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Abstract

Gaussian processes are powerful probabilistic models that are often coupled with Auto-
matic Relevance Determination (ard) capable of uncovering the importance of individual
covariates. We develop covariances characterized by affine transformations of the inputs,
formalized via a precision matrix between covariates, which can uncover covariate couplings
for enhanced interpretability. We study a range of couplings priors from Wishart to Horse-
shoe and present fully Bayesian inference of such precision matrices within sparse Gaussian
process. We demonstrate empirically the efficacy and interpretability of this approach.

1 Introduction

Statistical models based on Gaussian Processes (gps) offer attractive modeling choices for various quantita-
tive sciences due to their ability to impose functional priors with certain desired characteristics and to carry
out principled uncertainty quantification (Rasmussen & Williams, 2006). Modeling and inference of gps has
evolved significantly in the directions of scalability for large data (Cutajar et al., 2017; Hensman et al., 2013;
Wilson & Nickisch, 2015), deep learning (Damianou & Lawrence, 2013; Wilson et al., 2016; Salimbeni &
Deisenroth, 2017), and generality with autodiff frameworks (Krauth et al., 2017; Matthews et al., 2017).

The choice of the covariance (kernel) function plays a crucial role in specifying the function space induced
by gps. This choice is often overlooked by opting for the reputable “default” exponential ard covariances
(Neal, 1996), which capture the importance of each covariate, but also assumes an axis-aligned anisotropic
data structure, blind to covariate couplings (Matérn, 1960).

In contrast, affine anisotropic covariances are able to explicitly consider the linear dependencies between
covariates (Matérn, 1960; Poggio & Girosi, 1990), which is a common feature of real-world data, via the
precision matrix Λ of the Mahalanobis distance (x − x′)⊤Λ(x − x′). A seminal work of Vivarelli & Williams
(1998) proposes a parameterization of the precision based on Principal Component Analysis (pca), while
Titsias & Lazaro-Gredilla (2013) apply mean-field variational inference over factors of such a precision matrix
Λ. Relevant works on affine-covariances gps include non-stationary extensions (Paciorek & Schervish, 2003),
and applications to imaging (Kalaitzis, 2009) and material sciences (Noack et al., 2020).

In this paper, our goal is to revitalise Mahalanobis distance-based covariances as a more interpretable and
general alternative to “diagonal” ard covariances, whereby we are able to uncover covariate couplings. This
is illustrated in Fig. 1, where we refer to these more general types of covariance functions as Automatic
Coupling Determination (acd) covariances. Unlike previous works considering full precision matrices Λ,
we study a fully Bayesian scalable formulation of gps, where we carry out inference over the matrix Λ,
thus obtaining posterior distributions over covariate couplings. An attractive feature of this approach in
supervised learning problems is the possibility of obtaining information about covariate couplings that are
instrumental in yielding accurate modeling of the labels.

Our contributions are as follows: (i) a gp model that determines covariate couplings through the analysis
of the matrix Λ; (ii) an analysis of sparsity-inducing priors for the matrix Λ from Wishart, Laplace and
Horseshoe families; (iii) a demonstration of the enhanced explainability of acd covariances compared to ard
covariances; (iv) the development of a fully Bayesian Markov chain Monte Carlo (mcmc) inference scheme
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Figure 1: The Automatic Coupling Determination (acd) covariance reveals rich predictive covariate
couplings. Comparison between ard diagonal precisions Σ−1 = diag(ℓ−2) (a) and acd precision matrix Λ mean
(b) and variance (c) with graph illustrations. We assume an element-wise Normal prior on Λ. The acd covariance
detects that the covariates (5,6,7) are close to redundant on the kin8nm dataset.

of the couplings, while operating in a scalable sparse gp framework; and (v) an empirical demonstration of
the usefulness of acd covariances.

2 Background

We consider supervised learning problems with N input-label pairs {X, y} = {(xn, yn)}Nn=1, with xn ∈ RD
and yn ∈ R. We model the labels through a latent function f(x), for which we assume a gp prior (Rasmussen
& Williams, 2006). Let f = (f(x1), ..., f(xN ))⊤ ∈ RN denote the collection of latent variables associated
with inputs X = (x1, ..., xN ), and

∏N
n=1 p(yn|f(xn)) be the likelihood function, for which we made an i.i.d

assumption on the realization of the labels yn conditioned on the corresponding f(xn).

2.1 Gaussian process priors

By imposing a gp prior

f(x) ∼ GP(0, k) (1)

on the latent function f(x), we are assuming that any subset of these random variables are jointly Gaussian
(Rasmussen & Williams, 2006). The kernel function k(x, x′; θ) determines the properties of the functions
that can be drawn from the gp prior, where θ are hyper-parameters. The prior over the realizations of
f(x) at the inputs X is then p(f |θ) = N (0, Kxx|θ), where Kxx|θ is the N × N covariance matrix obtained
by evaluating k(x, x′; θ) at all input pairs {x, x′}. For simplicity, we assume zero-mean gps and omit the
conditioning on X.

The posteriors over f at inputs x∗, and inference or optimization over θ is based on the analysis of the joint

p(y, f , θ) = p(y|f)p(f |θ)p(θ). (2)

With Gaussian likelihoods it is possible to marginalize out f leading to a Gaussian p(y, θ) = p(y|θ)p(θ).
With non-Gaussian likelihoods further complications arise due to the lack of conjugacy (Williams & Barber,
1998; Opper & Winther, 2000).

An overarching issue with gp models is scalability, as these models generally require costly O(N3) operations
involving Kxx|θ inverses. Linearization techniques based on random features (Rahimi & Recht, 2008) were
proposed in Lázaro-Gredilla et al. (2010), and they were later developed to operate with mini-batches within

2



Under review as submission to TMLR

stochastic gradient optimization and to deep gps (Cutajar et al., 2017). Sparsification techniques based
on inducing points (Williams & Seeger, 2000; Snelson & Ghahramani, 2005) were later embedded within
a variational formulation (Titsias, 2009), and they were extended to mini-batching (Hensman et al., 2013;
Krauth et al., 2017). In this paper we consider sparse gps, and in particular their fully Bayesian version
presented in Rossi et al. (2021), where all variables are treated in a Bayesian way and inference is carried
out using stochastic gradient mcmc (Chen & Zhang, 2004).

2.2 Fully Bayesian sparse GPs

We focus on the Bayesian sparse Gaussian process (bsgp) framework (Rossi et al., 2021), but the acd
covariance specifications generally apply to any gp implementations. In sparse gps, we introduce a set of
M inducing variables u = (u1, ..., uM ), which denote the realization of the latent function f(x) at inducing
inputs Z = {z1, ..., zM}, such that um = f(zm) (Candela & Rasmussen, 2005). The definition of the inducing
variables u implies that they are multivariate Gaussian with covariance depending on the inducing inputs
Z. In summary, the gp prior assumption on the latent function yields the following prior specifications for
the latent variables f and u:

p(f , u|X, Z, θ) = p(f |u, X, Z, θ)p(u|Z, θ) (3)
p(u | Z, θ) ∼ N (0, Kzz|θ) (4)

p(f | u, X, Z, θ) ∼ N (Au, Kxx|θ − AK⊤
xz|θ), (5)

where A = Kxz|θK−1
zz|θ. This augmented model can be used for modeling tasks by introducing a likelihood

p(y|f). We assign priors over all remaining variables pψ(θ) and pξ(Z), notably including inducing locations
Z and kernel hyper-parameters θ (Rossi et al., 2021). The joint becomes

p(θ, Z, u, f , y|X) = pψ(θ)pξ(Z)p(f , u|X, Z, θ)p(y|f). (6)

Inference over latent variables and hyper-parameters is intractable, and variational inference allows one to
recover tractability. The introduction of inducing variables u in the definition of the model enables a scalable
formulation leading to an objective that factorizes across data, while requiring algebraic operations with the
M × M matrix Kzz|θ instead of Kxx|θ. This allows parameter inference over Ψ def= {u, Z, θ} with scalable
mcmc based on stochastic gradients (Chen & Zhang, 2004).

3 Related Works

3.1 Gaussian processes with Automatic Coupling Determination

The possibility to carry out kernel-based modeling with a determination of the importance of inputs dates
back at least to the works on Automatic Relevance Determination ard (MacKay, 1995; Neal, 1996). This
is usually implemented by scaling input covariates within the calculation of the covariance function by some
coefficients which are treated as hyper-parameters and optimized through marginal likelihood optimization.

An extension of this idea involves the use of affine transformations (rotation and stretching) of the covariates;
in distance-based covariance functions, the affine transformation implies the calculation of the so-called Ma-
halanobis distance (Vivarelli & Williams, 1998; Titsias & Lazaro-Gredilla, 2013). In (Vivarelli & Williams,
1998), Λ is made positive definite by construction through the parameterization UU⊤ with U upper tri-
angular, and it is factorized to gain insights into the dimensionality of a possible low-dimensional latent
representation of the inputs. In our work, we consider a similar parameterization for Λ, but instead of
optimizing its factors, we carry out a Bayesian treatment, for which we study sparsity-inducing priors. Also,
we propose a pca-based decomposition of Λ, which allows us to operate in large-dimensional input regimes;
this is done through the first d principal components Pd of the input covariance, which we use to express
Λ = PdΛdPd.

The work by (Titsias & Lazaro-Gredilla, 2013) considers the parameterization Λ = W ⊤W without imposing
any structure on W except for imposing that W maps the input covariates to a lower dimensional input
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space. Their work proposes a variational formulation to obtain an approximation to the posterior over Λ
but it does not extensively study priors over W , which is the focus of our work.

3.2 Sparsity-Inducing priors for covariance/precision matrices

The literature on Gaussian Graphical Model (ggm) provides studies on sparsity-inducing priors for covariance
and precision matrices. Sparsity can be imposed in a structured fashion by considering graph decomposability
(Banerjee & Ghosal, 2014; Lee & Lee, 2021; Xiang et al., 2015; Banerjee et al., 2021), or through the G-
Wishart prior, which has been introduced as a conjugate prior for the precision matrix in a Gaussian
framework and it is also suitable for cases where graph decomposability does not apply (Roverato, 2000;
2002; Khare & Rajaratnam, 2011; Silva & Ghahramani, 2009; van den Boom et al., 2022).

Various approaches have been developed to carry out inference in ggms, including Gibbs sampling (Khare &
Rajaratnam, 2011; Wang, 2012) and Laplace approximations (Banerjee & Ghosal, 2015). Other approaches,
such as those by Gan et al. (2018); Wang (2015), propose spike-and-slab sparsity-inducing priors which
typically complicate posterior sampling. Castillo et al. (2015); Li et al. (2017); Sagar et al. (2024) study
horseshoe priors, which perform well in practice.

Our work differs from this literature, given that we propose a model for the labels given the inputs, while
attempting to uncover some couplings among covariates. The way this is done is by a parameterization of
the covariance function akin to the precision matrix in a ggm, and in our work we explore both matrix-
variate and element-wise priors for such model parameters. In addition, we consider scalable sampling-based
approaches to obtain samples from the posterior distribution over these parameters.

4 Bayesian inference of covariate couplings

In this section, after briefly discussing covariances with Automatic Relevance Determination (ard) (MacKay,
1995; Neal, 1996), which induce some scaling of individual covariates, we present an extension involving an
affine transformation of the covariates revealing couplings among these. We discuss how this is achieved by
introducing a Mahalanobis distance among inputs with a precision matrix Λ, and we show how to treat this
in a Bayesian way by imposing matrix-variate and sparsity-inducing element-wise priors. We term this type
of covariance Automatic Coupling Determination (acd).

4.1 Automatic relevance determination

The design of covariance functions for gp models is an important part of the modeling process. Considering
the space of functions f : RD 7→ R, the choice of a covariance cov[f(x), f(x′)] = k(x, x′; θ) determines
the prior distribution over f before observing data. A common choice is the Gaussian covariance function
(Radial Basis Function (rbf)):

kRBF(x, x′; θ) ∝ exp
(

−1
2d2(x, x′; θ)

)
, (7)

where d(x, x′; θ) is a parametric distance function between inputs x and x′. This covariance imposes a prior
over infinitely differentiable (smooth) functions. Other common covariance functions based on the distance
d(x, x′; θ) include the Matérn covariance, exponential, arc-cosine; see, e.g., Shawe-Taylor & Cristianini (2004)
for an in-depth treatment.

The simplest distance form

d2
ISOTROPIC(x, x′; θ) = 1

ℓ2 (x − x′)⊤(x − x′) (8)

induces an isotropic covariance, as all input features are scaled by the same length-scale parameter ℓ and
contribute equally to the distance, which assumes spherical data.

Another choice increasing model flexibility introduces covariate-specific length-scales parameters,

d2
ARD(x, x′; θ) = (x − x′)⊤Σ−1(x − x′) (9)
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with Σ = diag(ℓ2
1, . . . , ℓ2

D). This choice gives rise to covariances suitable for ard (MacKay, 1995; Neal, 1996).

Intuitively, this definition is built on the assumption that if a dimension d has a small value of the associated
length-scale ℓd small changes in the covariate would lead to large responses in the target. The covariance
induced by this choice is anisotropic with an axis-aligned metric acting as a scaling of individual covariates.

4.2 Automatic coupling determination

The family of ard covariances allows gp models to yield non-parametric and probabilistic mappings from
inputs to labels, while simultaneously determining the importance of each covariate if ℓd’s are optimized
or inferred. In this paper, we do not limit ourselves to assessing the relevance of each input covariate,
but to automatically discover couplings among these in a general way which can be readily applied to any
distance-based covariance function.

We replace the diagonal matrix Σ−1 containing the inverse length-scales with a full Positive Semi-Definite
(psd) precision matrix Λ = Σ−1 in the calculation of distances,

d2
ACD(x, x′; θ) = (x − x′)⊤Λ(x − x′) (10)

=
D∑
i,j

Λij(xi − x′
j)2, (11)

yielding the so-called Mahalanobis distance (Titsias & Lazaro-Gredilla, 2013), which can be interpreted as
a distance obtained after an affine transformation (rotation and stretching) of the inputs by the identity
(Matérn, 1960; Vivarelli & Williams, 1998; Kalaitzis, 2009)

d(Λ
1
2 x, Λ

1
2 x′; I) = d(x̃, x̃′; Λ). (12)

If the underlying distribution of the inputs x is Gaussian, this operation produces an implicit whitening of
the input data yielding x̃. While the quadratic form in Eq. 10 has an additive form (Eq. 11), the induced
functions do not lend themselves to an additive function interpretation (Vivarelli & Williams, 1998; Duvenaud
et al., 2011).

We notice that if the precision matrix has zero elements Λij = 0, the distance function ignores the coupling
between covariates i and j in the calculation of pairwise distances among inputs.

Discriminative vs Generative modeling The parameterization of acd covariances has apparent con-
nections with Markov Random Fields (mrfs) (cf. Murphy (2023)), whereby the matrix Λ is used to specify
an adjacency structure for a set of D random variables {X1, . . . , XD}. mrfs offer the possibility to ver-
ify conditional independence properties of groups of random variables based on the analysis of Λ, while
placing no other assumptions on their underlying distribution. While it is tempting to think of the acd
parameterization of the covariance function as something to be used to draw conclusions on conditional
independence among covariates, we are effectively not modeling the distribution of these. Instead, we are
pushing Λ directly in the definition of the gp prior p(f |Λ). Therefore Λ assumes the interpretation of a
precision matrix inducing an affine transformation of the input, which is optimized or inferred based on the
marginal likelihood (or a lower bound thereof). Thus the focus is on performing optimization or inference of
Λ to accurately modeling the labels, with the intention of obtaining some indication of the predictive power
of couplings of covariates. We leave the modeling of the input through mrfs as an interesting avenue for
future work.

4.3 Precision parameterizations

The precision matrix Λ in the acd covariance needs to be symmetric and psd. The psd constraint in the ard
covariance is easy to satisfy, since working with a diagonal version of Λ only requires to have non-negative
elements on its diagonal and consequently, a log-transformation of the length-scales is sufficient.
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Table 1: Summary of precision priors and the range of hyperparameters studied.

Prior Definition Parameters Log pdf

Wishart p(Λ) = W(V, K) K = D, V = K−1ID log C −
∑

d
log ∥Ldd∥ − 1

2 Tr[KΛ]
Inverse Wishart p(Λ) = IW(V, K) K = D, V = ID log C − (2K + 1)

∑
d

log |Ldd| − 1
2 Tr[VΛ−1]

Laplace p(Λij) = L(m, b) m = 0, b ∈ {0.01, 0.1, 1} log C − 1
b
||Λij − m||1

Horseshoe p(Λij) = HS(τ) τ ∈ {0.01, 0.1, 1} log C + 1
2τ2 Λ2

ij + log E1( 1
2τ2 Λ2

ij)

4.3.1 Lower triangular factorization

In the case of the acd covariance, optimization or inference of Λ needs to be performed while preserving the
psd constraint, so that it is straightforward to operate with unconstrained optimization/mcmc sampling.
Among all factorizations that can be used to express Λ, following (Kalaitzis, 2009), a natural parameteriza-
tion is via the lower-trangular matrix L,

Λ = LL⊤. (13)
This allows us to directly optimize or sample L element-wise and recover Λ. In addition, this parameterization
has some computational advantages in calculating Jacobians which are useful within mcmc, as discussed
shortly.

4.3.2 Low-rank factorizations

The increased flexibility offered by the acd formulation comes at a computational cost, which we need to
deal with: going from learning ℓ ∈ RD length-scales in the ard covariance to learning a full Λ ∈ RD×D

matrix. This is why, for problems where the dimensionality D is high but we are at the same time interested
in obtaining an informative precision matrix recovering the underlying structure among the D features, we
tackle this problem with pca, similarly to Vivarelli & Williams (1998) and Paciorek & Schervish (2003).
Focusing on the acd distance, by applying a projection to the difference between data samples, we obtain:

(x − x′)⊤PdΛdP⊤
d (x − x′) (14)

where Pd is the RD×d matrix obtained from the eigendecomposition of the empirical covariance matrix

Σ = 1
N

X⊤
c Xc = PSP⊤, (15)

and Xc is the centered RN×D input matrix. To obtain Pd we select the d < D columns of P corresponding
to the d highest eigenvalues from S. A sample x ∈ RD can be projected down to Rd through P⊤

d x. As
a result, we learn a projected version Λd in this latent representation of the full precision matrix. By
applying the projection in Eq. 14 we recover the precision matrix in the original space. Note that in this
parameterization, even an ard model for Λd would lead to a full precision PdΛdP⊤

d , but given the favorable
computational scaling of this representation, we prefer the added flexibility offered by an acd. In Fig. 6 we
report a comparison between the acd and ard parameterizations for Λd.

4.4 Computational Complexity

In the sparse gp approach the matrix factorization of Kuu has complexity O(M3), where M is the number
of inducing points. Additionally, multiplying Kfu with the inverse (or performing forward/backward sub-
stitution with the Cholesky decomposition) of Kuu incurs a complexity of O(NM2) where N is the number
of data points. In the mcmc sampling method proposed by Rossi et al. (2021), mini-batching reduces the
complexity of the O(NM2) operation to O(N ′M2), where N ′ ≪ N , significantly improving computational
efficiency. Furthermore, evaluating each element of Kuu and Kuf requires O(D2) computations for acd co-
variance functions. This is the case when evaluating element-wise priors and matrix variate priors on Λ. For
ard covariances this cost reduces instead to O(D). To be more specific, the complexity for Kuu ∈ RM×M

is O(M2D2) since each of the M2 entries involves matrix-vector products with the Λ matrix. Similarly, for
the Kuf ∈ RM×N matrix the complexity is O(MND2).
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5 Priors over Λ

As a consequence of adopting the bsgp framework we need to specify a prior pψ(θ) over covariance hyper-
parameters θ. Dealing with the acd covariance, the prior is separately placed over both the marginal variance
parameter σ2

f and on the precision matrix Λ. While the first is simply a LogNormal distribution with a
fixed mean and variance, the prior distribution over the precision matrix Λ requires a deeper understanding.
First of all, the Cholesky parameterization Λ = LLT in the context of mcmc sampling introduces a change
of variable. We impose a prior probability over a non-linear transformation of L, while this is the variable
that is actually sampled together with U, Z and σ2

f .

The change of measure induced by the change of variables, requires the determinant of the Jacobian J :

p (vec L) = p(vec Λ)
∣∣J (vec Λ, vec L)

∣∣ (16)

For the lower-triangular parameterization, the determinant of the Jacobian takes a particularly convenient
form, which can be computed linearly in D (Magnus & Neudecker, 1980):

log
∣∣J (vec Λ, vec L)

∣∣ = log 2D
∏
d

(Ldd)D−d+1. (17)

We have identified two different families of priors p(Λ): (1) matrix-variate distributions over Λ and (2)
factorized scalar distributions over the single entries of the precision Λ defined as p(Λ) =

∏
ij p(Λij).

5.1 Matrix-variate priors

Wishart prior When dealing with matrix-valued distributions over psd matrices, a natural probability
distribution to consider is the Wishart distribution. Beside being defined over symmetric psd matrices,
the Wishart prior is a conjugate distribution of precision matrices. Considering Λ ∈ RD×D the probability
density function can be expressed as:

p(Λ) = W(Λ|V, K)

= C|Λ|− 1
2 (K−D−1) exp

(
−1

2Tr(V−1Λ)
)

, (18)

where C = (2KD|V|K/2ΓD(K/2))−1 is a constant term, V is the scale matrix and K ≥ D is the degrees
of freedom parameter. The Bartlett decomposition proves that imposing independent Gaussian priors on
the columns of the lower-triangular matrix L = (l1, ..., lD) as p(li) = N (0, V) is equivalent to a Wishart
distribution over LLT as W(λID, K). We choose K = D degrees of freedom and V = D−1ID, such that the
expected precision E[Λ] = ID is identity.

Inverse Wishart Another prior over psd matrices related to the Wishart distribution is the inverse
Wishart. An interesting interpretation stems from the interpretation of Λ as a covariance matrix in the
Fourier domain when Bochner’s theorem is applied:

kRBF-ACD(xi, xj ; σ2
f , Λ) (19)

= Eµ,b
√

2σf cos(µTxi + b) ·
√

2σf cos(µTxj + b),
µ ∼ N (0, Λ), b ∼ Unif[0, 2π]. (20)

Therefore, apart from viewing Λ as the precision matrix of the kernel, it can also be seen as a covariance
matrix in the frequency domain, which offers a motivation for using such a prior

p(Λ) = IW(Λ|V, K)

= C|Λ|− 1
2 (K+D+1) exp

(
−1

2Tr(VΛ−1)
)

, (21)

where C = (2KD/2|V|−(K/2)ΓD(K/2))−1. We set K = D and V = ID. The inverse Wishart view can
translate into more efficient random Fourier approximations.
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Figure 2: The acd covariances significantly outperform ard ones on select datasets, while being
competetive throughout. Test mean negative loglikelihood (mnll) on both UCI regression benchmarks (top) and
classification (bottom) benchmarks with 20% − 80% error quantiles (lower is better), and rank summaries (bottom
right).

5.2 Sparsity-inducing priors

Moving away from matrix-variate distributions, it is possible to encourage sparsity in Λ with an element-wise
prior. Since we might be interested in promoting sparsity in recovering covariance couplings to a different
degree than in the contribution of individual covariates, we separate the prior over the elements of Λ as
follows:

p(Λ) = p(Λ⌞) · p(diag Λ)

=
∏

i,j|i ̸=j

p(Λij)
∏
i

p(Λii), (22)

where Λ⌞ and diag Λ are the off-diagonal elements and the RD array of the diagonal elements of Λ, respec-
tively. In this work, we assume a weakly informative Gaussian prior on the diagonal of Λ, while we study
different sparsity-promoting prior distributions for Λ⌞, as discussed next.

Laplace. A natural way to promote sparse solutions is L1-regularization (cf. graphical lasso in Friedman
et al. (2008)), which is equivalent to a Laplace prior. The expression in (22) becomes:

p(Λ) =
∏

i,j|i̸=j

L(Λij |m, b)
∏
i

N (Λii|µ, σ2), (23)

where

L(Λij |m, b) = C1 exp
(

−1
b

||Λij − m||1
)

(24)

N (Λii|µ, σ2) = C2 exp
(

− 1
2σ2 (Λii − µ)2

)
, (25)

where C1 and C2 are the normalizing constants. We fix m = µ = 0, σ2 = 1, and analyze the resulting
posteriors for different sparsity coefficients b (lower b increases sparsity).

Horseshoe. The Horseshoe prior has become a popular probabilistic sparsity-inducing prior (Carvalho
et al., 2009),

Λij |σ, τ ∼ N (0, σ2τ2), σ ∼ C+(0, 1) (26)
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Figure 3: The precision matrices reveal couplings, redundancies and separabilities. The posterior mean
(a) and variance (b) of precision matrices Λ of UCI benchmark datasets with Horseshoe prior (τ = 0.1).

where C+(0, 1) is a Half-Cauchy distribution for the local shrinkage σ, while τ is the global shrinkage
parameter. The Horseshoe density of a single entry Λij is

πτ (Λij) = 1√
2π3τ2

exp
(

Λ2
ij

2τ2

)
E1

(
Λ2
ij

2τ2

)
, (27)

where E1(·) is the exponential integral function that can be approximated by elementary functions.

6 Experiments

We consider eight UCI datasets as a benchmark to assess performance of gp models for regression and
classification tasks. We standardize all datasets to zero mean and unit variance, and report all results with
five-fold cross-validation. Following previous works (e.g., Rossi et al. (2021)), we report test mnll for all
data, and normalized root mean square error (rmse) for regression and error for classification tasks.

In all experiments, we chose to approximate gps with 500 inducing points. We ran bsgp for 10, 000 iterations
with a step-size of 0.01 and mini-batch of 1, 000 data points. We evaluate performance on test data from
50 samples collected during training after 1, 500 burn-in iterations and using a thinning of 180. We adopt
gradient clipping for numerical stability and to avoid exploding gradients, which we experienced when working
with the Horseshoe priors.

6.1 UCI benchmarks

With the above setup, we report results on UCI benchmarks by considering various choices of priors (See
Table 1). For the kernel variance σ2

f we placed a Lognormal prior with unit variance and mean 0.05 as
in Rossi et al. (2021). The proposed mcmc scheme yields good convergence and sampling efficiency, as
illustrated in Appendix C in the supplement; see also Fig. 20 and Fig. 21 for insights on the multimodality
of the posterior. Fig. 2 shows the comparative performance for the UCI benchmark datasets, including the
range between the 20th and 80th percentiles over the different folds, together with a rank summary. For the
small data sets, we could also run full gps and we observed a similar trend; we refer the reader to Fig. 15
and Fig. 16 for a direct comparison between full gps and bsgps.

Interestingly, different choices of prior and prior hyper-parameters yield comparable performance. A closer
inspection indicates that the element-wise Laplace prior performs worst overall, and this might be due to
the heavy sparsity promoted by this prior (or the lack thereof) for some hyper-parameter settings (Fig. 5).
The element-wise Horseshoe prior, while promoting sparsity, fares slightly better than the Laplace prior. It
is interesting how the inverse Wishart prior, which operates directly on Λ, promotes some sparsity after all,
while offering relatively competitive performance.
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6.2 Sparse couplings

Next, we study the precision matrices themselves. Fig. 3 shows the posterior precisions of all benchmark
datasets. Notably we see strong dependencies emerging in kin8nm, eeg and wilt datasets, while powerplant,
concrete, breast, and diabetes are sparsely diagonal. We notice that the standard deviation of the
elements on Λ is larger for covariate pairs with large positive/negative partial covariance, while it is generally
small for pairs that have small partial covariance. This indicates both the relative scaling of uncertainty,
and the flexibility in coupling magnitudes.

We provide a more in-depth look into the dependencies in Fig. 1 (page 2) that contrasts the precision matrix
of the ard covariance of kin8nm and breast datasets to the posterior mean and standard deviations of the
precision matrix of the acd covariances. The acd detects that 5th and 6th covariates of kin8nm are close
to redundant, and negatively coupled to 7th covariate. Less evindently, in breast we detect coupling chains
over covariates such as (0,3,6,8) and (1,6,7), indicating predictive dependencies in the data. Fig. 9 shows
for this dataset how a different choice of the prior distribution over Λ can reveal a different and sparser
structure of the couplings. We visualize these as circular graphs along with the standard deviations of the
elements of the precision matrices.

Fig. 4 shows an ablation of comparing the posterior mean precision structures from Horseshoe prior with
τ = {0.01, 0.1, 1} on the concrete dataset. The Horseshoe is able to sparsify the entire structure into an
ard-like structure, while higher τ = 1 reveals off-diagonal dependencies. To obtain more intuition into the
couplings, we also visualize the covariate graphs in the bottom panel of Fig. 4 that indicate for instance the
strong dependence between the 3rd and the 4th covariate. Further illustrations on all UCI data sets for the
Wishart prior Fig. 9, inverse Wishart Fig. 10, and Laplace prior with b = 0.1 Fig. 11 can be found in the
supplement.

Figure 4: The sparsity control of Horseshoe prior. The posterior mean precision matrices of Horseshoe priors
on concrete dataset with high (left) to low (right) sparsity.

6.3 Sparsification effect

Fig. 5 shows the sparsity of the posterior precision matrices Λ in the boston dataset. Surprisingly, the Inverse
Wishart prior has an intrinsic sparsifying effect. The Laplace prior sparsifies according to its hyperparameter
b while, for this dataset, the Horseshoe prior with τ = 0.1 achieves slightly more sparsity than the Horseshoe
prior with τ = 0.01.
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Figure 5: The sparsification of boston dataset. Left: Relationship between precision sparsity and hyperparam-
eters. Right: Posterior mean sparsity from different priors.

As a conclusion of these experiments on UCI, we observe that the Horseshoe prior obtains better performance
compared to the Laplace prior and it is competitive with matrix-variate priors. Also, these generally outper-
form the ard covariance. Interestingly, there seems to be some data-dependent effect connecting sparsity
and performance; in data sets such as boston, high sparsity seems to be associated with good performance,
while for others such as eeg it is the opposite. This indicates that sparsity should perhaps be treated as
a hyper-parameter and learned together with the model. We leave this interesting development for future
work.

6.4 Low-rank precision matrices

We also look at the effect of low-rank precision matrices. Fig. 6 shows the posterior precision patterns learned
by the Wishart prior using a pca with rank 11, 7 or 3 in contrast to the full rank 13. The performance
degrades strongly at ranks lower than 11, which is likely indicative of the intrinsic rank of the dataset for this
task. Also, it is interesting to observe how removing components, which reduces the variance explained by
the pca parameterization, affects the ability of the model to recover covariate couplings, indicating that such
information is somewhat contained in the removed components. In the same figure, we also report the results
obtained by an ard modeling for the matrix Λd in the pca-based parameterization. As shown in the figure,
some structure emerges even in this case, but the parameterization is less flexible, and retaining a large
number of components leads to nearly diagonal precisions, preventing the possibility to reveal interesting
covariate couplings.

6.5 Dependencies of motion capture data

We illustrate the capability of acd covariances to reveal dependencies in a motion capture task, where the
subjects internal connectivity is known (Fig. 7). We observe a trajectory Y = (y1, y2, ...yN )T ∈ RN×D over
N timepoints, where yi ∈ RD represents the noisy observation of subject state x(ti) ∈ RD at time ti. The
state consists of a total of D = 50 measurements across 21 body parts (Fig. 7). We follow the gp-ode
model (Heinonen et al., 2018; Hegde et al., 2022), where the state follows an ordinary differential equation
ẋ(t) = f(x(t)) with a vector-valued gp prior on the differential f : RD 7→ RD,

f(x) ∼ GP(0, Kθ(x, x′)), (28)
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Figure 6: Overly low rank degrades performance. Posterior precisions with Wishart prior of varying rank d
of Eq. (14) (top) and corresponding performances (bottom) on the boston dataset. The matrices displayed are of the
form PdΛdP⊤

d where Λd is diagonal and full in the ard and acd parameterizations, respectively. Pd is obtained
by pre-processing the training data with pca (d components). This setup uses 200 inducing points and 3-fold cross
validation.

Table 2: MoCap results on subject 09 using gp-ode with ard and acd kernels. The data are projected in a 5-
dimensional latent space and the model is trained with dimension-wise kernels: ard (5 lengthscales per dimension)
and acd (5 × 5 full precision matrix per dimension). We report Test mnll and Test Mean Squared Error (mse) over
5 different folds.

Metric Method Subject 09 (short)

mnll(↓) gp-ode-vanilla ard 1.17 ± 0.02
gp-ode-vanilla acd 1.27 ± 0.17

mse(↓) gp-ode-vanilla ard 10.64 ± 1.58
gp-ode-vanilla acd 14.72 ± 6.95

where Kθ ∈ RD×D is an operator-valued kernel. The most straightforward covariance function is a separable
one K(x, x′; θ) = k(x, x′; θ)ID, where we learn a shared precision matrix for all outputs. As an alternative,
we also consider a variant K(x, x′; θ) = diag{k(x, x′; θ1), . . . , k(z, z′; θD)}, where each diagonal entry has
its own kernel k(z, z′; θi) and its own precision matrix Λi associated with output ẋi.

Fig. 7 shows the posterior shared precision mean pooled over the body parts in a human walk cycle. A rich
pattern of dependencies emerges. For instance, right and left wrists are strongly coupled across the body,
while being negatively coupled to each other. The wrists move in large, cyclic and synchronised patterns,
while the back and root have little relevance, indicating their smaller movement ranges during walking.
Finally, many adjacent body parts are coupled, such as foot and tibia, and wrist and radius. Table 2 shows
the performance between ard and acd on subject 09, where the likelihoods are similar, but acd does
perform worse in mean square error. The purpose of the experiment was to demonstrate structure learning
with standard inference runs, and we did not focus on performance tuning, which ode models are known
to be finicky about (Hegde et al., 2022). As a final note, we emphasize the importance of these results in
light of possible simpler alternative analyses to determine covariate couplings; for instance, we could study
the inverse of the empirical covariance of the input covariates directly. For completeness, we report this
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analysis in the Appendix in Fig. 17, where the sample covariance is also obtained by retaining the first 15
principal components. Unlike this simplistic approach, which one could view as a preliminary analysis of the
covariates, the results in Fig. 7 illustrate the emergence of covariate couplings informed by the supervised
learning task.

Figure 7: The acd covariance reveals a highly regular coupling structure from human motion. gp-ode
model trained with shared acd covariance in a latent space of 15 dimensions. Panel (a) shows the precision matrix
Λ reporting just the average value for each group of sensors. Panel (b) shows the reference skeleton connectivity.

7 Conclusions

In the literature of gps, covariances equipped with ard are popular. These materialize with the definition
of a set of length-scale parameters scaling the inputs, which are then optimized or inferred based on the
marginal likelihood (or an approximation/bound). In this work, we revisited a more general definition of
anisotropic covariances, where the distance metric among inputs is determined by a psd precision matrix.
We showed that this extension provides a framework for metric learning and we discussed some interesting
insights on the determination of couplings among covariates. Crucially, thanks to a fully Bayesian scalable
formulation of gps, we can operate with virtually any number of data points and obtain samples from the
posterior distribution over such covariate couplings, which can be used to determine the level of confidence
in their predictive power.

We also studied priors for the precision matrix Λ determining the input metric. We showed that element-
wise Laplace and Horseshoe priors provide the highest level of sparsity, while Horseshoe priors seem to offer
better performance. Interestingly, the inverse Wishart prior offers higher sparsity than the Wishart prior
with overall comparable performance.

In order to address the quadratic scalability with respect to the number of covariates, we also revisited the
work by Vivarelli & Williams (1998), which proposes a low-dimensional projection of the inputs through
pca, in light of modern scalable gps and inference.

We are currently investigating an extension of our approach whereby the conclusions we can draw from the
analysis of Λ are in terms of conditional independence statements. In order to do this, we plan to extend our
model to target the modeling of both labels and inputs, including a prior over the inputs p({xn}|Λ) in the
form of a Markov Random Field, where Λ now determines the conditional independence among covariates.
As future work, it would also be interesting to consider ways in which we could learn the adequate level of
sparsity from data by inferring relevant prior hyper-parameters.
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A Experimental details

In this section, we present details to reproduce our experimental campaign. All the experiments were
conducted on Google Colab.

BSGP model We use M = 500 inducing points initialized by a k-means algorithm as commonly used
in practice and we place a Normal prior pξ(Z) over the inducing locations Z. For inference, we use an
adaptive version of Stochastic Gradient Hamiltonian Monte Carlo (sghmc) in which the hyperparameters
are automatically tuned during a burn-in phase. We set the default hyperparameter of the number of sghmc
steps to K = 10. Exclusively for regression datasets with Gaussian likelihood, we employ an Adam optimizer
with a learning rate set at 0.01 for optimizing the variance of the likelihood.

ARD kernel We use the Radial Basis Function (rbf) kernel with Automatic Relevance Determination
(ard) placing a LogNormal prior with unit variance and means equal to 1 and 0.05 for the lengthscales and
variance, respectively.

ACD kernel We place a LogNormal prior with unit variance and mean 0.05 over the kernel variance σ2
f

while over the precision matrix Λ we explore a wide range of priors.

Table 3: Parameter settings for the UCI experiments.

parameter value

num. of inducing points 500
mini-batch size 1000
num. iterations 10500
step size 0.01
momentum 0.05
num. of burn-in steps 1500
num. of samples 50
thinning interval 180

B Simulated dataset

In this section we carry out an experiment using simulated datasets with known underlying precision matrices.
In particular we assess the ability of the bsgp model using a acd kernel to recover the true precision Λ while
fitting simple regression problems. Here it’s described how the simulated regression datasets are constructed
and some experiments conduced to show the behaviour of the model. We consider N input-label pairs
{X, y} = {(xn, yn)}Nn=1 with xn ∈ RD and yn ∈ R defined as follows:

xn ∼ N (0, I)
Kxx : Kxx[i, j] = σ2

f

(
(xi − xj)⊤Λ(xi − xj)

)
y ∼ N (0, Kxx + σnI)

(29)

Once that the underlying precision Λ has been constructed, specifying a value for the kernel variance σ2
f and

another one for the Gaussian noise in observations via σn is sufficient. The regression dataset {X, y} can be
used to train a bsgp model by means of the acd kernel. Through acquiring samples of the precision matrix
Λ, we aim to recover the original underlying precision used to generate the data. A visual insight into this
experiment is given in Fig. 8. Note also that the covariance/precision of the input covariates is the identity;
therefore, analyzing the covariates by themselves would not reveal any covariate couplings, while our model
is capable to retrieve the couplings that were used to generate the labels.
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Figure 8: Underlying sparse precision (top left) compared with mean and standard deviation of the Λ samples
obtained with different priors. The dataset is made of N = 1000 samples and the labels are obtained according to
Eq. 29 setting σ2

f = 1 and σn = 0.1
.

C Additional results

Figure 9: Posterior precision matrix mean (a) and variance (b) with Wishart prior.

Figure 10: Posterior precision matrix mean (a) and variance (b) with Inverse Wishart prior.
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Figure 11: Posterior precision matrix mean (a) and variance (b) with Laplace prior b = 0.1.

Figure 12: The precision matrices of the wilt dataset using Laplace prior show a progressive level sparsity.

Table 5: Runtime comparison of bsgp training and inference on the boston dataset using ard kernel and acd (with
Wishart prior) kernel. Values are reported in seconds as mean ± standard deviation across three different folds.

ard acd

Training time 2082.57 ± 16.61 2513.56 ± 3.14
Inference time 0.12 ± 0.00 0.13 ± 0.00
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Figure 13: The full motion capture precision matrix (a), a pooled part-wise version (b) and the reference skeleton
connectivity (c).

sample R̂ Effective Sample Size (ess)

0 1.01 526.99
1 1.00 703.17
2 1.01 664.86

Figure 14: Traces of the mean of the predictive distribu-
tion for three test points on boston dataset with Inverse
Wishart prior (4 chains, 200 samples represented); the ta-
ble reports R̂ and Effective Sample Size (ess) statistics
for each set of 4 chains.

Table 4: UCI datasets used, including number of data-
points and dimensionalities.

Dataset N D

boston 506 13
breast 683 9
diabetes 783 8
concrete 1,030 8
wilt 4,839 5
kin8nm 8,192 8
powerplant 9,568 4
eeg 45,730 14
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(a) (b)

Figure 15: Comparison of full gps (□) vs bsgps (#) with 200 inducing points on two UCI regression data sets. The
metrics are mnll in (a) and normalized rmse in (b).

(a) (b)

Figure 16: Comparison of full gps (□) vs bsgps (#) with 500 inducing points on two UCI classification data sets.
The metrics are mnll in (a) and Error-Rate in (b).

Figure 17: (a): The full estimated precision matrix ΛPCA = (P⊤
d SPd)−1 obtained applying pca with rank 15 on

the training dataset; (b): The pooled version of the same matrix; (c): The reference skeleton connectivity.
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Figure 18: Comparison of posterior mean of the precision matrix Λ on the boston dataset with Wishart prior for
full gp vs bsgp with 500 inducing points.

Figure 19: mnll vs iterations for bsgp with 500 inducing points and for full gp on concrete dataset. The plots
show one value every 10 of the 10, 000 iterations.
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Figure 20: Posterior samples distribution of precision matrix entries for kin8nm dataset with Horseshoe (τ = 0.1)
prior.

Figure 21: PCA representation of vectorized posterior precision matrices. Each point in the 2D space represents a
posterior sample (precision matrix). (a) kin8nm dataset, (b) eeg dataset.
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