ∀z|H(z|x1,x2) = 0 ∧ H(z|x1) > 0 ∧ H(z|x2) > 0 →
I(x2; z) > 0

From here we will show that all type 2 and type 3 minimas always fail (H3) or have greater L than
any type 1 minima.

Type 1 x1: ∀z|H(z|x1) = 0→ I(x2; z) = 0

(C8) Demonstrates that there exists H(z) = I(z;y) = I(x1; z) and it is a set of minimas satisfying
(C7). This also establishes an upper bound for solutions to L due to (C5). Therefore, any solution
for type 1, type 2, and type 3 must satisfy I(z;y) ≤ I(x1; z) to be sufficient and I(z;y) = I(x1; z)
to be minimal.

I(z;y)
(C6)

≤ I(z;x)

(H4)

≤ I(x1,x2; z)

(P2)

≤ I(x2; z) + I(x1; z|x2)

(Type1)

≤ 0 + I(x1; z|x2)

(TheorumD.2)

≤ I(x1; z)

(P5)

≤ H(z)−H(z|x1)

∃z|I(x1; z) = I(z;y) = I(x; z) = I(x;y)

(C9) Demonstrates that there exists no H(z′) < H(z) that satisfies sufficiency if z satisfies (C8)
and is also I(z;x2) = 0.

C8 → I(x1; z) = I(x;y)

H(z′) < H(z)→ I(x1; z
′) < I(x1; z)

→ ¬(C2) : I(x1; z
′) < I(x1; z) = I(y; z) = I(x;y)

Type 2 x2: ∀z|H(z|x2) = 0→ I(x2; z) > 0

(C10) Demonstrates that no type 2 minima can exist, simply because it would contain no information
regarding x1, thus failing to satisfy (H3). This is because z cannot contain any information about
x1, otherwise we would not satisfy H(z|x2) = 0. If the representation z contains no information
about y, then it is not sufficient.

H(z|x2) = 0→ z = f(x2)

0
(H4)
= I(x1;x2)

(P10)
= I(f(x1);x2)

(H5)
= I(y;x2)

(P10)
= I(y; f(x2))

0 = I(y; z)

Type 3 x1,x2: ∀z|H(z|x1,x2) = 0 ∧H(z|x1) > 0 ∧H(z|x2) > 0→ I(x2; z) > 0

(C11) Demonstrates that any z that could be minimal must also satisfy (C8) for sufficiency. Note
that (C8) implies that any I(x1; z) > I(z;y) is not minimal.
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I(z;y)
(C6)

≤ I(z;x)

(H4)

≤ I(x1x2; z)

I(z;y)
(P2)

≤ I(x1; z) + I(x2; z|x1)

(C8)→ I(x1; z) = I(z;y)

(C12) Demonstrates that any z′ where I(z′;x2) > I(z;x2) and I(z;x2) = 0 that maintains
H(z′) = H(z) results in solutions that are not sufficient as required by (H3) because we know
that the size of the representation must be at least I(x;y) as defined in (C6)

C8 → H(z) is constant across all minima

C8 → H(z) = H(z′) for z′ to be minimal
C8 → I(x1; z) = I(x;y)

I(x2; z) = 0→ H(z|x1) = 0

∀z′|I(x2; z
′) > 0 : H(z′|x1) > H(z|x1)

H(z′|x1) > H(z|x1)→ H(z′)−H(z′|x1) < H(z)−H(z|x1)

(P5)→ I(x1; z
′) < I(x1; z)

→ ¬(C6) : I(x1; z
′) < I(x;y)

(C13) Demonstrates that combining (C11) and (C12), there is no type 3 solution that has an equal
L to the minimal type 1 solution that also maintains sufficiency (H3) and (C6). This confirms the
definition of entropy, in that encoding more independent information requires more bits or nats.

This means that only a type 1 solution can be both minimal and sufficient, which proves the thesis.

To summarize this proof, we can compare the losses of all sufficient solutions with L = H(z). Of
those sufficient solutions, the one that minimizes L is the one with the smallest H(z). The minimal
sufficient representation is z that captures only all of I(x1;y) and nothing else. Thus the minimal z
cannot have I(x2; z) > 0 because such z would encode information outside of I(x1;y).

D.5 INDEPENDENCE OF FILTERED DISTRIBUTIONS

Lemma D.5. Let x come from a distribution. x is composed of two independent variables x1 and
x2. For x′

2 where Rx′
2
⊂ Rx2 , there exists no x′

2 such that H(x1|x′
2) < H(x1).

Summary This proof uses the chain rule of mutual information to show that contradiction arises
if x′

2 could filter x1 in a non random way.

Hypothesis:

(H1) x
′
2 is fully determined by x2 : H(x′

2|x2) = 0 where Rx′
2
⊂ Rx2

(H2) Independence of x1 and y2 : I(x1;x2) = 0

Thesis:

(T1) ∄x′
2.H(x1|x2) < H(x1)

Proof. by contradiction H(x1|x2) < H(x1)

(C1) Demonstrates I(x2;x
′
2) = I(x′

2;x
′
2)
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I(x2;x
′
2)

(P4)
= H(x′

2)−H(x′
2|x2)

(H1)
= H(x′

2)− 0

(P3)
= H(x′

2)−H(x′
2|x′

2)

(P3)
= I(x′

2;x
′
2)

(C2) Demonstrates I(x′
2;x1|x2) = 0

I(x′
2;x1|x2)

(P2)
= I(x′

2;x2x1)− I(x2;x
′
2)

(C1)
= I(x′

2;x2x1)− I(x′
2;x

′
2)

I(x′
2;x1|x2)

(P7)

≤ 0← I(x′
2;x2x1) ≤ I(x′

2;x
′
2)

(P1)

≥ 0

= 0

(C3) Demonstrates I(x1;x
′
2) > 0 via non independence implied by ¬T1

Contradiction arises when we consider symmetric applications of the chain rule to I(x1;x2x
′
2)

I(x1;x
′
2x2)

(P2)
= I(x1;x

′
2) + I(x1;x2|x′

2)

I(x1;x
′
2x2)

(C3)
> 0

I(x1;x2x
′
2)

(P2)
= I(x1;x2) + I(x1;x

′
2|x2)

(C2)
= I(x1;x2)

(H2)
= 0

Since I(x1;x2x
′
2) cannot be both zero and greater than zero, ¬T1 creates a contradiction, which

supports T1.

It is easy to confuse this with the existence of a non independent subset C := A ∩B, where A,B
are independent events. However, this example violates (H1), since we cannot determine C using
only A or only B.

D.6 STRICT LABEL BLINDNESS IN FILTERED DISTRIBUTIONS - GUARANTEED OOD
FAILURE

Corollary D.6. Let x come from a distribution. x is composed of two independent variables x1

and x2. Let y1 be a a surrogate task such generated by y1 = f1(x1) H(y1|x1) = 0. Let y2 be
a label such that H(y2|x2) = 0 and y2 = f2(x2). Let Yin be as subset of labels Yin ⊂ Ry2

.
Let x′ be a subset of x where Rx′ = Rx ∩ {x ∈ R : f2(x2) ∈ Yin} such that x′ is composed
of independent variables x′

1 and x′
2 and y′

1 = f1(x
′
1). The sufficient representation z learned by

minimizing L = I(x′
1,x

′
2; z)− βI(z;y′

1) must have I(x2; z) = 0 and I(y2; z) = 0.

Summary This proof combines Theorem D.5 and Theorem D.4.

Hypothesis:

(H1) z is fully determined by x : H(z|x) = 0
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(H2) z is a representation of x : I(y; z | x) = 0

(H3) z is a sufficient representation of x : I(x;y|z) = 0

(H4) x is composed of two independent variables x1,x2 : x = x1x2, I(x1;x2) = 0

(H5) y is fully determined by x1: H(y|x1) = 0

(H6) x
′ is a subset of x filtered by Yin : Rx′ = Rx ∩ {x ∈ R : f2(x2) ∈ Yin}

Thesis:

(T1) ∀z.I(x2; z) = 0, I(x′
2; z) = 0

Proof. By Construction.

(C1) Demonstrates that I(x′
1;x

′
2) = 0 due to Lemma D.5

Using (P10), we know that independent functions stay independent and thus I(x′
1;x2) =

0, I(x′
1;x2) = 0. From TheoremD.4 we know that encoding an variable independent of the tar-

get y results in a higher loss, therefore I(x′
2; z) = 0 and I(x2; z) = 0 since both are independent of

x′
1.

By combining Lemma D.5 and TheoremD.4, we know that any surrogate learning objective inde-
pendent of a downstream objective (say classifying labels) results in a representation containing no
information for the downstream objective. If it contains no information for one objective, it contains
no information for derivitives of that objective (eg. no label information means no OOD detection
information).

D.7 UNAVOIDABLE RISK OF OVERLAPPING OUT OF DISTRIBUTION DATA

Theorem D.7. Let x come from a distribution. Let f be some labeling function to generate labels
y such that y = f(x), where there are at least two unique labels |Ry| > 1. Let xin be a random
subset of x where Rxin ⊊ Rx and |Rxin | < ∞. Let yin be labels generated from yin = f(xin).
The probability that a randomly selected x contains y not present in Ryin is always greater than 0.

Hypothesis:

(H1) x comes from any distribution

(H2) y is a label generated from function y = f(x) such that |Ry| > 1

(H3) xi is a random subset of x where Rxin
⊊ Rx and |Rxin

| <∞ and yin = f(xin).

Thesis

(T1) ∀x.P (f(x) /∈ Ryin
) > 0)

Proof. by contradiction (¬T1) P (f(x) /∈ Ryin) = 0}
(C1) Demonstrates that ∀xi.Ryin

= Ry because there must exist no sample x such that f(x) /∈
Ryin

.

(C2) Demonstrates that ∀yn.P (f(x) = yn) > 0, where yn ∈ Ry

Contradiction arises when we consider that it is possible to sample the same label yn for any finite
number of repetitions, as per (C2). This would create a set of any finite size consisting only of the
label yn. Thus, there always exists Ryin

⊊ Ry which contradicts (C1).

More realistically, Ryin
can consist of all elements of Ry except one and still guarantee P (f(x) /∈

Ryin
) > 0).
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E SAMPLE IMAGES FROM DATASETS USED IN THE EXPERIMENTS

Space intentionally left blank.
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Figure 3: From left to right, sample images from the datasets ICML Facial Expression, Stanford
Cars, and Food 101. These datasets contain classes that are visually similar, in contrast to CIFAR10,
which includes classes such as airplane and dog that are not visually similar.

The above figure shows sample images from the datasets used in the experiments.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADJACENT OOD ON CIFAR10 AND CIFAR100

See table 2 for results on CIFAR10 and CIFAR100 adjacent OOD benchmarks. SSL methods per-
form better than on the Faces, Cars, and Food dataset.

CIFAR10 CIFAR100
Method AUROC FPR95 AUROC FPR95
Supervised MSP 85.3±5.9 73.0±9.1 78.3±0.9 80.9±1.2
SimCLR KNN 77.6±8.0 75.6±6.0 68.8±1.7 88.8±1.9
SimCLR SSD 77.6±8.0 69.1±1.3 70.2±1.2 88.2±2.4
RotLoss KNN 71.4±9.1 83.3±8.3 48.1±2.2 94.2±1.5
RotLoss SSD 71.1±6.7 82.6±9.0 47.9±2.3 96.1±0.5

Table 2: Adjacent OOD Performance on CIFAR10 and CIFAR100.

F.2 FAR OOD DETECTION PERFORMANCE

A SimCLR KNN based SSL OOD detection method performs extremely well on far OOD tasks.
See table 3

ID Data vs AUROC FPR95
OOD CIFAR10
ICML Faces 99.7±0.1 0.1±0.0
Stanford Cars 98.1±0.1 8.1±0.9
Food 101 99.8±0.1 0.0±0.0
OOD CIFAR100
ICML Faces 99.7±0.1 0.2±0.1
Stanford Cars 99.2±0.2 1.5±0.1
Food 101 99.4±0.1 1.4±0.1

Table 3: Using CIFAR10 and CIFAR100 as OOD sets, we see that far OOD detection performance
for the SimCLR KNN method is very good. Unlabeled OOD detection methods tend to perform very
well in far OOD tasks, see (Sehwag et al., 2021; Tack et al., 2020; Liu et al., 2023; Guille-Escuret
et al., 2024; Wang et al., 2023)
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G REVIEWING CLIPN PRETRAINING DATA

We consider sample images from CC3M that contain the label from their respective benchmark. We
observe in figure 4 that images containing the word angry often do not contain a human face. This
is in contrast to the labels for the Cars and Food dataset, where the pretraining data is very similar
to the benchmarking data, see figure 5 and 6.

Figure 4: Comparing Images from the CC3M Dataset with captions containing the word angry.
These are drastically different from the images in ICML face dataset. Images captioned with other
facial expressions also tend to lack a human face.

Figure 5: Comparing Images from the CC3M Dataset with captions containing the word BMW 3
Series, Dodge Ram, and Honda Odyssey, left to right. These are are quite similar to the images in
Cars dataset

Figure 6: Comparing Images from the CC3M Dataset with captions containing the word Caeser
Salad, Donut, and Pizza, left to right. These are are quite similar to the images in Food 101 dataset
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