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A B S T R A C T

Recent studies invoke the superiority of the multivariate Total Correlation concept over the conventional
pairwise measures of functional connectivity in biological networks. Those seminal works certainly show that
empirical measures of Total Correlation lead to connectivity patterns that differ from what is obtained using
the most popular measure, linear correlation, or its higher order and nonlinear alternative Mutual Information.
However, they do not provide analytical results that explain the differences beyond the obvious multivariate
versus bivariate definitions. Moreover, the accuracy of the empirical estimators could not be addressed directly
because no controlled scenario with known analytical result was provided either. This point is critical because
empirical estimation of information theory measures is always challenging.

As opposed to previous empirical approaches, in this work we present analytical results to prove the
advantages of Total Correlation over Mutual Information to describe the functional connectivity. In particular,
we do it in neural networks for early vision (retina–LGN–cortex) which are realistic but simple enough to
get analytical results. The presented analytical setting is also useful to check empirical estimates of Total
Correlation. Therefore, once certain estimate can be trusted, one can explore the behavior with natural signals
where the analytical results (that assume Gaussian signals), may not be valid. In this regard, as applications
(a) we explore the effect of connectivity and feedback in the analytical retina–LGN–cortex network with
natural images, and (b) we assess the functional connectivity in visual areas V1–V2–V3–V4 from actual fMRI
recordings.
1. Introduction

Functional connectivity in brain networks goes beyond structural
links: it is related to the way information is shared among multiple
neural nodes [1,2]. Quantifying the communication among multiple
neural regions is key to understand brain function. However, the most
popular measure of functional connectivity is the (linear and pairwise)
Pearson Correlation [3]. Of course, more general concepts such as
Mutual Information [4] have been proposed to capture the nonlinear
relations between pairs of nodes, but still they cannot cope with more
than two nodes simultaneously. For instance, Transfer Entropy [5],
which is a variant of Directed Information [6,7] and reduces to classical
linear Granger Causality when dealing with auto-regressive signals [8],
is also based on conditional Mutual Information (conditioning on the
past of the signals in two nodes). Therefore all these measures also
belong to the pairwise family too. The problem is that measures which
are limited to pairwise comparisons should be applied many times to
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describe complex networks, and they may miss interactions among
multiple nodes [9].

Recent studies proposed the use of Total Correlation as a way to
overcome the intrinsic pairwise limitation of the conventional mea-
sures of functional connectivity in neuroscience [10,11]. Other re-
cent works [12,13] reason in the same multi-node direction using
variations of Total Correlation. The multivariate nature of Total Cor-
relation, 𝑇 [14] is a by-definition advantage over Mutual Informa-
tion, 𝐼 [15]. However, the aforementioned seminal works had a fun-
damental limitation: beyond the obvious multivariate definition of 𝑇 ,
no extra theoretical insight on its benefits over 𝐼 was given. As a con-
sequence of the lack of analytical models and results, the accuracy of
the empirical estimators could not be addressed because no controlled
scenario was considered either. This is an important limitation because
the empirical estimation of information theoretic quantities is very
challenging particularly in high dimensions. Note that dimensionality
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is crucial in complex networks where one may have to consider the
response of nodes with many neurons responding over long periods
of time. The situation is even worse when multiple nodes have to be
considered. Analytical results are crucial to trust and understand the
differences in connectivity found using different information measures:
the new measures are showing something new or the new trends simply
come from biased estimations?.

The goal of this work is addressing the limitation of the empirical
approaches in [10,11]: we present analytical results on the superiority
of 𝑇 over 𝐼 in a specific context: the early visual brain. This focus on
closed-form expressions restricts the range of comparisons but makes
the conclusions solid. We do it through the consideration of simple but
realistic analytical models of the retina–cortex pathway.

The three-node model considered here (retina-LGN-V1) consists of
the conventional linear receptive fields plus the biological version of
batch-normalization: the Divisive Normalization nonlinearity [16–20],
and we consider variations with top-down feedback [21]. There are
several reasons to choose this kind of neural network: (1) it reproduces
the psychophysics of subjective image quality, as explicitly checked
here following [22–25], (2) every layer has noisy neurons so that
one can compute the part of the information that is lost along the
neural pathway [26,27], (3) the interest of this class of models goes
beyond visual neuroscience given the similarity of its linear+nonlinear
structure with other sensory modalities [28–30], with popular networks
in computer vision such as AlexNet [31] or VGG [32], and with image
coding algorithms [33–36], and finally, (4) the divisive normalization is
a canonical computation in the brain [18] so it is important to develop
descriptors that can capture its inhibitory connectivity.

Descriptors of connectivity can be rated according to their sensitivity.
Note that a descriptor of a magnitude can be seen as an instrument
to measure this magnitude. The sensitivity of an instrument is given
by the slope of its response curve [37]. In a linear instrument the
sensitivity is the ratio between the output (response, or measure in the
y-axis) and the input (stimulus in the x-axis). In regular instruments
of measurement, both input and output may be subject to noise. In
that case, high sensitivity implies highly noticeable response variations,
which is convenient in presence of noise in the y-axis, but also implies
amplification of the input, which is a problem in presence of noise
in the 𝑥-axis. In contrast to this instrument metaphor, in the case of
the descriptor of a magnitude, there is no noise in the 𝑥-axis (the
magnitude of interest, e.g. connectivity, has certain value), and all the
noise is in the 𝑦-axis (error in the estimation of the descriptor from
the available data, e.g. the estimation of information from the samples
at different nodes). When noise (or error) is restricted to the 𝑦-axis, the
sensitivity determines the minimum variation of the magnitude that can
be noticed by the descriptor (on top of its inherent noise). In the same
way, the larger the sensitivity of a descriptor, the more robust it is to the
noise in the estimation (in the y-axis). In fact, if two descriptors have
the same error, the one preferred is the one with bigger sensitivity [38].
This concept is illustrated in Fig. 1, and the variation of the descriptor
over a region of connectivity values (sensitivity) will be used to decide
between descriptors.

The contributions of this study are the following:

• We derive expressions for the descriptors 𝑇 and 𝐼 depending
on the feedforward and feedback structural connectivity of the
retina–cortex pathway and on the properties of signal and noise.

• Our analytical results show that while 𝐼 is insensitive to some
of the connectivity parameters, 𝑇 is always more sensitive to the
connectivity in the retina–cortex pathway. As opposed to previous
empirical approaches, these analytical results explicitly show the
superiority of 𝑇 over 𝐼 as a description of the connectivity in
biologically plausible neural networks.

• The analytical results constitute a test-bed to check the accu-
racy of different empirical estimators for 𝑇 (or 𝐼). In this way,
available estimators (as for instance [39–44]) can be reliably
2

Fig. 1. The basic concept: The best descriptor of functional connectivity is the one
with bigger sensitivity (variation with connectivity). The analytical results derived in
this work show that Total Correlation has bigger sensitivity to connectivity than Mutual
Information.

applied to real data where theoretical results are not available (for
instance because the Gaussian assumption is no longer valid [23,
45–47]).

• After checking the information theoretic measures in controlled
scenarios, we use a recent fMRI dataset [48] to measure the in-
formation flow among deeper visual cortical areas and conjecture
about their interactions/synergies. Furthermore, we suggested
that data processing inequality holds in the human vision cortex.

The structure of the paper is as follows. Section 2 (materials and
methods) describes the class of neural models considered throughout
the work, and reviews the definitions of 𝐼 and 𝑇 . Section 3 describes
the theoretical results: we derive the expressions that describe the
functional connectivity (using 𝐼 and 𝑇 ) in terms of the parameters
of the networks. These analytical results consider both feedforward
nonlinear networks, and networks with feedback. Section 4 shows a
range of experimental illustrations of the theory: it presents results of
𝑇 and 𝐼 computed with empirical estimators that can be compared to
the theoretical predictions. Moreover, results for real signals (natural
images and actual fMRI responses) are also presented here. Finally,
Section 5 summarizes the results and discusses the implications of the
work. Appendices present supplementary material that can be omitted
from the main text: Appendices A and B introduce the parameters of
the specific vision models and their biological plausibility. Appendix C
reviews the relations of 𝐼 and 𝑇 with the (more limited, but still
widely used) classical linear correlation, and Appendix D illustrates the
variability of the empirical estimations of 𝐼 and 𝑇 with real signals.
Appendix E empirically illustrates the insensitivity of other alternative
measures of connectivity [49].

2. Materials and methods

In this section we first introduce the notation of the standard
analytical models of early vision that will be used throughout the work
(based on a large body of evidences [16–20,50–55], and explicitly
checked here using standard methods [22–26]). Then, we review the
definitions of the considered descriptors of connectivity (𝑇 , 𝐼 , and
linear correlation) which are based on classical information theoretic
concepts [14,15,56].

2.1. Models of the retina–cortex pathway

Expanding and making explicit the multi-node scenario first con-
sidered in [10], all the theoretical results of this work will be derived
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for the following early vision setting that may include feedforward and
feedback connections, as seen in this graphic diagram:

Retina →→ LGN →→ V1↖↖
↙↙

(1)

In this diagram the arrows represent structural connections between
regions (or layers). Right-arrows represent feedforward flow of the
visual information, and the left-arrows represent eventual feedback.

More specifically, the signal at the retina will be represented by
the 𝑛-dimensional random vector, 𝐱, the signal at the LGN, will be
represented by the 𝑛-dimensional random vector, 𝐲, and the signal at
the cortex will be represented by two 𝑛-dimensional random vectors, 𝐞
nd 𝐳. In this way, the intra-cortical connectivity is represented by the
ommunication between 𝐞 and 𝐳. In the following diagram the strength
f the structural connections between layers 𝑖 and 𝑗 is represented by
he variables, 𝑐𝑖𝑗 :

𝐱
𝑐𝑥𝑦 →→ 𝐲

𝑐𝑦𝑒 →→ 𝐞
𝑐𝑒𝑧 →→ 𝐳

𝑐𝑧𝑥

↖↖

𝑐𝑧𝑦

↙↙
(2)

In the above setting, the study of functional connectivity through
information-theoretic measures (such as 𝐼 or 𝑇 ) could be useful to
describe the unknown strengths, 𝑐𝑖𝑗 , from recordings of the neural signal
done at the different nodes or layers. In this context, proper measures
of statistical relation should be sensitive to 𝑐𝑖𝑗 . And, as illustrated in
Fig. 1, the bigger the sensitivity to the strength of the connections, the
better.

2.1.1. Model I : Nonlinear and noisy model with focus on intra-cortical
interactions

Our first specific example of the retina–cortex framework outlined
in diagram (2), which we will refer to as Model I, tries to be ana-
lytically simple yet biologically plausible. To do so, this models in-
cludes: (a) center–surround receptive fields in the LGN [50], (b) local-
frequency receptive fields in the (linear) V1-cortex, approximated here
as block-DCT functions [51,52], (c) Divisive Normalization to model
cortical nonlinearities [18], and (d) noise in each of the neural layers
is scaled in a way compatible with the psychophysical results in [53]
and the physiological model in [54].

The class of networks under Model I follows these equations:

𝐱(𝑡) = 𝐬(𝑡) + 𝐧𝐱(𝑡) +
𝑐𝑧𝑥

𝑐𝑥𝑦 𝑐𝑦𝑒
𝐹−1 ⋅ 𝐳(𝑡 − 𝛥𝑡)

𝐲(𝑡) = 𝑐𝑥𝑦 𝐾 ⋅ 𝐱(𝑡) + 𝐧𝐲(𝑡) = 𝑐𝑥𝑦 𝐹
−1 ⋅ 𝜆CSF ⋅ 𝐹 ⋅ 𝐱(𝑡) + 𝐧𝐲(𝑡) (3)

𝐞(𝑡) = 𝑐𝑦𝑒 𝐹 ⋅ 𝐲(𝑡) + 𝐧𝐞(𝑡)

𝐳(𝑡) = 𝑓 (𝐞(𝑡)) = sign(𝐞(𝑡)) ⋅ 𝜅 ⋅
|𝐞(𝑡)|𝛾

𝑏 + 𝑐𝑒𝑧 𝐻 ⋅ |𝐞(𝑡)|𝛾

where, the input to the system is the retinal image: the source vector 𝐬 ∈
R𝑛, and its dimension 𝑛 corresponds to the number of photoreceptors.
In the models considered in this work, the networks preserve the
dimension of the signal.1

The retinal signal, the vector 𝐱 ∈ R𝑛, is influenced by the input
image 𝐬, but it is also affected by the white noise 𝐧𝐱 and in this
formulation, by a top-down feedback given by the term weighted by
𝑐𝑧𝑥, that describes the strength of this feedback connection. Due to the

1 Preservation of dimension along the pathway is convenient but it does
ot reduce the generality neither biologically, the spatial subsampling affects
he extrafovea, but not the fovea [21], nor mathematically because changes of
imension could be addressed by the Jacobians of rectangular transforms [57].
3

I

eventual variations in the input and the feedback, all the multivariate
signals may depend on time, 𝑡. We will come back to the feedback term
once we introduce the frequency meaning of vector 𝐳.

The signal at the LGN is described by the vector 𝐲 ∈ R𝑛. The matrix
𝐾 contains the center–surround receptive fields of LGN [50]. According
to the relation between these receptive fields and the Contrast Sensitiv-
ity Function (CSF) [58–60], we implement them using a local-frequency
transform (basis in the matrix 𝐹 ), a diagonal matrix with CSF-related

eights, 𝜆𝐶𝑆𝐹 , and coming back to the spatial domain using 𝐹−1. The
GN signal is also affected by white noise through 𝐧𝐲.

The (intermediate) linear signal at the V1-cortex, 𝐞, is computed
rom the LGN signal through a set of local-frequency receptive fields
n the matrix 𝐹 . This linear signal is also affected by the white noise
𝐞.

The (final) nonlinear signal at V1, 𝐳, results from a Divisive Nor-
alization transform, 𝑓 (⋅), of the outputs of the linear receptive fields

t the previous intermediate layer, 𝐞. Note that the division, the ex-
onent, and the absolute values in 𝑓 (⋅) are Hadamard (element-wise)
perations [19], and the matrix 𝐻 in the denominator represents
he interaction between the neurons of the previous cortical layer 𝐞.
pecifically, the intra-cortical connectivity between the 𝑘th and the
th neurons is represented by 𝑐𝑒𝑧𝐻𝑘𝑙. In this way, the 𝑘th row of 𝐻 ,
𝑘𝑙 ∀𝑙 = 1,… , 𝑛, describes how the responses of the neighbor linear

neurons, 𝑒𝑙, affect the nonlinear response of the 𝑘th neuron, 𝑧𝑘. This
interaction is assumed to be local in space and frequency [19,20,55].
And 𝑐𝑒𝑧 controls the global strength of all these local interactions.

Finally, a comment on the top-down feedback terms in the first
equation. The Divisive Normalization changes the relative magnitude of
the responses 𝑧𝑖 but the rough qualitative meaning of the responses in
𝐳 is still given by the (local-frequency) receptive fields in 𝐹 . Therefore,
he 𝐹−1 matrix in the top-down feedback term in the first equation of
he system just converts the previous cortical response 𝐳(𝑡 − 𝛥𝑡) back
nto the spatial domain (where the input images 𝐬 are). Additionally,
he top-down term has been scaled by the other connectivity strengths
𝑐𝑥𝑦 and 𝑐𝑦𝑒) just to keep the scale of the feedback term comparable
o the source independently of the (arbitrary) gains introduced along
he retina–cortex path. In this way the effective weight of the feedback
erm only depends on 𝑐𝑧𝑥.

In Appendix A we show the specific values chosen for the recep-
ive fields, the frequency selectivity, and the patterns of intra-cortical
onnectivity. We also illustrate the responses arising in these networks
hen stimulated by natural images.

In Appendix B we show that the above elements (the considered
ayers and noise levels) are biologically realistic. In particular, this
rchitecture explains human opinion in visual distortion psychophysics.
n this regard, the intra-cortical connectivity in the Divisive Normaliza-
ion transform is particularly critical. Therefore, eventual measures of
he statistical relation between neural nodes should be sensitive to this
ntra-cortical connectivity.

The parameters that control the feedforward structural connections
etween retina, LGN, and the linear V1, (i.e. the strengths 𝑐𝑥𝑦 and
𝑦𝑒) actually control the size of the signal with regard to the noise,
nd hence their functional role is quite evident: the bigger the signal
ompared to the noise, the stronger the information flow from one
ode/layer to the next. However, the role of the intra-cortical inter-
ction 𝑐𝑒𝑧𝐻 is more interesting. There is a large body of literature that
uggests that the role of the denominator in Divisive Normalization is
apturing-and-removing the statistical relations between the responses
f the linear local-frequency sensors [23,28,35,47,61,62].

The first set of analytical results derived in Section 3.1 shows that 𝑇
s sensitive to this intra-cortical connectivity, while the sensitivity of 𝐼
o these intra-cortical connections is equal to zero. These connections
ave major biological relevance [18,63,64] but are also important in
rtificial networks [65,66]. This is an analytical example of the gen-
ine superiority of the Total Correlation over the conventional Mutual

nformation.



Neurocomputing 571 (2024) 127143Q. Li et al.

𝐲

w
a

∇

a

2.1.2. Model II : Linear noisy model with focus on feedback
Model II is just a variation of Model I intended to simplify the

analytical study of feedback. The convenience of this variation will
become apparent in Section 3 when we derive the analytical results.
By comparing the Eqs. (3) of Model I and Eqs. (4) of Model II it is
easy to see that our second class of networks is just a linear version of
the first where we disregarded the Divisive Normalization. Specifically,
in the last equation of Model II the cortical nonlinearity 𝑓 (⋅) has been
substituted by a trivial identity, I, and the input cortical signal is scaled
by the strength 𝑐𝑒𝑧 with regard to the inner noise 𝐧𝐳, which was not
present before:

𝐱(𝑡) = 𝐬(𝑡) + 𝐧𝐱(𝑡) +
𝑐𝑧𝑥

𝑐𝑥𝑦 𝑐𝑦𝑒 𝑐𝑒𝑧
𝐹−1 ⋅ 𝐳(𝑡 − 𝛥𝑡)

(𝑡) = 𝑐𝑥𝑦 𝐾 ⋅ 𝐱(𝑡) + 𝐧𝐲(𝑡) = 𝑐𝑥𝑦 𝐹
−1 ⋅ 𝜆CSF ⋅ 𝐹 ⋅ 𝐱(𝑡) + 𝐧𝐲(𝑡) (4)

𝐞(𝑡) = 𝑐𝑦𝑒 𝐹 ⋅ 𝐲(𝑡) + 𝐧𝐞(𝑡)
𝐳(𝑡) = 𝑐𝑒𝑧 I ⋅ 𝐞(𝑡) + 𝐧𝐳(𝑡)

In the setting described by Model II the information about the input
image (or source 𝐬) flows through the feedforward links while being
contaminated by the noise injected at each layer. However, for the
slow-varying inputs described above, part of the source is injected
back into the retinal signal. As a result, the scenario in Model II is
convenient to analyze the joint effect of the strength of the feedforward
links and the feedback links. For example, one may study the effect of
the intra-cortical connectivity 𝑐𝑒𝑧 (that scales the signal wrt the inner
noise) together with the strength of the feedback 𝑐𝑧𝑥 that reinforces
the presence of the source at the retina. From a naive perspective,
increasing 𝑐𝑒𝑧 and 𝑐𝑧𝑥 seems to lead to an increase of the Signal-to-Noise
ratio in all the responses. Analytical results of information-theoretic
descriptors can confirm or refute this intuition and provide a tool to
understand a variety of situations.

The second set of analytical results derived in Section 3.2 show that
while 𝑇 strongly depends on the feedforward and feedback strengths 𝑐𝑒𝑧
and 𝑐𝑧𝑥, the sensitivity of 𝐼 is smaller. In this case, the sensitivity of 𝐼
is just smaller (not zero) but the substantial difference in sensitivities
(in a biologically plausible recurrent scenario) illustrates the conceptual
superiority of 𝑇 over the conventional 𝐼 .

2.2. Background on mutual information and total correlation

Here we recall the definitions of the descriptors compared in this
work (Mutual Information [15] and Total Correlation [14]), in terms of
Entropy :

𝑇 (𝐱, 𝐲, 𝐳) =

( 𝑛
∑

𝑖=1
ℎ(𝑥𝑖) + ℎ(𝑦𝑖) + ℎ(𝑧𝑖)

)

− ℎ(𝐱, 𝐲, 𝐳) (5)

𝐼(𝐱, 𝐲) = ℎ(𝐱) + ℎ(𝐲) − ℎ(𝐱, 𝐲) (6)

where ℎ(⋅) stands for the (univariate or joint) entropy of the correspond-
ing (scalar or vector) variables. The relation of these variables with
the (more limited but still widely used) 2nd-order linear correlation
is detailed in Appendix C. The biggest conceptual advantage of 𝑇 over
𝐼 and linear correlation is that it can handle relations among more
than two nodes at the same time. Note that the definition in Eq. (5)
is trivially extended in presence of an arbitrary number of nodes.
Moreover, similarly to 𝐼 , 𝑇 can capture nonlinear relations as opposed
to 2nd order linear correlation. However, 𝑇 is different from 𝐼 . Note
that even in the case of just two nodes, 𝑇 (𝐱, 𝐲) ≠ 𝐼(𝐱, 𝐲) because, for
multivariate nodes, 𝑇 considers the redundancy among the coefficients
(or neurons) of each node, which is disregarded by 𝐼 . This difference
is key when the signals in each layer are not independent, which is the
more interesting situation in visual neuroscience and also in computer
vision.

As joint and marginal entropy are easily computed for Gaussian sig-
nals from the covariance matrices or from the marginal variances [15],
Eqs. (5) and (6) imply that, if variables are Gaussian, analytical results
are straightforward. This is the case in Model II, but, due to the
nonlinearity, it is not the case in Model I.
4

3. Analytical results: 𝑻 and 𝑰 in terms of intra-layer connectivity
and feedback

Here we present results for Model I and Model II which address
different interesting situations that may happen in natural or artificial
neural nets: (i) nonlinear intra-layer connectivity, and (ii) feedback or
recurrence. In order to simplify the analytical tractability, in each case
we focus on a specific feature of the models, either the nonlinearity (in
Model I) or the feedback-recurrence (in Model II).

For simplicity in the notation, in this Section we omit the temporal
variation of the signals. Nevertheless, as discussed in Section 5 in the
paragraph Temporal delays can be incorporated in the theory, that is not
a major problem because the properties of 𝑇 used in the proofs do not
depend on time.

For both models (I and II) analytical tractability is simple if one
considers Gaussian signals. The Gaussian assumption for natural images
has been acknowledged as a too rough approximation both in Visual
Neuroscience [23,45–47] and in Image Processing [67,68]. However,
in this section we are going to take this assumption for the sake of
analytical tractability. In the experimental section we will compare the
results with (synthetic) Gaussian signals and natural inputs. The Gaus-
sian assumption is appropriate and illustrative in this case because (as
shown below using a trustable empirical estimator) results for natural
images are (1) similar to the Gaussian results, and more important for
this work, (2) they confirm the superiority of the description using 𝑇
also for natural signals.

3.1. 𝑇 and 𝐼 as descriptors of intra-cortical connectivity (model I)

As stated above, for simplicity, we consider a Gaussian input, 𝒔, and
a version of Model I focused on the nonlinearity. This means 𝑐𝑧𝑥 = 0,
so we leave feedback for the results of Model II in Section 3.2.

With these assumptions, the variables 𝐱, 𝐲, and 𝐞 are Gaussian
because they are sum of linearly-transformed Gaussian variables plus
white Gaussian noises. However, the Divisive Normalization nonlin-
earity 𝑓 (⋅) implies that the variable 𝐳 is non-Gaussian. In this setting,
expressions for 𝑇 and 𝐼 involving 𝐳 (where the intra-cortical connectiv-
ity is) require the application of specific properties of these magnitudes
under transforms of the random variables.

The Total Correlation does depend on intra-cortical connectivity: In
order to get an analytical result for 𝑇 (𝐱, 𝐲, 𝐳), lets concatenate the
variables that represent the considered nodes into column vectors of
dimension 3𝑛: 𝐚 = [𝐱; 𝐲; 𝐞], and 𝐚′ = [𝐱; 𝐲; 𝐳] = [𝐱; 𝐲; 𝑓 (𝐞)], and consider,

𝐚


←←←←←←←←←←←←←←←←←←←→ 𝐚′

where we are interested in computing 𝑇 (𝐚′). In this situation, one may
use the following property of the variation of Total Correlation when
the variables undergo a transformation  [26,69]:

𝛥𝑇 (𝐚, 𝐚′) = 𝑇 (𝐚) − 𝑇 (𝐚′) =
3𝑛
∑

𝑖
ℎ(𝑎𝑖) −

3𝑛
∑

𝑖
ℎ(𝑎′𝑖) +

1
2
E𝐚

{

𝑙𝑜𝑔|∇𝐚⊤ ⋅ ∇𝐚 |

}

(7)

here E𝐚
{

⋅
}

is the average over the samples 𝐚. Then, taking into
ccount that,

𝐚 =
(

I 0
0 ∇𝐞𝑓

)

nd considering that 𝑇 (𝒂) = 𝑇 (𝒙, 𝒚, 𝒆) only depends on Gaussian
variables and hence with known entropy in terms of the covariance
matrix,2 we obtain the desired result (in nats):

𝑇 (𝒙, 𝒚, 𝒛) = 1
2

3𝑛
∑

𝑖
𝑙𝑜𝑔(𝛴𝑎

𝑖𝑖) −
1
2
𝑙𝑜𝑔|𝛴𝑎

| − 𝑛
2

2 If 𝐱 is a Gaussian variable, its entropy in nats is ℎ(𝐱) = 1
2
𝑙𝑜𝑔|2𝜋𝑒𝛴𝑥

| where
𝛴𝑥 is the covariance of 𝐱 [15].
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E

− 𝑛
2
𝑙𝑜𝑔(2𝜋) − 1

2
𝑙𝑜𝑔|𝛴𝑒

| +
𝑛
∑

𝑖=1
ℎ(𝑧𝑖) −

1
2
E𝒆{ 𝑙𝑜𝑔|∇𝒆𝑓 ⋅ ∇𝒆𝑓

⊤
| }

(8)

where the covariance matrices 𝛴𝑒 and 𝛴𝑎 do not depend on the
intra-cortical connectivity, because they only depend on 𝒙, 𝒚, and 𝒆:

𝛴𝑎 = 𝛴𝑥𝑦𝑒

=
⎛

⎜

⎜

⎝

𝛴𝑥 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅𝐾⊤ 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤

𝑐𝑥𝑦 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑦 𝑐𝑦𝑒 ⋅ 𝛴𝑦 ⋅ 𝐹⊤

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝑐𝑦𝑒 ⋅ 𝐹 ⋅ 𝛴𝑦 𝛴𝑒

⎞

⎟

⎟

⎠

but, according to [19], ∇𝒆𝑓 does depend on the intra-cortical connec-
tivity due to the interactions in the Divisive Normalization, 𝑐𝑒𝑧 and 𝐻 :

∇𝒆𝑓 = D𝑠𝑖𝑔𝑛(𝒆) ⋅ D−1
(

𝑏+𝑐𝑒𝑧⋅𝐻 ⋅|𝒆|
) ⋅ [I − 𝑐𝑒𝑧 ⋅ D𝒛 ⋅𝐻] ⋅ D(

𝛾 𝑠𝑖𝑔𝑛(𝒆)|𝒆|𝛾−1
) (9)

where D𝒗 is a diagonal matrix with the vector 𝒗 in the diagonal.
Eqs. (8) and (9) explicitly show that 𝑇 (𝒙, 𝒚, 𝒛) does depend on the

intra-cortical connectivity.
Another way to see the dependence with the intra-cortical connec-

tivity consist of identifying these two terms in Eq. (8): the (Gaussian)
𝑇 (𝒙, 𝒚, 𝒆), using the definition in Eq. (5), and the variation of 𝑇 under
the transform 𝐳 = 𝑓 (𝐞), using the property in Eq. (7). By doing that, it
is easy to see that:

𝑇 (𝒙, 𝒚, 𝒛) =
(

𝑇 (𝒙, 𝒚, 𝒆) − 𝑇 (𝒆)
)

+ 𝑇 (𝒛) (10)

where the term in the parenthesis obviously does not depend on the
intra-cortical connectivity (because 𝒙, 𝒚 and 𝒆 are previous to that
interaction), but 𝑇 (𝐳) does depend on the Divisive Normalization.

The Mutual Information does not capture the effect of intra-cortical
connectivity: This is easy to see using the following property: the mu-
tual information is invariant to non-singular differentiable transforms
of the random vectors [70]:

𝐼(𝐚, 𝑓 (𝐛)) = 𝐼(𝐚,𝐛) (11)

This property is easy to see by considering that 𝐼(𝐚,𝐛) measures the
KL-divergence between the densities 𝑝(𝐚,𝐛) and 𝑝(𝐚)𝑝(𝐛) [15]. Taking
into account that the Jacobian that appears in the variation of the
probability under transforms [71] is compensated (in the integral of
the KL-divergence) by the change of the differential volume, one gets
the invariance.

As a result, no pairwise measure 𝐼 involving 𝒙, 𝒚, and 𝒛 depends on
the intra-cortical connectivity:

𝐼(𝒙, 𝒚) = 1
2 log |𝛴

𝑥
| + 1

2 log |𝛴
𝑦
| − 1

2 log |𝛴
𝑥𝑦
|

𝐼(𝒙, 𝒛) = 𝐼(𝒙, 𝑓 (𝒆)) = 𝐼(𝒙, 𝒆) = 1
2 log |𝛴

𝑥
| + 1

2 log |𝛴
𝑒
| − 1

2 log |𝛴
𝑥𝑒
|

𝐼(𝒚, 𝒛) = 𝐼(𝒚, 𝑓 (𝒆)) = 𝐼(𝒚, 𝒆) = 1
2 log |𝛴

𝑦
| + 1

2 log |𝛴
𝑒
| − 1

2 log |𝛴
𝑦𝑒
|

(12)

here,

𝑥𝑦 =
(

𝛴𝑥 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅𝐾⊤

𝑐𝑥𝑦 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑦

)

𝑥𝑒 =
(

𝛴𝑥 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑒

)

𝛴𝑦𝑒 =
(

𝛴𝑦 𝑐𝑦𝑒 ⋅ 𝛴𝑦 ⋅ 𝐹⊤

𝑐𝑦𝑒 ⋅ 𝐹 ⋅ 𝛴𝑦 𝛴𝑒

)

Therefore, we proved an important advantage of 𝑇 : in the biologi-
cally plausible Model I, Eq. (12) means that the conventional 𝐼 measures
do not capture the intra-cortical connectivity, which is critical to explain
psychophysics (see Appendix B). On the contrary, Eqs. (8) and (9)
explicitly show that 𝑇 does depend on the intra-cortical connectivity.
5

b

3.2. 𝑇 and 𝐼 as descriptors of feedback (model II )

In Model II there is no nonlinearity so, if the source 𝐬 is Gaussian
and so are the noises injected at the different layers, all the variables
(in the forward pass) will be Gaussian including 𝐳. Then, the considered
feedback from 𝐳 to 𝐱 just injects an extra Gaussian variable back into
𝒙. As a result, 𝐱 will be Gaussian too for any strength of the feedback.
For slow-varying inputs (as natural images at the retina) the feedback
signal (coming from the past) is not totally independent of the current
value of the source, so the covariance at the retina is not the sum
of the covariance matrices of the separate terms in the sum in the
first equation of Model II. However, this does not modify the Gaussian
assumption.

All these considerations imply that the definitions in terms of en-
tropy given in Eqs. (5) and (6) can be applied together with the
expression of the entropy for Gaussian signals that only depends on
the corresponding covariance matrices. As a result, in order to make
explicit the dependence on feedforward and feedback connectivity one
only has to consider all possible covariance matrices, which is what we
list below for Model II.

Assuming that signal and noise are not correlated, the covariance
matrices of the signal at each isolated layer are:

𝛴𝑥 = E
{

𝑥 ⋅ 𝑥⊤
}

= 𝛴𝑠 + 𝛴𝑛𝑥 +
( 𝑐𝑧𝑥
𝑐𝑥𝑦𝑐𝑦𝑒𝑐𝑒𝑧

)2
𝐹−1 ⋅ 𝛴𝑧 ⋅ 𝐹−1⊤

+
𝑐𝑧𝑥

𝑐𝑥𝑦𝑐𝑦𝑒𝑐𝑒𝑧
𝑀(𝑠, 𝑧)

𝛴𝑦 = 𝑐2𝑥𝑦 ⋅𝐾 ⋅ 𝛴𝑥 ⋅𝐾⊤ + 𝜎2(𝑛𝑦) I (13)

𝛴𝑒 = 𝑐2𝑦𝑒 ⋅ 𝐹 ⋅ 𝛴𝑦 ⋅ 𝐹 𝑇 + 𝜎2(𝑛𝑒) I

𝛴𝑧 = 𝑐2𝑒𝑧 ⋅ 𝛴
𝑒 + 𝑛2𝑒 ⋅ I𝑑

here 𝑀(𝑠, 𝑧) is a symmetric matrix that describes the relation between
and z (they are not independent), and it is given by: 𝑀(𝑠, 𝑧) =
−1 ⋅ E

{

𝑠 ⋅ 𝑧⊤
}

+
(

𝐹−1 ⋅ E
{

𝑠 ⋅ 𝑧⊤
})⊤.

Additionally, the covariance matrices of two concatenated vectors
hat have not been given in Section 3.1 are:

𝑥𝑧 =
(

𝛴𝑥 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑧

)

𝑦𝑧 =
(

𝛴𝑦 𝑐𝑦𝑒 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑦 ⋅ 𝐹⊤

𝑐𝑦𝑒 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅ 𝛴𝑦 𝛴𝑧

)

(14)

𝑒𝑧 =
(

𝛴𝑒 𝑐𝑒𝑧 ⋅ 𝛴𝑒

𝑐𝑒𝑧 ⋅ 𝛴𝑒 𝛴𝑧

)

Similarly, the covariance matrices of three and four concatenated
ectors that have not been given in Section 3.1 are:
𝑥𝑦𝑧 =

⎛

⎜

⎜

⎜

⎝

𝛴𝑥 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅𝐾⊤ 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤

𝑐𝑥𝑦 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑦 𝑐𝑦𝑒 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑦 ⋅ 𝐹 ⊤

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝑐𝑦𝑒 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅ 𝛴𝑦 𝛴𝑧

⎞

⎟

⎟

⎟

⎠

𝑥𝑒𝑧 =

⎛

⎜

⎜

⎜

⎝

𝛴𝑥 𝑐𝑥𝑦 ⋅ 𝑐𝑦𝑒 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤ 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤

𝑐𝑥𝑦 ⋅ 𝑐𝑦𝑒 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑒 𝑐𝑒𝑧 ⋅ 𝛴𝑒

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝑐𝑒𝑧 ⋅ 𝛴𝑒 𝛴𝑧

⎞

⎟

⎟

⎟

⎠

(15)

The third equation is given in Box I. Given the matrices in Eqs. (13)–
15), in Model II both variables 𝑇 and 𝐼 depend on the intra-cortical
onnectivity 𝑐𝑒𝑧 and on the feedback 𝑐𝑧𝑥. However, the sensitivity of
he descriptors is not that obvious from these equations plugged into
qs. (5) and (6). Therefore, in order to figure out which descriptor is

etter (which one is more sensitive) one should consider specific values
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𝛴𝑥𝑦𝑒𝑧 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛴𝑥 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅𝐾⊤ 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤ 𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑥 ⋅ (𝐹 ⋅𝐾)⊤

𝑐𝑥𝑦 ⋅𝐾 ⋅ 𝛴𝑥 𝛴𝑦 𝑐𝑦𝑒 ⋅ 𝛴𝑦 ⋅ 𝐹⊤ 𝑐𝑦𝑒 ⋅ 𝑐𝑒𝑧 ⋅ 𝛴𝑦 ⋅ 𝐹⊤

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝑐𝑦𝑒 ⋅ 𝐹 ⋅ 𝛴𝑦 𝛴𝑒 𝑐𝑒𝑧 ⋅ 𝛴𝑒

𝑐𝑦𝑒 ⋅ 𝑐𝑥𝑦 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅𝐾 ⋅ 𝛴𝑥 𝑐𝑦𝑒 ⋅ 𝑐𝑒𝑧 ⋅ 𝐹 ⋅ 𝛴𝑦 𝑐𝑒𝑧 ⋅ 𝛴𝑒 𝛴𝑧

⎞

⎟

⎟

⎟

⎟

⎠

Box I.
Fig. 2. Natural and synthetic image data (the source 𝒔). The bottom-left mosaic shows illustrative samples from the colorimetrically-calibrated databases IPL and Barcelona.
The top-left scatter plot illustrates the joint PDF of the luminance at neighbor photoreceptors. Images and scatter plot show the (non-Gaussian) bias towards low-luminance, and
the spatial smoothness of the signal (predominance of low spatial frequency). The non-diagonal nature of the covariance matrix (at the top-right) captures the spatial smoothness,
and its eigenfunctions (bottom-right) are similar to the frequency analyzers in the cortex models (in Fig. 8). The order of the functions according the eigenvalue confirms the
low-frequency nature of the signal. The central column shows Gaussian samples with the same mean and covariance.
of the parameters (e.g. what we consider in Appendices A and B), and
compute 𝑇 and 𝐼 in a range of connectivity values.

We do that in the next experimental section where we find that, in
Model II, our descriptor, 𝑇 , is substantially more sensitive than 𝐼 to the
feedback, 𝑐𝑧𝑥, and the intra-cortical connectivity, 𝑐𝑒𝑧. And this happens
both for Gaussian signals and also for natural images.

4. Empirical results

In this experimental section3 we address the following points:

3 Code and data at http://isp.uv.es/docs/CODE_connectivity.zip, Sam-
ples.tar.gz, and DATA_connect_2.zip.
6

• We use the theoretical expressions to illustrate the behaviors of 𝑇
and 𝐼 , both in the case where the superiority of 𝑇 is analytically
obvious (as in Eqs. (8)–(10) versus Eqs. (12) for the intra-cortical
connectivity in Model I), and in the case where the behavior is not
easy to see directly from Eqs. (13)–(15) plugged into Eqs. (5)–(6)
(in Model II). In these experiments we use Gaussian sources with
the same mean and covariance as natural images and the model
parameters discussed in Appendices A and B.

• We confirm the theoretical results presented in Section 3 for both
models (I and II) through a specific empirical estimator of 𝑇 and
𝐼 [39,72] that has been already used in visual neuroscience [25,
26]. This empirical confirmation of the theory uses sets of 0.5 ⋅105
Gaussian samples injected into the models (I and II), and then,
the empirical estimator is applied to the responses of the models.

http://isp.uv.es/docs/CODE_connectivity.zip
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Incidentally, the presented pair theory-data is a good test-bed for
empirical estimators of 𝑇 and 𝐼 .

• We explore how the empirical estimations of 𝑇 and 𝐼 behave
for natural (non-Gaussian) images where, in principle, the theory
would not be applicable. We also use sets of 0.5⋅105 natural image
patches and the same variations of Model I and Model II.

• We explore the behavior of 𝑇 and 𝐼 in real fMRI signals from
cortical regions V1, V2, V3, V4 responding to natural images so
that we can discuss possible connectivity schemes.

The structure of this section is as follows: (1) We describe the
xperimental issues: the empirical estimator, the natural and the syn-
hetic image data, and the computational issues associated with the
heoretical expressions. (2) We present 𝑇 and 𝐼 surfaces for different
ntra-cortical connectivity 𝑐𝑒𝑧 and 𝛼𝐻 that controls 𝐻 in Model I. (3)

e present 𝑇 and 𝐼 surfaces for different feedforward and feedback
onnectivity 𝑐𝑒𝑧 and 𝑐𝑧𝑥 in Model II. Finally, (4) we present the empirical
stimations of 𝑇 and 𝐼 from real fMRI recordings.

.1. Empirical estimator, image data, and computational issues

mpirical estimation of 𝑇 and 𝐼 from samples: here we use the
otation-Based Iterative Gaussianization (RBIG). This method, originally
roposed for PDF estimation [39], is able to transform data following
ny multivariate PDF into data that follows a unit-covariance multi-
ariate Gaussian. In this way, RBIG is useful to estimate the redundancy
mong coefficients because it accumulates the variations in redundancy
hile transforming the original dataset into the final Gaussian dataset
here all coefficients are independent. The advantages of RBIG with

egard to other information estimators [43,44] has been shown in [26,
2,73]. RBIG has also been used in visual neuroscience to check the
fficient Coding Hypothesis in Wilson–Cowan networks [25], in Divisive
ormalization networks [26], and in color appearance networks [74].
owever, any other empirical estimator of 𝑇 and 𝐼 from samples [40–
4] could be used in the experiments below.

atural and synthetic image data: In the experiments we used 0.5⋅105

mage patches of size 8 × 8, i.e. 𝑛 = 64, randomly taken from the lu-
inance component of two colorimetrically-calibrated datasets: the IPL
ataset [75,76], and the Barcelona dataset [77]. In the IPL dataset only
mages under the CIE D65 (daylight-like) illuminant were considered.
he two datasets were linearly scaled so that the average luminance

n both was equal to 40 cd∕m2. This separate global normalization
nsures that image patches from both sets are equivalent and can be
afely mixed. Then, we randomly extracted the samples 0.25 ⋅ 105 from
ach dataset, and we computed the covariance from this joint set of
.5 ⋅ 105 samples: see 𝛴𝑠 in Fig. 2. This matrix, 𝛴𝑠, is the starting
oint of all the theoretical results presented in Section 3. Our data
as the classical covariance of the luminance in natural images (see
or instance [78]), which is diagonalized by DCT-like basis functions
see Fig. 2, consistently with [52,76,79]). Then, we generated 0.5 ⋅ 105

aussian vectors of dimension 𝑛 = 64 with the mean and covariance
f the natural samples. Of course, both sets (natural and synthetic)
re not the same (as can be seen in Fig. 2, consistently with [45,46]).
hen, we inject the synthetic and natural samples through Model I and
odel II to get the corresponding responses 𝒙, 𝒚, 𝒆, and 𝒛, for the range

f connectivity values considered in Section 2.1.

omputational issues: All the analytical results (e.g. Eq. (8)) depend
n the computation of determinants of large matrices (either covariance
atrices or the Jacobian ∇𝒆𝑓⊤ ⋅∇𝒆𝑓 ). The computation of determinants

n high-dimensional scenarios is very prone to divergences to 0 or ∞.
herefore, it is better to avoid its computation: given the fact that the
onsidered matrices, 𝐴, are symmetric (either 𝛴 or ∇𝒆𝑓⊤⋅∇𝒆𝑓 ), they are

diagonalizable by an orthonormal transform (with unit determinant).
∑𝑑
7

Therefore, it holds 𝑙𝑜𝑔|𝐴| = 𝑖=1 𝑙𝑜𝑔(𝜆𝑖) where 𝜆𝑖 are the eigenvalues
of 𝐴 (whatever the dimension 𝑑×𝑑 of the matrix 𝐴). Note that this sum
is more robust than the naive computation of the determinant.

4.2. Results for 𝐼 and 𝑇 in terms of nonlinear intra-cortical connectivity
(model I)

Fig. 3 shows the results of Mutual Information for different intra-
cortical connectivity scenarios in the nonlinear Model I. Specifically, we
show (a) the theoretical results for Gaussian signals, (b) the empirical
results computed with RBIG for Gaussian signals, and (c) the empirical
results computed with RBIG for natural signals.

We see two basic trends in the results (both in the theory and in the
empirical estimations):

1. As predicted by the theory, Mutual Information is totally insensi-
tive to the differences in intra-cortical connectivity. Therefore,
this pairwise measure is not a good descriptor of connectiv-
ity for this kind of nonlinearity, which is canonical in neural
computation [18].

2. 𝐼(𝒙, 𝒚) ≈ 𝐼(𝒙, 𝒛) ≪ 𝐼(𝒚, 𝒛). This could be expected because the
shared information is reduced with the noise introduced in each
layer and 𝜎(𝒏𝒚) ≫ 𝜎(𝒏𝒆), and no noise is introduced in 𝒛, i.e. 𝑓 (⋅)
is invertible. Therefore, more information is lost between 𝒙 and
inner layers (either 𝒚 or 𝒛), than the information lost between
𝒚 and 𝒛, which have an almost invertible relation: only a small
fraction of bits is lost due to 𝒏𝒆.

It is important to note that these global trends in the theory are con-
sistently confirmed by the empirical estimations. Beyond a small bias
(overestimation) in 𝐼RBIG, it identifies the substantially bigger connec-
tion between 𝒚 and 𝒛 rather than between 𝒙 and inner layers. Moreover,
𝐼RBIG is also constant over the range of nonlinear connectivity values.

Interestingly, the empirical results for natural images also follow
these trends even though the signals are no longer Gaussian. In this
case, the non-Gaussianity only introduces a reduction in the 𝐼RBIG
estimates and a small variation over the explored models, which is
negligible in terms of describing changes in the connectivity.

Fig. 4 shows the part of 𝑇 (𝒙, 𝒚, 𝒛) that depends on the nonlinear
connectivity: 𝑇 (𝒛) according to Eq. (10). In this case, as opposed to 𝐼 ,
the Total correlation strongly depends on the intra-cortical connectivity.

Again, (beyond a subestimation bias in RBIG) the general trend
of the empirical estimations over the connectivity range confirms the
theoretical predictions. The non-Gaussianity of natural signals does not
introduce major deviations in the trend of the surface.

A technical comment on the estimation of 𝑇 (𝒛): as the variables
𝒛 = 𝑓 (𝒆) are non-Gaussian, and this non-Gaussianity is particularly
strong in some regions of the explored domain of connectivity, it is
important to use a large number of iterations in the Gaussianization
algorithm to get a good estimate of 𝑇 . In particular here we used 500
iterations.

4.3. Results for 𝐼 and 𝑇 in terms of feedforward and feedback connectivity
(model II)

As in the recurrent Model II the interpretation of the analytical
results is more complicated, here the values are given in a relative scale
with regard to their maximum so that the sensitivity of the different
descriptors can be fairly compared. Moreover, the variation of each
descriptor, 𝛥𝐼 or 𝛥𝑇 , both in percentage and in bits, is also given. As
the explored range of feedforward and feedback values is the same for
each descriptor, 𝛥𝐼 and 𝛥𝑇 are good measures of the sensitivity to the
considered variation of the connectivity.

Figs. 5 and 6 show the results of Mutual Information and Total Cor-
relation for different feedforward and feedback connectivity scenarios:

different combinations of 𝑐𝑒𝑧 and 𝑐𝑧𝑥 in Model II. Specifically, we show:
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Fig. 3. Mutual Information does not describe intra-cortical connectivity in Model I . Plots of 𝐼 as a function of intra-cortical connectivity for Gaussian signals (theory and
RBIG estimates), and empirical results for natural images.

Fig. 4. Total Correlation does capture variations in intra-cortical connectivity in Model I . Plots of 𝑇 (𝒛) as a function of intra-cortical connectivity for Gaussian signals (theory
and RBIG estimates), and empirical results for natural images.
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Fig. 5. Mutual Information has mild dependence with feedforward and feedback connectivity in Model II . Plots of 𝐼 as a function of the feedforward connectivity, 𝑐𝑒𝑧, and
feedback, 𝑐𝑧𝑥, for Gaussian signals (theory and RBIG estimates), and empirical results for natural images. The plots display relative values of 𝐼 in percentage with regard to the
maximum together with a factor (e.g. ×0.3 in the top-left plot) that allows to express this percentage in absolute values (in bits). Moreover, the plots display the variation (in bits)
of the considered descriptor over the range of connectivity values (e.g. 𝛥 = 9.7 bits in the top-left plot). This is a measure of the sensitivity of the descriptor.
(a) the theoretical results for Gaussian signals, (b) the empirical results
computed with RBIG for Gaussian signals, and (c) the empirical results
computed with RBIG for natural images.

In each case the surfaces are plotted in percentage for simpler
comparison (flatter surfaces mean less sensitivity and hence worse
descriptor). Nevertheless, the numerical captions in each surface give
the absolute scale in bits.

The results for the 𝐼 and 𝑇 surfaces show the following major trends:

1. The theoretical surfaces in Model II are consistently confirmed by
the empirical estimations. Similarly to what we found in Model
I, this parallelism confirms the correctness of the theory and the
appropriateness of RBIG in this application.

2. The average percentage of variation of the measures based on 𝐼
in the theoretical expressions is ∆𝐈 = 𝟒𝟕 ± 𝟑𝟎 %.

3. The average percentage of variation of the measures based on 𝑇
in the theoretical expressions is ∆𝐓 = 𝟕𝟓 ± 𝟏𝟏 %.

4. Therefore, the overall sensitivity of 𝑇 to connectivity and feed-
back is stronger than the sensitivity of 𝐼 .

5. Interestingly, the empirical results for natural images also follow
the theoretical prediction even though the signals are no longer
Gaussian. In this case, the non-Gaussianity only introduces a
noticeable variation in 𝐼(𝒚, 𝒆). However, this does not change
much the global sensitivity of 𝐼 , and 𝑇 is still more sensitive.

Minor details also include the following: in general, the shared
information increases with 𝑐𝑒𝑧. This is obvious in the cases where 𝒛 is
one of the considered nodes (e.g. the last three columns 𝐼(𝒙, 𝒛), 𝐼(𝒚, 𝒛)
or 𝐼(𝒆, 𝒛)) because an increased transmission 𝑐𝑒𝑧 improves the presence
of the source in the inner representation. More interestingly, we can see
that when 𝒛 is not considered, the effect of 𝑐 is only relevant when
9

𝑒𝑧
there is also significant feedback (as in the two first columns 𝐼(𝒙, 𝒚) and
𝐼(𝒙, 𝒆)). This is also the case when considering nodes that are far away,
as in 𝐼(𝒙, 𝒛).

When considering nodes that are far from the considered interac-
tions (e.g. when considering the transmission between 𝒚 and 𝒆 when we
consider the forward connection to 𝒛 and the feedback to 𝒙) the mutual
information is almost insensitive to the variations of connectivity (see
the flat 𝐼(𝒚, 𝒆) in the third column of Fig. 5).

In summary, the overall sensitivity of 𝑇 to connectivity and feed-
back is stronger than the sensitivity of 𝐼 . Note that 𝛥𝑇 > 𝛥𝐼 with
substantially lower variance over the considered nodes. Therefore, 𝑇 is
more appropriate than 𝐼 to describe the connectivity in the recurrent
Model II.

4.4. Results with real fMRI signals from visual regions V1, V2, V3 and V4

Once we used sensible analytical scenarios to prove that (1) 𝑇 is
more sensitive than 𝐼 to functional connections up to V1, and (2)
the empirical estimates through RBIG are reliable for visual signals of
dimension 𝑛 ∈ [64, 256], finally we are ready to use these empirical
estimates of connectivity in uncontrolled scenarios down stream.

Here we measure the information shared by different visual regions
of the cortex beyond V1. It is true that the previous analytical results
(from retina up to V1) give us no direct guarantee of success beyond
V1. However the good behavior of the estimates obtained above using
signals of similar nature and similar dimension is a necessary safety
check which is absent in the purely empirical literature that originally
proposed 𝑇 [10,11] or variations [12,13].

Measuring 𝑇 in higher cortical visual areas is interesting because
(1) there is a debate on how these regions actually interact [80–84],
and (2) there is a long-standing concept in visual neuroscience that
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Fig. 6. Total Correlation strongly depends on the feedforward and feedback connectivity in Model II . Plots of 𝑇 as a function of the feedforward connectivity, 𝑐𝑒𝑧, and
feedback, 𝑐𝑧𝑥, for Gaussian signals (theory and RBIG estimates), and empirical results for natural images. The plots display relative values of 𝑇 in percentage with regard to the
maximum together with a factor (e.g. ×2.6 in the top-left plot) that allows to express this percentage in absolute values (in bits). Moreover, the plots display the variation (in bits)
of the considered descriptor over the range of connectivity values (e.g. 𝛥 = 195 bits in the top-left plot). This is a measure of the sensitivity of the descriptor.
relates neural connectivity with information transmission: the Efficient
Coding Hypothesis [85,86]. Specifically, here we take the neural data
from the Algonauts Project 2021 challenge [48], and we consider fMRI
signals from V1, V2, V3 and V4 while the observers were looking
at natural videos. The details about task paradigm, data acquisition
and preprocessing can be seen at http://algonauts.csail.mit.edu/2021/
brainmappingandanalysis.html. In our experiments we consider pair-
wise and multivariate relations among regions which (anatomically)
are progressively farther away. However, our descriptors of functional
10
links do not make any prior assumption of the possible feedforward or
feedback connections.

Ensembles: The considered dataset provides 3 responses of 9 observers
for 1000 natural videos in a number of voxels of the considered regions
(V1, V2, V3 and V4). In this database there is a one-to-one relation
between input and responses, but the number of available voxels
depends on the observer and the cortical region. Therefore, just for
illustrative purposes, we take 20 randomly selected voxels per region
for each observer. This means 20-dimensional signals associated to one

http://algonauts.csail.mit.edu/2021/brainmappingandanalysis.html
http://algonauts.csail.mit.edu/2021/brainmappingandanalysis.html
http://algonauts.csail.mit.edu/2021/brainmappingandanalysis.html
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Fig. 7. Examples of the pairs of nodes (a), and groups of nodes (b), that we consider in our measurements. The top row (a) considers the relation between certain node
(in this case V1), and, from left to right, nodes progressively distant: V2, V3, and V4. The bottom row (b), from left to right, adds nodes to the group under consideration. If we
start from 𝑉𝑖, the added nodes can be close to it, e.g. (𝑉𝑖 , 𝑉𝑖+1 , 𝑉𝑖+2) in the 2nd diagram, or they can be progressively farther away, as (𝑉𝑖 , 𝑉𝑖+1 , 𝑉𝑖+3) or (𝑉𝑖 , 𝑉𝑖+2 , 𝑉𝑖+3), as in the 3rd
and 4th diagrams. Finally, the last diagram at the right shows that we can consider all nodes at the same time, namely (𝑉1 , 𝑉2 , 𝑉3 , 𝑉4).
input. By considering the data of all trials, all observers, and all input
videos, we have 3 × 9 × 1000 = 27000 samples of these 20-dimensional
vectors for each region. In these ensembles, the 𝑖th vector of each
region corresponds to the same input and the same observer, but the
𝑗th dimension of the vector is the response of a randomly chosen voxel
in that region (and observer). We assume all the observers and all the
voxels in a region are equivalent. By rerunning this random selection
of voxels we get equivalent ensembles.

Empirical estimation with fMRI data using RBIG: Given the fact that
the marginal PDFs of the considered fMRI signals are approximately
Gaussian (results not shown), in the estimations of 𝑇 and 𝐼 based on
iterative Gaussianization we chose a small number of iterations (only
20 iterations as opposed to the 500 iterations used in Model I where
𝑧 is non-Gaussian). We re-estimate 𝑇 and 𝐼 30 times from equivalent,
randomly chosen, ensembles, and we report the average and standard
deviation of the results.

Measurements of functional links: we estimated 𝐼 and 𝑇 in all
possible distinct combinations of nodes. Fig. 7 illustrates pairwise
and multivariate relations among regions which (anatomically) are
progressively farther away. Note that the functional link of the con-
figurations in the top row can be addressed by the pairwise 𝐼(𝒗𝒊, 𝒗𝒋) or
𝑇 (𝒗𝒊, 𝒗𝒋). However, progressive consideration of additional nodes, as in
the bottom row, can only be quantified using a multivariate descriptor
𝑇 (𝒗𝒊, 𝒗𝒋 , 𝒗𝒌,…). Note that in a case where the connections are unknown,
the shared information (either 𝐼 or 𝑇 ) is not only affected by the
direct connections between the considered nodes (in our figure direct
connections are in color), but also by all other possible indirect connec-
tions (depicted in gray). The indirect connections imply communication
through alternative regions that may re-inject the relevant signal into
the considered nodes and have a positive effect in the functional link.

On top of the two-node and multi-node cases, mono-mode refer-
ences are convenient to know if the information is lost through the
network or, on the contrary, there are positive synergies. To this end,
we report three additional numbers: 𝑇 (𝒗𝒊), which is a measure of
the redundancy within the node 𝒗𝒊; and also 𝐼(𝒗𝒊, 𝒗𝒊), and 𝑇 (𝒗𝒊, 𝒗𝒊).
In principle, the information shared by a variable with itself, as in
𝐼(𝒗𝒊, 𝒗𝒊), and 𝑇 (𝒗𝒊, 𝒗𝒊), is ∞.4 However, given the uncertainty we in-
troduce when using random voxels from each region/observer, two
(randomly chosen) sets of 𝒗𝒊 are not aligned and then 𝐼(𝒗𝒊, 𝒗𝒊), and
𝑇 (𝒗𝒊, 𝒗𝒊) do not diverge to ∞. Instead, they are measures of the common
information present in every realization of the ensemble of responses
of that node 𝒗𝒊. Therefore, they are a convenient reference to know if

4 Given any 𝑛-dimensional variable 𝒂, the samples of (𝒂,𝒂) are aligned
in a 2𝑛-dimensional space, and then the joint differential entropy terms of
Eqs. (5)–(6) is −∞, leading to 𝐼(𝒂,𝒂) = 𝑇 (𝒂,𝒂) = ∞.
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the consideration of extra nodes increases or decreases this mono-mode
amount of information.

For a more intuitive comparison of the results corresponding to
configurations with different number of nodes, we report the shared in-
formation per node. This means: 𝐼(𝒗𝒊, 𝒗𝒋)∕2, 𝑇 (𝒗𝒊, 𝒗𝒋)∕2, 𝑇 (𝒗𝒊, 𝒗𝒋 , 𝒗𝒌)∕3,
and, 𝑇 (𝒗𝟏, 𝒗𝟐, 𝒗𝟑, 𝒗𝟒)∕4. In the case of 𝑇 (𝒗𝒊) the definition already has a
single node, so bits and bits/node are the same.

Finally, we report not only the absolute values in bits/node, but
(more interestingly to describe the connectivity) how the information
per node increases or decreases when we go way from one node
or include progressively distant nodes in the measure. We give this
deviation in % with regard to the information per node in V1 (either
𝐼(𝒗𝟏, 𝒗𝟏) or 𝑇 (𝒗𝟏, 𝒗𝟏)).

Results: Tables 1–2 show the measures of shared information in three
panels: the top panel shows the pair-wise measures 𝐼(𝒗𝒊, 𝒗𝒋), the middle
panel shows the single-node measure 𝑇 (𝒗𝒊), and the bottom panel shows
the multi-node measures 𝑇 (𝒗𝒊, 𝒗𝒋 ,…). Table 1 has absolute measures in
bits/node, and Table 2 displays the variation (in %) of the considered
configuration with regard to the corresponding measure in V1. The
𝑇 (𝒗𝒊, 𝒗𝒋 ,…) panels have a pair-wise part (at the left) and a multi-node
part (the last four columns). This multi-node parts have to be read row-
wise: each number reports how the node in the row interacts with the
nodes in the different columns. Moreover, the consideration of extra
nodes is done in cyclic way: in the 3rd row 𝑣𝑖 = 𝑣3, and hence the
5th column, (𝑣𝑖+1, 𝑣𝑖+2) = (𝑣4, 𝑣1), refers to the connectivity among the
nodes (𝑣3, 𝑣4, 𝑣1).

Not all the values in the tables are independent because of the
symmetry of the measures. Note that 𝐼 and 𝑇 are invariant to the
permutation of the variables: 𝐼(𝒗𝒊, 𝒗𝒋) = 𝐼(𝒗𝒋 , 𝒗𝒊), and 𝑇 (𝒗𝒊, 𝒗𝒋 , 𝒗𝒌) =
𝑇 (𝒗𝒋 , 𝒗𝒌, 𝒗𝒊) = ⋯ This implies that the 𝐼 panels are symmetric and
so it is the pairwise part of the 𝑇 panels. Also as a consequence
of the invariance to permutation, some multi-node configurations are
equivalent. As the order does not matter, we have combinations of 4
nodes taken 3 at a time, i.e. only 4 independent node configurations.
For the sake of clarity the non-redundant values of the tables are
highlighted in blue. Also for clarity, the standard deviation over the 500
realizations of the estimation has been reported only in the independent
values of Table 1.

The discussion of the results will be focused on the variations of
information as we depart from a node (Table 2). Departure, as in
the top row of Fig. 7, means moving away from the diagonal (along
rows/columns) in the pairwise parts of the tables. Departure, as in
the bottom row of Fig. 7, means moving to the right (for the highlighted
numbers) in the multi-node parts. Table 1, with the original absolute
measures, is just given for completeness and for the reader convenience.

A final comment on the absolute magnitudes: in every case, the
estimated 𝑇 (𝒗𝒊, 𝒗𝒋) > 𝐼(𝒗𝒊, 𝒗𝒋), which is consistent with the definitions
because (as discussed in Eqs. (5)–(6), and in Appendix C) 𝑇 includes the
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Table 1
𝐼(𝒗𝒊 , 𝒗𝒋 ) between pairs of areas, 𝑇 (𝒗𝒊) in each area, and 𝑇 (𝒗𝒊 , 𝒗𝒋 ,…) among multiple areas in bits/node. The reported values are the mean
and the standard deviation of the corresponding magnitudes over 500 estimations using independent datasets. The independent configurations
are highlighted in blue. The non-highlighted values correspond to symmetry-equivalent configurations. See the Results paragraph in the text for
the interpretation of pairs and triplets with progressively distant nodes.

𝐈(𝐯𝐢 , 𝐯𝐣) 𝑣1 𝑣2 𝑣3 𝑣4
(in bits/node)

𝑣1 2.3 ± 0.3 1.4 ± 0.4 1.0 ± 0.2 0.7 ± 0.2
𝑣2 1.4 2.0 ± 0.3 1.3 ± 0.2 0.7 ± 0.1
𝑣3 1.0 1.3 1.7 ± 0.3 0.8 ± 0.2
𝑣4 0.7 0.7 0.8 2.2 ± 0.3

𝐓(𝐯𝐢) 𝑣1 𝑣2 𝑣3 𝑣4
(in bits/node)

3.5 ± 0.3 3.2 ± 0.3 3.0 ± 0.3 3.4 ± 0.2

𝐓(𝐯𝐢 , 𝐯𝐣 ,…) 𝑣1 𝑣2 𝑣3 𝑣4 𝑣𝑖+1 , 𝑣𝑖+2 𝑣𝑖+1 , 𝑣𝑖+3 𝑣𝑖+2 , 𝑣𝑖+3 𝑣𝑖+1 , 𝑣𝑖+2 , 𝑣𝑖+3
(in bits/node)

𝑣1 6.0 ± 0.3 5.1 ± 0.3 4.7 ± 0.3 4.6 ± 0.2 6.1 ± 0.3 5.9 ± 0.3 5.7 ± 0.3 6.6 ± 0.3
𝑣2 5.1 5.4 ± 0.3 4.7 ± 0.3 4.5 ± 0.3 5.7 ± 0.3 6.1 5.9 6.6
𝑣3 4.7 4.7 5.0 ± 0.3 4.5 ± 0.3 5.7 5.7 6.1 6.6
𝑣4 4.6 4.5 4.5 5.9 ± 0.3 5.9 5.7 5.7 6.6
Table 2
Variations of 𝐼 and 𝑇 (in % with regard to V1) when considering progressively distant nodes or extra nodes. Negative numbers
imply information loss and positive increments indicate a sort of synergy. See the Results paragraph in the text for the interpretation
of pairs and triplets with progressively distant nodes.

𝚫𝐈(𝐯𝐢 , 𝐯𝐣) 𝑣1 𝑣2 𝑣3 𝑣4
(in %)

𝑣1 0 −41 −56 −69
𝑣2 −41 −14 −46 −69
𝑣3 −56 −46 −27 −66
𝑣4 −69 −69 −66 −7

𝚫𝐓(𝐯𝐢) 𝑣1 𝑣2 𝑣3 𝑣4
(in %)

0 −8 −15 −1

𝚫𝐓(𝐯𝐢 , 𝐯𝐣 ,…) 𝑣1 𝑣2 𝑣3 𝑣4 𝑣𝑖+1 , 𝑣𝑖+2 𝑣𝑖+1 , 𝑣𝑖+3 𝑣𝑖+2 , 𝑣𝑖+3 𝑣𝑖+1 , 𝑣𝑖+2 , 𝑣𝑖+3
(in %)

𝑣1 0 −15 −21 −23 2 −1 −4 11
𝑣2 −15 −9 −20 −25 −5 2 −1 11
𝑣3 −21 −20 −16 −25 −4 −5 2 11
𝑣4 −23 −25 −25 −1 −1 −4 −5 11
w
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redundancy within the nodes and hence the information is necessarily
bigger.

Information flow and conjectures on connectivity: Results show
that the redundancy within each node 𝑇 (𝒗𝒊) is smaller in deeper layers
than in V1 (see the negative increments in the middle panel of Table 2).
This is consistent with the Efficient Coding Hypothesis [85,86].

Reduction in 𝑇 (𝒗𝒊) in the middle panel is not the same as the
reductions of 𝑇 (𝒗𝒊, 𝒗𝒊) or 𝐼(𝒗𝒊, 𝒗𝒊) along the diagonal of the pairwise
parts of the top and the bottom panels. While redundancy reduction
in 𝑇 (𝒗𝒊) means better information encoding, reduction in 𝑇 (𝒗𝒊, 𝒗𝒊) or
𝐼(𝒗𝒊, 𝒗𝒊) means a decay in the information content. This decay is more
apparent in 𝐼(𝒗𝒊, 𝒗𝒊), because the reduction of 𝑇 (𝒗𝒊, 𝒗𝒊) is biased by the
simultaneous reduction of the intra-node redundancy in 𝑇 (𝒗𝒊). Actually,
if we discount 𝑇 (𝒗𝒊) from 𝑇 (𝒗𝒊, 𝒗𝒊), the corrected variations may change
their sign and become a gain.5 These kind of gains may be a positive
effect of connectivity seen in 𝑇 and not in 𝐼 .

5 Variations 𝛥𝑇 corrected in this way (remaining information after discount-
ng redundancy) are −11%, −17%, and +1%, for v2, v3, and v4, respectively.
his implies an increment in V4, while with the original values one gets (−9%,
12
However, the mono-node measures mentioned above only describe
the information in each node, but not how much of this information
comes from another region. This second concept, more related to
connectivity, is measured by pairwise and multi-node measures. In this
regard, progressively bigger reductions in the pairwise 𝛥𝐼(𝒗𝒊, 𝒗𝒋) and
𝛥𝑇 (𝒗𝒊, 𝒗𝒋) away from the diagonal mean information loss along the

ay (or reduced functional connectivity). This information loss seems
onsistent with the data processing inequality [15] to a certain extent.
owever, as discussed below, the results (particularly 𝑇 in multiple
odes) confirm the existence of relevant feedback in these regions.

The data processing inequality [15] states that information lost be-
ween two nodes cannot be recovered by further processing (with no
dditional input from the original node). This inequality strictly holds
n purely feedforward schemes 𝒗𝟏 → 𝒗𝟐 → 𝒗𝟑 → 𝒗𝟒, where, due to the
bsence of feedback connections and skip connections, the response in
nner layers conditioned to the previous layer is independent of the
arly layers. In such systems, it holds 𝐼(𝒗𝟏, 𝒗𝟐) > 𝐼(𝒗𝟏, 𝒗𝟑) > 𝐼(𝒗𝟏, 𝒗𝟒).

−16%, −1%), as shown in the diagonal of the pairwise part of the 𝑇 panel (in
Table 2). This positive variation is in contrast with the −7% loss in 𝛥𝐼(𝑣4, 𝑣4).
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This behavior is what is observed in the rows of the 𝐼 panel when
moving away from the diagonal to inner layers. This suggests that the
feedforward component of the connectivity can be strong, and in such
simplistic situation, one could deduce the strength of each connection
from the different decays in 𝐼(𝒗𝒊, 𝒗𝒋).

However, in our case (where feedback and skip connections may
exist) the data processing inequality may not hold. Reductions in 𝐼 do
not necessarily mean that the other connections are not present. This
is more clear looking at the results of 𝑇 . While the behavior of the
airwise 𝑇 moving to deeper layers is negative (similarly to 𝐼), some-

thing different happens by considering extra nodes. Under the purely
feedforward assumption extra nodes should share less information with
the previous and the global 𝑇 should decrease, particularly if the intra-
node redundancy does not increase (as in this pathway). However,
we see that in some cases the consideration of extra nodes implies an
increase of the shared information per node, as for instance when going
from (𝑣1, 𝑣2) to (𝑣1, 𝑣2, 𝑣3) or from there to (𝑣1, 𝑣2, 𝑣3, 𝑣4) (see the positive
increments highlighted in blue in Table 2).

Multi-node results obtained from the proposed measure 𝑇 are inter-
esting because we can see that the connections in the group (𝑣1, 𝑣2, 𝑣3)
are a bit stronger than the connections in the group (𝑣2, 𝑣3, 𝑣4) despite
they are at similar anatomical distance. This suggests some top-down
feedback from 𝑣3 or 𝑣2 or feedforward skip connections from 𝑣1 to
3. The same is true when considering all the nodes together with
substantial increment (by 11%). See the raw data in Appendix D

histograms) to see the differences in the values.
These two different synergistic behaviors that can be seen using

he proposed Total Correlation clearly mean that one can rule out a
ure feedforward scheme in the 𝑉1, 𝑉2, 𝑉3, 𝑉4 regions, and more complex

connectivity schemes do exist. This is not that obvious just using the
conventional 𝐼 .

5. Discussion and conclusions

Analytical results: 𝑇 is a better descriptor of connectivity than
𝐼 . The goal of this paper is addressing the fundamental limitation of
the seminal work that proposed 𝑇 as a measure of functional connec-
tivity [10]: namely the lack of analytical results that can justify the
superiority of the 𝑇 over the conventional 𝐼 beyond the multivariate
versus pairwise definitions. Here we did that analytical study in the
context of the early visual brain with simple models of the retina-V1
cortex pathway.

For mathematical convenience we considered two variations of the
general framework presented in the diagram (2): Model I and Model II.
These models were chosen to illustrate two fundamental properties
of neural architectures in early vision: (1) the Divisive Normalization
nonlinearity in Model I, in Section 2.1.1, and (2) an eventual top-down
recurrence in Model II in Section 2.1.2.

It is important to stress again that the models are not arbitrary:
according to the results in Appendix B the nonlinearity in Model I is
key to improve the explanation of the psychophysics, and the explored
range of intra-cortical connectivity actually covers different behaviors
(with substantial differences in the explained variance of human data).
The top-down connection in Model II was not specifically justified,
but given the observed behavior of the steady state in 𝒆, the explored
feedback does not reduce substantially the 𝜌 = 0.7 result. This indicates
that Model II has certain biological plausibility, so that it can be used
to illustrate the study of recurrent connections. The plausibility of the
models and the generality and relevance of the facts they illustrate
(nonlinearities and recurrence) implies that a proper descriptor of
functional connectivity should be sensitive to the different variations
of the models.

Sections Section 3.1, 4.2, and 4.3 explicitly show the superiority
f 𝑇 over 𝐼 in the considered nonlinear and recurrent models. The
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onclusion of these analytical results (confirmed by the experimental
simulations) is that while the conventional Mutual Information is not
useful to capture the intra-cortical connections in Model I, the pro-
posed measure, Total Correlation, is quite sensitive to this connectivity.
Similarly, the proposed Total Correlation is more sensitive than Mutual
Information to the feedforward and feedback connectivity explored in
the recurrent Model II. From a general perspective, the considered
nonlinearity is ubiquitous in the visual pathway [18,19,55,87,88].
Therefore, the success of the proposed multivariate Total Correlation in
describing this connectivity is a substantial advantage with regard to
the conventional, pairwise, Mutual Information.

Temporal dynamics can be incorporated in the theory. Trans-
mission time and recurrence implied by feedback imply a nontrivial
evolution of the signals when the system faces dynamic inputs with
fast variations compared with the updating time constant 𝛥𝑡. In our
simulations we consider slow-varying sources 𝐬(𝑡) and (in Model II) we
wait till the convergence of the signals to a stationary state to measure
the statistical dependence between the signals at the different layers.
That situation is equivalent to assuming static signals (corresponding to
the stationary situation) and zero communication delay between layers.
The consideration of the biophysics of communication and the resulting
delay may certainly modify the proper (best corresponding moment) to
look for maximum relations.

However, these assumptions are not a major restriction of the
results. This is because the fundamental properties invoked to prove
the superiority of 𝑇 are time independent. Therefore, the proposed 𝑇
is still expected to be more sensitive to changes in connectivity than
the traditional pairwise 𝐼 even if time delays are different from zero.

Looking at the proposed analytical expressions (9), (13) and (14),
(15), delays just impact on the expected values that define the covari-
ance matrices involved in 𝑇 and 𝐼 . Let us consider the effects in turn,
first in the nonlinear model, and then in the model with feedback.

In the nonlinear model delayed transmission does not affect the
diagonal blocks of the covariance matrices because they describe in-
teraction between the signal within certain layer (and hence at a fixed
time). Only the off-diagonal blocks are affected because they consider
the relation between the signal at different layers (and, given the
transmission delay, at different times). Therefore, tracing the signals
at 𝒚, 𝒆, or 𝒛, back to the signal at 𝒙, in the covariance one would
have comparisons between the values of 𝒙 at different times, which
certainly would imply a modification: 𝛴𝑥 = 𝐸[𝑥(𝑡)𝑥(𝑡)⊤] ≠ 𝛴𝑥 =
𝐸[𝑥(𝑡)𝑥(𝑡 − 𝛥𝑡)⊤]. The modification may be due to two reasons: (1) if
he stimulus 𝒔 is stationary, correlations may be reduced because of

ocular motion and may be increased because of averaging independent
realizations of the noise in the photoreceptors. (2) if the stimulus 𝒔 is
ot stationary (as in video sequences), correlation between the signal
alues at different locations will be also decreased due to motion in the
cene. However, assuming an auto-regressive model for natural videos
which is a sensible rough model that allows robust motion estimation
n video coding [89,90], and justifies spatio-temporal DCT-like eigen
unctions for natural video [91]) one could propose an expression
or these 𝛴𝑥 or even compute them empirically from samples. In any

case, note that these modifications do not change the analytical result
because transmission delays in the covariance matrices in Eqs. (9), (13),
would modify the specific values of 𝑇 and 𝐼 , but do not modify the
fact that 𝑓 (⋅) depends on the intra cortical connectivity, and hence 𝑇 is
sensitive to that connectivity while 𝐼 is not.

For the model with feedback: the reasoning for the off-diagonal
terms in Eqs. (14) and (15) is exactly the same as the one given
above for the covariances in Eqs. (9), (13). However, with feedback the
diagonal blocks also change because they imply comparison between
delayed signals 𝒙 at different times. Specific simulations could deter-
mine how these variations will impact on the determinants involved in
the entropies of Gaussians in Eqs. (6) and (7), but it is important to
stress that: (1) the described effect is the same in the expressions for

𝐼 and 𝑇 and, more importantly, (2) all the proposed expressions (and
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code provided) are valid with the corresponding modification of the
covariance 𝛴𝑥. so the theory could be used to repeat the computations
with empirical estimations of this covariance.

The theory (expressions and code) could be used to explore different
choices of delay in situations before the stationary state has been
reached, or with non-stationary stimuli. Similarly, temporal variations
of connectivity due to adaptation (e.g. changes in the Divisive Normal-
ization kernel in different environments [62]) could be studied with the
proposed theory. However, a detailed analysis (with a variety of options
for the delay and feedback factors) is a separate research which is out
of the scope of this work and matter of future research.

Introducing certain sensitivity to direction. Classical measures as
the correlation, and also the measures compared here (𝑇 and 𝐼) are
not directional. As a result, the forward/feedback possibilities are, by
definition, not easily distinguishable. However, when multiple nodes
are considered (𝑇 can consider many at once, which cannot be done
by 𝐼 nor by the correlation) one could look at variations in the amount
of information per node. Modifications of 𝑇 /node when including ex-
tra nodes in certain order may give insights on the direction of the
relations.

Additionally, one could introduce some sort of sensitivity to direc-
tion in 𝑇 by conditioning as done with mutual information in transfer
ntropy [5]. By applying the information-chain-rule (as in transfer
ntropy) one could also reduce the problem to the estimation of joint
ntropy values.

esults with real data: 𝑇 highlights synergies in 𝑉1, 𝑉2, 𝑉3, 𝑉4. The
positive results of 𝑇 (and the corresponding RBIG estimates) in the
analytical settings presented above not only address a limitation of [10,
11], but really justify its use in real scenarios. In the case of fMRI
data from the visual regions 𝑉1, 𝑉2, 𝑉3, 𝑉4, our measurements of 𝑇 show
that: (1) the redundancy within each layer, 𝑇 (𝑣𝑖), is reduced along the
way, which is consistent with the Efficient Coding Hypothesis, (2) the
information content measured through 𝑇 (𝑣𝑖, 𝑣𝑖) is more stable along
the way than the measures given by 𝐼(𝑣𝑖, 𝑣𝑖), particularly if the inner
redundancy is discounted. (3) The variation of the pairwise measures
of 𝐼(𝑣𝑖, 𝑣𝑗 ) seems compatible with the data processing inequality in a
purely feedforward setting 𝒗𝟏 → 𝒗𝟐 → 𝒗𝟑 → 𝒗𝟒, however, (4) the
multi-node 𝑇 shows synergies that rule out the purely feedforward
scheme. Moreover, it suggests stronger functional connectivity between
the nodes 𝑉1, 𝑉2, 𝑉3 than between 𝑉2, 𝑉3, 𝑉4 despite a similar anatomical
distance. All this complex behavior is not easy to see just using the
conventional 𝐼 .

Relations with previous work. Firstly, this is the necessary analytical
companion of the proposal of Total Correlation to measure connec-
tivity [10,11]. Then, here we have applied this tool to visual areas
extending the works that first used Mutual Information to assess the
connectivity between pairs of visual areas [4] or those that measured
Mutual Information between V1 and MT (or V5) under Divisive Normal-
ization transforms [92]. The analysis of Mutual Information between
progressively deeper visual layers is also related with previous works
focused on quantifying the information flow in different nonlinear
models of retina-V1 pathway [25,26], which were restricted to purely
feedforward models.

On the other hand, the approach we took here (quantifying the
statistical properties of the responses of real brains or psychophysi-
cally plausible models) is related with a body of literature that fol-
lows Barlow’s Efficient Coding Hypothesis in a non-classical direction.
Note that the classical direction is from-statistics-to-biology : a system
optimized for a sensible statistical goal may display biological-like
behavior [85,86]. This is the direction that explained linear receptive
fields [45,59,60,76] and sensory nonlinearities [28,47,69,75,91,93]
from statistics. However, there is literature that reasons in the opposite
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direction from-biology-to-statistics: look at the statistical properties of the
responses of biologically plausible systems and you will find statisti-
cally interesting behavior. In this regard, redundancy reduction [23,
35,94], and efficient information transmission [25,26,74,95] has been
found in real and biologically plausible models. And this is similar to
the information-theoretic analysis that we did of real and simulated
responses.

Limitations and future research. This study has different limitations
that should be addressed by future research. First (and most important)
is the unification of the analytical examples: they addressed funda-
mental issues such as nonlinearities and recurrence, but they did it
in separate examples (Model I and Model II). Moreover, Model I did
not include noise after the divisive normalization so that one could
apply the property of the variation of 𝑇 under deterministic transforms,
Eq. (7), and the invariance of 𝐼 under transforms of one of the variables,
Eq. (11). Future research should try to get unified expressions for a
general nonlinear and recurrent model with noise at all layers.

Second, we left out the comparison with other interesting pair-
wise (but directional) measures related to Mutual Information such as
Transfer Entropy and Granger Causality [8]. As mentioned above, this
would require extensions of 𝑇 by conditioning on the past values of the
signals. Regarding other linear measures like coherence [96], partial
cross-correlation [97], or phase synchrony [98], we just present one
empirical illustration of their behavior in Appendix E that suggest their
inability to capture connectivity in nonlinear settings (with the default
implementation in [49]). Nevertheless, a detailed theoretical account
of this inability is out of the scope of this work.

The third, more instrumental, limitation is related to the specific
empirical estimator of 𝑇 which is necessary in real scenarios. Here
we used our Rotation-Based Iterative Gaussianization [39,72], and it
proved to follow the trends of the theoretical surfaces in the analytical
scenarios. However, RBIG may suffer from errors when the signals are
strongly non-Gaussian with multiple modes separated by low probabil-
ity regions as may happen after Divisive Normalization (see the PDFs
of natural images in [23,26]). An approximate knowledge of the PDF of
the signals is required to set the number of iterations in RBIG. Of course,
future research can use other empirical estimators as for instance [40–
44]. In this regard, the analytical results presented here are a good
test-bed for current or future empirical estimators.

Finally, regarding the results with real data, it is important to
acknowledge that there are more comprehensive databases. The one
we used (the Algonauts 2021 Challenge [48]) only considers 1000 videos
and has a restricted set of voxels because we wanted a simple proof
of concept for our measure 𝑇 and estimator RBIG on low level re-
gions. The work done here could be extended in different ways. First,
the database could be segmented depending on the properties of the
stimuli (e.g. color, texture and motion content) because the functional
connectivity between the considered regions may depend on these low-
level features of the input. This could tell us about the specialization
of these regions in different dimensions of the stimuli. Moreover, the
computation of connectivity based on 𝑇 depending on the structure of
the scene could clarify the differences in the feedback signals found
in figure-ground contexts [82,84]. And second, larger databases (such
as [99]) may be convenient to confirm the current results and be more
appropriate to study the connectivity depending on the properties of
the input so that the subsets are big enough to trust the information
estimates. Databases like [100] can be used to address the relation
between V1 and higher-level regions (FFA, PPA, . . . ).

Conclusions: In this work we derived analytical results that show
that Total Correlation is a better descriptor of connectivity than Mutual
Information in plausible models of the retina-LGN-V1 that include non-
linearities due to intra-cortical connectivity and top-down feedback. 𝑇
is better because it is more sensitive than 𝐼 to connectivity. Analytical
results are derived for Gaussian signals but, as confirmed by empirical

estimates, they also hold for natural inputs. Our 𝑇 results for real
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Fig. 8. Parameters of the vision models: Center–surround receptive fields in LGN and equivalent Contrast Sensitivity Function. Local frequency filters tuned to different orientations
in linear V1 and interaction kernel 𝐻𝑓𝑓 ′ in the divisive normalization nonlinearity in V1.
responses recorded from V1,V2,V3,V4 rule out a naive feedforward-
only information flow and suggest stronger feedback connections in
V1,V2,V3, than in V2,V3,V4.

The proposed measure opens several possibilities: (1) it can be
applied to assess the connectivity in complex models that have been de-
veloped to reproduce feedforward and feedback oscillations [83], and
(2) it can be used to examine signal-dependent feedback in stimuli with
figure-ground or spatially segregated textures, which is an interesting
open question in visual neuroscience [82,84].
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Appendix A. Parameters of the networks and illustrative
responses

In this Appendix we present the range of parameters that we con-
sidered in Eqs. (3) and (4) of early vision Model I and Model II. We also
show illustrative responses for a natural image.

First, note that the throughout the work we consider that the input
to our networks is an achromatic image patch of 8 × 8 pixels. This
means that vectors 𝐬, 𝐱, 𝐲, 𝐞, and 𝐳 live in R64, and we consider layers
(or nodes) with 𝑛 = 64 neurons. Therefore, matrices 𝐾, 𝐹 , 𝜆𝐶𝑆𝐹 , and
𝐻 (that represent relations between neurons) are 64 × 64 matrices.

Fig. 8 illustrates the parameters involved in the retina-to-LGN trans-
form (𝐱 → 𝐲) and in the LGN-to-cortex transform (𝐲 → 𝐳), as well as in
the intra-cortical nonlinearity (𝐞 → 𝐳) of Model I.

First, regarding 𝐱 → 𝐲 we follow the relation between the center–
surround cells in LGN and the CSF, and hence we compute 𝐾 from the
CSF of the Standard Spatial Observer [22] transformed from the origi-
nal Fourier domain into the (more convenient) DCT domain using the
procedure in [101] (second panel in Fig. 8). The result (in the spatial
domain) are center–surround receptive fields which are consistent with
the physiological measurements [50] (first panel in 8).

Then, the linear cortical transform 𝐲 → 𝐞 uses the local-DCT
representation following previous results on biologically-inspired im-
age compression [33,34] and subjective image quality [102,103]. The
64 × 64 local-frequency receptive fields in 𝐹 (DCT-like basis functions)
are shown in the third panel of Fig. 8.

Finally, regarding the intra-cortical Divisive Normalization, 𝐞 →
𝐳, here we also follow models used in biologically-inspired image
compression methods [35,36]. In this case, the structural connectiv-
ity between different local-frequency sensors decays with distance in
frequency according to a Gaussian [19,55]:

𝐻𝑓𝑓 ′ = 𝑒
− (𝑓−𝑓 ′)2

𝜎(𝑓 )2 (16)

where the width 𝜎(𝑓 ) increases with the frequency 𝑓 , according to
𝜎(𝑓 ) = 𝜎0 + 𝛼𝐻𝑓 , as illustrated in the example of the fourth panel of
Fig. 8. In that case, the connectivity neighborhood is wider for sensors
of high frequency (bottom right of the plot) than for sensors of low
frequency (top left of the plot). Finally, in our experiments we set the
semi-saturation constant 𝑏 and the constant 𝜅 according to the method
in [25] so that the Divisive Normalization is compatible with classical
non-linearities such as the Wilson–Cowan recurrent model [104].

In the experiments we consider a range of intra-cortical connectivity
values in Model I (Section 3.1), and we modify the width of the kernel
𝐻 by varying the constant 𝛼 ∈ [0.35, 4], and by varying the strength
𝐻
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Fig. 9. Signals through the layers of the vision Model I . Responses to a sample image with the optimal parameters. Optimal means maximum correlation with human opinion
among the considered discrete set of connectivity values (see Appendix B).
𝑐𝑒𝑧 ∈ [0.01, 300]. This has an effect in the nonlinearity of the cortical
responses and, as a consequence, on the statistical effect of 𝑓 (⋅).

Fig. 9 illustrates the transformations of the signal along the layers
of Model I for a representative set of parameters (those that maximize
correlation with human psychophysics). The top panel shows (i) the
input image 𝐬: in this case the achromatic image of an eye in the
range [0,200] cd∕m2, spatially sampled at 64 cycles/degree, (ii) how
this input is distorted with the noise at the retina (leading to 𝐱), (iii)
the response of center–surround cells distorted by noise in 𝐲, (iv) the
response to 3 × 3 regions of local-frequency sensors in 𝐞 (with the
corresponding noise) in 𝐞, and finally, (v) the result of the Divisive
Normalization in 𝐳. Additionally, for a qualitative understanding of
the information lost along the way, the cortical signals (𝐞 and 𝐳) are
represented back in the spatial domain by transforming them using the
linear inverse 𝐹−1.

Following the argument in [53] the standard deviation of the noise
injected at each layer has been selected such as it remains barely
visible. This is because just-noticeable-differences are determined by
this amount of noise [105]. Specifically, the standard deviation of the
white noise at the different layers in Model I is 𝜎(𝑛𝑥) = 5 cd∕m2 (for
images with luminance in the range [0, 200] cd∕m2), 𝜎(𝑛𝑦) = 0.1, 𝜎(𝑛𝑒) =
0.01, and (on top of these values), in Model II we have 𝜎(𝑛𝑧) = 0.01.

Finally, the scatter plots at the bottom left of Fig. 9 illustrate
the nonlinearities introduced by the considered Divisive Normaliza-
tion. From the local DC components of the representation we can see
the saturation of (perceived) brightness as a function of the input
luminance, where we can see the Weber Law [106]. Similarly, the
other plots for low, medium, and high, frequency coefficients, illustrate
the nonlinearity of the perceived contrast as a function of the input
contrasts. This sigmoidal and signal-dependent behavior is consistent
with the psychophysics of contrast perception [55], and the amplitude
of the responses for the different frequencies is consistent with the
CSF [60,101].

Appendix B. Psychophysical plausibility of the networks

In this Appendix we assess the plausibility of the models accord-
ing to their ability to predict experimental psychophysical data on
subjective image quality.
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Note that qualitative Weber law, saturation of perceived contrast,
and compatibility with the CSF displayed in Fig. 9 suggest that the
parameters we chose make biological sense. However, a more com-
prehensive/quantitative test is necessary particularly if a range of
parameters has to be considered. To this end, here we use the networks
with different parameters to predict subjective image quality data,
specifically the ratings given by humans in the TID database [107]. This
way of determining plausible parameters is not new [22–24] and it has
been subject to criticism as a single measurement of performance [20].
However, in the context presented here, prediction of subjective quality
is enough to highlight the general behavior of the models and to
(roughly) identify which regions of the parameter space make more
biological sense.

In this regard, the scatter plots in Fig. 10 show how well Euclidean
distances at the different layers of Model I (abscissas), predict the
subjective ratings (ordinates). The strong correlation obtained in the
inner cortical representation 𝜌 = 0.84, which is not far from the state-of-
the-art in subjective image quality metrics [65] prove the plausibility of
the transforms and the levels of the Gaussian noise introduced at each
layer.

Specifically, the poor result for the input representation (𝐬 in lumi-
nance) implies that the visual brain certainly does something to the input
signal [108,109]. The progressive improvement of the correlation along
deeper layers means that the set of considered transforms is biologically
meaningful. In fact, the consideration of the center–surround cells (or
the CSF) is a major fact in explaining image quality [22,102], and this
is incorporated in both Model I and Model II leading to a reasonable
Pearson correlation, 𝜌 = 0.71, only with linear transforms. Then, we
study the intra-cortical connectivity of Model I in more detail: we
consider the plausibility of a range of strengths 𝑐𝑒𝑧 and a range of
widths in 𝐻 .

The result shows that all the family of Divisive Normalization trans-
forms make sense because they substantially improve the correlation
with human opinion. Note that the correlation at the linear cortical
layer 𝐞 (surface in light blue at 0.71) is raised by the different 𝐳 layers
to be in the range [0.76, 0.84]. Moreover, the final correlation surface for
the different intra-cortical connectivity values has strong curvature and

a clear maximum (green dot) in the middle of the considered region.
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Fig. 10. Vision Models I and II are psychophysically plausible. Correlation with human opinion for different cortical connectivity values (surfaces on top) and correlations in
previous (linear) layers (scatter plots at the bottom). In the nonlinear cortical case the scatter plot is the one corresponding to the optimum connectivity.
This means that it is interesting to study the behavior of the statistical
descriptors of connectivity in this region of parameters.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.neucom.2023.127143.
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